CHAPTER V

Numerical Kodaira dimension

We give a criterion for an \mathbb{R}-divisor to be pseudo-effective in $\S \mathbf{1}$ by applying the Kawamata-Viehweg vanishing theorem. In $\S \mathbf{2}$, we introduce two invariants, denoted by $\kappa_{\sigma}(D)$ and $\kappa_{\nu}(D)$, respectively, both of which seem to be the candidates and deserve to be called the numerical D-dimension for a pseudo-effective divisor D. Both invariants have many properties expected for numerical D-dimension, which we prove using the results in $\S 1$. In $\S 3$, we introduce the notion of ω-sheaves, which is useful for the study of direct images of relative pluricanonical sheaves. The notion of weak positivity introduced by Viehweg is refined also in $\S \mathbf{3}$. We prove some addition theorems for κ and κ_{σ} and for log-terminal pairs in $\S 4$. These are slight generalizations of Viehweg's results in $[\mathbf{1 4 7}]$. In the last part of $\S 4$, we prove the abundance theorem in a special case where $\kappa_{\sigma}=0$, as an application of the addition theorems.

§1. Pseudo-effective \mathbb{R}-divisors

§1.a. Base-point freeness.

1.1. Lemma Let Δ and D be effective \mathbb{R}-divisors without common prime components on a normal variety X and let x be a point of X.
(1) If $(X, b D)$ and $(X, b /(b-1) \Delta)$ are log-terminal at x for some $b>1$, then $(X, D+\Delta)$ is log-terminal at x.
(2) Suppose that X is non-singular at x and $\operatorname{mult}_{x} \Delta<1$. Then (X, Δ) is log-terminal at x.
(3) Suppose that X is non-singular at $x,(X, b D)$ is log-terminal at x, and $\operatorname{mult}_{x} \Delta<(b-1) / b$ for some $b>1$. Then $(X, \Delta+D)$ is log-terminal at x.

Proof. (1) Let $f: Y \rightarrow X$ be a bimeromorphic morphism from a non-singular variety such that the union of the exceptional locus $G=\sum G_{i}$, the proper transform D_{Y} of D, and the proper transform Δ_{Y} of Δ is a simple normal crossing divisor. Then we can write
$K_{Y}=f^{*}\left(K_{X}+b D\right)+\sum a_{i} G_{i}-b D_{Y}=f^{*}\left(K_{X}+\frac{b}{b-1} \Delta\right)+\sum c_{i} G_{i}-\frac{b}{b-1} \Delta_{Y}$
for real numbers a_{i}, c_{i}. If $x \in f\left(G_{i}\right)$, then $a_{i}, c_{i}>-1$. Furthermore, $b D_{Y\lrcorner}=$ $\left\llcorner(b /(b-1)) \Delta_{Y\lrcorner}=0\right.$ over a neighborhood of x. Since $1 / b+(b-1) / b=1$, we have

$$
K_{Y}=f^{*}\left(K_{X}+D+\Delta\right)+\sum \frac{a_{i}+(b-1) c_{i}}{b} G_{i}-D_{Y}-\Delta_{Y}
$$

Thus $(X, D+\Delta)$ is log-terminal at x.
(2) Suppose that the bimeromorphic morphism $f: Y \rightarrow X$ in the proof of (1) is a succession of blowups

$$
Y:=X_{l} \xrightarrow{\mu_{l}} X_{l-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\mu_{1}} X_{0}:=X
$$

along non-singular centers $W_{k} \subset X_{k-1}$. Let Δ_{k} be the proper transform of Δ in X_{k} and set $w_{k}:=\operatorname{codim} W_{k}, E_{k}:=\mu_{k}^{-1}\left(W_{k}\right)$, and $r_{k}:=\operatorname{mult}_{W_{k}} \Delta_{k-1}$. We may assume that the image of W_{k} in X contains x and that $r_{k} \leq \operatorname{mult}_{x} \Delta<1$ by replacing X with an open neighborhood of x. Then

$$
K_{X_{k}}=\mu_{k}^{*}\left(K_{X_{k-1}}+\Delta_{k-1}\right)+\left(w_{k}-1-r_{k}\right) E_{k}-\Delta_{k}
$$

where $w_{k}-1-r_{k} \geq 1-r_{k}>0$. Therefore,

$$
K_{Y}=f^{*}\left(K_{X}+\Delta\right)+\sum_{k=1}^{l}\left(w_{k}-1-r_{k}\right) \phi_{k}^{*} E_{k}-\Delta_{Y}
$$

where ϕ_{k} is the composite $Y=X_{l} \rightarrow X_{k}$ and $\Delta_{Y}=\Delta_{l}$. Thus (X, Δ) is log-terminal at x.
(3) follows from (1) and (2).
1.2. Proposition Let x be a point of an n-dimensional non-singular projective variety X and let Δ be an effective \mathbb{R}-divisor such that (X, Δ) is log-terminal at x. Let E_{x} be the exceptional divisor for the blowing-up $\rho_{x}: Z \rightarrow X$ at x and let L be $a \mathbb{Z}$-divisor of X. If $\rho_{x}^{*}\left(L-\left(K_{X}+\Delta\right)\right)-n E_{x}$ is ample, then $x \notin \mathrm{Bs}|L|$.

Proof. For the proper transform Δ_{Z} of Δ in Z, we have

$$
K_{Z}=\rho_{x}^{*}\left(K_{X}+\Delta\right)+\left(n-1-\operatorname{mult}_{x} \Delta\right) E_{x}-\Delta_{Z} .
$$

There exists a birational morphism $\mu: Y \rightarrow Z$ from a non-singular projective variety such that the union E of the exceptional locus for $f:=\rho_{x} \circ \mu: Y \rightarrow X$ and $f^{-1}(\operatorname{Supp} \Delta)$ is a simple normal crossing divisor. Let $E=\sum_{i=0}^{l} E_{i}$ be the prime decomposition in which E_{0} is the proper transform of E_{x}. By comparing K_{Y} with $K_{X}+\Delta$, we have real numbers a_{i} for $0 \leq i \leq l$ such that

$$
K_{Y}=f^{*}\left(K_{X}+\Delta\right)+\sum_{i=0}^{l} a_{i} E_{i}
$$

Here $a_{0}=n-1-\operatorname{mult}_{x} \Delta$. If $x \in f\left(E_{i}\right)$, then $a_{i}>-1$, since (X, Δ) is log-terminal at x. Now the \mathbb{R}-divisor

$$
f^{*} L+\sum_{i=0}^{l} a_{i} E_{i}-n \mu^{*} E_{x}-K_{Y}
$$

is nef and big. We define

$$
R:=\sum_{i=0}^{l} r_{i} E_{i}:=\sum_{i=0}^{l} a_{i} E_{i}-n \mu^{*} E_{x}
$$

Then $r_{0}=-1-\operatorname{mult}_{x} \Delta \leq-1$. If $x \in f\left(E_{i}\right)$ and if $\{x\} \neq f\left(E_{i}\right)$, then $r_{i}>-1$. Hence there exist ideal sheaves $\mathcal{J}_{0}, \mathcal{J}_{1}$ of \mathcal{O}_{Z} such that
(1) $\mu_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner)=\mathcal{J}_{0} \cap \mathcal{J}_{1} \subset \mathcal{O}_{Z}$,
(2) $\operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{0}=E_{x}$ and $E_{x} \cap \operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{1}=\emptyset$.

Thus $\mathcal{J}:=f_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner)$ is an ideal sheaf of \mathcal{O}_{X} and x is an isolated point of $\operatorname{Supp} \mathcal{O}_{X} / \mathcal{J}$. On the other hand,

$$
\mathrm{H}^{1}\left(X, f_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner) \otimes \mathcal{O}_{X}(L)\right)=0
$$

by the vanishing theorem II,5.9. Therefore, the composite

$$
\mathrm{H}^{0}\left(X, \mathcal{O}_{X}(L)\right) \rightarrow \mathrm{H}^{0}\left(X, \mathcal{O}_{X}(L) \otimes\left(\mathcal{O}_{X} / \mathcal{J}\right)\right) \rightarrow \mathcal{O}_{X}(L) \otimes \mathbb{C}(x)
$$

is surjective and hence $x \notin \mathrm{Bs}|L|$.
1.3. Theorem Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety X. Then there exists an ample divisor A such that

$$
x \notin \mathrm{Bs}|\ulcorner t D\urcorner+A| \cup \mathrm{Bs} \mid\left\llcorner D_{\lrcorner}+A \mid\right.
$$

for any $t \in \mathbb{R}_{>0}$ and for any point $x \in X$ with $\sigma_{x}(D)=0$.
Proof. Let $\rho: Z \rightarrow X$ be the blowing-up at a point x with $\sigma_{x}(D)=0$ and let E_{x} be the exceptional divisor. If H is a very ample divisor of X, then $\left|\rho^{*} H-E_{x}\right|$ is base point free. Therefore $\rho^{*}(k H)-n E_{x}$ is ample for $k>n:=\operatorname{dim} X$. We fix a number $0<\alpha<1$. Then we can take an ample divisor A such that

$$
\rho^{*}\left((1-\alpha) A-K_{X}+\langle-t D\rangle\right)-n E_{x} \quad \text { and } \quad \rho^{*}\left((1-\alpha) A-K_{X}-\langle t D\rangle\right)-n E_{x}
$$

are both ample for any $t>0$ and for any $x \in X$, since $\left\{c_{1}(\langle t D\rangle)\right\}$ is bounded in $\mathrm{N}^{1}(X)$. Then, for any $t>0$, there exists a member $\Delta \in|t D+\alpha A|_{\text {num }}$ with mult $_{x} \Delta<1$, since $\sigma_{x}(D)=0$. Here (X, Δ) is log-terminal at x by 1.1. We set $L_{1}:=\ulcorner t D\urcorner+A$ and $\left.L_{2}:=t D\right\lrcorner+A$. Then

$$
\rho^{*}\left(L_{1}-\left(K_{X}+\Delta\right)\right)-n E_{x} \quad \text { and } \quad \rho^{*}\left(L_{2}-\left(K_{X}+\Delta\right)\right)-n E_{x}
$$

are both ample by

$$
\begin{aligned}
& \rho^{*}\left(L_{1}-\left(K_{X}+\Delta\right)\right)-n E_{x} \approx \rho^{*}\left((1-\alpha) A-K_{X}+\langle-t D\rangle\right)-n E_{x} \\
& \rho^{*}\left(L_{2}-\left(K_{X}+\Delta\right)\right)-n E_{x} \approx \rho^{*}\left((1-\alpha) A-K_{X}-\langle t D\rangle\right)-n E_{x}
\end{aligned}
$$

Therefore, $x \notin \mathrm{Bs}\left|L_{1}\right| \cup \mathrm{Bs}\left|L_{2}\right|$ by 1.2 .
1.4. Corollary Let A be an ample divisor of X such that $A-K_{X}-(\operatorname{dim} X) H$ is ample for some very ample divisor H. Then the following two conditions are equivalent for an \mathbb{R}-divisor D of X :
(1) D is pseudo-effective;
(2) $\mathrm{h}^{0}(X,\ulcorner t D\urcorner+A) \neq 0$ for any $t \in \mathbb{R}_{>0}$.

Proof. It is enough to show (1) $\Rightarrow(2)$. In the proof of 1.3, we choose a point $x \in X$ with $\sigma_{x}(D)=0$ and $x \notin \operatorname{Supp}\langle D\rangle$, and choose a number $0<\alpha<1$ with $\rho^{*}\left((1-\alpha) A-K_{X}\right)-n E_{x}$ being ample. Let us fix $t>0$ and choose a member $\Delta \in|t D+\alpha A|_{\text {num }}$ with mult ${ }_{x} \Delta<1$. We set $L_{1}=\ulcorner t D\urcorner+A$. Then

$$
\rho^{*}\left(L_{1}-\left(K_{X}+\Delta+\langle-t D\rangle\right)\right)-n E_{x} \approx \rho^{*}\left((1-\alpha) A-K_{X}\right)-n E_{x}
$$

is ample. Here $(X, \Delta+\langle-t D\rangle)$ is log-terminal at x by 1.1. Thus $x \notin \mathrm{Bs}\left|L_{1}\right|$ by 1.2. In particular, $\mathrm{H}^{0}\left(X, L_{1}\right) \neq 0$.

We have the following generalization of III,1.7-(3):
1.5. Corollary Suppose that $\sigma_{x}(D)=0$ for a pseudo-effective \mathbb{R}-divisor D and a point $x \in X$. Then, for any ample \mathbb{R}-divisor A, there is an effective \mathbb{R}-divisor Δ such that $\Delta \approx D+A$ and $x \notin \operatorname{Supp} \Delta$.

Recall that the numerical base locus $\operatorname{NBs}(D)$ is the set of points with $\sigma_{x}(D)>0$. This is a countable union of proper subvarieties. In fact,

$$
\operatorname{NBs}(D)=\bigcup_{m>0} \operatorname{Bs}|\ulcorner m D\urcorner+A|
$$

by 1.3. If $N_{\sigma}(D)=0$, then $\operatorname{codim} \operatorname{NBs}(D) \geq 2$. If $\operatorname{NBs}\left(P_{\sigma}(D)\right)$ is not a Zariskiclosed subset, then D admits no Zariski-decompositions.
1.6. Corollary The numerical base locus $\operatorname{NBs}(D)$ has no isolated points: if $\sigma_{x}(D)>0$, then there is a curve $\gamma \subset \operatorname{NBs}(D)$ passing through x.

Proof. Assume that x is an isolated point of $\operatorname{NBs}(D)$. Since $\operatorname{NBs}(D)$ depends only on the Chern class $c_{1}(D)$, we may assume that $\operatorname{Supp}\langle D\rangle \not \supset x$. By $\mathbf{1 . 3}, x$ is also an isolated point of $\left.\mathrm{Bs}\right|_{\llcorner } m D_{\lrcorner}+A \mid$ for an ample divisor A and for infinitely many $m \in \mathbb{N}$. By [151], for such m, there exists $k \in \mathbb{N}$ with $x \notin \operatorname{Bs}\left|k\left({ }_{\llcorner } m D_{\lrcorner}+A\right)\right|$. Since $k(m D+A)=k\left(\left\llcorner m D^{\prime}+A\right)+k\langle m D\rangle\right.$, we have $\sigma_{x}(m D+A)=0$. This is a contradiction.
1.7. Corollary Let Γ be a prime divisor.
(1) For a pseudo-effective \mathbb{R}-divisor D, there is an ample divisor A such that $\sigma_{\Gamma}(t D+A)_{\mathbb{Z}} \leq t \sigma_{\Gamma}(D)$ for any $t \in \mathbb{R}_{>0}$ and

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \sigma_{\Gamma}(t D+A)_{\mathbb{Z}}=\sigma_{\Gamma}(D)
$$

(2) If B is a big \mathbb{R}-divisor, then $\sigma_{\Gamma}(t B)_{\mathbb{Z}}-t \sigma_{\Gamma}(B)$ is bounded for $t>0$.

Proof. (1) By 1.3, there is an ample divisor A such that $\sigma_{\Gamma}\left(t P_{\sigma}(D)+A\right)_{\mathbb{Z}}=0$ for any $t>0$. Therefore $\sigma_{\Gamma}(t D+A)_{\mathbb{Z}} \leq t \operatorname{mult}_{\Gamma} N_{\sigma}(D)=t \sigma_{\Gamma}(D)$. Furthermore,

$$
\frac{1}{t k} \sigma_{\Gamma}(t k D+A)_{\mathbb{Z}} \geq \frac{1}{t k} \sigma_{\Gamma}(t(k D+A))_{\mathbb{Z}}
$$

Therefore

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \sigma_{\Gamma}(t D+A)_{\mathbb{Z}} \geq \varlimsup_{k \rightarrow \infty} \sigma_{\Gamma}(D+(1 / k) A)=\sigma_{\Gamma}(D)
$$

(2) By (1), we have an ample divisor A with $\sigma_{\Gamma}(t B+A)_{\mathbb{Z}} \leq t \sigma_{\Gamma}(B)$. Since B is big, there exist a positive integer k and an effective \mathbb{R}-divisor Δ such that $k B \sim A+\Delta$. Therefore, for $t>k$,

$$
\sigma_{\Gamma}(t B)_{\mathbb{Z}} \leq \sigma_{\Gamma}((t-k) B+A)_{\mathbb{Z}}+\operatorname{mult}_{\Gamma} \Delta \leq(t-k) \sigma_{\Gamma}(B)+\operatorname{mult}_{\Gamma} \Delta
$$

Remark The author was informed 1.7-(2) from H. Tsuji, who seemed to have similar results to $\mathbf{1 . 2}$ and $\mathbf{1 . 3}$ by applying some L^{2}-vanishing theorem.
1.8. Problem Let D be a pseudo-effective \mathbb{R}-divisor, A an ample divisor, and Γ a prime divisor. Then is $t \sigma_{\Gamma}(D)-\sigma_{\Gamma}(t D+A)$ bounded for $t>0$?

Let B be a big \mathbb{R}-divisor of X. The set

$$
\operatorname{SBs}(B):=\bigcap_{\Delta \in|B|_{\mathbb{Q}}} \operatorname{Supp} \Delta
$$

is called the stable base locus of B. Since $|B|_{\mathbb{Q}}$ is the set of effective \mathbb{R}-divisors \mathbb{Q}-linearly equivalent to B, we have

$$
\operatorname{SBs}(B)=\bigcap_{m=1}^{\infty} \operatorname{Bs}|m B|=\bigcup_{\text {mult }_{\Gamma} B \notin \mathbb{Q}} \Gamma \cup \bigcap_{m=1}^{\infty} \operatorname{Bs}\left|{ }_{\llcorner } m B B_{\lrcorner}\right|
$$

We introduce the following \mathbb{R}-version of the stable base locus:

$$
\operatorname{SBs}(B)_{\mathbb{R}}:=\bigcap_{\Delta \in|B| \mathbb{R}} \operatorname{Supp} \Delta
$$

Note that $\operatorname{SBs}(B)$ and $\operatorname{SBs}(B)_{\mathbb{R}}$ are Zariski-closed subsets of X containing $\operatorname{NBs}(B)$. For an ample \mathbb{R}-divisor A, let us consider the set

$$
\mathbb{G}(B, A):=\left\{t \in \mathbb{R} \mid B+t A \text { is big and } \operatorname{NBs}(B+t A) \neq \operatorname{SBs}(B+t A)_{\mathbb{R}}\right\}
$$

1.9. Lemma

(1) $\operatorname{NBs}(B)=\bigcup_{t>0} \operatorname{SBs}(B+t A)_{\mathbb{R}}$.
(2) If $B+t A$ is big, then $(t-\varepsilon, t) \cap \mathbb{G}(B, A)=\emptyset$ for some $\varepsilon>0$.
(3) If $t \in \mathbb{G}(B, A)$ and if $\operatorname{NBs}(B+t A)$ is a Zariski-closed subset, then t is an isolated point of $\mathbb{G}(B, A)$.

Proof. (1) If $x \in \operatorname{NBs}(B)$, i.e., $\sigma_{x}(B)>0$, then $\sigma_{x}(B+t A)>0$ for some $t>0$. Thus $x \in \operatorname{SBs}(B+t A)_{\mathbb{R}}$. Suppose that $x \notin \operatorname{NBs}(B)$. Then $x \notin \operatorname{SBs}(B+q H)$ for any $q \in \mathbb{Q}_{>0}$ and for an ample \mathbb{Q}-divisor H, by $\mathbf{1 . 3}$. For any $t \in \mathbb{R}_{>0}$, we can find $q \in \mathbb{Q}>0$ such that $t A-q H$ is ample. Thus

$$
\operatorname{SBs}(B+t A)_{\mathbb{R}} \subset \mathrm{SBs}(B+q H)_{\mathbb{R}} \cup \operatorname{SBs}(t A-q H)_{\mathbb{R}} \subset \operatorname{SBs}(B+q H)
$$

Hence $x \notin \operatorname{SBs}(B+t A)_{\mathbb{R}}$ for $t>0$.
(2) We consider a sequence $\left\{\operatorname{SBs}\left(B+t^{\prime} A\right)_{\mathbb{R}}\right\}$ of Zariski-closed subsets. If $t_{1}<t_{2}$ and $B+t_{1} A$ is big, then $\operatorname{SBs}\left(B+t_{1} A\right)_{\mathbb{R}} \supset \operatorname{SBs}\left(B+t_{2} A\right)_{\mathbb{R}}$. By the Noetherian condition, we have

$$
\bigcap_{t>t^{\prime}} \operatorname{SBs}\left(B+t^{\prime} A\right)_{\mathbb{R}}=\operatorname{SBs}\left(B+t_{0} A\right)_{\mathbb{R}}
$$

for some $t_{0}<t$. Then $\operatorname{SBs}\left(B+t^{\prime} A\right)_{\mathbb{R}}=\operatorname{NBs}\left(B+t^{\prime} A\right)_{\mathbb{R}}=\operatorname{SBs}\left(B+t_{0} A\right)_{\mathbb{R}}$ for $t>t^{\prime} \geq t_{0}$.
(3) If $\operatorname{NBs}(B)$ is Zariski-closed, then $\operatorname{NBs}(B)=\operatorname{SBs}\left(B+t_{1} A\right)_{\mathbb{R}}$ for some $t_{1}>0$ by (1). Hence $\operatorname{SBs}(B+t A)_{\mathbb{R}}=\operatorname{SBs}\left(B+t_{1} A\right)_{\mathbb{R}}$ for $0<t<t_{1}$. Thus the assertion follows from (2).

Therefore, $\operatorname{NBs}(B)$ is Zariski-closed for 'almost all' big \mathbb{R}-divisors B. Note that if t is an accumulation point of $\mathbb{G}(B, A)$, then $B+t A$ admits no Zariski-decomposition.
§1.b. Restriction to general subvarieties. We shall generalize the argument of $\mathbf{1 . 2}$.
1.10. Proposition Let C be a non-singular projective curve of a non-singular projective variety X of dimension n and let Δ be an effective \mathbb{R}-divisor such that (X, Δ) is log-terminal around C and $C \not \subset \operatorname{Supp} \Delta$. Let E_{C} be the exceptional divisor for the blowing-up $\rho: Z \rightarrow X$ along C and let L be a \mathbb{Z}-divisor of X. If

$$
\rho^{*}\left(L-\left(K_{X}+\Delta\right)\right)-(n-1) E_{C}
$$

is ample, then the restriction homomorphism $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(C,\left.L\right|_{C}\right)$ is surjective.
Proof. The proof is similar to that of 1.2. We have

$$
K_{Z}=\rho^{*}\left(K_{X}+\Delta\right)+(n-2) E_{C}-\Delta_{Z}
$$

for the proper transform Δ_{Z} of Δ. We can take a birational morphism $\mu: Y \rightarrow Z$ from a non-singular projective variety and a normal crossing divisor $E=\sum E_{i}$ of Y as the union of the exceptional locus for $f:=\rho \circ \mu: Y \rightarrow X$ and $\operatorname{Supp}\left(f^{*} \Delta\right)$. We may assume that f is an isomorphism over general points of C. Then

$$
K_{Y}=f^{*}\left(K_{X}+\Delta\right)+\sum a_{i} E_{i}
$$

for $a_{i} \in \mathbb{R}$. If $f\left(E_{i}\right) \cap C \neq \emptyset$, then $a_{i}>-1$. Now the \mathbb{R}-divisor

$$
f^{*} L+\sum a_{i} E_{i}-(n-1) \mu^{*} E_{C}-K_{Y}
$$

is nef and big. We set $R:=\sum r_{i} E_{i}=\sum a_{i} E_{i}-(n-1) \mu^{*} E_{C}$. Then $r_{i}>-1$ if $f\left(E_{i}\right) \cap C \neq \emptyset$ and $f\left(E_{i}\right) \not \subset C$. Let E_{0} be the proper transform of E_{C}. Then $r_{0}=-1$. Therefore $\mu_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner)=\mathcal{J}_{0} \cap \mathcal{J}_{1}$ for suitable ideal sheaves \mathcal{J}_{0} and \mathcal{J}_{1} such that
(1) $\operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{0} \cap \operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{1}=\emptyset$,
(2) $\operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{0}=E_{C}$,
(3) $\operatorname{Supp} \mathcal{O}_{Z}\left(-E_{C}\right) / \mathcal{J}_{0}$ does not dominate C.

Thus $\mathcal{I}_{C} / \rho_{*} \mathcal{J}_{0}$ is a skyscraper sheaf for the defining ideal \mathcal{I}_{C} of C. The vanishing theorem II. 5.9 implies $\mathrm{H}^{1}\left(X, f_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner) \otimes \mathcal{O}_{X}(L)\right)=0$. Thus

$$
\mathrm{H}^{0}\left(X, \mathcal{O}_{X}(L)\right) \rightarrow \mathrm{H}^{0}\left(X, \mathcal{O}_{X}(L) \otimes \mathcal{O}_{X} / \rho_{*} \mathcal{J}_{0}\right)
$$

is surjective. Hence $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(C,\left.L\right|_{C}\right)$ is surjective by $\mathrm{H}^{1}\left(X, \mathcal{I}_{C} / \rho_{*} \mathcal{J}_{0}\right)=$ 0 .
1.11. Theorem Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety X. Suppose that $D \not \approx 0$ and $N_{\sigma}(D)=0$. Then there exist an ample divisor A and a positive number β such that $\mathrm{h}^{0}\left(X, m D_{\lrcorner}+A\right)>\beta m$ for $m \gg 0$.

Proof. $\operatorname{NBs}(D)$ is a countable union of subvarieties of codimension greater than one. Thus there is a non-singular curve C as a complete intersection of nonsingular ample divisors such that $C \cap \mathrm{NBs}(D)=\emptyset$ and $C \not \subset \operatorname{Supp}\langle D\rangle$. Let $\rho_{C}: Z \rightarrow$ X be the blowing-up along C and let E_{C} be the exceptional divisor. We fix a number $0<\alpha<1$. Then we can find an ample divisor A such that the \mathbb{R}-divisor

$$
\rho_{C}^{*}\left((1-\alpha) A-K_{X}-\langle m D\rangle\right)-(n-1) E_{C}
$$

is ample for any $m \in \mathbb{N}$. We set $L_{m}:=\left\llcorner m D_{\lrcorner}+A\right.$ for $m \in \mathbb{N}$. Since $\sigma_{x}(D)=0$ for $x \in C$, there exists an effective \mathbb{R}-divisor $\Delta_{m} \sim_{\mathbb{R}} m D+\alpha A$ such that $\left(X, \Delta_{m}\right)$ is log-terminal around C and $C \not \subset \operatorname{Supp}\left(\Delta_{m}\right)$. The \mathbb{R}-linear equivalence

$$
L_{m}-\left(K_{X}+\Delta_{m}\right) \sim_{\mathbb{R}}(1-\alpha) A-K_{X}-\langle m D\rangle
$$

implies that

$$
\rho_{C}^{*}\left(L_{m}-\left(K_{X}+\Delta_{m}\right)\right)-(n-1) E_{C}
$$

is ample. Thus, by $\mathbf{1 . 1 0}$, the restriction homomorphism

$$
\mathrm{H}^{0}\left(X,{ }_{\llcorner } m D_{\lrcorner}+A\right) \rightarrow \mathrm{H}^{0}\left(C,\left(\left.\left\llcorner m D_{\lrcorner}+A\right)\right|_{C}\right)\right.
$$

is surjective for any $m \in \mathbb{N}$. Note that $D \cdot C>0$ since $D \not \approx 0$. Hence there is a positive number β such that

$$
\mathrm{h}^{0}\left(X,\left\lfloor D_{\lrcorner}+A\right) \geq \mathrm{h}^{0}\left(C,\left(\left.\left\llcorner m D_{\lrcorner}+A\right)\right|_{C}\right) \geq \beta m \quad \text { for } m \gg 0\right.\right.
$$

1.12. Corollary Let D be a pseudo-effective \mathbb{R}-divisor. Then the following three conditions are equivalent:
(1) $D \approx N_{\sigma}(D)$;
(2) For any ample divisor A, the function $t \mapsto \mathrm{~h}^{0}(X,\llcorner D\lrcorner+A)$ is bounded;
(3) For any ample divisor $A, \lim _{t \rightarrow \infty}(1 / t) \mathrm{h}^{0}\left(X,\left\llcorner D_{\lrcorner}+A\right)=0\right.$.

Proof. The implication (2) $\Rightarrow(3)$ is trivial and (3) \Rightarrow (1) follows from 1.11 . We shall show (1) $\Rightarrow(2)$. Now $P:=P_{\sigma}(D)$ is numerically trivial. By the argument of 1.3, there is an ample divisor A^{\prime} such that $\left|A^{\prime}-A-\ulcorner t P\rangle\right| \neq \emptyset$ for any $t>0$. Thus $\mathrm{h}^{0}\left(X,{ }_{L} D_{\lrcorner}+A\right) \leq \mathrm{h}^{0}\left(X,\left\llcorner N_{\lrcorner}+A^{\prime}\right)\right.$ for $N:=N_{\sigma}(D)$. Hence we may assume $D=N$. There is a number $k \in \mathbb{R}_{>0}$ such that $\sigma_{\Gamma}(k N+A)>0$ for any prime component Γ of N. Thus $\sigma_{\Gamma}(t N+A)>(t-k) \sigma_{\Gamma}(N)$ for $t>k$ by III,1.9. Hence $\mathrm{h}^{0}\left(X,\left\llcorner N_{\lrcorner}+A\right)=\mathrm{h}^{0}\left(X,\left\llcorner N_{\lrcorner}+A\right)\right.\right.$ for $t>k$.

The following result is a partial generalization of $\mathbf{1 . 1 0}$:
1.13. Proposition Let $W \subset X$ be a non-singular subvariety of a non-singular projective variety X and let Δ be an effective \mathbb{R}-divisor such that (X, Δ) is logterminal around W and $W \not \subset \operatorname{Supp} \Delta$. Let E_{W} be the exceptional divisor for the
blowing-up $\rho: Z \rightarrow X$ along W and let L be a \mathbb{Z}-divisor of X. Suppose further that $\left(Z, E_{W}+\rho^{*} \Delta\right)$ is log-canonical around E_{W} and

$$
\rho^{*}\left(L-\left(K_{X}+\Delta\right)\right)-(\operatorname{codim} W) E_{W}
$$

is ample. Then $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(W,\left.L\right|_{W}\right)$ is surjective.
Proof. Now $\Delta_{Z}:=\rho^{*} \Delta$ is the proper transform of Δ. Thus

$$
K_{Z}=\rho^{*}\left(K_{X}+\Delta\right)+(\operatorname{codim} W-1) E_{W}-\Delta_{Z}
$$

Let us take a birational morphism $\mu: Y \rightarrow Z$ and let $f: Y \rightarrow X$ be the composite $\rho \circ \mu$. We may assume that Y is a non-singular projective variety and that there is a normal crossing divisor $E=\sum_{i=0}^{k} E_{i}$ satisfying the following conditions:
(1) E_{0} is the proper transform of E_{W} in Y;
(2) $K_{Y}=f^{*}\left(K_{X}+\Delta\right)+\sum_{i=0}^{k} a_{i} E_{i}$ for some $a_{i} \in \mathbb{R}$;
(3) If $f\left(E_{i}\right) \cap W \neq \emptyset$, then $a_{i}>-1$.

We look at the \mathbb{R}-divisor

$$
R:=\sum_{i=0}^{k} r_{i} E_{i}:=\sum_{i=0}^{k} a_{i} E_{i}-(\operatorname{codim} W) \mu^{*} E_{W}
$$

Then $f^{*} L+R-K_{Y}$ is nef and big. If $r_{i}>0$, then E_{i} is μ-exceptional. If $f\left(E_{i}\right) \cap W \neq$ \emptyset and if $f\left(E_{i}\right) \not \subset W$, then $r_{i}=a_{i}>-1$. If $f\left(E_{i}\right) \subset W$, then $r_{i} \geq-1$, since $\left(Z, E_{W}+\Delta_{Z}\right)$ is log-canonical around E_{W}. Obviously, $r_{0}=-1$. For the set

$$
I:=\left\{0 \leq i \leq k \mid r_{i}=-1 \text { and } f\left(E_{i}\right) \cap W \neq \emptyset\right\}
$$

we have

$$
\sum_{i \in I} r_{i} E_{i} \geq-\mu^{*} E_{W}
$$

Thus $\mu_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner)=\mathcal{O}_{Z}\left(-E_{W}\right) \cap \mathcal{J}_{1}$ for an ideal sheaf \mathcal{J}_{1} with $E_{W} \cap \operatorname{Supp} \mathcal{O}_{Z} / \mathcal{J}_{1}=$ \emptyset. Therefore,

$$
f_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner) \simeq I_{W} \cap \rho_{*} \mathcal{J}_{1} .
$$

By the vanishing theorem II.5.9, we have

$$
\mathrm{H}^{1}\left(X, f_{*} \mathcal{O}_{Y}(\ulcorner R\urcorner) \otimes \mathcal{O}_{X}(L)\right)=0
$$

Thus $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(W,\left.L\right|_{W}\right)$ is surjective, since $W \cap \operatorname{Supp} \mathcal{O}_{X} / \rho_{*} \mathcal{J}_{1}=\emptyset$.
The following result is a partial generalization of 1.11:
1.14. Proposition Let X be a non-singular projective variety, D a pseudoeffective \mathbb{R}-divisor, and let $W \subset X$ a non-singular subvariety. Assume that
(1) $\operatorname{NBs}(D) \cap W=\emptyset$,
(2) $W \not \subset \operatorname{Supp}\langle D\rangle$,
(3) $\operatorname{Supp}\langle D\rangle$ is normal crossing over a neighborhood of W,
(4) locally on a neighborhood of W, every non-empty intersection of irreducible components of $\operatorname{Supp}\langle D\rangle$ intersects W transversely.

Then there exists an ample divisor A such that the restriction homomorphism

$$
\mathrm{H}^{0}(X,\llcorner D\lrcorner+A) \rightarrow \mathrm{H}^{0}\left(W,\left(\left.\left\llcorner t D_{\lrcorner}+A\right)\right|_{W}\right)\right.
$$

is surjective for any $t \in \mathbb{R}_{>0}$.
Proof. By 1.3, there is an ample divisor H of X such that $W \cap \mathrm{Bs} \mid\left\llcorner D_{\lrcorner}+H \mid=\right.$ \emptyset for any $t>0$. For a number $0<\varepsilon \ll 1$, we choose a general member F of $\mid\left\llcorner(t / \varepsilon) D_{\lrcorner}+H \mid\right.$. Then, for the \mathbb{R}-divisor $\Delta=\varepsilon F+\varepsilon\langle(t / \varepsilon) D\rangle$, we have

- $\Delta \sim_{\mathbb{R}} t D+\varepsilon H$,
- $W \not \subset \operatorname{Supp} \Delta$,
- (X, Δ) is log-terminal around W,
by 1.1. Let $\rho: Z \rightarrow X$ be the blowing-up along W and let E_{W} be the exceptional divisor. By construction, $\rho^{*} F+\left(\rho^{*}\langle D\rangle\right)_{\text {red }}+E_{W}$ is a normal crossing divisor around E_{W}. Hence $\left(Z, E_{W}+\rho^{*} \Delta\right)$ is log-canonical around E_{W}. Let us consider $L:=\llcorner D\lrcorner+A$ for an ample divisor A with $\rho^{*}\left(A-\varepsilon H-K_{X}-\langle t D\rangle\right)-(\operatorname{codim} W) E_{W}$ being ample. Then $\rho^{*}\left(L-\left(K_{X}+\Delta\right)\right)-(\operatorname{codim} W) E_{W}$ is ample. Thus, by 1.13, we have the surjection $\mathrm{H}^{0}(X, L) \rightarrow \mathrm{H}^{0}\left(W,\left.L\right|_{W}\right)$.

§2. Numerical D-dimensions

§2.a. Numerical D-dimensions for nef \mathbb{R}-divisors. We recall an invariant $\nu(D)=\nu(D, X)$ called the numerical D-dimension defined for a nef \mathbb{R}-divisor D of an n-dimensional non-singular projective variety X. The Chern class $c_{1}(D)$ is considered as an element of $\mathrm{H}^{1,1}(X, \mathbb{R})=\mathrm{H}^{2}(X, \mathbb{R}) \cap \mathrm{H}^{1,1}(X)$. Suppose that

$$
D^{k} \cdot A^{n-k}=c_{1}(D)^{k} \cup c_{1}(A)^{n-k}[X]=0
$$

for an integer $k \geq 1$ and for an ample divisor A. Then $c_{1}(D)^{k} \in \mathrm{H}^{k, k}(X, \mathbb{R})$ is zero by II.6.3. The invariant $\nu(D)$ is defined to be the largest integer $k \geq 0$ with $c_{1}(D)^{k} \neq 0$ in $\mathrm{H}^{k, k}(X, \mathbb{R})$. This is also the largest integer k with $D^{k} \cdot A^{n-k} \neq 0$ for an ample divisor A. For a nef \mathbb{R}-Cartier divisor of a projective variety, its ν is defined by the pullback to a desingularization.

Remark Let $\pi: X \rightarrow S$ be a flat projective surjective morphism of varieties and let D be a π-nef \mathbb{R}-divisor of X. Suppose that any fiber $X_{s}=\pi^{-1}(s)$ is irreducible. Then $\nu\left(\left.D\right|_{X_{s}}\right)$ is constant.

The following lemma is well-known for \mathbb{Q}-divisors and proved by the same argument as usual.
2.1. Lemma Let D be a nef \mathbb{R}-divisor of a non-singular projective variety X of dimension n. Then the following properties hold:
(1) $\kappa(D) \leq \nu(D)$;
(2) $\kappa(D)=n$ if and only if $\nu(D)=n$;
(3) If $\nu(D)=n$, then there is an effective \mathbb{R}-divisor Δ such that $D-\varepsilon \Delta$ is ample for any $0<\varepsilon \leq 1$.
2.2. Definition An \mathbb{R}-divisor D is called nef and abundant if D is nef and $\nu(D)=\kappa(D)$.
2.3. Lemma Let D be a nef \mathbb{R}-divisor of a non-singular projective variety X of dimension n. Then the following properties hold:
(1) If D is nef and abundant, then there exist a birational morphism $\mu: Y \rightarrow$ X, a surjective morphism $f: Y \rightarrow Z$ of non-singular projective varieties, and a nef and big \mathbb{R}-divisor B of Z such that $\mu^{*} D \sim_{\mathbb{Q}} f^{*} B$;
(2) Let $\pi: X \rightarrow S$ be a fibration onto a normal variety and let F be a general fiber. Then $\nu\left(\left.D\right|_{F}\right) \leq \nu(D) \leq \nu\left(\left.D\right|_{F}\right)+\operatorname{dim} S$.
Proof. (1) This is also well-known for \mathbb{Q}-divisors (cf. [55]). By the same argument, we can find a birational morphism $\lambda: V \rightarrow X$, an equi-dimensional surjective morphism $q: V \rightarrow Z$, a birational morphism $\varphi: Y \rightarrow V$, a semi-ample $\operatorname{big} \mathbb{Q}$-divisor L of Z and an effective \mathbb{R}-divisor E of Y satisfying the following conditions:

- Y and Z are non-singular projective varieties;
- V is a normal projective variety;
- q is birational to the Iitaka fibration for D;
- $\mu^{*} D \sim_{\mathbb{Q}} f^{*} L+E$, where $\mu:=\lambda \circ \varphi$ and $f:=q \circ \varphi$.

Let A be an ample divisor of Y. Then, for $\nu=\nu(D)=\operatorname{dim} Z$, we have

$$
0=\left(\mu^{*} D\right)^{\nu+1} \cdot A^{n-\nu-1} \geq\left(f^{*} L\right)^{\nu} \cdot E \cdot A^{n-\nu-1} \geq 0
$$

Therefore, $f(\operatorname{Supp} E) \neq Z$. Thus $E=f^{*} \Delta$ for an effective \mathbb{R}-divisor Δ, by III.5.9. Hence $\mu^{*} D \sim_{\mathbb{Q}} f^{*} B$ for the nef and big \mathbb{R}-divisor $B=L+\Delta$.
(2) We may assume that S is projective. Let A and H be very ample divisors of X and S, respectively. We set $d:=\operatorname{dim} S, \nu:=\nu(D)$, and $\nu^{\prime}:=\nu\left(\left.D\right|_{F}\right)$. Then $D^{\nu^{\prime}} \cdot f^{*} H^{d} \cdot A^{n-d-\nu^{\prime}}>0$. Hence $\nu \geq \nu^{\prime}$. In order to show the other inequality, we may assume that $\nu^{\prime}<n-d$ and $\nu>d$. If D is big, then $D-\varepsilon \Delta$ is ample for $0<\varepsilon<1$ for some effective \mathbb{R}-divisor Δ. Hence $\left.(D-\varepsilon \Delta)\right|_{F}$ is also ample and $\left.D\right|_{F}$ is big. In particular, $\nu=\nu^{\prime}+d$. Suppose that $\nu<n$. Let $V=\bigcap A_{i}$ be the complete intersection of $(n-\nu)$-general members $A_{1}, A_{2}, \cdots, A_{n-\nu}$ of $|A|$. Then V is a non-singular projective variety and $\left.D\right|_{V}$ is a nef and big \mathbb{R}-divisor. Thus $D^{\nu-d} \cdot f^{*} H^{d} \cdot A^{n-\nu}>0$. In particular, $\nu^{\prime} \geq \nu-d$.
$\S 2 . b$. κ_{σ}. Let X be a non-singular projective variety of dimension n.
2.4. Lemma Let D be an \mathbb{R}-divisor and let A be an ample divisor of X. Then

$$
\varlimsup_{t \rightarrow \infty} \frac{\mathrm{~h}^{0}\left(X, A+\left\ulcorner t D^{\urcorner}\right)\right.}{t^{n}}<+\infty .
$$

Proof. We can take an effective \mathbb{R}-divisor Δ and an ample divisor H such that $D+\Delta \sim H$. Thus $h^{0}(X, A+\ulcorner t D\urcorner) \leq \mathrm{h}^{0}(X, A+\ulcorner t H)$. Hence we are done by the Riemann-Roch formula.
2.5. Definition Let D be a pseudo-effective \mathbb{R}-divisor and A a divisor. If $\mathrm{H}^{0}\left(X, A+\left\lfloor D_{\lrcorner}\right) \neq 0\right.$ for infinitely many $m \in \mathbb{N}$, then we define:

$$
\begin{aligned}
& \sigma^{+}(D ; A):=\min \left\{k \in \mathbb{Z}_{\geq 0} \mid \varlimsup_{\lim _{m \rightarrow \infty}} m^{-k} \mathrm{~h}^{0}\left(X, A+\mathrm{L}_{\lrcorner}\right)<+\infty\right\}, \\
& \sigma(D ; A):=\max \left\{k \in \mathbb{Z}_{\geq 0} \mid \varlimsup_{\lim }^{m \rightarrow \infty}\right. \\
&\left.m^{-k} \mathrm{~h}^{0}\left(X, A+\mathrm{L}_{\lrcorner}\right)>0\right\} \\
& \sigma^{-}(D ; A):=\max \left\{k \in \mathbb{Z}_{\geq 0} \mid \underline{\lim }_{m \rightarrow \infty} m^{-k} \mathrm{~h}^{0}\left(X, A+\left\llcorner_{\lrcorner}\right)>0\right\}\right.
\end{aligned}
$$

If $\mathrm{H}^{0}\left(X, A+{ }_{\llcorner } m D_{\lrcorner}\right) \neq 0$ only for finitely many $m \in \mathbb{N}$, then we define $\sigma^{+}(D ; A)=$ $\sigma(D ; A)=\sigma^{-}(D ; A)=-\infty$. We define the following numerical versions of D dimension of X :

$$
\begin{aligned}
& \kappa_{\sigma}(D)=\kappa_{\sigma}(D, X):=\max \{\sigma(D ; A) \mid A \text { is a divisor }\}, \\
& \kappa_{\sigma}^{+}(D)=\kappa_{\sigma}^{+}(D, X):=\max \left\{\sigma^{+}(D ; A) \mid A \text { is a divisor }\right\}, \\
& \kappa_{\sigma}^{-}(D)=\kappa_{\sigma}^{-}(D, X):=\max \left\{\sigma^{-}(D ; A) \mid A \text { is a divisor }\right\} .
\end{aligned}
$$

2.6. Remark
(1) $\sigma(D ; 0)=\sigma^{+}(D ; 0)=\kappa(D)$.
(2) The definition of $\sigma^{+}(D ; A)$ is similar to Fujita's definition [23] of $\kappa(L, \mathcal{F})$ for a line bundle L and a coherent sheaf \mathcal{F}.
(3) In the original version [104], $\sigma(D ; A)$ was defined as $\sigma^{-}(D ; A)$ and κ_{σ} was defined as κ_{σ}^{-}.
(4) There are inequalities

$$
\begin{gathered}
\sigma^{-}(D ; A) \leq \sigma(D ; A) \leq \sigma^{+}(D ; A) \leq \sigma(D ; A)+1 \\
\kappa_{\sigma}^{-}(D, X) \leq \kappa_{\sigma}(D, X) \leq \kappa_{\sigma}^{+}(D, X) \leq \kappa_{\sigma}(D, X)+1
\end{gathered}
$$

(5) An \mathbb{R}-divisor D is pseudo-effective if and only if $\kappa_{\sigma}^{-}(D) \geq 0$, by $\mathbf{1 . 4}$.
(6) By replacing \lrcorner by \urcorner, we define

$$
\sigma(D ; A)^{\prime}:=\max \left\{k \in \mathbb{Z}_{\geq 0} \cup\{-\infty\} \mid \varlimsup_{m \rightarrow \infty} m^{-k} \mathrm{~h}^{0}\left(X, A+\left\ulcorner_{m D}\right)>0\right\} .\right.
$$

Since $c_{1}\left(\ulcorner m D\urcorner-\left\llcorner m D_{\lrcorner}\right)\right.$are bounded in $\mathrm{N}^{1}(X)$, we have

$$
\kappa_{\sigma}(D)=\max \left\{\sigma(D ; A)^{\prime} \mid A \text { is a divisor }\right\}
$$

In the definition of $\kappa_{\sigma}^{ \pm}$, we can also replace \lrcornerby \urcorner.
2.7. Proposition Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety X of dimension n.
(1) If D^{\prime} is an \mathbb{R}-divisor with $D^{\prime}-D$ being pseudo-effective, then $\kappa_{\sigma}\left(D^{\prime}\right) \geq$ $\kappa_{\sigma}(D), \kappa_{\sigma}^{+}\left(D^{\prime}\right) \geq \kappa_{\sigma}^{+}(D)$, and $\kappa_{\sigma}^{-}\left(D^{\prime}\right) \geq \kappa_{\sigma}^{-}(D)$. In particular, $\kappa_{\sigma}(D)$, $\kappa_{\sigma}^{+}(D)$, and $\kappa_{\sigma}^{-}(D)$ depend only on the first Chern class $c_{1}(D) \in \mathrm{N}^{1}(X)$.
(2) Suppose that $\left\lfloor D\right.$ 」 is pseudo-effective for some $k \in \mathbb{N}$. Then $\kappa_{\sigma}(D)=$ $\max _{k \in \mathbb{N}} \kappa_{\sigma}\left(\left\llcorner D_{\lrcorner}\right), \kappa_{\sigma}^{+}(D)=\max _{k \in \mathbb{N}} \kappa_{\sigma}^{+}\left(\left\llcorner k D_{\lrcorner}\right)\right.\right.$, and $\kappa_{\sigma}^{-}(D)=\max _{k \in \mathbb{N}}$ $\kappa_{\sigma}^{-}\left(\left\llcorner D_{\lrcorner}\right)\right.$. In particular, $\kappa_{\sigma}^{-}(D) \geq \kappa(D)$.
(3) $\kappa_{\sigma}^{+}(D)=n$ if and only if D is big. In this case, $\kappa_{\sigma}(D)=\kappa_{\sigma}^{-}(D)=n$.
(4) $\kappa_{\sigma}\left(f^{*} D\right)=\kappa_{\sigma}(D), \kappa_{\sigma}^{+}\left(f^{*} D\right)=\kappa_{\sigma}^{+}(D)$, and $\kappa_{\sigma}^{-}\left(f^{*} D\right)=\kappa_{\sigma}^{-}(D)$ hold for any proper surjective morphism $f: Y \rightarrow X$ from a non-singular projective variety.
(5) If $H \subset X$ is a non-singular ample prime divisor and if $\kappa_{\sigma}(D)<\operatorname{dim} X$, then $\kappa_{\sigma}(D) \leq \kappa_{\sigma}\left(\left.D\right|_{H}\right), \kappa_{\sigma}^{+}(D) \leq \kappa_{\sigma}^{+}\left(\left.D\right|_{H}\right)$, and $\kappa_{\sigma}^{-}(D) \leq \kappa_{\sigma}^{-}\left(\left.D\right|_{H}\right)$.
(6) If D is nef, then $\kappa_{\sigma}^{-}(D)=\kappa_{\sigma}^{+}(D)=\kappa_{\sigma}(D)=\nu(D)$.
(7) Let $f: X \rightarrow Y$ be a generically finite surjective morphism onto a projective variety and let E be an effective \mathbb{R}-divisor such that $N_{\sigma}(D ; X / Y) \geq E$. Then $\kappa_{\sigma}(D)=\kappa_{\sigma}(D-E), \kappa_{\sigma}^{+}(D)=\kappa_{\sigma}^{+}(D-E)$, and $\kappa_{\sigma}^{-}(D)=\kappa_{\sigma}^{-}(D-E)$.
(8) $\kappa_{\sigma}^{-}(D)=0$ if and only if $D \approx N_{\sigma}(D)$. In this case, $\kappa_{\sigma}^{+}(D)=\kappa_{\sigma}(D)=0$.
(9) (Easy addition): Let $f: X \rightarrow Y$ be a fiber space and let F be a 'general' fiber. Then $\kappa_{\sigma}(D) \leq \kappa_{\sigma}\left(\left.D\right|_{F}\right)+\operatorname{dim} Y, \kappa_{\sigma}^{+}(D) \leq \kappa_{\sigma}^{+}\left(\left.D\right|_{F}\right)+\operatorname{dim} Y$, and $\kappa_{\sigma}^{-}(D) \leq \kappa_{\sigma}^{-}\left(\left.D\right|_{F}\right)+\operatorname{dim} Y$.
Proof. (1) By 1.3, there is an ample divisor A such that

$$
\left.\mathrm{H}^{0}\left(X,{ }_{\llcorner } m\left(D^{\prime}-D\right)\right\lrcorner+A\right) \neq 0
$$

for any $m>0$. Hence $\left.h^{0}\left(X, L^{\prime} D^{\prime}+2 A\right) \geq \mathrm{h}^{0}\left(X,{ }_{\llcorner } m D\right\lrcorner+A\right)$.
(2) Let l be a positive integer such that $\operatorname{Supp}\langle l D\rangle$ coincides with the union of prime components Γ of $\langle D\rangle$ with $\operatorname{mult}_{\Gamma}\langle D\rangle \notin \mathbb{Q}$. There is a constant c with $\langle l D\rangle \leq c\langle k D\rangle$. We can choose the integer l above with $l>c k+1$. Then there is an ample divisor A such that

$$
\mathrm{H}^{0}\left(X,{ }_{\llcorner } m\left((l-c k-1) D+c_{\llcorner } k D_{\lrcorner}\right)_{\lrcorner}+A\right) \neq 0
$$

for any $m>0$ by 1.3. Since

$$
\begin{aligned}
m_{\llcorner } l D_{\lrcorner}+2 A & =m D+2 A+m(l-1) D-m\langle l D\rangle \\
& \geq m D+A+m(l-c k-1) D+m c_{\llcorner } k D_{\lrcorner}+A,
\end{aligned}
$$

we have

$$
\mathrm{h}^{0}\left(X, m\left\llcorner l D_{\lrcorner}+2 A\right) \geq h^{0}\left(X,\left\lfloor D_{\lrcorner}+A\right)\right.\right.
$$

which implies the expected equalities.
(3) If D is big, then $\kappa_{\sigma}^{-}(D)=n$ by (2). Conversely, assume that $\kappa_{\sigma}^{+}(D)=n$. Let A be a very ample divisor such that $\sigma^{+}(D ; A)=n$. Let H be another nonsingular very ample divisor such that $H-A$ is ample. There is an exact sequence

$$
0 \rightarrow \mathrm{H}^{0}\left(X,\left\lfloor D_{\lrcorner}+A-H\right) \rightarrow \mathrm{H}^{0}\left(X,\left\llcorner D_{\lrcorner}+A\right) \rightarrow \mathrm{H}^{0}\left(H,\left.\left({ }_{\llcorner } m D_{\lrcorner}+A\right)\right|_{H}\right)\right.\right.
$$

We note that

$$
\varlimsup_{m \rightarrow \infty} m^{-n+1} \mathrm{~h}^{0}\left(H,\left(\left.\left\llcorner m D_{\lrcorner}+A\right)\right|_{H}\right)<+\infty, \quad \varlimsup_{m \rightarrow \infty} m^{-n+1} \mathrm{~h}^{0}\left(X,{ }_{\llcorner } m D_{\lrcorner}+A\right)=+\infty\right.
$$

Hence $m D-(H-A)$ is pseudo-effective for some $m>0$. Thus D is big.
(4) Let H be an ample divisor of Y. Then $f_{*} \mathcal{O}_{Y}(H) \subset \mathcal{O}_{X}(A)^{\oplus k}$ for some ample divisor A of X and a positive integer k. Hence $\mathrm{h}^{0}\left(Y,{ }_{\llcorner } m f^{*} D_{\lrcorner}+H\right) \leq$ $k \mathrm{~h}^{0}(X,\ulcorner m D\urcorner+A)$. Thus $\kappa_{\sigma}\left(f^{*} D\right) \leq \kappa_{\sigma}(D)$, and the same inequalities for κ_{σ}^{+}and
κ_{σ}^{-}hold. For the converse, it is enough to take an ample divisor H of Y such that $H-f^{*} A$ is very ample for a given ample divisor A of X.
(5) We may assume that $H \not \subset \operatorname{Supp}\langle D\rangle$. For an ample divisor A, let us consider the exact sequences:
$0 \rightarrow \mathcal{O}_{X}\left({ }_{\llcorner } m D_{\lrcorner}+A-(j+1) H\right) \rightarrow \mathcal{O}_{X}\left(\left\llcorner m D_{\lrcorner}+A-j H\right) \rightarrow \mathcal{O}_{H}\left(\left\llcorner m D_{\lrcorner}+A-j H\right) \rightarrow 0\right.\right.$ for integers $j \geq 0$. There is an integer k such that $k H-A$ is ample. Then $\mathrm{h}^{0}\left(X,{ }_{\llcorner } m D_{\lrcorner}+A-k H\right)=0$, since D is not big. Therefore

$$
\mathrm{h}^{0}\left(X,\left\lfloor D_{\lrcorner}+A\right) \leq k \mathrm{~h}^{0}\left(H,\left(\left.\left\llcorner m D_{\lrcorner}+A\right)\right|_{H}\right)\right.\right.
$$

for any $m>0$. Therefore $\kappa_{\sigma}(D) \leq \kappa_{\sigma}\left(\left.D\right|_{H}\right)$, and the same inequalities for κ_{σ}^{+}and κ_{σ}^{-}hold.
(6) We may assume that D is not big. Let $\nu:=\nu(D)<n$. Let $A_{1}, A_{2}, \ldots, A_{n-\nu}$ be general non-singular ample prime divisors of X. Then the intersections $V_{j}:=$ $\bigcap_{i \leq j} A_{i}$ are non-singular, $\left.D\right|_{V_{j}}$ is not big for $j<n-\nu$, and $\left.D\right|_{V_{n-\nu}}$ is big. Then, by $(5), \kappa_{\sigma}^{+}(D) \leq \kappa_{\sigma}^{+}\left(\left.D\right|_{V_{j}}\right) \leq \operatorname{dim} V_{n-\nu}=\nu(D)$. The converse inequality $\kappa_{\sigma}^{-}(D) \geq$ $\nu(D)$ follows from 1.14, since we may replace D so that $\operatorname{Supp}\langle D\rangle$ is a simple normal crossing divisor.
(7) Let H be an ample divisor of Y. Then

$$
m E \leq N_{\sigma}(m D ; X / Y)=N_{\sigma}\left(m D+f^{*} H ; X / Y\right) \leq N_{\sigma}\left(m D+f^{*} H\right)
$$

for any $m>0$. Therefore $\left.\mathrm{H}^{0}\left(X,{ }_{\llcorner } m D_{\lrcorner}+f^{*} H\right) \simeq \mathrm{H}^{0}\left(X,{ }_{\llcorner } m(D-E)\right\lrcorner+f^{*} H\right)$.
(8) follows from 1.12 .
(9) Let A be an ample divisor of X. We shall prove the following assertion by induction on $\operatorname{dim} Y$: there is a constant $c>0$ such that

$$
\mathrm{h}^{0}\left(X,\left\llcorner_{\llcorner } m D_{\lrcorner}+A\right) \leq c m^{\operatorname{dim} Y} \mathrm{~h}^{0}\left(F,\left(\left.\left\llcorner_{\llcorner } D_{\lrcorner}+A\right)\right|_{F}\right)\right.\right.
$$

for $m \gg 0$. Let $H \subset Y$ be a 'general' ample divisor of Y. Then there is a positive integer l such that $D-l f^{*} H$ is not pseudo-effective. Thus $\mathrm{h}^{0}\left(X,{ }^{0} m\right\lrcorner+A-$ $\left.m l f^{*} H\right)=0$ for $m \gg 0$. Hence

$$
\begin{aligned}
\mathrm{h}^{0}\left(X,{ }_{\llcorner } m D_{\lrcorner}+A\right) & \leq \sum_{i=0}^{m l-1} \mathrm{~h}^{0}\left(f^{*} H,\left(\left.\left\llcorner_{\llcorner } m D_{\lrcorner}+A-i f^{*} H\right)\right|_{f^{*} H}\right)\right. \\
& \leq m l \mathrm{~h}^{0}\left(f^{*} H,\left.\left({ }_{\llcorner } m D_{\lrcorner}+A\right)\right|_{f^{*} H}\right)
\end{aligned}
$$

Thus we are done by induction.

§2.c. Numerical domination.

2.8. Definition Let D_{1} and D_{2} be two \mathbb{R}-divisors of a non-singular projective variety X. We say that D_{1} dominates D_{2} if $t D_{1}-D_{2}$ is \mathbb{Q}-linearly equivalent to an effective \mathbb{R}-divisor for some $t \in \mathbb{Q}>0$. In this case, we write $D_{1} \succeq D_{2}$ or $D_{2} \preceq D_{1}$.

2.9. Remark

(1) If $D_{1} \succeq D_{2}$ and $D_{2} \succeq D_{3}$, then $D_{1} \succeq D_{3}$.
(2) If D_{1} and D_{2} are effective \mathbb{R}-divisors with $\operatorname{Supp} D_{1} \supset \operatorname{Supp} D_{2}$, then $D_{1} \succeq D_{2}$.
(3) If $D_{1} \succeq D_{2}$, then $\kappa\left(D_{1}\right) \geq \kappa\left(D_{2}\right)$.
2.10. Definition Let D be an \mathbb{R}-divisor and let W be a Zariski-closed proper subset of a non-singular projective variety X. We say that D dominates W and write $D \succeq W$ or $W \preceq D$ if the following condition is satisfied: let $\mu: Y \rightarrow X$ be a birational morphism from a non-singular projective variety such that $\mu^{-1}(W)$ is the support of an effective divisor E. Then $\mu^{*} D \succeq E$. Note that this condition does not depend on the choices of $\mu: Y \rightarrow X$ and E.
2.11. Lemma For any \mathbb{R}-divisor D with $0 \leq \kappa(D)<\operatorname{dim} X$,

$$
\kappa(D)=\min \{\operatorname{dim} W \mid W \npreceq D\} .
$$

Proof. If $\kappa(D)=0$, then $\{x\} \npreceq D$ for a point $x \notin \bigcup_{m>0} \operatorname{Bs}|\ulcorner m D\urcorner|$. Thus, we may assume $0<\kappa(D)<\operatorname{dim} X$. Let $\Phi: X \cdots Z$ be the Iitaka fibration for D. If $W \subset X$ is a general subvariety of $\operatorname{dim} W=\kappa(D)=\operatorname{dim} Z$, then $\mu^{*} D-\beta E$ is not pseudo-effective for any $\beta>0$, for a birational morphism $\mu: Y \rightarrow X$, and for an effective divisor E with $\operatorname{Supp} E=\mu^{-1}(W)$. On the other hand, if $\operatorname{dim} W<\operatorname{dim} Z$, then $\mu^{-1} W$ is contained the pullback of an ample divisor H of Z and H is dominated by $\mu^{*} D$. Hence $D \succeq W$.

We shall give a numerical version of the notion of domination as follows:
2.12. Definition Let D_{1} and D_{2} be two \mathbb{R}-divisors of a non-singular projective variety. If the following condition is satisfied, we say that D_{1} dominates D_{2} numerically and write $D_{1} \succcurlyeq D_{2}$ or $D_{2} \preccurlyeq D_{1}$: for an ample divisor A and for any positive number $b>0$, there exist real numbers $x>b$ and $y>b$ such that $x D_{1}-y D_{2}+A$ is pseudo-effective.

For an ample divisor A and for a number $x \in \mathbb{R}_{\geq 0}$, we consider the set

$$
\mathcal{D}(x):=\left\{y \in \mathbb{R}_{\geq 0} \mid x D_{1}-y D_{2}+A \text { is pseudo-effective }\right\}
$$

and define a function

$$
\varphi(x)= \begin{cases}\sup \{y \in \mathcal{D}(x)\}, & \text { if } \mathcal{D}(x) \neq \emptyset \\ -\infty, & \text { otherwise }\end{cases}
$$

with values in $\{ \pm \infty\} \cup \mathbb{R}_{\geq 0}$. Then $D_{1} \succcurlyeq D_{2}$ if and only if $\lim _{x \rightarrow+\infty} \varphi(x)=+\infty$.

2.13. Lemma

(1) If $D_{1} \succcurlyeq D_{2}$ and $D_{2} \succcurlyeq D_{3}$ and if D_{1} is pseudo-effective, then $D_{1} \succcurlyeq D_{3}$.
(2) If $D_{1} \succeq D_{2}$, then $D_{1} \succcurlyeq D_{2}$.
(3) If D_{1} and D_{2} are nef \mathbb{R}-divisors with $D_{1} \succcurlyeq D_{2}$, then $\nu\left(D_{1}\right) \geq \nu\left(D_{2}\right)$.

Proof. (1) For a given positive number b, we choose numbers $u, v \in \mathbb{R}_{>b}$ so that $u D_{2}-v D_{3}+A$ is pseudo-effective. Let c be a positive number with $v c /(u+c)>$ b and we choose numbers $x, y \in \mathbb{R}_{>c}$ so that $x D_{1}-y D_{2}+A$ is pseudo-effective. Then

$$
\frac{u x}{u+y} D_{1}-\frac{y v}{u+y} D_{3}+A=\frac{u}{u+y}\left(x D_{1}-y D_{2}+A\right)+\frac{y}{u+y}\left(u D_{2}-v D_{3}+A\right)
$$

is pseudo-effective. Since $y>c$, we have $y v /(u+y)>b$. Since D_{1} is pseudoeffective, we can choose x to satisfy $u x /(u+y)>b$. Thus $D_{1} \succcurlyeq D_{3}$.
(2) Let t be a positive number such that $t D_{1}-D_{2}$ is pseudo-effective. Then, for any $b>0$, there is a number m such that $m t>b$ and $m>b$. Then $(m t) D_{1}-$ $m D_{2}+A$ is pseudo-effective.
(3) Let b be an arbitrary positive integer. Then there exist real numbers $x>b$ and $y>b$ such that $x D_{1}-y D_{2}+A$ is pseudo-effective. Then, for any $0 \leq k \leq \nu:=$ $\nu\left(D_{1}\right)$, we have inequalities

$$
x D_{1}^{\nu+1-k} D_{2}^{k} A^{n-\nu-1}+A^{n-\nu} D_{1}^{\nu-k} D_{2}^{k} \geq y D_{1}^{\nu-k} D_{2}^{k+1} A^{n-\nu-1}
$$

since D_{1} and D_{2} are nef. Hence, we infer that if $D_{1}^{\nu+1-k} D_{2}^{k}$ is numerically trivial, then $D_{1}^{\nu-k} D_{2}^{k+1}$ is also numerically trivial by II.6.3. Therefore $D_{2}^{\nu+1}$ is numerically trivial since $D_{1}^{\nu+1}$ is so. Thus $\nu \geq \nu\left(D_{2}\right)$.
2.14. Lemma Let X be a non-singular projective variety, D a nef and abundant \mathbb{R}-divisor, and E an effective \mathbb{R}-divisor. If $D \succcurlyeq E$, then $D \succeq E$.

Proof. We can reduce to the following situation by $2.3-(1)$: there is a fibration $f: X \rightarrow Y$ onto a non-singular projective variety such that $D \sim_{\mathbb{Q}} f^{*} B$ for a nef and big \mathbb{R}-divisor B. Let F be a 'general' fiber of f. Then $\left.\left.E\right|_{F} \preccurlyeq D\right|_{F} \sim_{\mathbb{Q}} 0$. It follows that $-E$ is relatively pseudo-effective over Y. Thus $f(\operatorname{Supp} E) \neq Y$. Hence, there is a positive integer l such that $l f^{*} B-E$ is \mathbb{Q}-linearly equivalent to an effective \mathbb{R}-divisor.
2.15. Corollary Let $f: X \rightarrow Y$ be a surjective morphism from a non-singular projective variety onto a projective variety, D a nef and abundant \mathbb{R}-divisor of X, and A an ample divisor of Y. Then the following conditions are equivalent:
(1) $D \succcurlyeq f^{*} A$;
(2) $D \succeq f^{*} A$;
(3) f is the composite of the Iitaka fibration $X \cdots \rightarrow$ for D and a rational map $Z \cdots \rightarrow$.
2.16. Definition Let D be an \mathbb{R}-divisor and let W be a proper Zariski-closed subset of a non-singular projective variety X. If the following condition is satisfied, then we say that D dominates W numerically and write $D \succcurlyeq W$ or $W \preccurlyeq D$: let $\mu: Y \rightarrow X$ be a birational morphism from a non-singular projective variety such that $\mu^{-1}(W)$ is the support of an effective divisor E. Then $\mu^{*} D \succcurlyeq E$. Note that this condition does not depend on the choices of $\mu: Y \rightarrow X$ and E.
2.17. Lemma Let D be an \mathbb{R}-divisor of a non-singular projective variety X, $W \subset X$ a Zariski-closed proper subset with $W \preccurlyeq D$, and $Z \subset X \times U$ a dominant family of closed subvarieties of X parameterized by a complex analytic variety U such that general members $Z_{u} \subset X$ are non-singular. Then the restriction $\left.D\right|_{Z_{u}}$ numerically dominates $W \cap Z_{u}$ for a 'general' member Z_{u}.

Proof. Let $\rho: X^{\prime} \rightarrow X$ be a birational morphism from a non-singular projective variety such that $\rho^{-1}(W)$ is an effective reduced divisor E. Let $Z^{\prime} \rightarrow Z$ be a bimeromorphic morphism from a non-singular variety such that the induced meromorphic map $p: Z^{\prime} \cdots \rightarrow X^{\prime}$ from the first projection $Z \rightarrow X$ is a holomorphic. For an ample divisor A of X^{\prime} and for any positive number b, there exist $x, y \in \mathbb{R}_{>b}$ such that $x \rho^{*} D-y E+A$ is pseudo-effective. Then $p^{*}\left(x \rho^{*} D-y E+A\right)$ is relatively pseudo-effective over U. Therefore, $\left.D\right|_{Z_{u}} \succcurlyeq W \cap Z_{u}$ for a 'general' member Z_{u}.
2.18. Lemma Let $\pi: X \rightarrow S$ be a flat projective surjective morphism of complex analytic varieties and let $W \subset X$ be a proper closed analytic subspace such that
(1) every fiber $X_{s}=\pi^{-1}(s)$ is irreducible and reduced,
(2) the sheaf $\mathcal{O}_{X} / \mathcal{I}_{W}^{k}$ is flat over S for any $k \geq 1$ for the defining ideal \mathcal{I}_{W} of W.
Let D be an \mathbb{R}-Cartier divisor of X such that $\left.D\right|_{X_{s}} \succcurlyeq W \cap X_{s}$ for a 'general' fiber X_{s}. Then $\left.D\right|_{X_{s}} \succcurlyeq W \cap X_{s}$ for any $s \in S$.

Proof. We may assume that S is a non-singular curve. Let $\rho: Y \rightarrow X$ be the blowing-up along W and let E be the effective Cartier divisor such that $\mathcal{O}_{Y}(-E) \simeq$ $\rho^{*} \mathcal{I}_{W} /($ tor $)$. Note that, for the composite $f:=\pi \circ \rho: Y \rightarrow S$, every fiber $Y_{s}:=$ $f^{-1}(s)$ is irreducible and reduced, and $Y_{s} \rightarrow X_{s}$ is the blowing-up along the defining ideal of $W_{s}:=W \times_{S}\{s\}$. For an f-ample divisor A of Y and for positive numbers x, y, suppose that $x \rho^{*} D-y E+A$ is f-pseudo-effective. Then the restriction $\left.\left(x \rho^{*} D-y E+A\right)\right|_{Y_{s}}$ to any fiber Y_{s} is also pseudo-effective. Hence $\left.D\right|_{X_{s}} \succcurlyeq W_{s}$ for any $s \in S$.
2.19. Lemma Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety $X, H \subset X$ a non-singular ample prime divisor, and $W \subset H$ a Zariski-closed subset with $D \succcurlyeq W$. Then $\left.D\right|_{H} \succcurlyeq W$.

Proof. Let $\rho: Y \rightarrow X$ be a birational morphism from a non-singular projective variety such that $\rho^{-1}(W)$ is a reduced divisor E and that the proper transform H^{\prime} of H is non-singular. For an ample divisor A of Y, we consider

$$
\sigma(x, y):=\sigma_{H^{\prime}}\left(x \rho^{*} D-y E+A\right)
$$

as a function on

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2} \mid x \rho^{*} D-y E+A \text { is pseudo-effective }\right\} .
$$

Note that $x \rho^{*} D-y E+A-\sigma(x, y) H^{\prime}$ is pseudo-effective for $(x, y) \in \mathcal{D}$, and that $\mathcal{D}_{b}:=\{(x, y) \in \mathcal{D} \mid x, y>b\}$ is non-empty for any $b>0$.

Suppose that $\sup \left\{\sigma(x, y) \mid(x, y) \in \mathcal{D}_{b}\right\}=\infty$ for any $b>0$. Then $\rho^{*} D \succcurlyeq$ $E+H^{\prime}=\rho^{-1} H$. Hence $D \succcurlyeq H$ and D is big. Since H is ample, $\left.D\right|_{H}$ is still big. Thus $\left.D\right|_{H} \succcurlyeq W$.

Next suppose that $\beta:=\sup \left\{\sigma(x, y) \mid(x, y) \in \mathcal{D}_{b}\right\}<+\infty$ for some $b>0$. Let c be a positive number with $c A+\beta H^{\prime}$ being ample. Then $c A+\sigma(x, y) H^{\prime}$ is ample
for $(x, y) \in \mathcal{D}_{b}$. Since

$$
x \rho^{*} D-y E+(1+c) A=\left(x \rho^{*} D-y E+A-\sigma(x, y) H^{\prime}\right)+c A+\sigma(x, y) H^{\prime}
$$

$x \rho^{*} D-y E+(1+c) A$ and its restriction $\left.\left(x \rho^{*} D-y E+(1+c) A\right)\right|_{H^{\prime}}$ are pseudoeffective. Therefore, $\left.D\right|_{H} \succcurlyeq W$.
§2.d. κ_{ν}.
2.20. Definition For an \mathbb{R}-divisor D, we define $\kappa_{\nu}(D)=\kappa_{\nu}(D, X)$ as follows:
(1) If D is not pseudo-effective, then $\kappa_{\nu}(D):=-\infty$;
(2) If D is big, then $\kappa_{\nu}(D):=\operatorname{dim} X$;
(3) In the other case, $\kappa_{\nu}(D):=\min \{\operatorname{dim} W \mid D \nsucceq W\}$.
2.21. Lemma If $\kappa_{\nu}(D)=k<\operatorname{dim} X=n$, then, for any ample divisor A, there exist a positive integer m and 'general' members $A_{1}, A_{2}, \ldots, A_{n-k} \in|m A|$ such that $D \nLeftarrow A_{1} \cap \cdots \cap A_{n-k}$.

Proof. Let W be a subvariety of X of dimension k with $D \nLeftarrow W$. Then there exist a positive integer m and members $A_{1}^{0}, A_{2}^{0}, \ldots, A_{n-k}^{0} \in|m A|$ such that $V^{0}:=A_{1}^{0} \cap A_{2}^{0} \cap \cdots \cap A_{n-k}^{0}$ is a k-dimensional subspace with $W \subset V^{0}$. Hence $D \nsucceq V^{0}$. Let $\pi: Z \rightarrow U$ be a flat family of closed subspaces of X whose fibers are complete intersections $V=A_{1} \cap \cdots \cap A_{n-k}$ for some members $A_{1}, \ldots, A_{n-k} \in|m A|$. Suppose that V^{0} is the fiber $\pi^{-1}(0)$ for a point $0 \in U$. By applying $\mathbf{2 . 1 8}$ to the flat morphism $X \times U \rightarrow U$ and the closed subspace $Z \subset X \times U$, we infer that D does not dominate numerically a 'general' fiber V of π.

In particular, if D is a non-big pseudo-effective \mathbb{R}-divisor, then $\kappa_{\nu}(D)$ is the minimum of $\operatorname{dim} W$ for non-singular complete intersections W with $D \nsucceq W$.

The following is an example of pseudo-effective divisor D such that $\kappa_{\nu}(D)$ is not the maximum of $\kappa(L)$ for semi-ample \mathbb{Q}-divisors L of non-singular projective varieties Y with birational morphisms $\mu: Y \rightarrow X$ such that $\mu^{*} D \succcurlyeq L$ (cf. 2.22-(5)).

Example Let L be a divisor of degree zero of an elliptic curve E such that $m L \nsim 0$ except for $m=0$. Let $X \rightarrow E$ be the \mathbb{P}^{1}-bundle associated with $\mathcal{O}_{E} \oplus$ $\mathcal{O}_{E}(L)$ and H a tautological divisor. Then H is nef and $\nu(H)=1$. Suppose that there exist a birational morphism $\mu: Y \rightarrow X$ and a fiber space $f: Y \rightarrow Z$ such that $\mu^{*} H \succcurlyeq f^{*} B$ for an ample divisor B of Z. Then we can show that Z is a point as follows: Assume the contrary. Then Z is a curve. Let F be a fiber of f. If $\mu^{*}(x H+A)-y F$ is pseudo-effective for an ample divisor A and for positive numbers $x, y \gg 0$, then $A \cdot H \geq y F \cdot \mu^{*} H$ and hence $F \cdot \mu^{*} H=0$. There is a surjection

$$
\mathcal{O}_{F} \oplus \mathcal{O}_{F}\left(\tau^{*} L\right) \rightarrow \mathcal{O}_{F}\left(\left.\mu^{*} H\right|_{F}\right)
$$

for $\tau: F \rightarrow E$. Since $\mathcal{O}_{E}(L)$ is not a torsion element in $\operatorname{Pic}(E)$, the surjection above factors through the first projection or the second projection. Therefore, $\mu(F)$ is contained in one of two sections of $X \rightarrow E$ corresponding to the splittings of $\mathcal{O}_{E} \oplus \mathcal{O}_{E}(L)$. This is a contradiction.
2.22. Proposition Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety X of dimension n.
(1) $\kappa_{\nu}(D) \geq \kappa_{\sigma}(D)$.
(2) $\kappa_{\nu}(D)=0$ if and only if $D \approx N_{\sigma}(D)$.
(3) Let $H \subset X$ be a non-singular ample prime divisor. If $\kappa_{\nu}(D)<n$, then $\kappa_{\nu}(D) \leq \kappa_{\nu}\left(\left.D\right|_{H}\right)$.
(4) $\kappa_{\nu}\left(f^{*} D\right)=\kappa_{\nu}(D)$ for any proper surjective morphism $f: Y \rightarrow X$.
(5) If D is nef, then $\kappa_{\nu}(D)=\nu(D)$.
(6) Let $f: X \rightarrow Y$ be a generically finite surjective morphism onto a projective variety and let E be an effective \mathbb{R}-divisor with $N_{\sigma}(D ; X / Y) \geq E$. Then $\kappa_{\nu}(D)=\kappa_{\nu}(D-E)$.
(7) (Easy Addition): For a fiber space $\pi: X \rightarrow S$, $\kappa_{\nu}(D) \leq \kappa_{\nu}\left(\left.D\right|_{X_{s}}\right)+\operatorname{dim} S$ holds for a 'general' fiber $X_{s}=\pi^{-1}(s)$.

Proof. (1) Let A be a very ample divisor of X and let $W \subset X$ be a nonsingular subvariety of dimension $w<\kappa_{\sigma}(D)$ that is the complete intersection $\bigcap A_{j}$ of $(n-w)$-general members of $|A|$. It is enough to show that $D \succcurlyeq W$ by 2.21. The conormal bundle $N_{W / X}^{\vee}$ is isomorphic to $\mathcal{O}_{X}(-A)^{\oplus(n-w)}$. We consider the exact sequence:

$$
\begin{aligned}
0 \rightarrow \mathrm{H}^{0}\left(X, \mathcal{I}_{W}^{q+1} \mathcal{O}_{X}\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right) & \rightarrow \mathrm{H}^{0}\left(X, \mathcal{I}_{W}^{q} \mathcal{O}_{X}\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right) \rightarrow \\
& \rightarrow \mathrm{H}^{0}\left(W, \operatorname{Sym}^{q}\left(N_{W / X}^{\vee}\right) \otimes \mathcal{O}_{W}\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right)
\end{aligned}
$$

for positive integers q, where \mathcal{I}_{W} is the defining ideal sheaf of W. Thus

$$
\mathrm{h}^{0}\left(X, \mathcal{I}_{W}^{q+1} \mathcal{O}\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right) \geq \mathrm{h}^{0}\left(X, A+{ }_{\llcorner } m D_{\lrcorner}\right)-\binom{n-w+q}{n-w} \mathrm{~h}^{0}\left(W,\left.\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right|_{W}\right)
$$

Let us consider a function $q: \mathbb{N} \rightarrow \mathbb{N}$ such that $\lim _{m \rightarrow+\infty} q(m)=+\infty$ and

$$
\log q(m) \leq \frac{\kappa_{\sigma}(D)-\varepsilon-w}{n-w} \log m
$$

for a fixed positive number ε. Then the boundedness of $m^{-w} \mathrm{~h}^{0}\left(W,\left.\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right|_{W}\right)$ implies that there is a constant c such that

$$
\binom{n-w+q(m)}{n-w} \mathrm{~h}^{0}\left(W,\left.\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right|_{W}\right)<c m^{\kappa_{\sigma}(D)-\varepsilon}
$$

for $m \gg 0$. Hence $\mathrm{H}^{0}\left(X, \mathcal{I}_{W}^{q(m)+1} \mathcal{O}\left(A+{ }_{\llcorner } m D_{\lrcorner}\right)\right) \neq 0$ for $m \gg 0$, since

$$
\overline{\lim }_{m \rightarrow \infty} m^{-\kappa_{\sigma}(D)} \mathrm{h}^{0}\left(X, A+\left\lfloor m D_{\lrcorner}\right)>0 .\right.
$$

Therefore, $D \succcurlyeq W$.
(2) By (1) and 1.12, $D \approx N_{\sigma}(D)$ if $\kappa_{\nu}(D)=0$. Conversely, assume that $D \approx N_{\sigma}(D)$. We may assume that $D=N_{\sigma}(D)$, since κ_{ν} depends on the numerical equivalence class. Let x be a point of $X \backslash \operatorname{Supp} D, \rho: Z \rightarrow X$ the blowing-up at
x, E the exceptional divisor, and A a sufficiently ample divisor of X. Suppose that $D \succcurlyeq\{x\}$. Then, by $\mathbf{1 . 4}$, there is a function $l: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\mathrm{h}^{0}\left(Z, \rho^{*}(\llcorner m D\lrcorner+A)-l(m) E\right) \neq 0 \quad \text { and } \quad \lim _{m \rightarrow \infty} l(m)=+\infty
$$

Since $E \not \subset \operatorname{Bs}\left|\rho^{*}(\llcorner m D\lrcorner+A)\right|$, we have $\mathrm{h}^{0}\left(X,\left\llcorner m D_{\lrcorner}+A\right)>l(m)\right.$ contradicting 1.12
(3) Let $W \subset H$ be a non-singular subvariety of $\operatorname{dim} W<\kappa_{\nu}(D)$. Then $D \succcurlyeq W$. By 2.19, $\left.D\right|_{H} \succcurlyeq W$. Hence $\kappa_{\nu}\left(\left.D\right|_{H}\right)>\operatorname{dim} W$ by 2.21 .
(4) Let $W \subset Y$ be a non-singular subvariety of dimension $w<\kappa_{\nu}(D)$ that is the complete intersection of general ample divisors. Then $\operatorname{dim} f(W)=w$. Thus $f^{*} D \succcurlyeq W$ by the same argument as in 2.21. Hence $\kappa_{\nu}\left(f^{*} D\right) \geq \kappa_{\nu}(D)$. By (3) above, if $\operatorname{dim} Y>\operatorname{dim} X$, then $\kappa_{\nu}\left(\left.f^{*} D\right|_{H}\right) \geq \kappa_{\nu}\left(f^{*} D\right)$ for a general ample divisor H. Therefore, in order to show the equality: $\kappa_{\nu}\left(f^{*} D\right)=\kappa_{\nu}(D)$, we may assume that f is generically finite. Let $V \subset X$ be a general non-singular subvariety of dimension $v<\kappa_{\nu}\left(f^{*} D\right), \rho: X^{\prime} \rightarrow X$ the blowing-up along V, and E the exceptional divisor. Let $\rho_{W}: Y^{\prime} \rightarrow Y$ be the blowing-up along $W:=f^{-1}(V), E_{W}$ the exceptional divisor, and $\tau: Y^{\prime} \rightarrow X^{\prime}$ the induced generically finite morphism. Note that $Y^{\prime} \simeq$ $Y \times_{X} X^{\prime}$ and $E_{W} \simeq Y \times_{X} E$. There exist an ample divisor H on X^{\prime} and positive numbers $x, y \gg 0$ such that $\tau^{*}\left(x \rho^{*} D+H\right)-y E_{W}$ is pseudo-effective. Thus $x \rho^{*} D+H-y E$ is pseudo-effective. Hence $D \succcurlyeq W$ and we have the equality.
(5) Let $W \subset X$ be a general non-singular subvariety of dimension $w=\nu(D)$, $\rho: Z \rightarrow X$ the blowing-up along W, and E_{W} the exceptional divisor. We take an ample divisor A with $\rho^{*} A-E_{W}$ being ample. If $\rho^{*}(x D+A)-y E_{W}$ is pseudoeffective for some $x, y>0$, then

$$
\begin{aligned}
0 & \leq\left(\rho^{*}(x D+A)-y E_{W}\right) \cdot\left(\rho^{*} D\right)^{w} \cdot\left(\rho^{*} A-E_{W}\right)^{n-1-w} \\
& =\rho^{*} A \cdot\left(\rho^{*} D\right)^{w} \cdot\left(\rho^{*} A-E_{W}\right)^{n-1-w}-y c\left(\left.D\right|_{W}\right)^{w}
\end{aligned}
$$

for a positive constant c. Hence y is bounded. Therefore, $D \nLeftarrow W$ and $\kappa_{\nu}(D) \leq$ $\nu(D)$. The other inequality follows from (1) and 2.7-(6).
(6) Let $W \subset X$ be a non-singular subvariety of dimension $w<\kappa_{\nu}(D), \rho: Z \rightarrow$ X the blowing-up along W, E_{W} the exceptional divisor, and H an ample divisor of Y. Then there exist positive numbers $x, y \gg 0$ such that $\rho^{*}\left(x D+f^{*} H\right)-y E_{W}$ is pseudo-effective. Let Γ be a prime component of E and let Γ^{\prime} be the proper transform of Γ. Note that $\Gamma^{\prime}=\rho^{*} \Gamma$. We have

$$
\begin{aligned}
x \text { mult }_{\Gamma} E & \leq \sigma_{\Gamma}(x D ; X / Y)=\sigma_{\Gamma}\left(x D+f^{*} H ; X / Y\right) \\
& \leq \sigma_{\Gamma^{\prime}}\left(\rho^{*}\left(x D+f^{*} H\right)-y E_{W}\right)
\end{aligned}
$$

Therefore, the \mathbb{R}-divisor

$$
\rho^{*}\left(x D+f^{*} H\right)-y E_{W}-x \rho^{*} E
$$

is pseudo-effective. Thus $D-E \succcurlyeq W$.
(7) Suppose that $\kappa_{\nu}(D)>\kappa_{\nu}\left(\left.D\right|_{X_{s}}\right)+\operatorname{dim} S$ for 'general' $s \in S$. Let $W \subset X$ be a non-singular subvariety of dimension $\kappa_{\nu}\left(\left.D\right|_{X_{s}}\right)+\operatorname{dim} S$. Since $D \succcurlyeq W$, we have
$\left.D\right|_{X_{s}} \succcurlyeq W \cap X_{s}$ for 'general' $s \in S$ by 2.17. Thus $\kappa_{\nu}\left(\left.D\right|_{X_{s}}\right)>\operatorname{dim} W-\operatorname{dim} S$. This is a contradiction.

Problem

(1) $\kappa_{\sigma}(D)=\kappa_{\sigma}^{ \pm}(D)=\kappa_{\nu}(D)$ for all pseudo-effective \mathbb{R}-divisors D ?
(2) $\kappa_{\sigma}(D)=\kappa_{\sigma}\left(P_{\sigma}(D)\right)$? $\kappa_{\nu}(D)=\kappa_{\nu}\left(P_{\sigma}(D)\right)$?

The affirmative answer to $\mathbf{1 . 8}$ implies the expected equalities in (2).
§2.e. Geometrically abundant divisors.
2.23. Definition Let X be a non-singular projective variety and let D be an \mathbb{R}-divisor.
(1) D is called abundant if $\kappa_{\nu}(D)=\kappa(D)$.
(2) D is called geometrically abundant if the following conditions are satisfied:
(a) $\kappa(D) \geq 0$;
(b) let $X \xrightarrow{\cdots} Z$ be the Iitaka fibration for D and let $\mu: Y \rightarrow X$ be a birational morphism from a non-singular projective variety such that the composite $f: Y \rightarrow X \xrightarrow{\cdots} Z$ is holomorphic. Then

$$
\kappa_{\sigma}\left(\left.\mu^{*} D\right|_{Y_{z}}\right)=0
$$

for a 'general' fiber $Y_{z}=f^{-1}(z)$.
A geometrically abundant \mathbb{R}-divisor is abundant by 2.7 and $\mathbf{2 . 2 2}$. A nef and abundant \mathbb{R}-divisor is geometrically abundant by 2.3-(1). The Zariski-decomposition problem for a geometrically abundant \mathbb{R}-divisor D is reduced to that of a big \mathbb{R} divisor of the base variety of the Iitaka fibration for D.
2.24. Notation Let $f: X \rightarrow Y$ be a projective morphism from a normal complex analytic space into a complex analytic space and let $X \rightarrow Y^{\prime} \rightarrow Y$ be the Stein factorization. Let F be a 'general' fiber of $X \rightarrow Y^{\prime}$. Note that F is a connected component of a 'general' fiber of $X \rightarrow f(X)$. For an \mathbb{R}-Cartier divisor D of X, we denote

$$
\kappa_{\nu}(D ; X / Y)=\kappa_{\nu}\left(\left.D\right|_{F}\right) \quad \text { and } \quad \kappa_{\sigma}(D ; X / Y)=\kappa_{\sigma}\left(\left.D\right|_{F}\right)
$$

If $\left.D\right|_{F}$ is abundant, then D is called f-abundant. If $\left.D\right|_{F}$ is geometrically abundant, then D is called geometrically f-abundant. Let D^{\prime} be another \mathbb{R}-divisor of X. If $\left.\left.D_{1}\right|_{F} \succcurlyeq D_{2}\right|_{F}$ (resp. $\left.\left.\left.D_{1}\right|_{F} \succeq D_{2}\right|_{F}\right)$, then we write $D_{1} \succeq_{f} D_{2}$ (resp. $D_{1} \succeq_{f} D_{2}$).
2.25. Lemma Let $f: X \rightarrow Y$ be a projective surjective morphism of nonsingular varieties with connected fibers. Let D be an \mathbb{R}-divisor of X with $\kappa(D ; X / Y)$ $=\kappa_{\sigma}(D ; X / Y)=0$. Then there exist a positive integer m, a reflexive \mathbb{R}-sheaf $\boldsymbol{\Xi}$ of rank one of Y, and an f-exceptional effective \mathbb{R}-divisor E of X such that

$$
m P_{\sigma}(D ; X / Y) \sim f^{*} \boldsymbol{\Xi}-E
$$

If $E \neq 0$, then $\operatorname{Supp} E \not \subset \operatorname{Supp} N_{\sigma}(D ; X / Y)$. If D is a \mathbb{Q}-divisor, then $\boldsymbol{\Xi}$ is also a reflexive \mathbb{Q}-sheaf.

If every reflexive sheaf of rank one on Y admits a meromorphic section, then we can take $\boldsymbol{\Xi}$ above as an \mathbb{R}-divisor.

Proof. We can consider the relative σ-decomposition with respect to f by III. 4.3 since $f_{*} \mathcal{O}_{X}\left(\left\llcorner m D_{\lrcorner}\right) \neq 0\right.$ for a positive integer m. Suppose that $m D$ is linearly equivalent to an effective divisor Δ. This is satisfied, for example, if Y is Stein. Here we have $N_{\sigma}(\Delta ; X / Y)=m N_{\sigma}(D ; X / Y)$ and the effective \mathbb{R}-divisor $P_{\sigma}(\Delta ; X / Y)=\Delta-N_{\sigma}(\Delta ; X / Y)$ is linearly equivalent to $m P_{\sigma}(D ; X / Y)$. By 1.12 , $\left.P_{\sigma}(D ; X / Y)\right|_{X_{y}} \approx 0$ for a 'general' point $y \in Y$. Thus $f\left(\operatorname{Supp} P_{\sigma}(\Delta ; X / Y)\right) \neq Y$ and hence $P_{\sigma}(\Delta ; X / Y)=f^{*} \Xi_{0}-E$ for an \mathbb{R}-divisor Ξ_{0} of Y and an f-exceptional effective \mathbb{R}-divisor E of X by III,5.8. Even if $m D$ is not linearly equivalent to any effective divisor, we can patch E locally defined over Y to the globally defined effective \mathbb{R}-divisor E of X. Thus $m P_{\sigma}(D ; X / Y)-E \sim f^{*} \boldsymbol{\Xi}$ for some $\boldsymbol{\Xi} \in \operatorname{Ref}_{1}(Y)_{\mathbb{R}}$.

Suppose that $E \neq 0$ and let Γ be an irreducible component of E. Then $\sigma_{\Gamma}(-E ; X / Y)=0$ and $m \sigma_{\Gamma}(D ; X / Y)=\sigma_{\Gamma}\left(-E+m N_{\sigma}(D ; X / Y) ; X / Y\right)$ by the formula

$$
m D \sim f^{*} \boldsymbol{\Xi}-E+m N_{\sigma}(D ; X / Y)
$$

In particular, for $0<\alpha<1$, we have

$$
\sigma_{\Gamma}\left(-\alpha E+m N_{\sigma}(D ; X / Y) ; X / Y\right)=m \sigma_{\Gamma}(D ; X / Y)
$$

from the triangle inequality

$$
\begin{aligned}
\sigma_{\Gamma}\left(-E+m N_{\sigma}(D ; X / Y) ; X / Y\right) \leq & \sigma_{\Gamma}\left(-\alpha E+m N_{\sigma}(D ; X / Y) ; X / Y\right) \\
& +(1-\alpha) \sigma_{\Gamma}(-E ; X / Y)
\end{aligned}
$$

Suppose that $\operatorname{Supp} E \subset \operatorname{Supp} N_{\sigma}(D ; X / Y)$. Then $m N_{\sigma}(D ; X / Y) \geq \alpha E$ for some $0<\alpha<1$ and

$$
\sigma_{\Gamma}\left(-\alpha E+m N_{\sigma}(D ; X / Y) ; X / Y\right)=m \sigma_{\Gamma}(D ; X / Y)-\alpha \operatorname{mult}_{\Gamma} E
$$

by III, 1.8. This is a contradiction.
We shall show that $\boldsymbol{\Xi} \in \operatorname{Ref}_{1}(Y)_{\mathbb{Q}}$ if D is a \mathbb{Q}-divisor. It is enough to consider locally on Y. Hence we have only to show that Ξ_{0} above is a \mathbb{Q}-divisor. For any prime divisor $Q \subset Y$, there is a prime divisor $\Theta \subset X$ with $\Theta \not \subset \operatorname{Supp} N_{\sigma}(D ; X / Y)$ and $f(\Theta)=Q$. Thus

$$
\operatorname{mult}_{\Theta} \Delta=\operatorname{mult}_{\Theta} f^{*} \Xi_{0}=\operatorname{mult}_{\Theta} f^{*} Q \operatorname{mult}_{Q} \Xi_{0}
$$

Hence Ξ_{0} is a \mathbb{Q}-divisor.
2.26. Corollary Under the same situation as $\mathbf{2 . 2 5}$, let $\mu: Z \rightarrow Y$ be a bimeromorphic morphism flattening $f, f^{\prime}: X^{\prime} \rightarrow Z$ a bimeromorphic transform of f by μ from a non-singular variety, and $\nu: X^{\prime} \rightarrow X$ the induced bimeromorphic morphism. Then there exists a reflexive \mathbb{R}-sheaf $\boldsymbol{\Xi}_{Z}$ of rank one on Z such that

$$
\nu^{*} D \sim_{\mathbb{Q}} f^{\prime *} \boldsymbol{\Xi}_{Z}+N_{\sigma}\left(\nu^{*} D ; X^{\prime} / Z\right)
$$

If D is a \mathbb{Q}-divisor, then $\boldsymbol{\Xi}_{Z}$ is a reflexive \mathbb{Q}-sheaf of rank one.

Proof. By 2.25, there exist a positive integer m, a reflexive \mathbb{R}-sheaf $\boldsymbol{\Xi}_{Z}$ of rank one on Z, and an f^{\prime}-exceptional effective \mathbb{R}-divisor E^{\prime} of X^{\prime} such that

$$
m \nu^{*} D \sim m f^{\prime *} \boldsymbol{\Xi}_{Z}-E^{\prime}+m N_{\sigma}\left(\nu^{*} D ; X^{\prime} / Z\right)
$$

If D is a \mathbb{Q}-divisor, then $\boldsymbol{\Xi}_{Z} \in \operatorname{Ref}_{1}(Z)_{\mathbb{Q}}$ by $\mathbf{2 . 2 5}$. Let X_{1} be the normalization of the main component of $X \times_{Y} Z$ and let $\lambda: X^{\prime} \rightarrow X_{1}$ be the induced morphism. Then $\lambda_{*} E=0$. In particular,

$$
0 \leq m \lambda^{*} \lambda_{*} N_{\sigma}\left(\nu^{*} D ; X^{\prime} / Z\right)=m N_{\sigma}\left(\nu^{*} D ; X^{\prime} / Z\right)-E^{\prime}
$$

Hence $E^{\prime}=0$ by $\mathbf{2 . 2 5}$.
2.27. Lemma Let $f: X \rightarrow Y$ be a surjective morphism of normal projective varieties and let D be a pseudo-effective geometrically f-abundant \mathbb{R}-Cartier divisor of X. Then $D+f^{*} H$ is geometrically abundant for any big \mathbb{R}-Cartier divisor H of Y. More generally, if $D \succcurlyeq f^{*} H$, then $D-\varepsilon f^{*} H$ is geometrically abundant for some $\varepsilon>0$.

Proof. We may assume that X and Y are non-singular and that there exist morphisms $h: X \rightarrow Z$ and $g: Z \rightarrow Y$ such that Z is a non-singular projective variety, $f=g \circ h$, and that h is the relative Iitaka fibration for D. Let P be the positive part $P_{\sigma}(D ; X / Z)$ of the relative σ-decomposition of D over Z. Then P is pseudo-effective, since $N_{\sigma}(D ; X / Z) \leq N_{\sigma}(D)$. By $\mathbf{2 . 2 5}$ and $\mathbf{2 . 2 6}$, we may assume that $P \sim_{\mathbb{Q}} h^{*} \Xi$ for a pseudo-effective g-big \mathbb{R}-divisor Ξ of Z. Here, $\Xi-\Delta$ is g ample for some effective \mathbb{R}-divisor Δ of Z. Hence, for any big \mathbb{R}-divisor H of Y, $\Xi-\Delta+k g^{*} H$ is big for some $k \in \mathbb{N}$. Thus $m \Xi+k g^{*} H$ is big for any $m \geq 1$. Therefore, $D+f^{*} H$ is geometrically abundant.

Next, suppose that $D \succcurlyeq f^{*} H$. It is enough to show that the \mathbb{R}-divisor Ξ above is big. For an ample divisor A of X and for any $b>0$, there exist rational numbers $x, y>b$ such that $x D-y f^{*} H+A$ is pseudo-effective. Thus

$$
x h^{*} \Xi-y f^{*} H+c N_{\sigma}(D ; X / Z)+A
$$

is pseudo-effective for a constant c by III.1.9. Hence, by the same argument as in II.5.6-(2), we infer that $\Xi \succcurlyeq g^{*} H$. Since $\Xi+g^{*} H$ is big,

$$
x \Xi-y g^{*} H+\left(\Xi+g^{*} H\right)
$$

is pseudo-effective for $x, y>b \gg 0$. Thus Ξ is big.
Applying $\mathbf{2 . 2 7}$ to the case where D is nef, we have:
2.28. Corollary Let $f: X \rightarrow Y$ be a surjective morphism of normal projective varieties and let D be a nef and f-abundant \mathbb{R}-Cartier divisor. Then $D+f^{*} H$ is nef and abundant for any nef and big \mathbb{R}-Cartier divisor H of Y. More generally, if $D \succcurlyeq f^{*} H$ in addition, then D is nef and abundant.
2.29. Definition Let X be a non-singular projective variety. The numerical Kodaira dimensions of X of type σ and of type ν, respectively, are defined to be the following numbers:

$$
\kappa_{\sigma}(X):=\kappa_{\sigma}\left(K_{X}\right) \quad \text { and } \quad \kappa_{\nu}(X):=\kappa_{\nu}\left(K_{X}\right)
$$

These are birational invariants by $\mathbf{2 . 7}-(7)$ and $\mathbf{2 . 2 2}-(6)$. Thus, even for a projective variety V with singularities, we define $\kappa_{\sigma}(V):=\kappa_{\sigma}(X)$ and $\kappa_{\nu}(V):=\kappa_{\nu}(X)$ for a non-singular model X of V.

Remark If a non-singular projective variety X admits a minimal model $X_{\min }$, then $\kappa_{\nu}(X)=\kappa_{\sigma}(X)=\nu\left(K_{X_{\text {min }}}\right)$.

Conjecture (abundance) K_{X} is abundant: $\kappa(X)=\kappa_{\nu}(X)$.
In 4.2 below, we shall show that if K_{X} is abundant, then K_{X} is geometrically abundant.

§3. Direct images of canonical sheaves

§3.a. Variation of Hodge structure. A (pure) Hodge structure (cf. [10]) consists of a free abelian group H of finite rank, a descending filtration

$$
\cdots \supset F^{p}\left(H_{\mathbb{C}}\right) \supset F^{p+1}\left(H_{\mathbb{C}}\right) \supset \cdots
$$

of vector subspaces of $H_{\mathbb{C}}=H \otimes \mathbb{C}$, and an integer w such that
(1) $F^{p}\left(H_{\mathbb{C}}\right)=H_{\mathbb{C}}$ for $p \ll 0$ and $F^{p}\left(H_{\mathbb{C}}\right)=0$ for $p \gg 0$,
(2) $F^{p}\left(H_{\mathbb{C}}\right) \oplus \overline{F^{w-p+1}\left(H_{\mathbb{C}}\right)}=H_{\mathbb{C}}$ for any p,
where ${ }^{-}$denotes the complex conjugate. If we set $H^{p, q}:=F^{p}\left(H_{\mathbb{C}}\right) \cap \overline{F^{q}\left(H_{\mathbb{C}}\right)}$, then $H^{p, q}=0$ unless $p+q \neq w, H_{\mathbb{C}}=\bigoplus_{p+q=w} H^{p, q}$, and $F^{p}\left(H_{\mathbb{C}}\right)=\bigoplus_{i \geq p} H^{i, w-i}$. The filtration $\left\{F^{p}\left(H_{\mathbb{C}}\right)\right\}$ is called the Hodge filtration and w is called the weight. A polarization (defined over \mathbb{Q}) of the Hodge structure is a non-degenerate bilinear form $Q: H \times H \rightarrow \mathbb{Q}$ satisfying the following conditions:
(1) Q is symmetric if w is even, and is skew-symmetric if w is odd;
(2) $Q\left(F^{p}\left(H_{\mathbb{C}}\right), F^{w-p+1}\left(H_{\mathbb{C}}\right)\right)=0$;
(3) $(\sqrt{-1})^{p-q} Q(x, \bar{x})>0$ for any $0 \neq x \in H^{p, q}$.

The map $C: H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}$ defined by $C x=(\sqrt{-1})^{p-q} x$ for $x \in H^{p, q}$ is called the Weil operator, which is defined over \mathbb{R}.

An example of Hodge structure is the cohomology group $H^{w}(M, \mathbb{Z})$ modulo torsion for a compact Kähler manifold M. It is of weight w and the Hodge filtration is given by the hyper-cohomology group

$$
F^{p}\left(H^{w}(M, \mathbb{C})\right)=\mathbb{H}^{w}\left(M, \sigma_{\geq p} \Omega_{M}^{\bullet}\right) \simeq \bigoplus_{i \geq p} H^{w-i}\left(M, \Omega_{M}^{i}\right)
$$

for the complex

$$
\sigma_{\geq p} \Omega_{M}^{\bullet}:=\left[\cdots \rightarrow 0 \rightarrow 0 \rightarrow \Omega_{M}^{p} \xrightarrow{\mathrm{~d}} \Omega_{M}^{p+1} \xrightarrow{\mathrm{~d}} \Omega_{M}^{p+2} \rightarrow \cdots\right]
$$

for p. If M is a projective variety and if $l=c_{1}(A) \in H^{2}(M, \mathbb{Z})$ is the Chern class of an ample divisor A, then we have the Hard Lefschetz theorem: the homomorphism

$$
L^{i}:=(\cup l)^{i}: H^{n-i}(M, \mathbb{Q}) \rightarrow H^{n+i}(M, \mathbb{Q})
$$

given by the cup-product with $l^{i}=l \cup l \cup \cdots \cup l$ is isomorphic for $0 \leq i \leq n$. For $w \leq n$, the primitive cohomology group $P^{w}(M, \mathbb{Z})$ is defined as the kernel of

$$
L^{n-w+1}: H^{w}(M, \mathbb{Z}) \rightarrow H^{2 n-w+2}(M, \mathbb{Z})
$$

modulo torsion. Then we have the Lefschetz decomposition

$$
H^{w}(M, \mathbb{Q})=\bigoplus_{i \geq 0} L^{i} P^{w-2 i}(M, \mathbb{Q})
$$

The primitive cohomology $P^{w}(M, \mathbb{Z})$ has a Hodge structure by

$$
P^{p, q}(M, \mathbb{Z})=P^{p+q}(M, \mathbb{Z}) \cap H^{p, q}(M)
$$

and has a polarization given by

$$
Q_{w}(x, y)=(-1)^{w(w-1) / 2} x \cup y \cup l^{n-w}[M] .
$$

Thus $H^{w}(M, \mathbb{Q})$ also has a polarization as the direct sum of the polarizations on $P^{w-2 i}(M, \mathbb{Q})$.

Let S be a complex analytic manifold. A variation of Hodge structure (cf. [32]) of weight w on S consists of a locally constant system H of free abelian groups of finite rank on S and a descending filtration

$$
\cdots \supset \mathcal{F}^{p}(\mathcal{H}) \supset \mathcal{F}^{p+1}(\mathcal{H}) \supset \cdots
$$

of holomorphic subbundles of $\mathcal{H}=H \otimes_{\mathbb{Z}} \mathcal{O}_{S}$ such that
(1) H_{s} and $F_{s}^{p}=\mathcal{F}^{p}(\mathcal{H}) \otimes \mathbb{C}(s)$ form a Hodge structure of weight w for any point $s \in S$,
(2) the connection $\nabla: \mathcal{H} \rightarrow \Omega_{S}^{1} \otimes \mathcal{H}$ associated with H induces

$$
\nabla\left(\mathcal{F}^{p}(\mathcal{H})\right) \subset \Omega_{S}^{1} \otimes \mathcal{F}^{p-1}(\mathcal{H})
$$

for any p.
The second condition is called the Griffiths transversality condition. A polarization of the variation of Hodge structure is a locally constant bilinear from $Q: H \times H \rightarrow$ \mathbb{Q}_{S} whose fiber $Q_{s}: H_{s} \times H_{s} \rightarrow \mathbb{Q}$ is a polarization of the Hodge structure H_{s}. An example of variation of Hodge structure is the higher direct image sheaf $R^{w} f_{*} \mathbb{Z}_{X}$ modulo torsion for a proper smooth surjective morphism $f: X \rightarrow S$ from a Kähler manifold X. If f is projective and if $l \in H^{0}\left(S, R^{2} f_{*} \mathbb{Q}_{X}\right)$ is induced from an f-ample line bundle, then the primitive part of $R^{w} f_{*} \mathbb{Z}_{X}$ for $w \leq \operatorname{dim} X-\operatorname{dim} S$ admits a polarization.

Let $H=\left(H, F^{p}\left(H_{\mathbb{C}}\right), Q\right)$ be a polarized Hodge structure of weight w. We consider groups

$$
G_{\mathfrak{K}}:=\left\{g \in \operatorname{Aut}\left(H_{\mathfrak{K}}\right) \mid Q(g x, g y)=Q(x, y)\right\}
$$

for $\mathfrak{K}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}. Then $G_{\mathbb{C}}$ is a complex algebraic group and $G_{\mathbb{Z}}$ is a discrete subgroup. Let $\check{\mathcal{D}}$ and \mathcal{D} be the following sets of descending filtrations $\left\{F^{p}\right\}$ of vector subspaces of $H_{\mathbb{C}}$:

$$
\begin{aligned}
& \check{\mathcal{D}}:=\left\{\left\{F^{p}\right\} \mid \operatorname{dim} F^{p}=\operatorname{dim} F^{p}\left(H_{\mathbb{C}}\right), Q\left(F^{p}, F^{w-p+1}\right)=0\right\} \\
& \mathcal{D}:=\left\{\left\{F^{p}\right\} \in \check{\mathcal{D}} \mid(\sqrt{-1})^{p-q} Q(x, \bar{x})>0 \text { for non-zero } x \in F^{p} \cap \overline{F^{w-p}}\right\} .
\end{aligned}
$$

Then the Hodge filtration $\left\{F^{p}\left(H_{\mathbb{C}}\right)\right\}$ defines an element o of \mathcal{D}. We write $F_{o}^{p}=$ $F^{p}\left(H_{\mathbb{C}}\right), H_{o}^{p, q}:=F_{o}^{p} \cap \overline{F_{o}^{q}}$, and $H_{o}:=\left(H, F_{o}^{p}\right)$. The set $\check{\mathcal{D}}$ has a structure of complex projective manifold and \mathcal{D} is an open subset, which is regarded as the classifying space of Hodge structures on the abelian group H with the polarization Q. There are a natural transitive action of $G_{\mathbb{C}}$ on \mathcal{D} and that of $G_{\mathbb{R}}$ on \mathcal{D}. Let B be the stabilizer of $G_{\mathbb{C}}$ at o :

$$
B:=\left\{g \in G_{\mathbb{C}} \mid g\left(F_{o}^{p}\right)=F_{o}^{p}\right\}
$$

Then B is an algebraic subgroup and $\check{\mathcal{D}}$ is regarded as the homogeneous space $G_{\mathbb{C}} / B$. The intersection $V=B \cap G_{\mathbb{R}}$ preserves the Hodge structure H_{o}. Thus Q and the Weil operator C_{o} of H_{o} are preserved. Hence V is contained in a unitary group and is compact. The tangent space of the homogeneous space $\mathcal{D}=G_{\mathbb{R}} / V$ at o is isomorphic to $\mathfrak{g} / \mathfrak{b}$ for

$$
\mathfrak{g}:=\left\{T \in \operatorname{End}\left(H_{\mathbb{C}}\right) \mid Q(T x, y)+Q(x, T y)=0\right\}, \quad \mathfrak{b}:=\left\{T \in \mathfrak{g} \mid T\left(F_{o}^{p}\right) \subset F_{o}^{p}\right\}
$$

where \mathfrak{g} and \mathfrak{b} are the Lie algebras of $G_{\mathbb{C}}$ and B, respectively. We have the decomposition

$$
\mathfrak{g}=\bigoplus_{p \in \mathbb{Z}} \mathfrak{g}^{p,-p} \quad \text { and } \quad \mathfrak{b}=\bigoplus_{p \geq 0} \mathfrak{g}^{p,-p}
$$

for subspaces

$$
\mathfrak{g}^{p,-p}:=\left\{T \in \mathfrak{g} \mid T H_{o}^{r, s} \subset H_{o}^{r+p, s-p}\right\}
$$

We also have an injection

$$
\mathfrak{g} / \mathfrak{b} \hookrightarrow \bigoplus_{p \geq 0} \operatorname{Hom}\left(F_{o}^{p}, H_{\mathbb{C}} / F_{o}^{p}\right)
$$

Let $H=\left(H, \mathcal{F}^{\bullet}(\mathcal{H}), Q\right)$ be a polarized variation of Hodge structure defined on a complex analytic manifold S. Let $\tau: \widetilde{S} \rightarrow S$ be the universal covering map. Let us fix a point $s \in S$ and denote the polarized Hodge structure $\left(H_{s}, F_{s}^{p}=\right.$ $\left.\mathcal{F}^{p}(\mathcal{H}) \otimes \mathbb{C}(s), Q_{s}\right)$ by $\left(H_{o}, F_{o}^{p}, Q_{o}\right)$. Then $\tau^{-1} H \simeq H_{o} \otimes \mathbb{Z}_{\widetilde{S}}, \tau^{-1}\left(\mathcal{F}^{p}(\mathcal{H})\right)$ is a subbundle of the trivial vector bundle $H_{o} \otimes \mathcal{O}_{\widetilde{S}}$, and we have a period map $p: \widetilde{S} \rightarrow \mathcal{D}$ into the classifying space \mathcal{D} of Hodge structures on H_{o} compatible with Q_{o}.

We have also a monodromy representation $\rho: \pi_{1}(S, s) \rightarrow G_{\mathbb{Z}}$ compatible with p : it satisfies $p(\gamma z)=\rho(\gamma) p(z)$ for $z \in \widetilde{S}$ and $\gamma \in \pi_{1}(S, s)$. For a point $\tilde{s} \in \widetilde{S}$ over s, the tangent map of p at \tilde{s} is written as

$$
\Theta_{\widetilde{S}, \tilde{s}} \simeq \Theta_{S, s} \rightarrow\left(\mathfrak{b} \oplus \mathfrak{g}^{-1,1}\right) / \mathfrak{b} \subset \mathfrak{g} / \mathfrak{b}
$$

by the Griffith transversality. The composite

$$
\Theta_{S, s} \rightarrow \mathfrak{g} / \mathfrak{b} \rightarrow \operatorname{Hom}\left(F_{o}^{p}, H_{\mathbb{C}} / F_{o}^{p}\right)
$$

is given by the \mathcal{O}_{S}-linear map

$$
\mathcal{F}^{p}(\mathcal{H}) \xrightarrow{\nabla} \Omega_{S}^{1} \otimes \mathcal{H} \rightarrow \Omega_{S}^{1} \otimes\left(\mathcal{H} / \mathcal{F}^{p}(\mathcal{H})\right)
$$

Suppose that S is isomorphic to the Zariski-open subset $M \backslash D$ for a complex analytic manifold M and a normal crossing divisor D. Then the local monodromies of H around D is quasi-unipotent by a lemma of Borel (cf. [126, 4.5]). Let ${ }^{\ell} \mathcal{H}^{\text {can }}$ be the lower-canonical extension (cf. [71], [92]) of \mathcal{H}, which is called the canonical extension in the sense of Deligne. The upper-canonical extension ${ }^{u} \mathcal{H}^{\text {can }}$ is defined as the dual of the lower-canonical extension of the dual \mathcal{H}^{\vee}. If the local monodromies of H are unipotent, then two canonical extensions coincide with each other, and are denoted by $\mathcal{H}^{\text {can }}$. For $\bullet=\ell$ and u, ∇ extends to a logarithmic connection (cf. [13]):

$$
\nabla:{ }^{\bullet} \mathcal{H}^{\text {can }} \rightarrow \Omega^{1}(\log D) \otimes{ }^{\bullet} \mathcal{H}^{\text {can }}
$$

We set

$$
\mathcal{F}^{p}\left(\bullet \mathcal{H}^{\mathrm{can}}\right):=j_{*} \mathcal{F}^{p}(\mathcal{H}) \cap \bullet \mathcal{H}^{\text {can }} \subset j_{*} \mathcal{H}
$$

for the open immersion $j: S \hookrightarrow M$. Then $\mathcal{F}^{p}\left(\bullet \mathcal{H}^{\text {can }}\right)$ are locally free \mathcal{O}_{M}-modules and are subbundles of ${ }^{\bullet} \mathcal{H}^{\text {can }}$. This is a consequence of the nilpotent orbit theorem by Schmid [126, 4.12].
3.1. Definition A locally free sheaf of a projective variety is called numerically semi-positive if its tautological line bundle is nef.

Kawamata [50, §4] has proved the following semi-positivity for variations of Hodge structure:
3.2. Theorem Let M be a compact Kähler manifold, D a normal crossing divisor, and let H be a polarized variation of Hodge structure of weight w defined on $S=M \backslash D$. Suppose that $\mathcal{F}^{0}(\mathcal{H})=\mathcal{H}, \mathcal{F}^{w+1}(\mathcal{H})=0$, and that H has only unipotent local monodromies along D. Then $\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right) \otimes \mathcal{O}_{C}$ is a numerically semi-positive vector bundle for any compact curve $C \subset M$. In particular, if M is projective, then $\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)$ is numerically semi-positive.

For the proof of 3.2, we may assume that D is a simple normal crossing divisor by a suitable blowing-up of M, since the canonical extension is compatible with pulling back for variations of Hodge structure with unipotent local monodromies.

Kawamata [53, Theorem 3] has proved another positivity:

3.3. Theorem Under the same situation as 3.2, if

$$
\Theta_{S, s} \rightarrow \operatorname{Hom}\left(F_{s}^{w}, F_{s}^{w-1} / F_{s}^{w}\right)
$$

is injective at a point $s \in S$, then $\operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)\right)^{n}>0$, where $n=\operatorname{dim} S=\operatorname{dim} M$.
Kollár [72] pointed out a gap in the proof of [53, Theorem 3] and gave a modification. Kawamata's original modification was mentioned there, but it does not seem to be published yet. These modifications are applications of SL_{2}-orbit theorem of several complex variables (cf. [7], [48], [49]).

It is natural to consider the following:
3.4. Conjecture In the situation of $\mathbf{3 . 2}$, if M is projective, then the line bundle $\operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)\right)$ is nef and abundant.
This is considered as a version of the abundance conjecture. We have a partial answer as follows:
3.5. Proposition The conjecture $\mathbf{3 . 4}$ is true if $w \leq 2$.

Proof. By assumption, the natural homomorphism

$$
\left(\mathfrak{b} \oplus \mathfrak{g}^{-1,1}\right) / \mathfrak{b} \rightarrow \operatorname{Hom}\left(F_{o}^{w}, F_{o}^{w-1} / F_{o}^{w}\right)
$$

is injective. In fact, if F^{w} is given, then F^{1} is determined by

$$
F^{1}=\left\{x \in H_{\mathbb{C}} \mid Q\left(x, F^{w}\right)=0\right\} .
$$

We may assume that D is a simple normal crossing divisor by the same reason as above. If the local monodromy around a prime component D_{i} is trivial, then H extends to $M \backslash \operatorname{Supp}\left(D-D_{i}\right)$ as a variation of Hodge structure. Hence we may assume that all the local monodromies around any prime component D_{i} are nontrivial. Let Γ be the image of the monodromy representation $\rho: \pi_{1}(S, s) \rightarrow G_{\mathbb{Z}}$. Then Γ is a discrete subgroup of $G_{\mathbb{R}}$ and the quotient $\Gamma \backslash \mathcal{D}$ exists as a normal complex analytic space, since $V \cap \Gamma$ is a finite group. The period mapping $p: \widetilde{S} \rightarrow \mathcal{D}$ induces $\pi: S \rightarrow \Gamma \backslash \mathcal{D}$. We infer that π is a proper morphism by [32, III, 9.6] or by the nilpotent orbit theorem [126, 4.12]. By [53, Theorem 11], there exist a birational morphism $\nu: M^{\prime} \rightarrow M$ from a non-singular projective variety, a fiber space $\pi^{\prime}: M^{\prime} \rightarrow Z$ onto a non-singular projective variety, an open subset $Z^{\star} \subset Z$, and a generically finite proper surjective morphism $\tau: Z^{\star} \rightarrow \Gamma \backslash \mathcal{D}$ such that

$$
\nu^{-1}(S)=\pi^{\prime-1}\left(Z^{\star}\right) \quad \text { and }\left.\quad \tau \circ \pi^{\prime}\right|_{\nu^{-1}(S)}=\left.\pi \circ \nu\right|_{\nu^{-1}(S)} .
$$

Let W be the image of $\left(\nu, \pi^{\prime}\right): M^{\prime} \rightarrow M \times Z$. By considering the flattening of π^{\prime}, we may assume that any π^{\prime}-exceptional divisor is exceptional for $M^{\prime} \rightarrow W$. Let F be a general fiber of π. For the numerically semi-positive vector bundle $\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)$, the restriction $\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right) \otimes \mathcal{O}_{F}$ is a flat vector bundle with only finite monodromies, since it is associated with a constant variation of Hodge structure. Hence

$$
\nu^{*} \operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\mathrm{can}}\right)\right)^{\otimes m} \simeq \pi^{\prime *} \mathcal{L} \otimes \mathcal{O}_{M^{\prime}}(-E)
$$

for an invertible sheaf \mathcal{L} of Z, a π^{\prime}-exceptional effective divisor E, and a positive integer m. Since E is exceptional for $M^{\prime} \rightarrow W$, we have

$$
\nu^{*} \operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\mathrm{can}}\right)\right)^{\otimes m} \simeq \pi^{\prime *} \mathcal{L}
$$

and thus \mathcal{L} is nef. Let $Y \subset M$ be the complete intersection of general smooth ample divisors with $\operatorname{dim} Y=\operatorname{dim} Z$. Then $p: Y \cap S \rightarrow \Gamma \backslash \mathcal{D}$ is generically finite. Thus

$$
\Theta_{Y, y} \rightarrow \operatorname{Hom}\left(\mathcal{F}^{w}(\mathcal{H}) \otimes \mathbb{C}(y),\left(\mathcal{F}^{w-1}(\mathcal{H}) / \mathcal{F}^{w}(\mathcal{H})\right) \otimes \mathbb{C}(y)\right)
$$

is injective for a general point $y \in Y \cap S$. Hence

$$
\operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\operatorname{can}}\right)\right)^{\operatorname{dim} Y} \cdot Y>0 \quad \text { and } \quad \mathcal{L}^{\operatorname{dim} Z}>0
$$

by 3.3. Therefore, $\operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)\right)$ is nef and abundant.

By applying a similar argument to the Kuranishi space of a compact complex manifold, we have:
3.6. Proposition Under the same situation as $\mathbf{3 . 2}$, assume that M is projective and the variation of Hodge structure H is isomorphic to $R^{w} f_{*} \mathbb{Z}_{X}$ modulo torsion for a projective smooth morphism $f: X \rightarrow S$ with $w=\operatorname{dim} X-\operatorname{dim} S$. Assume in addition that, for the fiber $F=f^{-1}(s)$, the homomorphism

$$
H^{1}\left(F, \Theta_{F}\right) \rightarrow \operatorname{Hom}\left(H^{0}\left(F, \Omega_{F}^{w}\right), H^{1}\left(F, \Omega_{F}^{w-1}\right)\right)
$$

given by the cup-product is injective. Then $\operatorname{det}\left(\mathcal{F}^{w}\left(\mathcal{H}^{\text {can }}\right)\right)$ is nef and abundant.
$\S 3 . b$. ω-sheaves. Let $f: X \rightarrow Y$ be a proper surjective morphism from a normal variety into a non-singular variety. For the dualizing sheaves ω_{X} and ω_{Y}, we denote $\omega_{X / Y}:=\omega_{X} \otimes f^{*} \omega_{Y}^{-1}$ and call it the relative dualizing sheaf. For the twisted inverse $f^{!}$(cf. [37], [116], [117]), we have

$$
f^{!} \mathcal{O}_{Y} \sim_{\text {qis }} \omega_{X}^{\bullet}[-\operatorname{dim} Y] \stackrel{\mathrm{L}}{\otimes} f^{*} \omega_{Y}^{-1}
$$

In particular, $\mathcal{H}^{-d}\left(f^{!} \mathcal{O}_{Y}\right) \simeq \omega_{X / Y}$ for $d=\operatorname{dim} X-\operatorname{dim} Y$ and $\mathcal{H}^{-k}\left(f^{!} \mathcal{O}_{Y}\right)=0$ for $k>d$.

We recall the following results on the higher direct images of dualizing sheaves proved by [71], [97], [13], [92], [121], [122], [135].
3.7. Theorem Let $f: X \rightarrow Y$ be a proper surjective morphism of complex analytic varieties with $d:=\operatorname{dim} X-\operatorname{dim} Y$. Suppose that X is a Kähler manifold. Then the following properties hold:
(1) (Torsion-freeness) $\mathrm{R}^{i} f_{*} \omega_{X}$ is a torsion free sheaf for any i;
(2) (Vanishing) Let $g: Y \rightarrow Z$ be a projective surjective morphism and let \mathcal{H} be a g-ample invertible sheaf. Then, for any $p>0$ and $i \geq 0$,

$$
\mathrm{R}^{p} g_{*}\left(\mathcal{H} \otimes \mathrm{R}^{i} f_{*} \omega_{X}\right)=0
$$

(3) (Injectivity) In the situation of (2) above, suppose that Z is Stein. Let $s \in \mathrm{H}^{0}\left(Y, \mathcal{H}^{\otimes l}\right)$ be a non-zero section for an integer $l>0$. Then the induced homomorphism

$$
\mathrm{H}^{p}\left(X, \omega_{X} \otimes f^{*} \mathcal{H}\right) \xrightarrow{\otimes f^{*} s} \mathrm{H}^{p}\left(X, \omega_{X} \otimes f^{*} \mathcal{H}^{\otimes(l+1)}\right)
$$

is injective for any $p \geq 0$;
(4) (Hodge filtration) Suppose that Y is non-singular and f is smooth outside a normal crossing divisor $D \subset Y$. For $i \geq 0$, let ${ }^{u} \mathcal{H}^{d+i}$ be the uppercanonical extension for the variation of Hodge structure

$$
H^{d+i}=\left.\left(\mathrm{R}^{d+i} f_{*} \mathbb{Z}_{X}\right)\right|_{Y \backslash D}
$$

Then there is an isomorphism

$$
\mathrm{R}^{i} f_{*} \omega_{X / Y} \simeq \mathcal{F}^{d}\left({ }^{u} \mathcal{H}^{d+i}\right)
$$

(5) (Splitting) Suppose that $d>0$ and let $Z \subset X$ be an f-ample non-singular divisor. Then the surjection

$$
f_{*} \omega_{Z} \rightarrow \mathrm{R}^{1} f_{*} \omega_{X}
$$

derived from the short exact sequence

$$
0 \rightarrow \omega_{X} \rightarrow \omega_{X}(Z)=\omega_{X} \otimes \mathcal{O}_{X}(Z) \rightarrow \omega_{Z} \rightarrow 0
$$

admits a splitting;
(6) (Decomposition) In the derived category $D_{c}\left(\mathcal{O}_{Y}\right)$ of \mathcal{O}_{Y}-modules with coherent cohomologies,

$$
\mathrm{R} f_{*} \omega_{X} \sim_{\text {qis }} \bigoplus_{i=0}^{d} \mathrm{R}^{i} f_{*} \omega_{X}[-i] .
$$

Remark Kawamata [50] showed (4) for $i=0$ by applying some results of Schmid [126]. Kollár [71] proved $\mathbf{3 . 7}$ in the case: X and Y are projective. The argument in [71, I] implies (1) and (3) also in the case: X is compact Kähler and Y is projective. Esnault-Viehweg [13] gave simple proofs of (1), (2), and (3) in the same case. The assertion (4) in the algebraic case was proved by a different argument in [97], which is effective for other cases. Moriwaki [92] proved (1) in the case: f is a projective morphism, by applying the relative Kodaira vanishing theorem II.5.12. The assertion (5) is derived from (4) by the same argument as [71, II]. If X is projective, then (6) follows from (5). On the other hand, Saito [119] developed the theory of Hodge modules and proved 3.7 in the case: f is a projective morphism, in $[\mathbf{1 2 0}]$ (cf. [122]), where (6) is derived from the decomposition of related perverse sheaves. In the case: f is a Kähler morphism, $\mathbf{3 . 7}$ is proved implicitly in [122]. Takegoshi [135] also proved the Kähler case by an L^{2}-method and by analyzing the Hodge $*$-operator. Takegoshi's result is more general than 3.7; in the most statements, ω_{X} can be replaced with $\omega_{X} \otimes \mathcal{E}$ for a Nakano-semi-positive vector bundle \mathcal{E}.
3.8. Definition A coherent sheaf \mathcal{F} of a complex analytic variety Y is called an ω-sheaf if there exists a proper morphism $f: X \rightarrow Y$ from a non-singular Kähler space such that \mathcal{F} is a direct summand of $\mathrm{R}^{i} f_{*} \omega_{X}$ for some i.
An ω-sheaf \mathcal{F} is a torsion-free \mathcal{O}_{Y}-module if $\operatorname{Supp} \mathcal{F}=Y$.
Remark (cf. [71]) If $f: X \rightarrow Y$ is a morphism from a non-singular projective variety, then $\mathrm{R}^{i} f_{*} \omega_{X}$ is a direct summand of $h_{*} \omega_{Z}$ for another morphism $h: Z \rightarrow Y$ from a non-singular projective variety. This is shown as follows: let $Z \subset X$ be a non-singular ample divisor and let us consider the exact sequence

$$
0 \rightarrow \omega_{X} \rightarrow \omega_{X}(Z) \rightarrow \omega_{Z} \rightarrow 0
$$

By 3.7-(5), $\mathrm{R}^{1} f_{*} \omega_{X}$ is a direct summand of $f_{*} \omega_{Z}$. We have $\mathrm{R}^{i} f_{*} \omega_{X}(Z)=0$ for $i>$ 0 by the relative Kodaira vanishing theorem II,5.12. Hence $\mathrm{R}^{i-1} f_{*} \omega_{Z} \simeq \mathrm{R}^{i} f_{*} \omega_{X}$ for $i \geq 2$. Thus we are done by induction.

Remark It may be possible to generalize the notion of ω-sheaves in terms of Hodge modules, etc. For example, it is expected that we can include in " ω-sheaves" the sheaves of the form $\mathcal{F}^{d}\left({ }^{u} \mathcal{H}\right) \otimes \omega_{M}$, where M is a Kähler manifold and $\mathcal{F}^{d}\left({ }^{u} \mathcal{H}\right)$ is the bottom filtration of the upper canonical extension ${ }^{u} \mathcal{H}$ of an abstract polarized variation of Hodge structure defined outside a normal crossing divisor of M.
3.9. Corollary Let $f: X \rightarrow Y$ be a morphism of complex analytic varieties and let \mathcal{F} be an ω-sheaf on X. Then the following properties hold:
(1) (Torsion-freeness) $\mathrm{R}^{i} f_{*} \mathcal{F}$ is an ω-sheaf for any i;
(2) (Vanishing) Let $g: Y \rightarrow Z$ be a projective morphism and let \mathcal{H} be a g ample invertible sheaf. Then, for any $p>0$ and $i \geq 0$,

$$
\mathrm{R}^{p} g_{*}\left(\mathcal{H} \otimes \mathrm{R}^{i} f_{*} \mathcal{F}\right)=0
$$

(3) (Decomposition) In the derived category $D_{c}\left(\mathcal{O}_{Y}\right)$,

$$
\mathrm{R} f_{*} \mathcal{F} \sim_{\text {qis }} \bigoplus_{i \geq 0} \mathrm{R}^{i} f_{*} \mathcal{F}[-i]
$$

Proof. Suppose that \mathcal{F} is a direct summand of $\mathrm{R}^{j} h_{*} \omega_{M}$ for a morphism $h: M \rightarrow X$ from a Kähler manifold. Then $\mathrm{R}^{i} f_{*} \mathcal{F}$ is a direct summand of $\mathrm{R}^{i+j}(f \circ$ $h)_{*} \omega_{M}$ by 3.7-(6). Hence (1) and (2) hold for \mathcal{F}. By 3.7-(6) for $\mathrm{R} h_{*} \omega_{M}$ and by a projection $\mathrm{R}^{j} h_{*} \omega_{M} \rightarrow \mathcal{F}$, we have a projection

$$
\mathrm{R}^{i+j}(f \circ h)_{*} \omega_{M} \rightarrow \mathrm{R}^{i} f_{*}\left(\mathrm{R}^{j} h_{*} \omega_{M}\right) \rightarrow \mathrm{R}^{i} f_{*} \mathcal{F}
$$

for any i such that the composite

$$
\mathrm{R}^{i} f_{*} \mathcal{F} \rightarrow \mathrm{R}^{i} f_{*}\left(\mathrm{R}^{j} h_{*} \omega_{M}\right) \rightarrow \mathrm{R}^{i+j}(f \circ h)_{*} \omega_{M} \rightarrow \mathrm{R}^{i} f_{*} \mathcal{F}
$$

is identical. Hence we have a quasi-isomorphism

$$
\mathrm{R} f_{*} \mathcal{F} \rightarrow \mathrm{R}(f \circ h)_{*} \omega_{M}[j] \rightarrow \bigoplus_{i \geq 0} \mathrm{R}^{i}(f \circ h)_{*} \omega_{M}[-i+j] \rightarrow \bigoplus_{i \geq 0} \mathrm{R}^{i} f_{*} \mathcal{F}[-i]
$$

3.10. Lemma Let X be a non-singular variety and let L be $a \mathbb{Q}$-divisor with $\operatorname{Supp}\langle L\rangle$ being normal crossing. Suppose either that $m L \sim 0$ or that $m L \sim D$ for a non-singular divisor D for some $m \geq 2$ in which any component of D is not contained in $\operatorname{Supp}\langle L\rangle$ and $D \cup \operatorname{Supp}\langle L\rangle$ is a normal crossing divisor. Then there exists a generically finite proper surjective morphism $M \rightarrow X$ from a non-singular variety M such that $\omega_{X}(\ulcorner L\urcorner)=\mathcal{O}_{X}\left(K_{X}+\ulcorner L\urcorner\right)$ is a direct summand of $f_{*} \omega_{M}$. In particular, if X is Kähler, then $\omega_{X}(\ulcorner L\urcorner)$ restricted to a relatively compact open subset is an ω-sheaf.

Proof. First we consider the case: $m L \sim 0$. By applying II.5.10, we have a cyclic covering $\tau: V \rightarrow X$ from a normal analytic space with only quotient singularities such that

$$
\tau_{*} \omega_{V} \simeq \bigoplus_{i=0}^{m-1} \mathcal{O}_{X}\left(K_{X}+\left\ulcorner_{i} L^{\urcorner}\right)\right.
$$

Let $\mu: Y \rightarrow V$ be a Hironaka's desingularization. It is a finite succession of blowups over a relatively compact open subset of V. Let $f: Y \rightarrow X$ be the composite. Then
$\omega_{X}(\ulcorner L\urcorner)$ is a direct summand of $f_{*} \omega_{Y}$, since $\mu_{*} \omega_{Y} \simeq \omega_{V}$. Since $\omega_{X}(\ulcorner L\urcorner)$ is of rank one, it is a direct summand of $f_{*} \omega_{M}$ for a connected component M of Y. If X is Kähler, then $f^{-1} U$ is Kähler for any relatively compact open subset $U \subset X$, since f is a projective morphism over U. Thus $\omega_{X}\left(\left.\left\ulcorner L^{\urcorner}\right)\right|_{U}\right.$ is an ω-sheaf.

Next, we consider the other case. Then $\operatorname{Supp}\left\langle L^{\prime}\right\rangle$ is normal crossing and $m L^{\prime} \sim$ 0 for the \mathbb{Q}-divisor $L^{\prime}:=L-(1 / m) D$. Thus $\omega_{X}\left(\left\ulcorner L^{\urcorner}\right)=\omega_{X}\left(\left\ulcorner L^{\prime}\right)\right.\right.$ and the assertion follows from the first case.
3.11. Proposition Let $\pi: X \rightarrow S$ be a proper surjective morphism from a non-singular variety into a Stein space and let L be an \mathbb{R}-divisor of X such that $\operatorname{Supp}\langle L\rangle$ is a normal crossing divisor. Suppose either
(1) L is a π-semi-ample \mathbb{Q}-divisor, or
(2) π is a projective morphism and L is π-nef and π-abundant.

Then, for a relatively compact open subset $S_{c} \subset S$ and for the pullback $X_{c}=\pi^{-1} S_{c}$, there exist

- a generically finite proper surjective morphism $\phi: M \rightarrow X_{c}$ from a nonsingular variety
- a projective surjective morphism $h: Z \rightarrow S_{c}$ from a non-singular variety with $\operatorname{dim} Z=\operatorname{dim} S+\kappa(L ; X / S)$,
- a proper surjective morphism $f: M \rightarrow Z$ over S_{c}, and
- an h-ample divisor H of Z
such that $\omega_{X_{c}}(\ulcorner L\urcorner)$ is a direct summand of $\phi_{*} \omega_{M}\left(f^{*} H\right)$. In particular, if X is Kähler, then $\omega_{X}(\ulcorner L\urcorner)$ restricted to any relatively compact open subset of X is an ω-sheaf.

Proof. In the proof, we replace S by a relatively compact open subset freely without mentioning it. By II, 4.3, we may replace X and L with X^{\prime} and L^{\prime}, respectively by a generically finite proper surjective morphism $\rho: X^{\prime} \rightarrow X$ and $L^{\prime}=\rho^{*} L$. In fact, \mathcal{O}_{X} is a direct summand of $\rho_{*} \mathcal{O}_{X^{\prime}}\left(R_{\rho}\right)$ for the ramification divisor R_{ρ} and II. 4.3 implies that $\omega_{X}(\ulcorner L\urcorner)$ is a direct summand of $\rho_{*} \omega_{X^{\prime}}\left(\left\ulcorner L^{\prime}\right)\right.$.

In the case (2), we may assume that there exist a projective morphism $h_{1}: Z_{1} \rightarrow$ S from a non-singular variety, a surjective morphism $f_{1}: X \rightarrow Z_{1}$ over S, and an h_{1} nef and h_{1}-big \mathbb{R}-divisor D of Z_{1} such that $L \sim_{\mathbb{Q}} f_{1}^{*} D$ by the same argument as 2.3(1). In the case (1), we also have the same morphisms $h_{1}: X \rightarrow Z_{1}, f_{1}: X \rightarrow Z_{1}$, and the same \mathbb{R}-divisor D with $L \sim_{\mathbb{Q}} f_{1}^{*} D$, where D is a \mathbb{Q}-divisor.

We may also assume that there is an effective \mathbb{R}-divisor B of Z_{1} such that

- $H_{1}:=D-B$ is an h_{1}-ample \mathbb{Q}-divisor,
- $\left.{ }^{\circ} L-f_{1}^{*} B\right\urcorner=\ulcorner L\urcorner$,
- $\operatorname{Supp} f_{1}^{*}(B) \cup \operatorname{Supp}\langle L\rangle$ is a normal crossing divisor.

Then $L_{1}:=L-f_{1}^{*} B \sim_{\mathbb{Q}} f_{1}^{*}\left(H_{1}\right)$ is a π-semi-ample \mathbb{Q}-divisor such that $\operatorname{Supp}\left\langle L_{1}\right\rangle$ is normal crossing and $\ulcorner L\urcorner=\left\ulcorner L_{1}\right\urcorner$.

Let $\lambda: Z \rightarrow Z_{1}$ be a finite surjective morphism from a non-singular variety such that $H:=\lambda^{*}\left(H_{1}\right)$ is a \mathbb{Z}-divisor (cf. II.5.11). Let $Y \rightarrow X \times_{Z_{1}} Z$ be a bimeromorphic morphism from a non-singular variety into the main component of $X \times{ }_{Z_{1}} Z$ and let $\psi: Y \rightarrow X$ and $f_{2}: Y \rightarrow Z$ be the induced morphisms. Then $\psi^{*} L \sim_{\mathbb{Q}} f_{2}^{*} H$. We can take Y so that Supp $\psi^{*}\langle L\rangle$ is normal crossing. Let $m>1$ be an integer such that $\psi^{*}(m L)$ is Cartier and $\psi^{*}(m L) \sim f_{2}^{*}(m H)$. Then, by II,5.10, we have a cyclic covering $\tau: V \rightarrow Y$ from a normal complex analytic space V with only quotient singularities such that

$$
\tau_{*} \omega_{V} \simeq \omega_{Y} \otimes \bigoplus_{i=0}^{m-1} \mathcal{O}_{Y}\left(\left\ulcorner i \psi^{*} L\right\urcorner-i f_{2}^{*} H\right)
$$

Thus $\omega_{Y}\left({ }^{\prime} \psi^{*} L^{\urcorner}\right)$is a direct summand of $\tau_{*} \omega_{V}\left(\tau^{*} f_{2}^{*} H\right)$. Since V has only rational singularities, ω_{V} is isomorphic to the direct image of the dualizing sheaf of a desingularization $M \rightarrow V$. Let $\phi: M \rightarrow X$ and $f: M \rightarrow Z$ be the induced morphisms. Then $\omega_{X}(\ulcorner L\urcorner)$ is a direct summand of $\phi_{*} \omega_{M}\left(f^{*} H\right)$. Since $\omega_{X}(\ulcorner L\urcorner)$ is of rank one, we can replace M by a connected component.
3.12. Corollary Let $\pi: X \rightarrow S$ be a projective surjective morphism from a normal variety into a Stein space. Let Δ and L be an effective \mathbb{R}-divisor and a \mathbb{Q}-Cartier \mathbb{Z}-divisor, respectively, on X. Suppose that (X, Δ) is log-terminal and $L-\left(K_{X}+\Delta\right)$ is π-nef and π-abundant. Then the reflexive sheaf $\mathcal{O}_{X}(L)$ restricted to any relatively compact open subset of X is an ω-sheaf. Furthermore, for a relatively compact open subset $S_{c} \subset S$ and for the pullback $X_{c}=\pi^{-1} S_{c}$, there exist

- a generically finite surjective morphism $\phi: M \rightarrow X_{c}$ from a non-singular variety,
- a projective morphism $h: Z \rightarrow S_{c}$ from a non-singular variety with $\operatorname{dim} Z-$ $\operatorname{dim} S=\kappa\left(L-\left(K_{X}+\Delta\right) ; X / S\right)$,
- a surjective morphism $f: M \rightarrow Z$ over S_{c}, and
- an h-ample divisor H of Z
such that $\mathcal{O}_{X_{c}}(L)$ is a direct summand of $\phi_{*} \omega_{M}\left(f^{*} H\right)$.
Proof. We also replace S by a relatively open subset freely. Let $\mu: X^{\prime} \rightarrow$ X be a bimeromorphic morphism from a non-singular variety projective over S such that the union of the proper transform of Δ and the μ-exceptional locus is a normal crossing divisor. Then $\ulcorner R\urcorner$ is a μ-exceptional effective divisor for $R:=K_{X^{\prime}}-\mu^{*}\left(K_{X}+\Delta\right)$. Now

$$
\mu^{*} L+R-K_{Y}=\mu^{*}\left(L-\left(K_{X}+\Delta\right)\right)
$$

is $(\pi \circ \mu)$-nef and $(\pi \circ \mu)$-abundant. Therefore, by 3.11, $\mathcal{O}_{X^{\prime}}\left(\left\ulcorner\mu^{*} L+R\right\urcorner\right)$ is an ω-sheaf. Since $\left\ulcorner\mu^{*} L+R\right\urcorner \geq \mu^{*} L$, we have

$$
\mathcal{O}_{X}(L) \simeq \mu_{*} \mathcal{O}_{X^{\prime}}\left(\left\ulcorner\mu^{*} L+R\right\urcorner\right)
$$

The following is a generalization of 3.7 -(3) and also is that of a similar injectivity obtained in [55]:
3.13. Proposition (Injectivity) Let $\pi: X \rightarrow S$ be a proper surjective morphism from a Kähler manifold and let L and D be \mathbb{R}-divisors X such that D is effective, and $\operatorname{Supp}\langle L\rangle$ and $\operatorname{Supp}\langle L+D\rangle$ are normal crossing. Suppose that one of the following two conditions is satisfied:
(1) L is a π-semi-ample \mathbb{Q}-divisor and $\kappa(a L-D ; X / S) \geq 0$;
(2) π is a projective morphism and L is a π-nef and π-abundant \mathbb{R}-divisor with $L \succcurlyeq_{\pi} D$.
Then the natural homomorphism

$$
\mathrm{R}^{i} \pi_{*} \mathcal{O}_{X}\left(K_{X}+\ulcorner L\urcorner\right) \rightarrow \mathrm{R}^{i} \pi_{*} \mathcal{O}_{X}\left(K_{X}+\ulcorner L+D\urcorner\right)
$$

is injective for any i.
Proof. Since the statement is local, we may assume that S is Stein. Furthermore, we replace S by an open subset freely without mentioning it. By $\mathbf{2 . 1 4}$ and by the proof of 3.11, we may assume that there exist a projective morphism $h: Z \rightarrow S$ from a non-singular variety, a surjective morphism $f: X \rightarrow Z$, and an h-ample divisor H of Z such that $L=f^{*} H$ and that $a L-D$ is linearly equivalent to an effective \mathbb{R}-divisor for some $a \in \mathbb{N}$. Then the result follows from 3.7-(3).

We have also the following generalization of 3.7-(2):
3.14. Proposition (Vanishing) Let $f: X \rightarrow Y$ and $g: Y \rightarrow S$ be proper surjective morphisms such that g is projective and X is a Kähler manifold. Let π be the composite $g \circ f$ and let L be an \mathbb{R}-divisor of X with $\operatorname{Supp}\langle L\rangle$ being normal crossing. Suppose that one of the following conditions is satisfied:
(1) L is a π-semi-ample \mathbb{Q}-divisor with $\kappa\left(a L-f^{*} A ; X / S\right) \geq 0$ for some g ample divisor A of Y;
(2) f is a projective morphism, L is a π-nef and f-abundant \mathbb{R}-divisor such that $L \succcurlyeq_{\pi} f^{*} A$ for a g-ample divisor A of Y.
Then $\mathrm{R}^{p} g_{*}\left(\mathrm{R}^{i} f_{*} \omega_{X}\left(\left\ulcorner L^{\urcorner}\right)\right)=0\right.$ for any $p>0$ and for any $i \geq 0$.
Proof. Similarly to the above, we replace S by an open subset freely. We note that L is π-abundant in the case (2), by $\mathbf{2 . 2 8}$. We may assume that there is an effective g-ample divisor H of Y. Then

$$
\mathrm{R}^{p} \pi_{*} \omega_{X}(\ulcorner L\urcorner) \rightarrow \mathrm{R}^{p} \pi_{*} \omega_{X}\left(\ulcorner L\urcorner+f^{*} H\right)
$$

is injective for any $p \geq 0$, by 3.13. Applying $3.9-(2)$ and $3.9-(3)$, we infer that if $p>0$, then

$$
\mathrm{R}^{p} g_{*}\left(\mathrm{R}^{i} f_{*} \omega_{X}(\ulcorner L\urcorner)\right) \hookrightarrow \mathrm{R}^{p} g_{*}\left(\mathcal{O}_{Y}(H) \otimes \mathrm{R}^{i} f_{*} \omega_{X}\left(\left\ulcorner L^{\urcorner}\right)\right)=0 .\right.
$$

3.15. Corollary Let $f: X \rightarrow Y$ and $g: Y \rightarrow S$ be projective surjective morphisms where X is normal, and let π be the composite $g \circ f$. Let Δ be an effective \mathbb{R}-divisor and L be $a \mathbb{Q}$-Cartier \mathbb{Z}-divisor of X satisfying the following conditions:
(1) (X, Δ) is log-terminal;
(2) $L-\left(K_{X}+\Delta\right)$ is π-nef and π-abundant;
(3) $L-\left(K_{X}+\Delta\right) \succcurlyeq_{\pi} f^{*} A$ for a g-ample divisor A on Y.

Then $\mathrm{R}^{i} f_{*} \mathcal{O}_{X}(L)$ restricted to any relatively compact open subset of Y is an ω-sheaf for any i. If $p>0$, then

$$
\mathrm{R}^{p} g_{*}\left(\mathrm{R}^{i} f_{*} \mathcal{O}_{X}(L)\right)=0
$$

3.16. Definition Let $f: X \rightarrow Y$ be a surjective morphism of normal projective varieties.
(1) An ω-sheaf \mathcal{F} on X is called ω-big over Y if there exist surjective morphisms $\phi: M \rightarrow X, p: M \rightarrow Z$, and $q: Z \rightarrow Y$ satisfying the following conditions:
(a) M is a compact Kähler manifold and Z is a non-singular projective variety;
(b) $f \circ \phi=q \circ p$;
(c) \mathcal{F} is a direct summand of $\mathrm{R}^{i} \phi_{*} \omega_{M}\left(p^{*} A\right)$ for some i and for some ample divisor A of Z.
(2) A coherent torsion-free sheaf \mathcal{F} of X is called an $\hat{\omega}$-sheaf if there exist an ω-sheaf \mathcal{G} and a generically isomorphic injection $\mathcal{G} \hookrightarrow \mathcal{F}^{\wedge}$ into the double-dual \mathcal{F}^{\wedge} of \mathcal{F}.
(3) An $\hat{\omega}$-sheaf \mathcal{G} on X is called ω-big over Y if there is a generically isomorphic injection $\mathcal{F} \hookrightarrow \mathcal{G}^{\wedge}$ from an ω-sheaf \mathcal{F} that is ω-big over Y.

By 3.9 and 3.14, we have:
3.17. Corollary Let $f: X \rightarrow Y$ be a surjective morphism of normal projective varieties and let \mathcal{F} be an ω-sheaf on X that is ω-big over Y. Then any higher direct image sheaf $\mathrm{R}^{i} f_{*} \mathcal{F}$ is ω-big over Y and $\mathrm{H}^{p}\left(Y, \mathrm{R}^{i} f_{*} \mathcal{F}\right)=0$ for $p>0$.
3.18. Lemma Let \mathcal{F} be an ω-sheaf of a non-singular projective variety X of dimension n and let A be an ample divisor of X. Suppose that $\rho_{x}^{*}(A)-n E_{x}$ is ample for a general point $x \in X$, where $\rho_{x}: Q_{x}(X) \rightarrow X$ is the blowing-up at x and E_{x} is the exceptional divisor. Then $\mathcal{F} \otimes \mathcal{O}_{X}(A)$ is generically generated by global sections.

Proof. We may assume that $\mathcal{F}=\mathrm{R}^{p} h_{*} \omega_{Z}$ for a surjective morphism $h: Z \rightarrow$ X from a non-singular projective variety and for some $p \geq 0$. For a general point $x \in X$, set $X^{\prime}:=Q_{x}(X), Z^{\prime}:=Z \times_{X} X^{\prime}$, and let $h^{\prime}: Z^{\prime} \rightarrow X^{\prime}$ be the induced morphism. Then $\mathrm{R}^{p} h_{*}^{\prime} \omega_{Z^{\prime} / X^{\prime}} \simeq \rho_{x}^{*}\left(\mathrm{R}^{p} h_{*} \omega_{Z / X}\right)$, since h is smooth along $h^{-1}(x)$. Hence

$$
\rho_{x}^{*}\left(\mathrm{R}^{p} h_{*} \omega_{Z}\right) \otimes \mathcal{O}_{X^{\prime}}\left(\rho_{x}^{*} A-E_{x}\right) \simeq \mathrm{R}^{p} h_{*}^{\prime} \omega_{Z^{\prime}} \otimes \mathcal{O}_{X^{\prime}}\left(\rho_{x}^{*} A-n E_{x}\right)
$$

is an ω-big ω-sheaf and

$$
\mathrm{H}^{1}\left(X^{\prime}, \rho_{x}^{*}\left(\mathrm{R}^{p} h_{*} \omega_{Z}\right) \otimes \mathcal{O}_{X^{\prime}}\left(\rho_{x}^{*} A-E_{x}\right)\right)=0
$$

by 3.14. Thus we have the surjection

$$
\mathrm{H}^{0}\left(X, \mathrm{R}^{p} h_{*} \omega_{Z} \otimes \mathcal{O}_{X}(A)\right) \rightarrow \mathrm{R}^{p} h_{*} \omega_{Z} \otimes \mathcal{O}_{X}(A) \otimes \mathbb{C}(x) .
$$

The following result is similar to $\mathbf{3 . 1 8}$:
3.19. Lemma Let $\pi: X \rightarrow S$ be a projective morphism from a normal variety into a Stein variety. Let \mathcal{F} be a coherent sheaf on X such that

$$
\mathrm{R}^{p} \pi_{*}\left(\mathcal{F} \otimes \mathcal{O}_{X}\left(A^{\prime}\right)\right)=0
$$

for any $p>0$ and for any π-ample divisor A^{\prime}. Then $\mathcal{F} \otimes \mathcal{O}_{X}(A)$ is π-generated for a divisor A such that $A-(\operatorname{dim} \operatorname{Supp} \mathcal{F}) H$ is π-ample for a π-very ample divisor H.

Proof. By the same argument as [71, I, 3.1], we shall prove by induction on $\operatorname{dim} \operatorname{Supp} \mathcal{F}$. Let $x \in \operatorname{Supp} \mathcal{F}$ be an arbitrary point. Suppose first that the local cohomology sheaf $\mathcal{F}^{\prime}:=\mathcal{H}_{\{x\}}^{0}(\mathcal{F})$ is not zero. Then, for the quotient sheaf $\mathcal{F}^{\prime \prime}:=\mathcal{F} / \mathcal{F}^{\prime}$, we have $\mathcal{H}_{\{x\}}^{0}\left(\mathcal{F}^{\prime \prime}\right)=0$. Since \mathcal{F}^{\prime} is a coherent skyscraper sheaf, we have only to show the surjectivity of

$$
\pi_{*}\left(\mathcal{F}^{\prime \prime} \otimes \mathcal{O}(A)\right) \rightarrow \mathcal{F}^{\prime \prime} \otimes \mathcal{O}(A) \otimes \mathbb{C}(x)
$$

Therefore we can reduce to the case $\mathcal{H}_{\{x\}}^{0}(\mathcal{F})=0$ and $\operatorname{dim} \operatorname{Supp} \mathcal{F}>0$. Let $X_{1} \in|H|$ be a general member containing x. Then the homomorphism

$$
\mathcal{F} \otimes \mathcal{O}_{X}\left(-X_{1}\right) \rightarrow \mathcal{F}
$$

is injective. Let $\mathcal{F}_{1}:=\mathcal{F} \otimes \mathcal{O}_{X_{1}}(H)$. Then $A-H-\left(\operatorname{dim} \operatorname{Supp} \mathcal{F}_{1}\right) H$ is π-ample, since $\operatorname{dim} \operatorname{Supp} \mathcal{F}_{1} \leq \operatorname{dim} \operatorname{Supp} \mathcal{F}-1$. We have a surjective homomorphism

$$
\pi_{*}\left(\mathcal{F} \otimes \mathcal{O}_{X}(A)\right) \rightarrow \pi_{*}\left(\mathcal{F}_{1} \otimes \mathcal{O}_{X_{1}}(A-H)\right)
$$

and a vanishing

$$
\mathrm{R}^{p} \pi_{*}\left(\mathcal{F}_{1} \otimes \mathcal{O}_{X}\left(A^{\prime}\right)\right) \simeq \mathrm{R}^{p+1} \pi_{*}\left(\mathcal{F} \otimes \mathcal{O}_{X}\left(A^{\prime}\right)\right)=0
$$

for $p>0$ for any π-ample divisor A^{\prime}. Thus, by induction, the homomorphism

$$
\pi_{*}\left(\mathcal{F} \otimes \mathcal{O}_{X}(A)\right) \rightarrow \mathcal{F} \otimes \mathcal{O}_{X}(A) \otimes \mathbb{C}(x)
$$

is surjective.

§3.c. Weak positivity and pseudo-effectivity.

3.20. Definition Let \mathcal{F} be a torsion-free coherent sheaf of a non-singular projective variety Y.
(1) For a point $y \in Y, \mathcal{F}$ is called (globally) generated at y or generated by global sections at y if the evaluation homomorphism $\mathrm{H}^{0}(Y, \mathcal{F}) \otimes \mathcal{O}_{Y} \rightarrow \mathcal{F}$ is surjective at y.
(2) $\widehat{\mathrm{S}}^{m}(\mathcal{F})$ denotes the double-dual of the symmetric tensor product $\operatorname{Sym}^{m}(\mathcal{F})$ for $m \geq 0$, where $\widehat{\mathrm{S}}^{0}(\mathcal{F})=\mathcal{O}_{X}$.
(3) $\widehat{\otimes}^{m}(\mathcal{F})$ denotes the double-dual of the tensor product $\mathcal{F}^{\otimes m}$ for $m \geq 0$, where $\widehat{\otimes}^{0}(\mathcal{F})=\mathcal{O}_{X}$.
(4) $\widehat{\operatorname{det}}(\mathcal{F})$ denotes the double-dual of $\bigwedge^{r} \mathcal{F}$ for $r=\operatorname{rank} \mathcal{F}>0$.

Let Q be an \mathbb{R}-divisor and let y be a point of $Y \backslash \bigcap_{m \in \mathbb{Z}} \operatorname{Supp}\langle m Q\rangle$. We introduce the symbol $\mathcal{F} \llbracket Q \rrbracket$. If Q is a \mathbb{Z}-divisor, then we identify $\mathcal{F} \llbracket Q \rrbracket$ with the double-dual of $\mathcal{F} \otimes \mathcal{O}_{Y}(Q)$.
(5) $\mathcal{F} \llbracket Q \rrbracket$ is called $d d$-ample at y if $\widehat{\mathrm{S}}^{m}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\left\llcorner m Q_{\lrcorner}-A\right)\right.$ is generated by global sections at y for an ample divisor A and $m>0$ with $y \notin \operatorname{Supp}\langle m Q\rangle$. (Here, "dd-ample" is an abbreviation for "ample modulo double-duals.")
(6) If $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample at some point y as above, then it is called big.
(7) Let A be an ample divisor. $\mathcal{F} \llbracket Q \rrbracket$ is called weakly positive at y if for any $a \in \mathbb{N}$, there is $b \in \mathbb{N}$ such that $y \notin \operatorname{Supp}\langle a b Q\rangle$ and

$$
\widehat{\mathrm{S}}^{a b}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\left\llcorner a b Q_{\lrcorner}+b A\right)\right.
$$

is generated by global sections at y. Note that the condition does not depend on the choice of A.
(8) If $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive at a point of Y, then $\mathcal{F} \llbracket Q \rrbracket$ is called weakly positive.

Remark

(1) Let $\mathcal{F} \rightarrow \mathcal{G}$ be a homomorphism of torsion free coherent sheaves that is surjective over an open neighborhood of y. Then, if \mathcal{F} is generated by global sections at y, then \mathcal{G} is so. Thus if \mathcal{F} is dd-ample at y and weakly positive at y, respectively, then so is \mathcal{G}. In particular, if \mathcal{F} is generated by global sections at y, then \mathcal{F} is weakly positive at y.
(2) If $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample at y, then $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive at y. Conversely, if $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive at y, then $\mathcal{F} \llbracket Q+A \rrbracket$ is dd-ample at y for any ample \mathbb{Q}-divisor A.
(3) $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample at y if and only if $\mathcal{F} \llbracket Q-A \rrbracket$ is weakly positive at y for an ample \mathbb{Q}-divisor A.
(4) The set of points at which \mathcal{F} is generated by global sections is a Zariskiopen subset. In fact, its complement is the support of the cokernel of

$$
\mathrm{H}^{0}(Y, \mathcal{F}) \otimes \mathcal{O}_{Y} \rightarrow \mathcal{F}
$$

In particular, the set of points y at which $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample is also Zariskiopen. However, the set of points at which $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive is only an intersection of countable Zariski-open subsets. A weakly positive sheaf in the sense of Viehweg [147] is a sheaf that is weakly positive at every point of some dense Zariski-open subset.
3.21. Lemma Let $f: X \rightarrow Y$ be a surjective morphism from a non-singular projective variety onto a projective variety, L an \mathbb{R}-divisor of X, and $F=f^{-1}(y)$ the fiber over a point $y \in Y$ such that f is smooth along F and $\operatorname{Supp}\langle L\rangle \cap F=\emptyset$. If one of the following conditions is satisfied, then there is an ample divisor H of Y such that

$$
\mathrm{H}^{0}\left(X,{ }_{\llcorner } l L_{\lrcorner}+f^{*} H\right) \rightarrow \mathrm{H}^{0}\left(F,\left.l L\right|_{F}\right)
$$

is surjective for any $l \gg 0$:
(1) $\kappa(L) \geq 0, \operatorname{SBs}(L) \cap F=\emptyset$, and the evaluation homomorphism

$$
f^{*} f_{*} \mathcal{O}_{X}\left(\llcorner m a L _ { \lrcorner } - m K _ { X }) \rightarrow \mathcal { O } _ { X } \left(\left\llcorner m a L_{\lrcorner}-m K_{X}\right)\right.\right.
$$

is surjective along F for some positive integers m and a;
(2) L is pseudo-effective, $\operatorname{NBs}(L) \cap F=\emptyset$, and $\left.L\right|_{F}$ is ample.

Proof. We may replace X by a blowing-up $X^{\prime} \rightarrow X$ such that $X^{\prime} \rightarrow Y$ is still smooth over y. Let H be an ample divisor of Y.
(1) By replacing m, we may assume that $F \cap \mathrm{Bs}|m L|=\emptyset$ and $F \cap \mathrm{Bs} \mid m(a L+$ $\left.b f^{*} H-K_{X}\right) \mid=\emptyset$ for some $b \in \mathbb{N}$. Hence we may assume that there are effective \mathbb{R}-divisors Δ_{1}, Δ_{2} such that $\operatorname{Supp}\left(\Delta_{1}+\Delta_{2}\right)$ is a normal crossing divisor and
$\operatorname{Bs}\left|m L-\Delta_{1}\right|=\operatorname{Bs}\left|m\left(a L+b f^{*} H-K_{X}\right)-\Delta_{2}\right|=F \cap \operatorname{Supp}\left(\Delta_{1}+\Delta_{2}\right)=\emptyset$.
Since f is flat along F, y is a non-singular point of Y. Let $\mu: Y^{\prime} \rightarrow Y$ be the blowingup at y and let $\nu: X^{\prime} \rightarrow X$ be the blowing-up along F. Then $X^{\prime} \simeq X \times_{Y} Y^{\prime}$. Let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced morphism and let $E=\mu^{-1}(y)$ and $G=\nu^{-1}(F)$ be exceptional divisors. Then $c \mu^{*} H-E$ is ample for $c \gg 0$. We set

$$
D_{l}:=l L-\frac{l-a}{m} \Delta_{1}-\frac{1}{m} \Delta_{2}+(b+c) f^{*} H .
$$

Then, for any $l \geq a$,

$$
\begin{aligned}
\nu^{*} D_{l}-G-K_{X^{\prime}}= & \frac{l-a}{m} \nu^{*}\left(m L-\Delta_{1}\right)+\nu^{*}\left(a L-\frac{1}{m} \Delta_{2}+b f^{*} H-K_{X}\right) \\
& +f^{\prime *}\left(c \mu^{*} H-(\operatorname{dim} Y) E\right)
\end{aligned}
$$

is semi-ample and

$$
\mathrm{H}^{1}\left(X^{\prime},\left\ulcorner_{\nu^{*}} D_{l}\right\urcorner-G\right) \rightarrow \mathrm{H}^{1}\left(X^{\prime},\left\ulcorner_{\nu^{*}} D_{l}\right\urcorner\right)
$$

is injective by $3.7-(3)$. Therefore,

$$
\mathrm{H}^{0}\left(X,\left\llcorner L L_{\lrcorner}+(b+c) f^{*} H\right) \rightarrow \mathrm{H}^{0}\left(F,\left.l L\right|_{F}\right)\right.
$$

is surjective.
(2) For some ample divisor A of X, the restriction homomorphism

$$
\mathrm{H}^{0}\left(X,\left\lfloor L_{\lrcorner}+A\right) \rightarrow \mathrm{H}^{0}\left(F,\left(\left.\left\llcorner L_{\lrcorner}+A\right)\right|_{F}\right)\right.\right.
$$

is surjective for any $l>0$ by 1.14. Since $\left.L\right|_{F}$ is ample, $L+b f^{*} H$ is big and $c\left(L+b f^{*} H\right)-A-\Delta$ is ample for some $b, c \in \mathbb{N}$, and an effective \mathbb{R}-divisor Δ with $F \cap \operatorname{Supp} \Delta=\emptyset$. By the proof of $\mathbf{1 . 1 4}$,

$$
\mathrm{H}^{0}\left(X,\left\llcorner m L+c\left(L+b f^{*} H\right)_{\lrcorner}\right) \rightarrow \mathrm{H}^{0}\left(F,\left.(m+c) L\right|_{F}\right)\right.
$$

is also surjective for any $m>0$.
3.22. Lemma Let $f: X \rightarrow Y$ be a surjective morphism from a non-singular projective variety onto a projective variety, L an \mathbb{R}-divisor of X, and $F=f^{-1}(y)$ the fiber over a point $y \in Y$ such that f is smooth along F and $\operatorname{Supp}\langle L\rangle \cap F=\emptyset$. Suppose that $f^{*} f_{*} \mathcal{O}_{X}\left(\left\llcorner m L_{\lrcorner}\right) \rightarrow \mathcal{O}_{X}\left(\left\llcorner m L_{\lrcorner}\right)\right.\right.$is surjective along F for some $m>0$.

Let H be an ample divisor of Y. Then (1) $\Rightarrow(2),(3) \Rightarrow(4)$, and $(4) \Rightarrow(5)$ hold for the following conditions:
(1) $f_{*} \mathcal{O}_{X}\left(\left\llcorner a L_{\lrcorner}\right) \otimes \mathcal{O}_{Y}(-H)\right.$ is generated by global sections at y for some $a>0$;
(2) $\kappa(L)=\kappa(L, X / Y)+\operatorname{dim} Y$ and $\operatorname{SBs}(L) \cap F=\emptyset$;
(3) There is a positive integer b such that $f_{*} \mathcal{O}_{X}\left(\left\llcorner a L_{\lrcorner}\right) \otimes \mathcal{O}_{Y}(b H)\right.$ is generated by global sections at y for any $a>0$;
(4) For any $a>0$, there is a positive integer b such that $f_{*} \mathcal{O}_{X}\left(\left\llcorner a b L_{\lrcorner}\right) \otimes\right.$ $\mathcal{O}_{Y}(b H)$ is generated by global sections at y;
(5) L is pseudo-effective and $\operatorname{NBs}(L) \cap F=\emptyset$.

If $\left.L\right|_{F}$ is ample, then $(2) \Rightarrow(1)$ and (5) $\Rightarrow(3)$ also hold.
Proof. (1) \Rightarrow (2): The equality for κ follows from II.3.13, since $\mathrm{h}^{0}\left(X,{ }_{\llcorner } a L_{\lrcorner}-\right.$ $\left.f^{*} H\right) \neq 0$. Let $\Psi=\Phi_{m / Y}: X \cdots P=\mathbb{P}_{Y}\left(f_{*} \mathcal{O}_{X}\left({ }_{\llcorner } m L_{\lrcorner}\right)\right)$be the meromorphic mapping associated with $f^{*} f_{*} \mathcal{O}_{X}\left(\left\llcorner m L_{\lrcorner}\right) \rightarrow \mathcal{O}_{X}\left(\left\llcorner m L_{\lrcorner}\right)\right.\right.$which is surjective along F. Then Ψ is holomorphic along F. We may assume that Ψ is holomorphic by replacing X by a blowing-up and that Ψ induces the Iitaka fibration for L restricted to a general fiber of f. Then, for the tautological line bundle $\mathcal{O}_{P}(1)$, we have $\Psi^{*} \mathcal{O}_{P}(1) \simeq \mathcal{O}_{X}(m L-\Delta)$ for an effective \mathbb{R}-divisor Δ with $F \cap \operatorname{Supp} \Delta=\emptyset$. On the other hand, $\mathcal{O}_{P}(1) \otimes p^{*} \mathcal{O}_{Y}(b H)$ is very ample for the structure morphism $p: P \rightarrow Y$ for some $b \in \mathbb{N}$. By assumption, Bs $\left|m\left(a L-f^{*} H\right)\right| \cap F=\emptyset$. Thus $\kappa(L)=\kappa(L, X / Y)+\operatorname{dim} Y$ and $\operatorname{SBs}(L) \cap F=\emptyset$.
(2) \Rightarrow (1): Here, we assume $\left.L\right|_{F}$ is ample. Let $\Phi=\Phi_{k}: X \cdots \rightarrow|k L|^{\vee}$ be the Iitaka fibration for L associated with the linear system $|k L|$ for some $k \in \mathbb{I}(L)$. Then Φ and Ψ are birational to each other, since $\kappa(L ; X / Y)=\operatorname{dim} X-\operatorname{dim} Y$ and $\kappa(L)=\operatorname{dim} X$. Furthermore, Φ is holomorphic along F and is an embedding near F. By replacing X by a blowing-up with center away from F, we may assume that $k L-\Delta_{k}$ is ample for an effective \mathbb{R}-divisor Δ_{k} with $F \cap \operatorname{Supp} \Delta_{k}=\emptyset$. Then $c\left(k L-\Delta_{k}\right)-f^{*} H$ is ample and free for some $c>0$. By 3.21, there is a positive integer b such that

$$
\mathrm{H}^{0}\left(X, \iota l L_{\lrcorner}+b f^{*} H\right) \rightarrow \mathrm{H}^{0}\left(F,\left.l L\right|_{F}\right)
$$

is surjective for $l \gg 0$. By the proof of $\mathbf{3 . 2 1}$,

$$
\mathrm{H}^{0}\left(X,\left\llcorner(l+(b+1) c k) L_{\lrcorner}-f^{*} H\right) \rightarrow \mathrm{H}^{0}\left(F,\left.(l+(b+1) c k) L\right|_{F}\right)\right.
$$

is also surjective. In particular, $f_{*} \mathcal{O}_{X}\left(\left\llcorner L_{\lrcorner}-f^{*} H\right) \otimes \mathbb{C}(y) \simeq \mathrm{H}^{0}\left(F,\left.l L\right|_{F}\right)\right.$ and $f_{*} \mathcal{O}_{X}\left({ }_{l} l L_{\lrcorner}-f^{*} H\right)$ is generated by global sections at y for $l \gg 0$.
(3) \Rightarrow (4) is trivial.
(4) \Rightarrow (5): For any $a>0$, we can choose $b>0$ so that $F \cap \mathrm{Bs}\left|b\left(a L+f^{*} H\right)\right|=\emptyset$. Thus (5) follows.
(5) \Rightarrow (3) follows from 3.21 under the assumption: $\left.L\right|_{F}$ is ample.

Let \mathcal{F} be a non-zero torsion-free coherent sheaf on a non-singular projective variety Y and let $p: \mathbb{P}(\mathcal{F})=\mathbb{P}_{Y}(\mathcal{F}) \rightarrow Y$ be the associated projective morphism defined as Projan $\operatorname{Sym}(\mathcal{F})$. Let U be the maximum open subset of Y over which \mathcal{F} is locally free. Let $\mathbb{P}^{\prime}(\mathcal{F}) \rightarrow \mathbb{P}(\mathcal{F})$ be the normalization of the component of $\mathbb{P}(\mathcal{F})$
containing $p^{-1}(U)$ and let $X \rightarrow \mathbb{P}^{\prime}(\mathcal{F})$ be a birational morphism from a non-singular projective variety that is an isomorphism over U. We assume that $X \backslash f^{-1} U$ is a divisor for the composite $f: X \rightarrow \mathbb{P}(\mathcal{F}) \rightarrow Y$. Let $\mathcal{O}_{\mathcal{F}}(1)$ be the tautological line bundle of $\mathbb{P}(\mathcal{F})$ associated with \mathcal{F} and let L_{0} be a Cartier divisor of X linearly equivalent to the pullback of $\mathcal{O}_{\mathcal{F}}(1)$. There is a natural inclusion $\mathcal{F} \hookrightarrow f_{*} \mathcal{O}_{X}\left(L_{0}\right)$ which is an isomorphism over U. By III, 5.10-(3), there is an f-exceptional effective divisor E such that $f_{*} \mathcal{O}_{X}\left(a\left(L_{0}+E\right)\right) \simeq \widehat{\mathrm{S}}^{a}(\mathcal{F})$ for any $a \in \mathbb{N}$. We now fix the divisor E above and set $L:=L_{0}+E$. Note that $N_{\sigma}\left(L+E^{\prime} ; X / Y\right) \geq E^{\prime}$, for another f exceptional effective divisor E^{\prime}. In particular, if $L+E^{\prime}$ is pseudo-effective, then L is so and $\operatorname{NBs}\left(L+E^{\prime}\right)=\operatorname{NBs}(L) \cup \operatorname{Supp} E^{\prime}$.

By applying $\mathbf{3 . 2 2}$, we have the following criterion.
3.23. Theorem In the situation above, let y be a point of U and let Q be an \mathbb{R}-divisor of Y with $y \notin \operatorname{Supp}\langle Q\rangle$. Then the equivalences (1) $\Leftrightarrow(2) \Leftrightarrow$ (3), and (4) $\Leftrightarrow(5) \Leftrightarrow(6)$ hold for the following conditions:
(1) $\widehat{\mathrm{S}}^{a}(\mathcal{F}) \llbracket a Q-H \rrbracket$ is weakly positive at y for some $a>0$ for an ample divisor H;
(2) $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample at y;
(3) $L+f^{*} Q$ is big and $\operatorname{SBs}\left(L+f^{*} Q\right) \cap f^{-1}(y)=\emptyset$;
(4) There is an ample divisor H of Y such that $\widehat{\mathrm{S}}^{m}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\left\llcorner m Q_{\lrcorner}+H\right)\right.$ is globally generated at y for any $m>0$;
(5) $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive at y;
(6) $L+f^{*} Q$ is pseudo-effective and $\operatorname{NBs}\left(L+f^{*} Q\right) \cap f^{-1}(y)=\emptyset$.

Proof. (1) $\Rightarrow(2)$: There is a surjection $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{a}(\mathcal{F})\right) \rightarrow \operatorname{Sym}^{m a}(\mathcal{F})$. Hence $\widehat{\mathrm{S}}^{m}\left(\widehat{\mathrm{~S}}^{a}(\mathcal{F})\right) \rightarrow \widehat{\mathrm{S}}^{m a}(\mathcal{F})$ is induced and it is surjective over the open subset U where \mathcal{F} is locally free. Hence, by definition,

$$
\widehat{\mathrm{S}}^{2 a m}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\llcorner _ { \llcorner } 2 m Q _ { \lrcorner } - 2 m H) \otimes \mathcal { O } _ { Y } (m H) \simeq \widehat { \mathrm { S } } ^ { 2 a m } (\mathcal { F }) \otimes \mathcal { O } _ { Y } \left(\left\llcorner_{\llcorner } m Q_{\lrcorner}-m H\right)\right.\right.
$$

is generated by global sections at y for some $m>0$.
(2) \Rightarrow (1) is trivial.
(2) $\Leftrightarrow(3)$ and (4) $\Leftrightarrow(5) \Leftrightarrow(6)$ are shown in 3.22 .

Remark A numerically semi-positive vector bundle on Y is a locally free sheaf that is weakly positive at every point of Y.
3.24. Corollary Let \mathcal{F} be a torsion-free coherent sheaf of Y and let Q be an \mathbb{R}-divisor.
(1) If $\mathcal{F} \llbracket Q^{\prime} \rrbracket$ is weakly positive for an \mathbb{R}-divisor Q^{\prime} with $Q-Q^{\prime}$ being pseudoeffective, then $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive.
(2) Let $Q_{k}(k=1,2, \ldots)$ be a sequence of \mathbb{R}-divisors such that $c_{1}(Q)=$ $\lim _{k \rightarrow \infty} c_{1}\left(Q_{k}\right)$ in $\mathrm{N}^{1}(Y)$. If $\mathcal{F} \llbracket Q_{k} \rrbracket$ are all weakly positive, then $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive.
Proof. We consider the morphism $f: X \rightarrow Y$ and L above and apply (6) \Leftrightarrow (5) of 3.23 .
(1) $L+f^{*} Q$ is pseudo-effective. If y is a 'general' point, then $\operatorname{NBs}\left(L+f^{*} Q^{\prime}\right) \cap$ $f^{-1}(y)=\emptyset$ and $y \notin \operatorname{NBs}\left(Q-Q^{\prime}\right)$. Thus $\operatorname{NBs}\left(L+f^{*} Q\right) \cap f^{-1}(y)=\emptyset$.
(2) $L+f^{*} Q$ is pseudo-effective since it is a limit of pseudo-effective \mathbb{R}-divisors. Let A be an ample divisor of X. Then, for any positive integer m, there is a number k_{m} such that $m f^{*}\left(Q-Q_{k}\right)+A$ is ample for any $k \geq k_{m}$. For a point $x \in X$, we have
$\sigma_{x}\left(m\left(L+f^{*} Q\right)+A\right) \leq \sigma_{x}\left(m\left(L+f^{*} Q_{k}\right)\right)+\sigma_{x}\left(m f^{*}\left(Q-Q_{k}\right)+A\right)=\sigma_{x}\left(m\left(L+f^{*} Q_{k}\right)\right)$ for $k \geq k_{m}$. Hence, if $\operatorname{NBs}\left(L+f^{*} Q_{k}\right) \cap f^{-1}(y)=\emptyset$ for any k, then $\operatorname{NBs}\left(L+f^{*} Q\right) \cap$ $f^{-1}(y)=\emptyset$.
3.25. Lemma (cf. [36, Theorem 5.2], [148, Lemma 3.2]) Let \mathcal{F} and \mathcal{G} are torsion-free coherent sheaves on Y, Q an \mathbb{R}-divisor, and y a point of $Y \backslash \operatorname{Supp}\langle Q\rangle$ such that \mathcal{F} and \mathcal{G} are locally free at y.
(1) If $\mathcal{F} \llbracket Q \rrbracket$ and $\mathcal{G} \llbracket Q \rrbracket$ are weakly positive (resp. dd-ample) at y, then so is $(\mathcal{F} \oplus \mathcal{G}) \llbracket Q \rrbracket$.
(2) If $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive (resp. dd-ample) at y and if \mathcal{G} is generated by global sections at y, then $(\mathcal{F} \otimes \mathcal{G}) \llbracket Q \rrbracket$ is weakly positive (resp. dd-ample) at y.
(3) If $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive (resp. dd-ample) at y, then

$$
\widehat{\mathrm{S}}^{a}(\mathcal{F}) \llbracket a Q \rrbracket, \quad \widehat{\otimes}^{a}(\mathcal{F}) \llbracket a Q \rrbracket, \quad \text { and } \quad \widehat{\operatorname{det}}(\mathcal{F}) \llbracket(\operatorname{rank} \mathcal{F}) Q \rrbracket
$$

are weakly positive (resp. dd-ample) at y, for $a>0$.
(4) If $\mathcal{F} \llbracket Q \rrbracket$ and $\mathcal{G} \llbracket Q \rrbracket$ are weakly positive (resp. dd-ample) at y, then so is $(\mathcal{F} \otimes \mathcal{G})^{\wedge} \llbracket 2 Q \rrbracket$.
(5) If $\widehat{\mathrm{S}}^{a}(\mathcal{F}) \llbracket a Q \rrbracket$ is weakly positive (resp. dd-ample) at y for some $a>0$, then $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive (resp. dd-ample) at y.
(6) Let $\tau: Y^{\prime} \rightarrow Y$ be a morphism (resp. generically finite morphism) from a non-singular projective variety such that τ is smooth along $\tau^{-1}(y)$. Let E be a τ-exceptional effective divisor. Then $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive (resp. dd-ample) at y if and only if $\tau^{*} \mathcal{F} \otimes \mathcal{O}_{Y^{\prime}}(E) \llbracket \tau^{*} Q \rrbracket$ is so at any point of $\tau^{-1}(y)$.

Proof. (1) Suppose that $\mathcal{F} \llbracket Q \rrbracket$ and $\mathcal{G} \llbracket Q \rrbracket$ are weakly positive at y. By $\mathbf{3 . 2 3}$, there exist an ample divisor H of Y and $k_{0} \in \mathbb{N}$ such that $\widehat{\mathrm{S}}^{k}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\left\llcorner k Q_{\lrcorner}+H\right)\right.$ and $\widehat{\mathrm{S}}^{k}(\mathcal{G}) \otimes \mathcal{O}_{Y}\left(\left\llcorner k Q_{\lrcorner}+H\right)\right.$ are generated by global sections at y for any $k \geq k_{0}$. Let b be a positive integer such that $\widehat{\mathrm{S}}^{i}(\mathcal{F}) \otimes \mathcal{O}_{Y}\left(\left\llcorner Q_{\lrcorner}+b H\right)\right.$ and $\widehat{\mathrm{S}}^{j}(\mathcal{G}) \otimes \mathcal{O}_{Y}\left(\left\llcorner Q_{\lrcorner}+b H\right)\right.$ are generated by global sections at y for any $0 \leq i, j \leq k_{0}-1$. For integers $m \geq 2 k_{0}$ and $0 \leq n \leq m$, if $n<k_{0}$, then $m-n \geq k_{0}$. Hence

$$
\left(\widehat { \mathrm { S } } ^ { m - n } (\mathcal { F }) \otimes \mathcal { O } _ { Y } \left(\left\llcorner(m-n) Q_{\lrcorner}\right) \otimes \widehat{\mathrm{S}}^{n}(\mathcal{G}) \otimes \mathcal{O}_{Y}\left(\left\llcorner Q_{\lrcorner}\right)\right)^{\wedge} \otimes \mathcal{O}_{Y}((b+1) H)\right.\right.
$$

is generated by global sections at y. Since

$$
\widehat{\mathrm{S}}^{m}(\mathcal{F} \oplus \mathcal{G}) \simeq \bigoplus_{n=0}^{m}\left(\widehat{\mathrm{~S}}^{m-n}(\mathcal{F}) \otimes \widehat{\mathrm{S}}^{n}(\mathcal{G})\right)^{\wedge}
$$

$\widehat{\mathrm{S}}^{m}(\mathcal{F} \oplus \mathcal{G}) \otimes \mathcal{O}_{Y}\left({ }_{L} m Q_{\lrcorner}+(b+1) H\right)$ is generated by global sections at y. Hence $(\mathcal{F} \oplus \mathcal{G}) \llbracket Q \rrbracket$ is weakly positive at y.

The case in which $\mathcal{F} \llbracket Q \rrbracket$ and $\mathcal{G} \llbracket Q \rrbracket$ are dd-ample at y is reduced to the case above by the following property: $\mathcal{F} \llbracket Q \rrbracket$ is dd-ample at y if and only if $\mathcal{F} \llbracket Q-A \rrbracket$ is weakly positive at y for some ample \mathbb{Q}-divisor A with $y \notin \operatorname{Supp} A$.
(2) There is a homomorphism $\mathcal{O}_{Y}^{\oplus r} \rightarrow \mathcal{G}$ surjective at y. Thus $\mathcal{F}^{\oplus r} \rightarrow \mathcal{F} \otimes \mathcal{G}$ is also surjective at y. Since $\mathcal{F}^{\oplus r} \llbracket Q \rrbracket$ is weakly positive or dd-ample at y by (1), so is $\mathcal{F} \otimes \mathcal{G} \llbracket Q \rrbracket$.
(3) This is proved by the same argument as [36, Theorem 5.2] with properties obtained in (1), (2), and 3.23-(1), -(4).
(4) $\widehat{\mathrm{S}}^{2}(\mathcal{F} \oplus \mathcal{G}) \llbracket 2 Q \rrbracket$ is weakly positive (resp. dd-ample) at y and $(\mathcal{F} \otimes \mathcal{G})^{\wedge}$ is a direct summand of $\widehat{\mathrm{S}}^{2}(\mathcal{F} \oplus \mathcal{G})$. Thus (4) follows.
(5) It is derived from the homomorphism $\widehat{\mathrm{S}}^{m}\left(\widehat{\mathrm{~S}}^{a}(\mathcal{F})\right) \rightarrow \widehat{\mathrm{S}}^{m a}(\mathcal{F})$.
(6) Let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ be a birational morphism from a non-singular projective variety into the main component. Then we can define a divisor L^{\prime} on X^{\prime} for $\tau^{*} \mathcal{F}$ similarly to L for \mathcal{F}. Let $\lambda: X^{\prime} \rightarrow X$ and $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced morphisms. Then we can write $E^{\prime}-G=L^{\prime}-\lambda^{*} L$ for effective divisors E^{\prime} and G which are exceptional for $X^{\prime} \rightarrow Y$. If $L^{\prime}+f^{\prime *}\left(\tau^{*} Q+E\right)$ is pseudo-effective, then $L^{\prime}+f^{\prime *}\left(\tau^{*} Q+E\right)+G$ is pseudo-effective and
$\operatorname{NBs}\left(L^{\prime}+f^{\prime *}\left(\tau^{*} Q+E\right)\right) \cap \lambda^{-1} f^{-1}(y) \supset \operatorname{NBs}\left(L^{\prime}+f^{\prime *}\left(\tau^{*} Q+E\right)+G\right) \cap \lambda^{-1} f^{-1}(y)$.
There is an f-exceptional effective divisor $E^{\prime \prime}$ of X such that $E^{\prime}+f^{\prime *} E \leq \lambda^{*} E^{\prime \prime}$, since $X \backslash f^{-1} U$ is a divisor. Thus

$$
\begin{aligned}
\lambda^{-1} \operatorname{NBs}\left(L+f^{*} Q\right) & \subset \operatorname{NBs}\left(\lambda^{*}\left(L+f^{*} Q+E^{\prime \prime}\right)\right) \\
& \subset \operatorname{NBs}\left(\lambda^{*}\left(L+f^{*} Q\right)+E^{\prime}+f^{\prime *} E\right) \cup \lambda^{-1}\left(\operatorname{Supp} E^{\prime \prime}\right) \\
& =\operatorname{NBs}\left(L^{\prime}+f^{\prime *}\left(\tau^{*} Q+E\right)+G\right) \cup \lambda^{-1}\left(\operatorname{Supp} E^{\prime \prime}\right) .
\end{aligned}
$$

Hence if $\tau^{*}(\mathcal{F}) \otimes \mathcal{O}_{Y^{\prime}}(E) \llbracket \tau^{*} Q \rrbracket$ is weakly positive at any point of $\tau^{-1}(y)$, then $L+f^{*} Q$ is pseudo-effective and $\operatorname{NBs}\left(L+f^{*} Q\right) \cap f^{-1}(y)=\emptyset$. Thus $\mathcal{F} \llbracket Q \rrbracket$ is weakly positive at y. The inverse implication is trivial. We can reduce the case of ddample to the case of weakly positive above by replacing Q by $Q-A$ for some ample \mathbb{Q}-divisor A.

§3.d. ω-sheaves and weak positivity.

3.26. Lemma Let H be a polarized variation of Hodge structure of weight $w \geq 0$ defined on $M \backslash D$ for a non-singular projective variety M and a normal crossing divisor D. Suppose that $\mathcal{F}^{0}(\mathcal{H})=\mathcal{H}$ and $\mathcal{F}^{w+1}(\mathcal{H})=0$ for the Hodge filtration $\mathcal{F}^{\bullet}(\mathcal{H})$ of $\mathcal{H}=H \otimes \mathcal{O}_{M \backslash D}$. Then, without the assumption of monodromies, $\mathcal{F}^{w}\left({ }^{u} \mathcal{H}^{\mathrm{can}}\right)$ is weakly positive at every point of $M \backslash D$.

Proof. We may assume that D is a simple normal crossing divisor. By Kawamata's covering lemma II.5.11, we have a finite Galois morphism $\tau: Y \rightarrow M$ from a non-singular projective variety such that $\tau^{-1} D$ is also a simple normal crossing
divisor and $\tau^{-1} H$ has only unipotent local monodromies along $\tau^{-1} D$. Let \mathcal{F}_{M} be the w-th filter $\mathcal{F}^{w}\left({ }^{u} \mathcal{H}^{\text {can }}\right)$ and let \mathcal{F}_{Y} be the corresponding w-th filter to the canonical extension of $\tau^{-1} H$. Then there is a natural injection

$$
\mathcal{F}_{Y} \hookrightarrow \tau^{*} \mathcal{F}_{M}
$$

which is isomorphic outside $\tau^{-1} D$. Since \mathcal{F}_{Y} is numerically semi-positive by $\mathbf{3 . 2}$, \mathcal{F}_{M} is weakly positive at every point of $M \backslash D$.
3.27. Corollary For a torsion-free ω-sheaf \mathcal{F} on a non-singular projective variety $Y, \mathcal{F} \otimes \omega_{Y}^{-1}$ is weakly positive at every point of a dense Zariski-open subset of Y.

Proof. We may assume $\mathcal{F}=\mathrm{R}^{i} f_{*} \omega_{X}$ for a surjective morphism $f: X \rightarrow Y$ from a compact Kähler manifold and for some $i \geq 0$. Let $\mu: Y^{\prime} \rightarrow Y$ be a birational morphism from a non-singular projective variety such that $X \times_{Y} Y^{\prime} \rightarrow Y^{\prime}$ is smooth outside a normal crossing divisor E of Y^{\prime}. Then there is a bimeromorphic morphism $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ into the main component from a compact Kähler manifold such that $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is smooth outside E. Then $\mathrm{R}^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}$ is weakly positive at every point of $Y^{\prime} \backslash E$ by $3.7-(4)$ and 3.26. Since μ is birational, $\mathrm{R}^{p} \mu_{*}\left(\mathrm{R}^{i} f_{*}^{\prime} \omega_{X^{\prime}}\right)=0$ for any $p>0$, by 3.14. Thus there is a natural injection

$$
\mu_{*}\left(\mathrm{R}^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\right) \hookrightarrow \mu_{*}\left(\mathrm{R}^{i} f_{*}^{\prime} \omega_{X^{\prime} / Y}\right) \simeq \mathrm{R}^{i}\left(\mu \circ f^{\prime}\right)_{*} \omega_{X^{\prime} / Y} \simeq \mathrm{R}^{i} f_{*} \omega_{X / Y}
$$

Therefore, $\mathcal{F} \otimes \omega_{Y}^{-1}=\mathrm{R}^{i} f_{*} \omega_{X / Y}$ is weakly positive at every point of a dense Zariski-open subset.

We shall give in \S 3.e below a generalization of the following weak positivity theorem by Viehweg [147]:
3.28. Theorem Let $f: X \rightarrow Y$ be a surjective morphism of non-singular projective varieties. Then $f_{*}\left(\omega_{X / Y}^{\otimes m}\right)$ is weakly positive for any $m \geq 1$.
Here, the case $m=1$ is derived from 3.27 (cf. [50, Theorem 5]).
We recall the following lemma by Viehweg [147, 3.2] which is important for the proof of 3.28: let $f: X \rightarrow Y$ be a proper surjective morphism of non-singular varieties, $\tau: Y^{\prime} \rightarrow Y$ a finite surjective morphism from a non-singular variety, $\sigma: V \rightarrow X \times_{Y} Y^{\prime}$ the normalization map, and $\delta: X^{\prime} \rightarrow V$ a bimeromorphic morphism from a non-singular variety. Let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced morphism and let p_{1}, p_{2} be the projections from $X \times_{Y} Y^{\prime}$.

3.29. Lemma Suppose that f is smooth over an open subset $U_{0} \subset Y$ and τ is étale over an open subset $U_{1} \subset Y$. Let $U_{2} \subset Y$ be an open subset such that
(1) f is flat over U_{2},
(2) $f^{-1}(y)$ is reduced for any $y \in U_{2}$,
(3) the branch divisor of $V \rightarrow X$ is a normal crossing divisor over U_{2}.

Then, for any $m \in \mathbb{N}$, there exist injections

$$
\sigma_{*} \delta_{*}\left(\omega_{X^{\prime} / Y^{\prime}}^{\otimes m}\right) \hookrightarrow p_{1}^{*} \omega_{X / Y}^{\otimes m} \quad \text { and } \quad f_{*}^{\prime}\left(\omega_{X^{\prime} / Y^{\prime}}^{\otimes m}\right) \hookrightarrow \tau^{*}\left(f_{*}\left(\omega_{X / Y}^{\otimes m}\right)\right)
$$

which are isomorphic over $\tau^{-1}\left(U_{0} \cup U_{1} \cup U_{2}\right)$.
Proof. Since τ is flat, we have isomorphisms

$$
\omega_{X \times_{Y} Y^{\prime} / Y^{\prime}} \simeq p_{1}^{*} \omega_{X / Y} \quad \text { and } \quad \omega_{X \times_{Y} Y^{\prime} / X} \simeq p_{2}^{*} \omega_{Y^{\prime} / Y}
$$

by [37], [145]. Thus $X \times_{Y} Y^{\prime}$ is Gorenstein. Since $f^{-1} U_{2} \rightarrow U_{2}$ is smooth outside a Zariski-closed subset of $f^{-1} U_{2}$ of codimension greater than one, $X \times_{Y} Y^{\prime}$ is normal over U_{2}. Therefore, σ is isomorphic over $\tau^{-1}\left(U_{0} \cup U_{1} \cup U_{2}\right)$. There is a trace map $\sigma_{*} \omega_{V} \rightarrow \omega_{X \times_{Y} Y^{\prime}}$, where $\omega_{V}=\mathcal{O}_{V}\left(K_{V}\right)$. Since σ is finite and bimeromorphic, $\sigma^{*} \sigma_{*} \omega_{V} \rightarrow \omega_{V}$ is surjective and its kernel is a torsion sheaf. Hence the trace map induces an injection

$$
\omega_{V / Y^{\prime}}=\omega_{V} \otimes \sigma^{*} p_{2}^{*} \omega_{Y^{\prime}}^{-1} \hookrightarrow \sigma^{*} \omega_{X \times_{Y} Y^{\prime} / Y^{\prime}} \simeq \sigma^{*} p_{1}^{*} \omega_{X / Y}
$$

For $m \in \mathbb{N}$, let $\omega_{V / Y^{\prime}}^{[m]}$ denote the double-dual of $\omega_{V / Y^{\prime}}^{\otimes m}$. Then we have

$$
\omega_{V / Y^{\prime}}^{[m]} \hookrightarrow \omega_{V / Y^{\prime}} \otimes \sigma^{*} p_{1}^{*} \omega_{X / Y}^{\otimes(m-1)}
$$

and the composite

$$
\sigma_{*} \omega_{V / Y^{\prime}}^{[m]} \hookrightarrow \sigma_{*} \omega_{V / Y^{\prime}} \otimes p_{1}^{*} \omega_{X / Y}^{\otimes(m-1)} \hookrightarrow p_{1}^{*} \omega_{X / Y}^{\otimes m} .
$$

There is a natural injection

$$
\delta_{*}\left(\omega_{X^{\prime} / Y^{\prime}}^{\otimes m}\right) \hookrightarrow \omega_{V / Y^{\prime}}^{[m]}
$$

given by the double-dual. This is also isomorphic over $\tau^{-1}\left(U_{0} \cup U_{1} \cup U_{2}\right)$, since V has only rational singularities over $\tau^{-1} U_{2}$. Thus we have the first injection. The second injection is derived from the flat base change

$$
p_{2 *}\left(p_{1}^{*} \omega_{X / Y}^{\otimes m}\right) \simeq \tau^{*}\left(f_{*}\left(\omega_{X / Y}^{\otimes m}\right)\right)
$$

3.30. Lemma Under the same situation as $\mathbf{3 . 2 9}$, there is an injection

$$
\mathrm{R}^{p} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}} \hookrightarrow \tau^{*}\left(\mathrm{R}^{p} f_{*} \omega_{X / Y}\right)
$$

for any p, which is an isomorphism over $\tau^{-1}\left(U_{0} \cup U_{1} \cup U_{2}\right)$.
Proof. The composite of trace maps

$$
\sigma_{*} \delta_{*} \omega_{X^{\prime} / Y^{\prime}} \rightarrow \sigma_{*} \omega_{V / Y^{\prime}} \rightarrow \omega_{X \times_{Y} Y^{\prime} / Y^{\prime}} \simeq p_{1}^{*} \omega_{X / Y}
$$

is an isomorphism over $\tau^{-1}\left(U_{0} \cup U_{1} \cup U_{2}\right)$. The vanishing $R^{q}(\sigma \circ \delta)_{*} \omega_{X^{\prime} / Y^{\prime}}=0$ for $q>0$ by [30] (cf. 3.14, II, 5.12) induces the expected injection

$$
\mathrm{R}^{p} f_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}} \simeq \mathrm{R}^{p} p_{2 *}\left(\sigma_{*} \delta_{*} \omega_{X^{\prime} / Y^{\prime}}\right) \hookrightarrow \mathrm{R}^{p} p_{2_{*}} p_{1}^{*} \omega_{X / Y} \simeq \tau^{*} \mathrm{R}^{p} f_{*} \omega_{X / Y}
$$

3.31. Proposition (cf. 3.27) Let \mathcal{F} be an ω-big $\hat{\omega}$-sheaf on a non-singular projective variety Y. Then $\mathcal{F} \otimes \omega_{Y}^{-1}$ is big.

Proof. Let $f: X \rightarrow Z$ and $g: Z \rightarrow Y$ be surjective morphisms of non-singular varieties in which X is compact Kähler and Z is projective. Let A be an ample divisor of Z and set $h=g \circ f$. It is enough to show that $\mathrm{R}^{p} h_{*} \omega_{X / Y}\left(f^{*} A\right)$ is big for any $p \geq 0$. Let H be an ample divisor of Y and let us take $m \in \mathbb{N}$ with $m A-g^{*} H$ being ample. Then there exist a finite surjective morphism $\tau: Y^{\prime} \rightarrow Y$ a non-singular projective variety and an ample divisor H^{\prime} of Y^{\prime} with $\tau^{*} H \sim m H^{\prime}$ by II.5.11. Let X^{\prime} and Z^{\prime} be desingularizations of the main components of the fiber products $X \times_{Y} Y^{\prime}$ and $Z \times_{Y} Y^{\prime}$, respectively. Let $h^{\prime}: X^{\prime} \rightarrow Y^{\prime}, f^{\prime}: X^{\prime} \rightarrow Z^{\prime}$, $g^{\prime}: Z^{\prime} \rightarrow Y^{\prime}$, and $\tau_{Z}: Z^{\prime} \rightarrow Z$ be the induced morphisms. By 3.30, we have a generically isomorphic injection

$$
\mathrm{R}^{p} h_{*}^{\prime}\left(\omega_{X^{\prime} / Y^{\prime}}\left(f^{\prime *} \tau_{Z}^{*} A\right)\right) \hookrightarrow \tau^{*}\left(\mathrm{R}^{p} h_{*} \omega_{X / Y}\left(f^{*} A\right)\right)
$$

In particular, the tensor product $\tau^{*}\left(\mathrm{R}^{p} h_{*} \omega_{X / Y}\left(f^{*} A\right)\right) \otimes \mathcal{O}_{Y^{\prime}}\left(-H^{\prime}\right)$ contains a sheaf $\mathrm{R}^{p} h_{*}^{\prime} \omega_{X^{\prime} / Y^{\prime}}\left(f^{\prime *}\left(\tau_{Z}^{*} A-g^{\prime *} H^{\prime}\right)\right)$, which is weakly positive by 3.27. Hence $\mathrm{R}^{p} h_{*} \omega_{X / Y}\left(f^{*} A\right)$ is big.
3.32. Theorem Let Y be a normal projective variety and let \mathcal{L} be an invertible ω-sheaf. Then there exist a birational morphism $\varphi: M \rightarrow Y$ from a non-singular projective variety M and a nef \mathbb{Q}-divisor D of M such that $\operatorname{Supp}\langle D\rangle$ is a normal crossing divisor and

$$
\mathcal{L} \simeq \varphi_{*} \omega_{M}(\ulcorner D\urcorner) .
$$

Proof. Let $\mu: Z \rightarrow Y$ be a birational morphism from a non-singular projective variety, $f: X \rightarrow Z$ a surjective morphism from a compact Kähler manifold, and L a Cartier divisor of Y such that
(1) $\mathcal{L} \simeq \mathcal{O}_{Y}(L)$ is a direct summand of $\mu_{*}\left(\mathrm{R}^{j} f_{*} \omega_{X}\right)$ for some j,
(2) f is smooth outside a simple normal crossing divisor $E=\sum E_{i}$, and
(3) the μ-exceptional locus is contained in E.

The sheaf $\mathrm{R}^{j} f_{*} \omega_{X / Z}$ is isomorphic to the upper-canonical extension of the d-the Hodge filtration of the variation of Hodge structures associated with $\mathrm{R}^{d+j} f_{*} \mathbb{C}_{X}$, where $d=\operatorname{dim} X-\operatorname{dim} Y$. Let $\tau: Z^{\prime} \rightarrow Z$ be a finite Galois morphism from a non-singular projective variety Z^{\prime} that is a unipotent reduction for the variation of Hodge structure; here, the local monodromies of the pullback are unipotent. We may assume that the branch locus of τ is contained in a normal crossing divisor as in II.5.11. Then we have the canonical extension \mathcal{E} of the d-th filtration of the induced variation of Hodge structure. This is numerically semi-positive by $\mathbf{3 . 2}$. For the Galois group G of τ, the G-invariant part of $\tau_{*} \mathcal{E}$ is the lower-canonical extension and that of $\tau_{*}\left(\mathcal{E} \otimes \omega_{Z^{\prime}}\right)$ is isomorphic to $\mathrm{R}^{j} f_{*} \omega_{X}$. Now we have an injection $\mathcal{O}_{Z}\left(\mu^{*} L\right) \hookrightarrow \mathrm{R}^{j} f_{*} \omega_{X}$ and a generic surjection $\mathrm{R}^{j} f_{*} \omega_{X} \rightarrow \mathcal{O}_{Z}\left(\mu^{*} L+E_{1}\right)$ for a μ-exceptional effective divisor E_{1}, which is surjective outside a Zariski-closed subset of codimension greater than one. Since $\mathrm{R}^{j} f_{*} \omega_{X}$ is the G-invariant part of
$\tau_{*}\left(\mathcal{E} \otimes \omega_{Z^{\prime}}\right)$, we have an injection $\mathcal{O}_{Z^{\prime}}\left(\tau^{*} \mu^{*} L\right) \hookrightarrow \mathcal{E} \otimes \omega_{Z^{\prime}}$. Similarly, we have an effective divisor $\Delta^{\prime} \subset Z^{\prime}$ such that there is a generic surjection

$$
\mathcal{E} \otimes \omega_{Z^{\prime}} \rightarrow \mathcal{O}_{Z^{\prime}}\left(\tau^{*} \mu^{*} L+\tau^{*} E_{1}+\Delta^{\prime}\right)
$$

whose cokernel is supported on a Zariski-closed subset of codimension greater than one. Then $\Delta^{\prime} \leq R_{\tau}$ for the ramification divisor $R_{\tau}=K_{Z^{\prime}}-\tau^{*} K_{Z}$, since there is an injection $\mathcal{E} \hookrightarrow \tau^{*}\left(\mathrm{R}^{j} f_{*} \omega_{X / Z}\right)$ by $\mathbf{3 . 3 0}$. There exist effective \mathbb{Q}-divisors Δ and R_{Z} of Z such that $\Delta^{\prime}=\tau^{*} \Delta$ and $R_{\tau}=\tau^{*} R_{Z}$, since Δ^{\prime} and R_{τ} are G-invariant. Note that $L_{Z\lrcorner}=0$. Let $\nu: Z^{\prime \prime} \rightarrow Z^{\prime}$ be a birational morphism from a non-singular projective variety such that there exist a ν-exceptional effective divisor E_{2}^{\prime} and a surjection

$$
\nu^{*}\left(\mathcal{E} \otimes \omega_{Z^{\prime}}\right) \rightarrow \mathcal{O}_{Z^{\prime \prime}}\left(\nu^{*} \tau^{*}\left(\mu^{*} L+E_{1}+\Delta\right)-E_{2}^{\prime}\right)
$$

Since \mathcal{E} is numerically semi-positive, the divisor

$$
\nu^{*} \tau^{*}\left(\mu^{*} L+E_{1}+\Delta\right)-\nu^{*} K_{Z^{\prime}}-E_{2}^{\prime}=\nu^{*} \tau^{*}\left(\mu^{*} L+E_{1}-\left(R_{Z}-\Delta\right)-K_{Z}\right)-E_{2}^{\prime}
$$

is nef. Furthermore, $\nu^{*} \tau^{*}\left(E_{1}+\Delta\right)-E_{2}^{\prime}$ is an effective Cartier divisor. We may assume that the Galois group G acts holomorphically on $Z^{\prime \prime}$. Since E_{2}^{\prime} is also G invariant, there is an effective \mathbb{Q}-Cartier divisor E_{2} on the quotient variety $Z^{\prime \prime} / G$ such that $E_{2}^{\prime}=\lambda^{*} E_{2}$, where $\lambda: Z^{\prime \prime} \rightarrow Z^{\prime \prime} / G$ is the quotient morphism. Let $\rho: Z^{\prime \prime} / G \rightarrow Z$ be the induced morphism. Then $\rho^{*}\left(\mu^{*} L+E_{1}+\Delta-K_{Z}-R_{Z}\right)-E_{2}$ is nef and $\rho^{*}\left(E_{1}+\Delta\right)-E_{2}$ is an effective \mathbb{Q}-divisor. Let $\delta: M \rightarrow Z^{\prime \prime} / G$ be a birational morphism from a non-singular projective variety such that the union of the exceptional locus for $\varphi:=\mu \circ \rho \circ \delta: M \rightarrow Y$ and the proper transform of $E \subset Z$ is a normal crossing divisor. Let R_{M} be the \mathbb{Q}-divisor $K_{M}-\delta^{*} \rho^{*}\left(K_{Z}+R_{Z}\right)$. Then $\left\ulcorner R_{M}\right\urcorner \geq 0$. We know the \mathbb{Q}-divisor

$$
D:=\varphi^{*} L+\delta^{*} \rho^{*}\left(E_{1}+\Delta\right)-\delta^{*} E_{2}-K_{M}+R_{M}
$$

is nef. We shall consider the \mathbb{Q}-divisor

$$
E_{M}:=\delta^{*} \rho^{*}\left(E_{1}+\Delta\right)-\delta^{*} E_{2}+R_{M}
$$

Let Γ be a prime component of of E_{M}. Since $\rho^{*}\left(E_{1}+\Delta\right)-E_{2}$ is effective, $c:=$ mult ${ }_{\Gamma} E_{M} \geq$ mult $_{\Gamma} R_{M}>-1$. On the other hand, if Γ is not φ-exceptional, then $c=c_{1}-c_{2}$, where $c_{1}:=\operatorname{mult}_{\Gamma} \delta^{*} \rho^{*} \Delta$ and $c_{2}:=\operatorname{mult}_{\Gamma} \delta^{*} \rho^{*} R_{Z}$. Since $\Delta \leq R_{Z}$, $c \leq 0$. Hence $\left\ulcorner E_{M}\right\urcorner$ is a φ-exceptional effective divisor on M. Therefore

$$
\varphi_{*} \mathcal{O}_{M}\left(K_{M}+\ulcorner D\urcorner\right)=\varphi_{*} \mathcal{O}_{M}\left(\varphi^{*} L+\left\ulcorner E_{M}\right\urcorner\right) \simeq \mathcal{O}_{Z}(L) .
$$

§3.e. Direct images of relative pluricanonical sheaves. Let $f: X \rightarrow Y$ be a proper surjective morphism from a normal variety onto a non-singular variety. We denote the relative canonical divisor $K_{X}-f^{*} K_{Y}$ by $K_{X / Y}$. Then $\mathcal{O}_{X}\left(K_{X / Y}\right) \simeq$ $\omega_{X / Y}$. For a Cartier divisor D of X, we denote $\omega_{X / Y}(D)=\omega_{X / Y} \otimes \mathcal{O}_{X}(D)$ and $\omega_{X}(D)=\omega_{X} \otimes \mathcal{O}_{X}(D)$, for short.
3.33. Lemma Let Δ be an effective \mathbb{R}-divisor of X, L a Cartier divisor of X, and k a positive integer. Suppose that $K_{X}+\Delta$ is \mathbb{R}-Cartier.
(1) Let $\rho: \widetilde{X} \rightarrow X$ be a bimeromorphic morphism from a non-singular variety. For the \mathbb{R}-divisor $R:=K_{\widetilde{X}}-\rho^{*}\left(K_{X}+\Delta\right)$, let $\left\ulcorner R=\widetilde{R}_{+}-\widetilde{R}_{-}\right.$ be the decomposition into the positive and the negative parts of the prime decomposition and set

$$
\widetilde{\Delta}:=\langle-R\rangle+\widetilde{R}_{-} \quad \text { and } \quad \widetilde{L}:=\rho^{*} L+k \widetilde{R}_{+} .
$$

Then

$$
\widetilde{L}-k\left(K_{\widetilde{X} / Y}+\widetilde{\Delta}\right)=\rho^{*}\left(L-k\left(K_{X / Y}+\Delta\right)\right)
$$

and there is an isomorphism

$$
\rho_{*} \mathcal{O}_{\widetilde{X}}(\widetilde{L}) \simeq \mathcal{O}_{X}(L)
$$

(2) Suppose that X is non-singular and $\operatorname{Supp} \Delta$ is a normal crossing divisor. Let $\tau: Y^{\prime} \rightarrow Y$ be a generically finite surjective morphism from a nonsingular variety and let $\delta: X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ be a bimeromorphic morphism from a non-singular space. Let $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and $\lambda: X^{\prime} \rightarrow X$ be the induced morphisms. For the \mathbb{R}-divisor $R_{\Delta}:=K_{X^{\prime}}-\lambda^{*}\left(K_{X}+\Delta\right)$, let $\left.{ }^{\ulcorner } R_{\Delta}\right\urcorner=R_{+}^{\prime}-R_{-}^{\prime}$ be the decomposition into the positive and the negative parts of the prime decomposition, and set $R_{\tau}:=K_{Y^{\prime}}-\tau^{*} K_{Y}$,

$$
\Delta^{\prime}:=\left\langle-R_{\Delta}\right\rangle+R_{-}^{\prime}, \quad \text { and } \quad L^{\prime}:=\lambda^{*} L+k R_{+}^{\prime}-k f^{\prime *} R_{\tau}
$$

Then

$$
L^{\prime}-k\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)=\lambda^{*}\left(L-k\left(K_{X / Y}+\Delta\right)\right) .
$$

(3) Under the situation of (2), suppose that τ is finite. Then there is a generically isomorphic injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \hookrightarrow \tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)
$$

(4) Under the situation of (2), suppose that τ is bimeromorphic and the morphism from the main component of $X \times_{Y} Y^{\prime}$ to Y^{\prime} is flat. Then

$$
\tau_{*}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)\right)^{\wedge} \subset f_{*} \mathcal{O}_{X}(L)
$$

(5) Under the situation of (2), there exist a τ-exceptional effective divisor E and a generically isomorphic injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \hookrightarrow\left(\tau^{*} f_{*} \mathcal{O}_{X}(L)\right)^{\wedge} \otimes \mathcal{O}_{Y^{\prime}}(E)
$$

Proof. (1) The equality is straightforward and the isomorphism follows from that \widetilde{R}_{+}is ρ-exceptional.
(2) The equality is also straightforward.
(3) For the ramification divisor $R_{\lambda}:=K_{X^{\prime}}-\lambda^{*} K_{X}$, we have $R_{\Delta}=R_{\lambda}-\lambda^{*} \Delta$. Hence $\left\ulcorner R_{\Delta}\right\urcorner \leq R_{\lambda}$ and $R_{+}^{\prime} \leq R_{\lambda}$. We have an injection

$$
\delta_{*}\left(\omega_{X^{\prime} / Y^{\prime}}^{\otimes m}\right) \hookrightarrow p_{1}^{*} \omega_{X / Y}^{\otimes m}
$$

for any $m \in \mathbb{N}$ by 3.29, where p_{1} is the first projection $X \times_{Y} Y^{\prime} \rightarrow X$. The injection is isomorphic over a dense Zariski-open subset of Y^{\prime}. Hence we also have an injection

$$
\delta_{*} \mathcal{O}_{X^{\prime}}\left(k\left(R_{+}^{\prime}-f^{\prime *} R_{\tau}\right)\right) \hookrightarrow \delta_{*} \mathcal{O}_{X^{\prime}}\left(k\left(R_{\lambda}-f^{\prime *} R_{\tau}\right)\right) \hookrightarrow \mathcal{O}_{X \times_{Y} Y^{\prime}}
$$

which is an isomorphism over a dense open subset of Y^{\prime}, equivalently, the injection $\delta_{*} \mathcal{O}_{X^{\prime}}\left(k R_{+}^{\prime}\right) \hookrightarrow \delta_{*} \mathcal{O}_{X^{\prime}}\left(k R_{\lambda}\right)$ is so. In fact, it follows from that $\mathcal{O}_{X \times{ }_{Y} Y^{\prime}} \rightarrow$ $\delta_{*} \mathcal{O}_{X^{\prime}}\left(k R_{\lambda}\right)$ is an isomorphism over a dense open subset of Y^{\prime} along which τ is étale. Thus we have the expected generically isomorphic injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \hookrightarrow p_{2 *}\left(p_{1}^{*} \mathcal{O}_{X}(L)\right) \simeq \tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)
$$

by a flat base change.
(4) $\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)\right)^{\wedge} \simeq f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}+E\right)$ for an f^{\prime}-exceptional divisor E. On the other hand, $\lambda_{*} \mathcal{O}_{X^{\prime}}\left(L^{\prime}+E\right) \subset \mathcal{O}_{X}(L)$, since E is also λ-exceptional.
(5) Let $Y^{\prime} \rightarrow V \rightarrow Y$ be the Stein factorization of τ, where we write $\mu: Y^{\prime} \rightarrow V$ and $\phi: V \rightarrow Y$. Then there is a Zariski-open subset $U \subset Y$ such that $\operatorname{codim}(Y \backslash$ $U) \geq 2$ and $\phi^{-1} U$ is non-singular. Hence we have a generically isomorphic injection

$$
\mu_{*} f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \hookrightarrow \phi^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)^{\wedge}
$$

by (3) and by taking j_{*} for the open immersion $j: \phi^{-1} U \hookrightarrow V$. Let \mathcal{G} be the cokernel of

$$
\mu^{*} \mu_{*} f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \rightarrow f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \oplus \mu^{*}\left(\phi^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)^{\wedge}\right)
$$

Then $f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \subset \mathcal{G} /($ tor $)$ and

$$
\mathcal{G} /(\text { tor }) \subset\left(\tau^{*} f_{*} \mathcal{O}_{X}(L)\right)^{\wedge} \otimes \mathcal{O}_{Y^{\prime}}(E)
$$

for a μ-exceptional effective divisor E. Thus we are done.
3.34. Lemma (cf. $[147,5.2]$) Suppose that X and Y are projective varieties. Let L be a Cartier divisor of X, Δ an effective \mathbb{R}-divisor of X, and let k be an integer greater than one satisfying the following conditions:
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier;
(2) (X, Δ) is log-terminal over a non-empty open subset of Y;
(3) $L-k\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant.

Let H be an ample divisor of Y and let l be a positive integer such that

$$
\mathcal{O}_{Y}(l H) \otimes f_{*} \mathcal{O}_{X}(L)
$$

is big in the sense of $\mathbf{3 . 2 0}$. Then

$$
\omega_{Y}\left(\left(l-l / k_{\lrcorner}\right) H\right) \otimes f_{*} \mathcal{O}_{X}(L)
$$

is an ω-big $\hat{\omega}$-sheaf. In particular,

$$
\omega_{Y}((k-1) H) \otimes f_{*} \mathcal{O}_{X}(L)
$$

is an ω-big $\hat{\omega}$-sheaf for any ample divisor H of Y.

Proof. By 3.33-(1), we may assume that X is non-singular and Supp Δ is normal crossing. We can replace X by a further blowing-up. There is an f-exceptional effective divisor E such that $f_{*} \mathcal{O}_{X}(m L+m E)$ is the double-dual of $f_{*} \mathcal{O}_{X}(m L)$ for any $m \in \mathbb{N}$, by III.5.10-(3). Replacing X by a blowing-up, we may assume that the image of

$$
f^{*} f_{*} \mathcal{O}_{X}(L+E) \rightarrow \mathcal{O}_{X}(L+E)
$$

is an invertible sheaf which is written as $\mathcal{O}_{X}(L+E-B)$ for an effective divisor B of X. There is a positive integer a such that the sheaf

$$
\mathcal{O}_{Y}((a l-1) H) \otimes \widehat{\mathrm{S}}^{a}\left(f_{*} \mathcal{O}_{X}(L)\right)
$$

is generically generated by global sections. Note that the inequality

$$
\frac{(a l-1)(k-1)}{a k}<\frac{\ulcorner l(k-1)\urcorner}{k}=l-\iota / k_{\lrcorner}
$$

holds. The natural homomorphism

$$
\operatorname{Sym}^{a}\left(f_{*} \mathcal{O}_{X}(L+E)\right) \rightarrow f_{*} \mathcal{O}_{X}(a(L+E))
$$

factors through $\widehat{\mathrm{S}}^{a}\left(f_{*} \mathcal{O}_{X}(L)\right)$ and the image of the composite

$$
f^{*} \operatorname{Sym}^{a}\left(f_{*} \mathcal{O}_{X}(L+E)\right) \rightarrow f^{*} f_{*} \mathcal{O}_{X}(a(L+E)) \rightarrow \mathcal{O}_{X}(a(L+E))
$$

is $\mathcal{O}_{X}(a(L+E-B))$. Therefore, if we replace X by a further blowing-up, then there exist an f-exceptional effective divisor E^{\prime} and an f-vertical effective divisor C of X such that $\mathcal{O}_{X}\left(a(L+E-B)+E^{\prime}\right)$ is the image of

$$
f^{*} \widehat{\mathrm{~S}}^{a}\left(f_{*} \mathcal{O}_{X}(L)\right) \rightarrow \mathcal{O}_{X}(a(L+E))
$$

and $\mathcal{O}_{X}\left(P^{\prime}\right)$ is the image of

$$
\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}((a l-1) H) \otimes \widehat{\mathrm{S}}^{a}\left(f_{*} \mathcal{O}_{X}(L)\right)\right) \otimes \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}\left(a(L+E)+(a l-1) f^{*} H\right)
$$

for the divisor

$$
P^{\prime}:=a(L+E-B)+E^{\prime}-C+(a l-1) f^{*} H
$$

Here, $\operatorname{Bs}\left|P^{\prime}\right|=\emptyset$. We may assume that $\operatorname{Supp}\left(E+B+E^{\prime}+C+\Delta\right)$ is a normal crossing divisor. For any $\varepsilon>0, L-k\left(K_{X / Y}+\Delta\right)+\varepsilon f^{*} H$ is nef and abundant by 2.28. Let us consider an \mathbb{R}-divisor

$$
P:=L-\left(K_{X / Y}+\Delta\right)+\frac{k-1}{k}(E-B)+\frac{k-1}{a k}\left(E^{\prime}-C\right)+\left(l-\left\llcorner/ k_{\lrcorner}\right) f^{*} H .\right.
$$

Then

$$
P-\frac{k-1}{a k} P^{\prime}-\frac{1}{k}\left(L-k\left(K_{X / Y}+\Delta\right)+\varepsilon f^{*} H\right)=\alpha f^{*} H
$$

for some $\varepsilon, \alpha>0$. Thus P is nef and abundant, and $P \succeq f^{*} H$. Hence $f_{*} \mathcal{O}_{X}\left(K_{X}+\right.$ $\ulcorner P\urcorner)$ is an ω-big ω-sheaf and there is a generically isomorphic injection

$$
\begin{aligned}
f_{*} \mathcal{O}_{X}\left(K_{X}+\left\ulcorner P^{\urcorner}\right)\right. & \hookrightarrow \omega_{Y}\left(\left(l-\left\llcorner/ k_{\lrcorner}\right) H\right) \otimes f_{*} \mathcal{O}_{X}\left(L-\frac{k-1}{\llcorner } B+\Delta_{\lrcorner}\right)^{\wedge}\right. \\
& \hookrightarrow \omega_{Y}\left(\left(l-\left\llcorner/ k_{\lrcorner}\right) H\right) \otimes f_{*} \mathcal{O}_{X}(L-B)^{\wedge}\right. \\
& =\omega_{Y}\left(\left(l-\left\llcorner/ k_{\lrcorner}\right) H\right) \otimes f_{*} \mathcal{O}_{X}(L)^{\wedge} .\right.
\end{aligned}
$$

Thus the first assertion is proved. Let l_{0} be the minimum of $l \in \mathbb{N}$ such that $\omega_{Y}\left(l_{0} H\right) \otimes f_{*} \mathcal{O}_{X}(L)$ is an ω-big $\hat{\omega}$-sheaf. Then $\mathcal{O}_{Y}\left(l_{0} H\right) \otimes f_{*} \mathcal{O}_{X}(L)$ is big by 3.31. Thus $l_{0}-{ }_{\llcorner } l_{0} / k_{\lrcorner} \geq l_{0}$, equivalently, $l_{0} \leq k-1$. Thus we are done.
3.35. Theorem Let $f: X \rightarrow Y$ be a surjective morphism from a normal projective variety onto a non-singular projective variety. Let Δ be an effective \mathbb{R}-divisor of X, L a Cartier divisor of X, Q an \mathbb{R}-divisor of Y, and k a positive integer satisfying the following conditions:
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier;
(2) (X, Δ) is log-terminal over a non-empty open subset of Y;
(3) $L+f^{*} Q-k\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant.

Then $f_{*} \mathcal{O}_{X}(L) \llbracket Q \rrbracket$ is weakly positive. Suppose the following condition is also satisfied:
(4) $L+f^{*} Q-k\left(K_{X / Y}+\Delta\right) \succcurlyeq f^{*} H$ for an ample divisor H of Y.

Then

$$
\omega_{Y}(\ulcorner Q\urcorner) \otimes f_{*} \mathcal{O}_{X}(L)
$$

is an ω-big $\hat{\omega}$-sheaf.
Proof. Step 1. A reduction step. We can replace X by a blowing-up by 3.33-(1). Thus we may assume that X is non-singular and $\operatorname{Supp} f^{*} Q \cup \operatorname{Supp} \Delta$ is normal crossing. Furthermore, we may assume that $\operatorname{Supp} Q$ is normal crossing, which is related to the proof of the second assertion. In fact, for a suitable birational morphism $\tau: Y^{\prime} \rightarrow Y$ from a non-singular projective variety, we may assume that $X \rightarrow Y$ factors through Y^{\prime}, and $\tau^{-1}(\operatorname{Supp} Q)$ is normal crossing. Then

$$
L+f^{*} Q-k\left(K_{X / Y^{\prime}}+\Delta\right)-k R_{\tau} \succcurlyeq f^{*} H
$$

for the effective divisor $R_{\tau}=K_{Y^{\prime}}-\tau^{*} K_{Y}$. Thus $X \rightarrow Y^{\prime}$ and $\tau^{*} Q$ satisfy the conditions above. For the morphism $f^{\prime}: X \rightarrow Y^{\prime}$, we have a generically isomorphic injection

$$
\tau_{*}\left(\omega_{Y^{\prime}}\left(\left\ulcorner\tau^{*} Q\right\urcorner\right) \otimes f_{*}^{\prime} \mathcal{O}_{X}(L)\right) \subset\left(\omega_{Y}(\ulcorner Q\urcorner) \otimes f_{*} \omega_{X}(L)\right)^{\wedge} .
$$

Thus we may assume that $\operatorname{Supp} Q$ is normal crossing.
Step 2. The first assertion in the case $Q=0$. We fix an ample divisor H of Y. Let $\tau: Y^{\prime} \rightarrow Y$ be a finite Galois surjective morphism from a non-singular projective variety such that $\tau^{*} H=m H^{\prime}$ for a divisor H^{\prime} of Y^{\prime} for $m \gg 0$. Let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}, \lambda: X^{\prime} \rightarrow X, f^{\prime}: X^{\prime} \rightarrow Y^{\prime}, R_{\Delta}, R_{\tau}, \Delta^{\prime}$, and L^{\prime} be the same objects
as in 3.33-(2). Here we assume that $\operatorname{Supp} \Delta^{\prime}$ is a normal crossing divisor. Then ($X^{\prime}, \Delta^{\prime}$) is log-terminal over a non-empty open subset of Y^{\prime},

$$
L^{\prime}-k\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)=\lambda^{*}\left(L-k\left(K_{X / Y}+\Delta\right)\right)
$$

is a nef and f^{\prime}-abundant \mathbb{R}-divisor, and there is a generically isomorphic injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \hookrightarrow \tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right) .
$$

If $k=1$, then $\omega_{Y^{\prime}}\left(H^{\prime}\right) \otimes f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}-\Delta^{\prime} \Delta^{\prime}\right)$ is an ω-big ω-sheaf by 3.12 and 2.28. Since $f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}-\Delta^{\prime}{ }_{\lrcorner}\right) \hookrightarrow f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)$ is generically isomorphic, $\omega_{Y^{\prime}}\left(H^{\prime}\right) \otimes$ $\tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)$ is an ω-big $\hat{\omega}$-sheaf. If $k \geq 2$, then $\omega_{Y^{\prime}}\left((k-1) H^{\prime}\right) \otimes \tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)$ is an ω-big $\hat{\omega}$-sheaf by 3.34. Hence, by 3.27, $\tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right) \otimes \mathcal{O}_{Y^{\prime}}\left(k H^{\prime}\right)$ is a big weakly positive sheaf in the both cases above. Thus $f_{*} \mathcal{O}_{Y}(L) \llbracket(k / m) H \rrbracket$ is big for $m \gg 0$ and hence $f_{*} \mathcal{O}_{Y}(L)$ is weakly positive.

Step 3 The second assertion in the case $Q=0$. Assume that $L-k\left(K_{X / Y}+\right.$ $\Delta) \succcurlyeq f^{*} H$. Then we may assume that there are surjective morphisms $p: X \rightarrow Z$ and $q: Z \rightarrow Y$ with $f=q \circ p$ for a non-singular projective variety Z, and a nef and $\operatorname{big} \mathbb{R}$-divisor A^{\prime} of Z such that

$$
(1 / k) L-\left(K_{X / Y}+\Delta\right) \sim_{\mathbb{Q}} p^{*} A^{\prime}
$$

by $\mathbf{2 . 3}, \mathbf{2 . 1 5}$, and 2.28. There is an effective \mathbb{R}-divisor G of Z such that $A^{\prime}-G$ is an ample \mathbb{Q}-divisor and $\left(X, \Delta+p^{*} G\right)$ is log-terminal over a non-empty open subset of Y. Therefore, we may assume that Δ is a \mathbb{Q}-divisor and

$$
(1 / k) L-\left(K_{X / Y}+\Delta\right) \sim_{\mathbb{Q}} p^{*} A
$$

for an ample \mathbb{Q}-divisor A. We can find a rational number $\alpha>0$ such that $L-$ $k\left(K_{X / Y}+\Delta\right)-\alpha f^{*} H$ is semi-ample. Let $\tau: Y^{\prime} \rightarrow Y$ be the finite Galois surjective morphism in Step 2 for $m>(k-1) / \alpha$ and let H^{\prime} be the same ample divisor. Then the \mathbb{Q}-divisor

$$
L^{\prime}-k\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)-(k-1) f^{\prime *} H^{\prime}=\lambda^{*}\left(L-k\left(K_{X / Y}+\Delta\right)-\frac{k-1}{m} f^{*} H\right)
$$

is semi-ample. Thus $\omega_{Y^{\prime}} \otimes f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)$ is an ω-big $\hat{\omega}$-sheaf by 3.34. By the proof of 3.34, we have an ω-big ω-sheaf \mathcal{F}^{\prime} with a $\operatorname{Gal}(\tau)$-linearization and a generically isomorphic injection

$$
\mathcal{F}^{\prime} \hookrightarrow \omega_{Y^{\prime}} \otimes\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)\right)^{\wedge}
$$

which is compatible with $\operatorname{Gal}(\tau)$-linearizations. Hence there is a generically isomorphic injection

$$
\mathcal{F} \hookrightarrow \omega_{Y} \otimes\left(f_{*} \mathcal{O}_{X}(L)\right)^{\wedge}
$$

from a direct summand \mathcal{F} of $\tau_{*} \mathcal{F}^{\prime}$. Hence $\omega_{Y} \otimes f_{*} \mathcal{O}_{X}(L)$ is an ω-big $\hat{\omega}$-sheaf.
Step 4 The case $Q \neq 0$. By Step 1, we assume $\operatorname{Supp} Q$ and Supp $\Delta \cup \operatorname{Supp} f^{*} Q$ are normal crossing divisors. We set $\Delta_{Q}:=\Delta+\left\langle-(1 / k) f^{*} Q\right\rangle$. Then $\Delta_{Q\lrcorner}$ is f vertical and

$$
L+k\left(\left\ulcorner\frac{1}{k} f^{*} Q\right\urcorner\right)-k\left(K_{X / Y}+\Delta_{Q}\right)=L+f^{*} Q-\left(K_{X / Y}+\Delta\right)
$$

is nef and f-abundant. Thus

$$
f_{*} \mathcal{O}_{X}\left(L+k\left(\left\ulcorner\frac{1}{k} f^{*} Q^{\urcorner}\right)\right)\right.
$$

is weakly positive by Step 2. If the condition (4) is satisfied, then

$$
\omega_{Y} \otimes f_{*} \mathcal{O}_{Y}\left(L+k\left(\left\ulcorner\frac{1}{k} f^{*} Q^{\urcorner}\right)\right)\right.
$$

is an ω-big $\hat{\omega}$-sheaf by Step 3. Since $\left\ulcorner(1 / k) f^{*} Q^{\urcorner} \leq f^{*}\left(\left\ulcorner(1 / k) Q^{\urcorner}\right)\right.\right.$,

$$
\mathcal{F}_{1}:=f_{*} \mathcal{O}_{X}(L) \otimes \mathcal{O}_{Y}\left(k\left(\left\ulcorner\frac{1}{k} Q^{\urcorner}\right)\right)\right.
$$

is weakly positive. If the condition (4) is satisfied, then $\omega_{Y} \otimes \mathcal{F}_{1}$ is an ω-big $\hat{\omega}$-sheaf. For a positive integer $m>0$, let $\tau: Y^{\prime} \rightarrow Y$ be a finite surjective Galois morphism from a non-singular projective variety such that $\tau^{*}\left(\left\ulcorner m Q^{\urcorner}\right)=m k Q^{\prime}\right.$ for a Cartier divisor Q^{\prime} with $\operatorname{Supp} Q^{\prime}$ being normal crossing. Let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}, f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$, $R_{\Delta}, \Delta^{\prime}$, and L^{\prime} be the same objects as in 3.33-(2). Since

$$
L^{\prime}+f^{\prime *} \tau^{*} Q-k\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)=\lambda^{*}\left(L+f^{*} Q-k\left(K_{X / Y}+\Delta\right)\right)
$$

is nef and f^{\prime}-abundant, and since $\left\ulcorner(1 / k) \tau^{*} Q\right\urcorner \leq Q^{\prime}$,

$$
\mathcal{F}_{2}:=f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right) \otimes \mathcal{O}_{Y^{\prime}}\left(k Q^{\prime}\right)
$$

is weakly positive. If the condition (4) is satisfied, then $\omega_{Y^{\prime}} \otimes \mathcal{F}_{2}$ is an ω-big $\hat{\omega}$-sheaf. By the injection of 3.33-(3),

$$
f_{*} \mathcal{O}_{X}(L) \llbracket \frac{1}{m}(\ulcorner m Q\urcorner) \rrbracket
$$

is weakly positive for any $m>0$. Thus so is $f_{*} \mathcal{O}_{X}(L) \llbracket Q \rrbracket$ by $\mathbf{3 . 2 4}-(2)$. If the condition (4) is satisfied, then we have a generically isomorphic $\operatorname{Gal}(\tau)$-linearized injection

$$
\mathcal{F}^{\prime \prime} \hookrightarrow\left(\omega_{Y^{\prime}}\left(k Q^{\prime}\right) \otimes \tau^{*}\left(f_{*} \mathcal{O}_{X}(L)\right)\right)^{\wedge}
$$

from an ω-big ω-sheaf $\mathcal{F}^{\prime \prime}$. Hence, by the same argument as above, $\omega_{Y}\left(\left\ulcorner Q^{\urcorner}\right) \otimes\right.$ $f_{*} \mathcal{O}_{X}(L)$ is an ω-big $\hat{\omega}$-sheaf.
3.36. Corollary Suppose that X is non-singular. Let Δ and D be \mathbb{R}-divisors of X and let Q be an \mathbb{R}-divisor of Y satisfying the following conditions:
(1) $\operatorname{Supp} \Delta \cup \operatorname{Supp}\langle D\rangle$ is a normal crossing divisor;
(2) Δ_{D} is f-vertical;
(3) $D+f^{*} Q-\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant.

Let k be a positive integer such that

$$
\Delta+\frac{1}{k}\langle-k D\rangle_{\lrcorner}
$$

is f-vertical. Then $f_{*} \mathcal{O}_{X}\left(\left\ulcorner k D^{\urcorner}\right) \llbracket k Q \rrbracket\right.$ is weakly positive, and $\omega_{Y}(H+\ulcorner k Q\urcorner) \otimes$ $f_{*} \mathcal{O}_{X}(\ulcorner k D\urcorner)$ is an ω-big $\hat{\omega}$-sheaf for any ample divisor H of Y.

Proof. We have

$$
\ulcorner k D\urcorner-k\left(K_{X / Y}+\Delta+\frac{1}{k}\langle-k D\rangle\right)=k D-k\left(K_{X / Y}+\Delta\right) .
$$

Apply 3.35 to the divisors $L=\ulcorner k D\urcorner$ and $L=\ulcorner k D\urcorner+f^{*} H$.
3.37. Corollary For a big divisor H of Y, there is a positive integer a satisfying the following condition: if a Cartier divisor L of X, an effective \mathbb{R}-divisor Δ of X, an \mathbb{R}-divisor Q of Y, and a positive integer k satisfy the conditions (1)-(3) of $\mathbf{3 . 3 5}$, then

$$
\mathcal{O}_{Y}\left(a H+\left\ulcorner Q^{\urcorner}\right) \otimes f_{*} \mathcal{O}_{X}(L)\right.
$$

is generically generated by global sections.
Proof. $\omega_{Y}\left(H+\ulcorner Q) \otimes f_{*} \mathcal{O}_{X}(L)\right.$ is an $\hat{\omega}$-sheaf by 3.35. Thus we can find a positive integer a such that

$$
\mathcal{O}_{Y}\left(a H+\left\ulcorner Q^{\urcorner}\right) \otimes\left(f_{*} \mathcal{O}_{X}(L)\right)^{\wedge}\right.
$$

is generically generated by global sections by $\mathbf{3 . 1 8}$.
Let $\tau: Y^{\prime} \rightarrow Y$ be a birational morphism from a non-singular projective variety flattening f such that $\tau^{-1}(\operatorname{Supp} Q)$ is a normal crossing divisor. Let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$, $\lambda: X^{\prime} \rightarrow X, f^{\prime}: X^{\prime} \rightarrow Y^{\prime}, R_{\Delta}, R_{\tau}, \Delta^{\prime}$, and L^{\prime} be the same objects defined in $\mathbf{3 . 3 3 -}$ (4). Then $L^{\prime}, \Delta^{\prime}, k$, and $\tau^{*} Q$ satisfy the same conditions as (1) $-(3)$ of $\mathbf{3 . 3 5}$ for the morphism $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$. Therefore, there is a positive integer a such that

$$
\mathcal{O}_{Y^{\prime}}\left(a \tau^{*} H+{ }^{\ulcorner } \tau^{*} Q^{\urcorner}\right) \otimes f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(L^{\prime}\right)^{\wedge}
$$

is generically generated by global sections. Since $\left\ulcorner\mu^{*} Q\right\urcorner \leq \mu^{*}(\ulcorner Q\urcorner)$,

$$
\mathcal{O}_{Y}\left(a H+\left\ulcorner Q^{\urcorner}\right) \otimes f_{*} \mathcal{O}_{X}(L)\right.
$$

is generically generated by global sections by $\mathbf{3 . 3 3 - (4)}$.
3.38. Corollary Suppose that X is non-singular. Let Δ and D be \mathbb{R}-divisors of X and let Q be an \mathbb{R}-divisor of Y satisfying the following conditions:
(1) $\operatorname{Supp} \Delta \cup \operatorname{Supp}\langle D\rangle$ and $\operatorname{Supp} Q$ are normal crossing divisors;
(2) $\llcorner\Delta$ is f-vertical;
(3) $D+f^{*} Q-\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant;
(4) $D+f^{*} Q-\left(K_{X / Y}+\Delta\right) \succcurlyeq f^{*} H$.

Then, for any big divisor H of Y, there exist positive integers b and d such that

$$
f_{*} \mathcal{O}_{X}(\ulcorner m b D\urcorner) \otimes \mathcal{O}_{Y}\left(\left\ulcorner m b Q^{\urcorner}-(m-d) H\right)\right.
$$

is generically generated by global sections for any $m>0$.
Proof. The \mathbb{R}-divisor $P:=D+f^{*} Q-\left(K_{X / Y}+\Delta\right)$ is nef and abundant by 2.28. Furthermore, by 2.27, there exist a positive integer c and an effective \mathbb{R} divisor G on X such that $c P-f^{*} H \sim_{\mathbb{Q}} G$. We may assume that $\operatorname{Supp}(\Delta+\langle-D\rangle+$ $G) \cup \operatorname{Supp} f^{*} Q$ is a normal crossing divisor. For $m, b>0$, we set

$$
\Delta_{m, b}:=\Delta+\frac{1}{m b}\langle-m b D\rangle+\frac{1}{b} G .
$$

Then, for any $m>0$, there is an integer $b>c$ such that $\left(X, \Delta_{m, b}\right)$ is log-terminal over a non-empty open subset of Y and

$$
\begin{aligned}
(b-c) m P & \sim_{\mathbb{Q}} m b D+f^{*}(m b Q)-m b\left(K_{X / Y}+\Delta\right)-m f^{*} H-m G \\
& =\ulcorner m b D\urcorner+f^{*}(m b Q-m H)-m b\left(K_{X / Y}+\Delta_{m, b}\right)
\end{aligned}
$$

is nef and abundant. Thus there is a constant d such that

$$
\mathcal{O}_{Y}(d H) \otimes f_{*} \mathcal{O}_{X}(\ulcorner m b D\urcorner) \otimes \mathcal{O}_{Y}(\ulcorner m b Q\urcorner-m H)
$$

is generically generated by global sections by $\mathbf{3 . 3 7}$.
3.39. Lemma Let L be a Cartier divisor of X, Δ an effective \mathbb{R}-divisor of X, Θ a divisor of Y, and $k \geq 2$ an integer satisfying the following conditions:
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier;
(2) (X, Δ) is log-terminal over a non-empty open subset of Y;
(3) $L-k\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant;
(4) there is an injection $\mathcal{O}_{Y}(\Theta) \hookrightarrow f_{*} \mathcal{O}_{X}(L)^{\wedge}$.

Then there is a number $\alpha \in \mathbb{Q}_{>0}$ such that $f_{*} \mathcal{O}_{X}(L) \llbracket-\alpha \Theta \rrbracket$ is weakly positive and

$$
\omega_{Y}\left(H-\left\llcorner\Theta_{\lrcorner}\right) \otimes f_{*} \mathcal{O}_{X}(L)\right.
$$

is an ω-big $\hat{\omega}$-sheaf for any ample divisor H.
Proof. We follow the proof of $\mathbf{3 . 3 4}$ and fix an ample divisor H of Y. We may assume that X is non-singular and $\operatorname{Supp} \Delta$ is normal crossing. We can replace X by a further blowing-up. Let E and B be effective divisors appearing in the proof of 3.34. Then, after replacing X by a blowing-up, we have an effective divisor D such that

$$
D+f^{*} \Theta \sim L+E-B
$$

We may assume $\operatorname{Supp}(\Delta+E+B+D)$ is a normal crossing divisor. We fix a positive integer $b>1$ such that $\left\llcorner(1 / b) D+\Delta_{\lrcorner}\right.$is f-vertical. Now $f_{*} \mathcal{O}_{X}(L)$ is weakly positive by 3.35. We have a positive integer d such that

$$
\widehat{\mathrm{S}}^{a(b-1)}\left(f_{*} \mathcal{O}_{X}(L)\right) \otimes \mathcal{O}_{Y}(d H)
$$

is generically generated by global sections for $a \gg 0$ by $\mathbf{3 . 2 3}$. We fix such an integer a. As in the proof of $\mathbf{3 . 3 4}$, we may assume that $\mathcal{O}_{X}\left(a(b-1)(L+E-B)+E^{\prime}\right)$ is the image of

$$
f^{*} \widehat{\mathrm{~S}}^{a(b-1)}\left(f_{*} \mathcal{O}_{X}(L)\right) \rightarrow \mathcal{O}_{X}(a(b-1)(L+E))
$$

for an f-exceptional effective divisor E^{\prime} and that $\mathcal{O}_{X}\left(P^{\prime}\right)$ is the image of

$$
\mathrm{H}^{0}\left(Y, \widehat{\mathrm{~S}}^{a(b-1)}\left(f_{*} \mathcal{O}_{X}(L) \otimes \mathcal{O}_{Y}(d H)\right)\right) \otimes \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}\left(a(b-1)(L+E-B)+E^{\prime}\right)
$$

for the divisor

$$
P^{\prime}:=a(b-1)(L+E-B)+E^{\prime}-C+d f^{*} H
$$

for an f-vertical effective divisor C. Moreover, we may assume $\operatorname{Supp}\left(C+E^{\prime}+B+\right.$ $E+\Delta+D)$ is a normal crossing divisor. Let D^{h} and D^{v} be the f-horizontal and the f-vertical parts of D, respectively. Note that $\mathrm{Bs}\left|P^{\prime}\right|=\emptyset$ and

$$
P^{\prime}=a\left(b(L+E-B)-D^{v}\right)-a f^{*} \Theta-a D^{h}+E^{\prime}-C+d f^{*} H
$$

We set

$$
\begin{aligned}
P:=L-\left(K_{X / Y}+\Delta\right) & +\frac{k-1}{k}(E-B)-\frac{k-1}{b k} D^{h} \\
& +\frac{k-1}{a b k}\left(E^{\prime}-C-a D^{v}\right)+f^{*}\left(\delta H-\frac{k-1}{b k} \Theta\right)
\end{aligned}
$$

for $\delta>(k-1) d /(a b k)$. Then

$$
P-\frac{k-1}{a b k} P^{\prime}-\varepsilon f^{*} H \sim_{\mathbb{Q}} \frac{1}{k} L-\left(K_{X / Y}+\Delta\right)+\left(\delta-\frac{(k-1) d}{a b k}-\varepsilon\right) f^{*} H
$$

is nef and abundant for some $\varepsilon>0$ by 2.28. We can take $\delta \ll 1$ if $a \gg 0$. Since

$$
\frac{k-1}{k} B+\frac{k-1}{b k} D^{h}+\Delta_{\lrcorner} \leq B+\underbrace{}_{\llcorner } \frac{1}{b} D+\Delta_{\lrcorner},
$$

we can write

$$
-\Delta+\frac{k-1}{k}(E-B)-\frac{k-1}{b k} D^{h}+\frac{k-1}{a b k}\left(E^{\prime}-C-a D^{v}\right)=-\Delta^{\prime}+E^{\prime \prime}-G-B^{\prime}
$$

for an effective \mathbb{R}-divisor Δ^{\prime} with $\left\llcorner^{\prime}\right\lrcorner=0$, an f-exceptional effective divisor $E^{\prime \prime}$, an f-vertical effective divisor G, and an effective divisor B^{\prime} with $f_{*} \mathcal{O}_{X}\left(L-B^{\prime}\right)^{\wedge} \simeq$ $f_{*} \mathcal{O}_{X}(L)^{\wedge}$. We set $\bar{L}:=L+E^{\prime \prime}-G-B^{\prime}$ and $\alpha:=(k-1) /(b k)$. Then there is an inclusion $f_{*} \mathcal{O}_{X}(\bar{L})^{\wedge} \subset f_{*} \mathcal{O}_{X}(L)^{\wedge}$ and

$$
\bar{L}+f^{*}(\delta H-\alpha \Theta)-\left(K_{X / Y}+\Delta^{\prime}\right)=P \succcurlyeq f^{*} H
$$

Hence, $f_{*} \mathcal{O}_{X}(L) \llbracket \delta H-\alpha \Theta \rrbracket$ is big and

$$
\omega_{Y}\left(H-\left\llcorner\Theta_{\lrcorner}\right) \otimes f_{*} \mathcal{O}_{X}(L)\right.
$$

is an ω-big $\hat{\omega}$-sheaf, by 3.35. Taking $\delta \rightarrow 0$, we infer that $f_{*} \mathcal{O}_{X}(L) \llbracket-\alpha \Theta \rrbracket$ is also weakly positive by $\mathbf{3 . 2 4}(2)$.

Let $f: X \rightarrow Y$ be a surjective morphism of non-singular projective varieties. The morphism f is called a semi-stable reduction in codimension one or a semistable morphism in codimension one if there is a Zariski-open subset $Y^{\circ} \subset Y$ with $\operatorname{codim}\left(Y \backslash Y^{\circ}\right) \geq 2$ such that, for any prime divisor $\Gamma \subset Y, f^{*} \Gamma$ is a reduced and normal crossing divisor over $f^{-1}\left(Y^{\circ}\right)$. Even though f is not a semi-stable reduction in codimension one, there exist a finite surjective morphism $\tau: Y^{\prime} \rightarrow Y$ from a non-singular projective variety and a desingularization $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ such that the induced morphism $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is a semi-stable reduction in codimension one (cf. [62], [147, Proposition 6.1], [88, 4.6]). This $\left(f^{\prime}, \tau\right)$ is called also a semistable reduction of f in codimension one.
3.40. Lemma Let $f: X \rightarrow Y$ be a surjective morphism of non-singular projective varieties that is a semi-stable reduction in codimension one. Let L be a divisor of X, Δ an \mathbb{R}-divisor, and k a positive integer satisfying the following conditions:
(1) (X, Δ) is log-terminal over a non-empty open subset of Y;
(2) $L-k\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant.

Then, for any positive integer m, there is a positive number α such that

$$
f_{*} \mathcal{O}_{X}(m L) \llbracket-\alpha \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(L)\right) \rrbracket
$$

is weakly positive.
Proof. Let r be the rank of $f_{*} \mathcal{O}_{X}(L)$. Let $X^{[r]}$ be the r-fold fiber product $X \times_{Y} \cdots \times_{Y} X$ over Y. Then $X^{[r]}$ has only toroidal singularities over a Zariski-open subset $Y^{\circ} \subset Y$ with $\operatorname{codim}\left(Y \backslash Y^{\circ}\right) \geq 2$. Let $p_{i}: X^{[r]} \rightarrow X$ be the i-th projection for $1 \leq i \leq r$. Then

$$
\omega_{X[r] / Y} \simeq \bigotimes_{i=1}^{r} p_{i}^{*} \omega_{X / Y}
$$

over Y°. Let $\delta: X^{(r)} \rightarrow X^{[r]}$ be a birational morphism from a projective nonsingular space which is an isomorphism over a dense Zariski-open subset of Y. Let $f^{(r)}: X^{(r)} \rightarrow Y$ and $\pi_{i}=p_{i} \circ \delta: X^{(r)} \rightarrow X$ be the induced morphisms. We can write

$$
E-G=K_{X^{(r) / Y}}-\sum_{i=1}^{r} \pi_{i}^{*} K_{X / Y}
$$

for effective divisors E and G such that E is δ-exceptional over Y° and $f^{(r)}(\operatorname{Supp} G)$ is contained in $Y \backslash Y^{\circ}$. We set

$$
L^{(r)}:=\sum_{i=1}^{r} \pi_{i}^{*} L+k E \quad \text { and } \quad \Delta^{(r)}:=\sum_{i=1}^{r} \pi_{i}^{*} \Delta+G .
$$

Then $\left(X^{(r)}, \Delta^{(r)}\right)$ is log-terminal over a non-empty open subset of Y and

$$
L^{(r)}-k\left(K_{X(r) / Y}+\Delta^{(r)}\right)=\sum_{i=1}^{r} \pi_{i}^{*}\left(L-k\left(K_{X / Y}+\Delta\right)\right) .
$$

Thus $f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(L^{(r)}\right)$ is weakly positive by $\mathbf{3 . 3 5}$ and we have an isomorphism

$$
\left(f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(L^{(r)}\right)\right)^{\wedge} \simeq \widehat{\otimes}^{r}\left(f_{*} \mathcal{O}_{X}(L)\right)
$$

Since $\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(L)\right)$ is a subsheaf of the right hand side, we have an injection

$$
\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(L)\right)^{\otimes m} \hookrightarrow\left(f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(m L^{(r)}\right)\right)^{\wedge}
$$

for $m>0$. Note that, for $m>0, f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(m L^{(r)}\right)$ is weakly positive and there is an isomorphism

$$
\left(f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(m L^{(r)}\right)\right)^{\wedge} \simeq \widehat{\otimes}^{r}\left(f_{*} \mathcal{O}_{X}(m L)\right)
$$

Hence, by 3.39,

$$
f_{*}^{(r)} \mathcal{O}_{X^{(r)}}\left(m L^{(r)}\right) \llbracket-\alpha \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(L)\right) \rrbracket
$$

is weakly positive for some $\alpha>0$. From the generically surjective homomorphism

$$
\widehat{\otimes}^{r}\left(f_{*} \mathcal{O}_{X}(m L)\right) \rightarrow \widehat{\mathrm{S}}^{r}\left(f_{*} \mathcal{O}_{X}(m L)\right)
$$

we infer that $f_{*} \mathcal{O}_{X}(m L) \llbracket-(\alpha / r) \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(L)\right) \rrbracket$ is also weakly positive.

§4. Abundance and Addition

§4.a. Addition Theorem.

4.1. Theorem Let $f: X \rightarrow Y$ be a fiber space from a normal projective variety into a non-singular projective variety, Δ an effective \mathbb{R}-divisor of X such that $K_{X}+\Delta$ is \mathbb{R}-Cartier and (X, Δ) is log-canonical over a non-empty open subset of Y. Let D be an \mathbb{R}-Cartier divisor of X such that $D-\left(K_{X / Y}+\Delta\right)$ is nef.
(1) For any \mathbb{R}-divisor Q of Y,

$$
\kappa_{\sigma}\left(D+f^{*} Q\right) \geq \kappa_{\sigma}(D ; X / Y)+\kappa_{\sigma}(Q)
$$

In particular, for a 'general' fiber $X_{y}=f^{-1}(y)$,

$$
\kappa_{\sigma}\left(K_{X}+\Delta\right) \geq \kappa_{\sigma}\left(K_{X_{y}}+\left.\Delta\right|_{X_{y}}\right)+\kappa_{\sigma}\left(K_{Y}\right)
$$

(2) Suppose that (X, Δ) is log-terminal over a non-empty open subset of Y and that $D-\left(K_{X / Y}+\Delta\right)$ is f-abundant. Then

$$
\sigma\left(D ; f^{*} H\right)^{\prime} \geq \kappa(D ; X / Y)
$$

for some ample divisor H of Y, where $\sigma(;)^{\prime}$ is defined in 2.6. If $D-\left(K_{X / Y}+\Delta\right) \succcurlyeq f^{*} H$, then

$$
\kappa(D, X)=\kappa(D ; X / Y)+\operatorname{dim} Y .
$$

In particular, if Y is of general type, then

$$
\kappa\left(K_{X}+\Delta\right)=\kappa\left(K_{X_{y}}+\left.\Delta\right|_{X_{y}}\right)+\operatorname{dim} Y
$$

Proof. By 3.33 -(1), we may assume that X is non-singular and $\operatorname{Supp} \Delta \cup$ $\operatorname{Supp}\langle D\rangle$ is normal crossing. For a divisor A of X and for $m \in \mathbb{N}$, we set

$$
r(m D ; A):=\operatorname{rank} f_{*} \mathcal{O}_{X}\left(\left\ulcorner m D^{\urcorner}+A\right) .\right.
$$

Then we have

$$
\sigma\left(\left.D\right|_{X_{y}} ;\left.A\right|_{X_{y}}\right)^{\prime}=\max \left\{k \in \mathbb{Z}_{\geq 0} \cup\{-\infty\} \left\lvert\, \varlimsup_{m \rightarrow \infty} \frac{r(m D ; A)}{m^{k}}>0\right.\right\}
$$

for a 'general' fiber $X_{y}=f^{-1}(y)$. Note that

$$
\kappa_{\sigma}(D ; X / Y)=\max \left\{\sigma\left(\left.D\right|_{X_{y}} ;\left.A\right|_{X_{y}}\right)^{\prime} \mid A \text { is ample }\right\}
$$

If $\kappa(D ; X / Y) \geq 0$, then, by $\mathbf{3 . 9}$,

$$
\kappa(D ; X / Y)=\varlimsup_{m \rightarrow \infty} \frac{\log r(m D ; 0)}{\log m}
$$

(1) Let A be an ample divisor of X such that $(1 / 2) A+\langle-m D\rangle$ is ample for any $m \in \mathbb{Z}$. Since $D+(1 / 2) A-\left(K_{X / Y}+\Delta\right)$ is ample, we can find a positive rational
number $\varepsilon \ll 1$ such that $D+(1 / 2) A-\left(K_{X / Y}+(1-\varepsilon) \Delta\right)$ is also ample. Then $(X,(1-\varepsilon / m) \Delta)$ is log-terminal over a non-empty open subset, and

$$
\begin{aligned}
& \ulcorner m D\urcorner+A-m\left(K_{X / Y}+(1-\varepsilon / m) \Delta\right) \\
& =(m-1)\left(D-\left(K_{X / Y}+\Delta\right)\right)+\left(D+(1 / 2) A-\left(K_{X / Y}+(1-\varepsilon) \Delta\right)\right) \\
& \quad+((1 / 2) A+\langle-m D\rangle)
\end{aligned}
$$

is ample for any $m \in \mathbb{N}$. There exists an ample divisor H of Y such that $\mathcal{O}_{Y}(H) \otimes$ $f_{*} \mathcal{O}_{X}(\ulcorner m D\urcorner+A)$ is generically generated by global sections for any $m \in \mathbb{N}$, by 3.37. In particular, there exists a generically isomorphic injection

$$
\mathcal{O}_{Y}^{\oplus r(m D ; A)} \hookrightarrow \mathcal{O}_{Y}(H) \otimes f_{*} \mathcal{O}_{X}(\ulcorner m D\urcorner+A),
$$

which induces the injection

$$
\mathcal{O}_{Y}\left({ }_{\llcorner } m Q_{\lrcorner}+H\right)^{\oplus r(m D ; A)} \hookrightarrow \mathcal{O}_{Y}\left({ }_{\llcorner } m Q_{\lrcorner}+2 H\right) \otimes f_{*} \mathcal{O}_{X}(\ulcorner m D\urcorner+A)
$$

Therefore,

$$
\begin{aligned}
& \mathrm{h}^{0}\left(X,\left\ulcorner m\left(D+f^{*} Q\right)\right\urcorner+A+2 f^{*} H\right) \\
& \quad \geq \mathrm{h}^{0}\left(X,\ulcorner m D\urcorner+f^{*}\left(\left\llcorner m Q_{\lrcorner}\right)+A+2 f^{*} H\right) \geq r(m D ; A) \cdot \mathrm{h}^{0}\left(Y,{ }_{\llcorner } m Q_{\lrcorner}+H\right) .\right.
\end{aligned}
$$

Varying $m \in \mathbb{N}$, we have the expected inequality.
(2) We may assume that $\kappa(D ; X / Y) \geq 0$. By $\mathbf{3 . 3 6}$ and 3.37, we have an ample divisor H of Y such that, for each $m \gg 0$ with $r(m D ; 0)>0$, there exists a generically isomorphic injection

$$
\mathcal{O}_{Y}^{\oplus r(m D ; 0)} \hookrightarrow \mathcal{O}_{Y}(H) \otimes f_{*} \mathcal{O}_{X}\left(\left\ulcorner m D^{\urcorner}\right)\right.
$$

Therefore,

$$
\mathrm{h}^{0}\left(X,\ulcorner m D\urcorner+2 f^{*} H\right) \geq r(m D ; 0) \cdot \mathrm{h}^{0}(Y, H) .
$$

By varying m and H we have the first inequality. Next, suppose that $D-\left(K_{X / Y}+\right.$ $\Delta) \succcurlyeq f^{*} H$. By $\mathbf{3 . 3 8}$, there exist positive integers b and d such that a generically isomorphic injection

$$
\mathcal{O}_{Y}^{\oplus r(m b D ; 0)} \hookrightarrow \mathcal{O}_{Y}(-(m-d) H) \otimes f_{*} \mathcal{O}_{X}(\ulcorner m b D\urcorner)
$$

exists for any $m>0$. Therefore,

$$
\mathrm{h}^{0}(X,\ulcorner m b D\urcorner) \geq r(m b D ; 0) \cdot \mathrm{h}^{0}(Y,(m-d) H) .
$$

By varying m and by the easy addition for κ, we have the expected equality. If Y is of general type, then the equality above for $D=K_{X / Y}+\Delta+f^{*} H$ for an ample divisor H of Y and the property $K_{Y} \succeq H$ imply the last equality.
4.2. Corollary Let X be a normal projective variety, Δ an effective \mathbb{R}-divisor, and D an \mathbb{R}-divisor such that (X, Δ) is log-canonical and $D-\left(K_{X}+\Delta\right)$ is nef. Then the following three conditions are equivalent:
(1) D is abundant: $\kappa_{\nu}(D)=\kappa(D)$;
(2) $\kappa_{\sigma}(D)=\kappa(D)$;
(3) D is geometrically abundant.

Proof. It is enough to show (2) \Rightarrow (3). Let m be an integer in $\mathbb{I}(D)$. We may assume the Iitaka fibration $\Phi=\Phi_{m D}: X \cdots \rightarrow Y$ is holomorphic. Then $D \succeq \Phi^{*} H$ for an ample divisor H of Y. By 4.1, we have

$$
\begin{aligned}
\kappa(D) & =\kappa_{\sigma}(D)=\kappa_{\sigma}\left(D+\Phi^{*} H\right) \\
& =\kappa_{\sigma}(D ; X / Y)+\operatorname{dim} Y=\kappa_{\sigma}(D ; X / Y)+\kappa(D)
\end{aligned}
$$

Hence $\kappa_{\sigma}(D ; X / Y)=0$.
Remark (1) The abundance conjecture: $\kappa(X)=\kappa_{\nu}(X)$ for projective varieties X is reduced to the following conjecture by 4.2 if $\kappa_{\nu}(X)>0$, then $\kappa(X)>0$.
(2) By the abundance theorem [59] (cf. [83], [84]) and the existence of minimal models [89] for threefolds, the abundance conjecture is true for a projective variety X with $\operatorname{dim} X \leq 3$ or with $\kappa(X) \geq \operatorname{dim} X-3$.

Let $f: X \rightarrow Y$ be a fiber space from a normal projective variety onto a nonsingular projective variety. Let D be a \mathbb{Q}-Cartier divisor of X and let Δ be an effective \mathbb{R}-divisor of X such that $K_{X}+\Delta$ is \mathbb{R}-Cartier and that (X, Δ) is \log terminal over a non-empty open subset of Y. Let b be a positive integer with $b D$ being Cartier.

Let $\tau: Y^{\prime} \rightarrow Y$ be a generically finite morphism from a non-singular projective variety. Let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ be a birational morphism from a projective non-singular variety and let $\lambda: X^{\prime} \rightarrow X$ and $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced morphisms. We assume that the union of the non-étale locus of λ and $\lambda^{-1}(\operatorname{Supp} \Delta)$ is a normal crossing divisor. As in 3.33, we set $R_{\Delta}:=K_{X^{\prime}}-\lambda^{*}\left(K_{X}+\Delta\right)$ and $R_{\tau}:=K_{Y^{\prime}}-\tau^{*} K_{Y}$. Let $\left\ulcorner R_{\Delta}\right\urcorner=R_{+}^{\prime}-R_{-}^{\prime}$ be the decomposition into the positive and the negative parts of the prime decomposition, and set

$$
\Delta^{\prime}:=R_{-}^{\prime}+\left\langle-R_{\Delta}\right\rangle \quad \text { and } \quad D^{\prime}:=\lambda^{*} D+R_{+}^{\prime}-f^{\prime *} R_{\tau}
$$

Then ($X^{\prime}, \Delta^{\prime}$) is log-terminal over a non-empty open subset of Y^{\prime} and the equalities

$$
\begin{aligned}
K_{X^{\prime}}+\Delta^{\prime} & =\lambda^{*}\left(K_{X}+\Delta\right)+R_{+}^{\prime} \\
D^{\prime}-\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right) & =\lambda^{*}\left(D-\left(K_{X / Y}+\Delta\right)\right)
\end{aligned}
$$

hold. Here, $b D^{\prime}$ is also Cartier.
4.3. Claim If (X, Δ) is log-terminal, then $f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right)$ is independent of the choice of birational morphisms $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$.

Proof. $R_{-}^{\prime}=0$ by assumption. For a birational morphism $\varphi: X^{\prime \prime} \rightarrow X^{\prime}$ from a projective non-singular space such that the composite $X^{\prime \prime} \rightarrow X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ satisfies the same conditions as $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$, if we set

$$
\begin{gathered}
R_{\Delta}^{\prime \prime}:=K_{X^{\prime \prime}}-\varphi^{*} \lambda^{*}\left(K_{X}+\Delta\right), \quad\left\ulcorner R_{\Delta}^{\prime \prime}\right\urcorner=R_{+}^{\prime \prime}-R_{-}^{\prime \prime}, \\
\Delta^{\prime \prime}:=R_{-}^{\prime \prime}+\left\langle-R_{\Delta}^{\prime \prime}\right\rangle, \quad D^{\prime \prime}:=\varphi^{*} \lambda^{*} D+R_{+}^{\prime \prime}-\varphi^{*} f^{\prime *} R_{\tau},
\end{gathered}
$$

then $R_{\Delta}^{\prime \prime}=R_{\varphi}+\varphi^{*} R_{\Delta}$ and $R_{-}^{\prime \prime}=0$. Hence, by II. 4.3 -(2),

$$
R_{+}^{\prime \prime}=R_{\varphi}+\left\ulcorner\varphi^{*} R_{\Delta}\right\urcorner \geq \varphi^{*}\left(\left\ulcorner R_{\Delta}\right\urcorner\right)=\varphi^{*} R_{+}^{\prime} .
$$

Since $R_{+}^{\prime \prime}-\varphi^{*} R_{+}^{\prime}$ is φ-exceptional, we have an isomorphism

$$
\mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right) \simeq \varphi_{*} \mathcal{O}_{X^{\prime \prime}}\left(b D^{\prime \prime}\right)
$$

There exists a Zariski-open subset $Y^{\circ} \subset Y$ such that $\operatorname{codim}\left(Y \backslash Y^{\circ}\right) \geq 2$ and τ is a finite morphism over Y°. Thus there exist a τ-exceptional effective divisor \widehat{E}_{b} and a generically isomorphic injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right) \hookrightarrow\left(\tau^{*}\left(f_{*} \mathcal{O}_{X}(b D)\right) \otimes \mathcal{O}_{Y^{\prime}}\left(\widehat{E}_{b}\right)\right)
$$

by $3.33-(5)$. In particular, we have inequalities

$$
\begin{aligned}
\kappa\left(\widehat{\operatorname{det}}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right)\right), Y^{\prime}\right) & \leq \kappa\left(\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right), Y\right), \\
\kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right)\right), Y^{\prime}\right) & \leq \kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right), Y\right)
\end{aligned}
$$

We note that, if f is a semi-stable reduction in codimension one and if $D-\left(K_{X / Y}+\right.$ Δ) is nef and f-abundant, then

$$
\kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(m b D)\right), Y\right) \geq \kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right), Y\right)
$$

for $m>0$, by $\mathbf{3 . 4 0}$.

4.4. Definition

$$
\begin{aligned}
\kappa_{\sigma}\left(D, \operatorname{det} f ; Y^{\prime}\right) & :=\max _{b>0} \kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right)\right), Y^{\prime}\right), \\
\kappa_{\sigma}(D, \operatorname{det} f) & :=\min _{Y^{\prime} \rightarrow Y} \kappa_{\sigma}\left(D, \operatorname{det} f ; Y^{\prime}\right) .
\end{aligned}
$$

4.5. Theorem Let $f: X \rightarrow Y$ be a fiber space from a normal projective variety onto a non-singular projective variety. Let D be $a \mathbb{Q}$-Cartier divisor on X and let Δ be an effective \mathbb{R}-divisor such that
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier,
(2) (X, Δ) is log-terminal over a non-empty open subset of Y,
(3) $D-\left(K_{X / Y}+\Delta\right)$ is nef and f-abundant.

Then, for an ample divisor H and for $b \in \mathbb{N}$ with $b D$ being Cartier,

$$
\sigma\left(b D ; f^{*} H\right) \geq \kappa(D ; X / Y)+\kappa_{\sigma}(D, \operatorname{det} f)
$$

If $\kappa_{\sigma}(D, \operatorname{det} f)=\operatorname{dim} Y$, then

$$
\kappa(D, X)=\kappa(D ; X / Y)+\operatorname{dim} Y .
$$

Proof. We may assume that $\kappa(D ; X / Y) \geq 0$ and X is non-singular.
Suppose first that f is a semi-stable reduction in codimension one. Let b be a positive integer such that $b D$ is Cartier and $b \in \mathbb{I}\left(\left.D\right|_{X_{y}}\right)$ for a 'general' fiber X_{y}. For $m>0$, let \mathcal{G}_{m} be the image of the multiplication mapping

$$
\widehat{\mathrm{S}}^{m}\left(f_{*} \mathcal{O}_{X}(b D)\right) \rightarrow f_{*} \mathcal{O}_{X}(m b D)^{\wedge}
$$

Then

$$
\varlimsup_{m \rightarrow \infty} m^{-\kappa(D ; X / Y)} \operatorname{rank} \mathcal{G}_{m}>0
$$

By 3.40, we infer that

$$
f_{*} \mathcal{O}_{X}(b D) \llbracket-\alpha \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right) \rrbracket
$$

is weakly positive for some $\alpha \in \mathbb{Q}_{>0}$. Thus there is a big divisor H on Y such that

$$
\left.\mathcal{G}_{m}^{\wedge} \otimes \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right)\right)^{\otimes(-m \alpha)} \otimes \mathcal{O}_{Y}(H)
$$

is generically generated by global sections for a large integer m with $m \alpha \in \mathbb{Z}$ by 3.23. In particular, there is an injection

$$
\left.\mathcal{O}_{Y}^{\oplus} \operatorname{rank} \mathcal{G}_{m} \otimes \widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right)\right)^{\otimes m \alpha} \otimes \mathcal{O}_{Y}(H) \hookrightarrow f_{*} \mathcal{O}_{X}(m b D)^{\wedge} \otimes \mathcal{O}_{Y}(2 H)
$$

Therefore,

$$
\left.\sigma\left(b D+E ; f^{*} H\right) \geq \kappa(D ; X / Y)+\kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right)\right), Y\right)
$$

for an f-exceptional effective divisor E of X. If $\widehat{\operatorname{det}}\left(f_{*} \mathcal{O}_{X}(b D)\right)$) is big, then there is a positive integer d such that $\mathcal{G}_{m}^{\wedge} \otimes \mathcal{O}_{Y}(-(m-d) H)$ is generically generated by global sections for $m \gg 0$. Thus there is an injection

$$
\mathcal{O}_{Y}^{\oplus \operatorname{rank} \mathcal{G}_{m}} \otimes \mathcal{O}_{Y}((m-d) H) \hookrightarrow f_{*} \mathcal{O}_{X}(m b D)^{\wedge}
$$

Therefore,

$$
\kappa(b D+E)=\kappa(D ; X / Y)+\operatorname{dim} Y .
$$

Next, we consider the general case. Let $\widetilde{Y} \rightarrow Y$ be a birational morphism from a non-singular projective variety flattening f. Let $Y^{\prime} \rightarrow \widetilde{Y}$ be a finite surjective morphism from a non-singular projective variety and let $X^{\prime} \rightarrow X \times_{Y} Y^{\prime}$ be a birational morphism from a non-singular projective variety into the main component such that the induced morphism $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is a semi-stable reduction in codimension one. Let $\lambda: X^{\prime} \rightarrow X$ and $\tau: Y^{\prime} \rightarrow Y$ be the induced morphisms. We consider \mathbb{R}-divisors $R_{\Delta}, R_{+}^{\prime}, \Delta^{\prime}$, and D^{\prime} as before. Then we have

$$
\begin{aligned}
\sigma\left(b D^{\prime}+E ; f^{\prime *} \tau^{*} H\right) & \geq \kappa(D ; X / Y)+\kappa_{\sigma}\left(\widehat{\operatorname{det}}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(b D^{\prime}\right)\right), Y^{\prime}\right) \\
& \geq \kappa(D ; X / Y)+\kappa_{\sigma}(D, \operatorname{det} f)
\end{aligned}
$$

for a λ-exceptional effective divisor E. Since $b R_{+}^{\prime}+E$ is λ-exceptional, from the inequality $b D^{\prime}+E \leq \lambda^{*}(b D)+b R_{+}^{\prime}+E$, we have

$$
\sigma\left(b D^{\prime}+E ; f^{\prime *} \tau^{*} H\right) \leq \sigma\left(b D ; f^{*} H\right)
$$

Therefore,

$$
\sigma\left(b D ; f^{*} H\right) \geq \kappa(D ; X / Y)+\kappa_{\sigma}(D, \operatorname{det} f)
$$

If $\kappa_{\sigma}(D, \operatorname{det} f)=\operatorname{dim} Y$, then

$$
\kappa(D, X) \geq \kappa\left(b D^{\prime}+E\right)=\kappa(D ; X / Y)+\operatorname{dim} Y \geq \kappa(D, X)
$$

§4.b. Abundance theorem for $\kappa_{\sigma}=0$.

4.6. Theorem Let $f: X \rightarrow Y$ be a fiber space from a normal projective variety onto a non-singular projective variety. Let L be a Cartier divisor of X and let Δ be an effective \mathbb{R}-divisor of X such that
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier,
(2) (X, Δ) is log-terminal over a non-empty open subset of Y,
(3) $L-\left(K_{X / Y}+\Delta\right)$ is nef and abundant.

Suppose that $\operatorname{rank} f_{*} \mathcal{O}_{X}(L)=1$ and $\kappa_{\sigma}\left(f_{*} \mathcal{O}_{X}(L)^{\wedge}\right)=0$. Then $\kappa\left(f_{*} \mathcal{O}_{X}(L)^{\wedge}\right)=0$.
Proof. We may assume that X is non-singular, $\operatorname{Supp} \Delta$ is normal crossing by $3.33-(1)$. Since $f_{*} \mathcal{O}_{X}\left(L-\Delta_{\lrcorner}\right)$is weakly positive by 3.35 , we may assume that $\Delta_{\lrcorner}=0$. Furthermore, we can replace Y by a generically finite morphism $Y^{\prime} \rightarrow Y$, by 3.33. Then $\omega_{Y} \otimes f_{*} \mathcal{O}_{X}(L)$ is an ω-sheaf and moreover, there exists a surjective morphism $h: M \rightarrow Y$ from a non-singular projective variety M such that $\omega_{Y} \otimes f_{*} \mathcal{O}_{X}(L)$ is a direct summand of $h_{*} \omega_{M}$ by 3.10, 3.11, Replacing Y by a generically finite morphism $Y^{\prime} \rightarrow Y$, we may assume that

- h is smooth outside a normal crossing divisor $B \subset Y$,
- the local monodromies of the locally constant system $H=\left.R^{d} h_{*} \mathbb{C}_{M}\right|_{Y \backslash B}$ along B are unipotent, where $d=\operatorname{dim} M-\operatorname{dim} Y$.
Then the d-th filter $\mathcal{F}^{d}\left(\mathcal{H}^{\text {can }}\right)$ of the canonical extension $\mathcal{H}^{\text {can }}$ of $\mathcal{H}=H \otimes \mathcal{O}_{Y \backslash B}$ is a numerically semi-positive vector bundle by $\mathbf{3 . 2}$ ([50, Theorem 17]). Since $h_{*} \omega_{M / Y} \simeq \mathcal{F}^{d}\left(\mathcal{H}^{\text {can }}\right), f_{*} \mathcal{O}_{X}(L)$ is a nef line bundle. Therefore, $f_{*} \mathcal{O}_{X}(L)$ is numerically trivial, since $\kappa_{\sigma}\left(f_{*} \mathcal{O}_{X}(L)\right)=0$. The metric induced on $\mathcal{F}^{d}\left(\mathcal{H}^{\text {can }}\right)$ has only logarithmic singularities along B and is semi-positive on $Y \backslash B$. Hence $f_{*} \mathcal{O}_{X}(L)$ is a flat subbundle of \mathcal{H} over $Y \backslash B$ (cf. [22], [126], [52], [53], [72]). Then

$$
\left(f_{*} \mathcal{O}_{X}(L)\right)^{\otimes k} \simeq \mathcal{O}_{Y}
$$

for some $k \in \mathbb{N}$ by a result $[\mathbf{1 0}, 4.2 .8$.(iii)(b)] of Deligne concerning with the semisimplicity of monodromies. Thus $\kappa\left(f_{*} \mathcal{O}_{X}(L)\right)=0$.
4.7. Proposition Let $f: X \rightarrow Y$ be a fiber space from a normal projective variety onto a non-singular projective variety. Let D be $a \mathbb{Q}$-Cartier divisor of X, and Δ an effective \mathbb{R}-divisor of X such that
(1) $K_{X}+\Delta$ is \mathbb{R}-Cartier,
(2) (X, Δ) is log-terminal over a non-empty open subset of Y,
(3) $D-\left(K_{X / Y}+\Delta\right)$ is nef and abundant.

Suppose that $\kappa(D ; X / Y)=0$ and $\kappa_{\sigma}(D, \operatorname{det} f)=0$. Then $\kappa(D) \geq 0$.
Proof. We may assume that X is non-singular, Supp $\Delta \cup \operatorname{Supp}\langle D\rangle$ is normal crossing, and that f is semi-stable in codimension one. There is an f-effective divisor E of X such that $f_{*} \mathcal{O}_{X}(m(D+E))$ is isomorphic to the invertible sheaf $f_{*} \mathcal{O}_{X}(m D)^{\wedge}$ for any $m>0$ with $m D$ being Cartier. Let $\mathbb{N}(D, f)$ be the set of natural numbers $m \in \mathbb{N}$ with $m D$ being Cartier and $f_{*} \mathcal{O}_{X}(m D) \neq 0$. Let
$F_{m}:=|m(D+E)|_{\text {fix }, f}$ be the relative fixed divisor of $m D$ with respect to f for $m \in \mathbb{N}(D, f)$, which is determined by:

$$
f^{*} f_{*} \mathcal{O}_{X}(m(D+E)) \simeq \mathcal{O}_{X}\left(m(D+E)-F_{m}\right) \subset \mathcal{O}_{X}(m(D+E))
$$

Let G_{m} be the maximum effective \mathbb{Q}-divisor of Y satisfying $F_{m} \geq f^{*} G_{m}$. Here, for a prime divisor B of Y,

$$
\operatorname{mult}_{B} G_{m}=\min \left\{\left.\frac{\operatorname{mult}_{\Gamma} F_{m}}{\operatorname{mult}_{\Gamma} f^{*} B} \right\rvert\, \Gamma \text { is a prime divisor with } f(\Gamma)=B\right\}
$$

We have an injection

$$
f^{*}\left(f_{*} \mathcal{O}_{X}(m(D+E))\right)^{\otimes l} \hookrightarrow \mathcal{O}_{X}(\operatorname{lm}(D+E))
$$

for $l>0$. Thus $l F_{m}-F_{m l}$ is the pullback of an effective divisor of Y. Therefore,

$$
l F_{m}-F_{m l}=f^{*}\left(l G_{m}-G_{m l}\right)
$$

In particular, the \mathbb{Q}-divisor

$$
N:=N_{\mathbb{Q}}(D+E):=\frac{1}{m}\left(F_{m}-f^{*} G_{m}\right)
$$

does not depend on $m \in \mathbb{N}(D, f)$. If $l G_{m}$ is Cartier, then so is $G_{m l}$ and hence $G_{m l}=0$, since $f_{*} \mathcal{O}_{X}\left(F_{m l}\right) \simeq \mathcal{O}_{Y}$. Thus N coincides with the negative part

$$
N=\lim _{\mathbb{N}(D, f) \ni m \rightarrow \infty} \frac{1}{m} F_{m}
$$

of the f-sectional decomposition of $D+E$. Then we can take a \mathbb{Q}-divisor Ξ on Y such that $m \Xi$ is Cartier and

$$
f_{*} \mathcal{O}_{X}(m D)^{\wedge} \simeq \mathcal{O}_{Y}(m \Xi)
$$

for $m \in \mathbb{N}(D, f)$ with $G_{m}=0$ (cf. [88, $\S 5$ Part II]). In particular, $D+E-N \sim_{\mathbb{Q}} f^{*} \Xi$. We have $\kappa_{\sigma}(\Xi)=0$, since $\kappa_{\sigma}(D, \operatorname{det} f)=0$. We fix a positive integer $m \in \mathbb{N}(D, f)$ with $G_{m}=0$. Then $m N$ and $m \Xi$ are Cartier, and $m(D+E-N) \sim f^{*}(m \Xi)$.

Let $\tau: Y^{\prime} \rightarrow Y$ be a finite Galois surjective morphism from a non-singular projective variety such that $\tau^{*} \Xi$ is Cartier. For a birational morphism $\delta: X^{\prime} \rightarrow X \times{ }_{Y} Y^{\prime}$ from a non-singular projective variety into the main component, let $\lambda: X^{\prime} \rightarrow X$ and $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the induced morphisms. We consider the same \mathbb{R}-divisors R_{Δ}, $R_{+}^{\prime}, R_{-}^{\prime}, R_{\tau}, \Delta^{\prime}$, and $D^{\prime}=\lambda^{*} D+R_{+}^{\prime}-f^{\prime *} R_{\tau}$ as before. We may assume that the union of $\operatorname{Supp} \lambda^{-1}\langle D\rangle, \operatorname{Supp} R_{+}^{\prime}, \operatorname{Supp} R_{-}^{\prime}, \operatorname{Supp} \Delta^{\prime}$, and $\operatorname{Supp} f^{*} R_{\tau}$ is a normal crossing divisor. We define

$$
C:=m \lambda^{*} D+(m-1) \lambda^{*} E-(m-1) \lambda^{*} N-(m-1) f^{\prime *} \tau^{*} \Xi+R_{+}^{\prime}-f^{\prime *} R_{\tau} .
$$

Then C is a \mathbb{Q}-divisor and

$$
C-\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)=D^{\prime}-\left(K_{X^{\prime} / Y^{\prime}}+\Delta^{\prime}\right)+(m-1) \lambda^{*}\left(D+E-N-f^{*} \Xi\right)
$$

is nef and abundant. We set $L=\left\ulcorner C-\Delta^{\wedge}\right.$. Then

$$
\begin{aligned}
\delta_{*} \mathcal{O}_{X^{\prime}}(L) & =\delta_{*} \mathcal{O}_{X^{\prime}}\left(\left\ulcorner-\lambda^{*} E+\lambda^{*} N-\Delta^{\prime}+R_{+}^{\prime}-f^{\prime *} R_{\tau}\right) \otimes p_{2}^{*} \mathcal{O}_{Y^{\prime}}\left(\tau^{*} \Xi\right)\right. \\
& \hookrightarrow \delta_{*} \mathcal{O}_{X^{\prime}}\left(\left\ulcorner\lambda^{*} N^{\urcorner}\right) \otimes p_{2}^{*} \mathcal{O}_{Y^{\prime}}\left(\tau^{*} \Xi\right)\right.
\end{aligned}
$$

for projections $p_{1}: X \times_{Y} Y^{\prime} \rightarrow X^{\prime}$ and $p_{2}: X \times_{Y} Y^{\prime} \rightarrow Y^{\prime}$.
We shall show the natural injection

$$
\mathcal{O}_{Y^{\prime}} \rightarrow f_{*}^{\prime} \mathcal{O}_{X^{\prime}}\left(\left\ulcorner\lambda^{*} N^{\urcorner}\right)\right.
$$

is isomorphic as follows: Assume the contrary. Then there exists a prime divisor B^{\prime} of Y^{\prime} such that $\operatorname{Supp} \lambda^{*} N$ contains all the prime divisors Γ^{\prime} of X^{\prime} with $f^{\prime}\left(\Gamma^{\prime}\right)=B^{\prime}$. The same property hold for the prime divisors conjugate to B^{\prime} over Y. Hence Supp N contains all the prime divisors Γ of X with $f(\Gamma)=\tau\left(B^{\prime}\right)$. This contradicts $G_{m}=0$.

Therefore, we have an injection

$$
f_{*}^{\prime} \mathcal{O}_{X^{\prime}}(L) \subset \mathcal{O}_{Y^{\prime}}\left(\tau^{*} \Xi\right)
$$

Here $L-\left(K_{X^{\prime} / Y^{\prime}}+\left\langle-C+\Delta^{\prime}\right\rangle\right)$ is nef and abundant. Thus $\kappa_{\sigma}\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}(L)^{\wedge}\right)=0$ and hence $\kappa\left(f_{*}^{\prime} \mathcal{O}_{X^{\prime}}(L)^{\wedge}\right)=0$ by 4.6. Therefore $\kappa(\Xi)=0$ and $\kappa(D+E) \geq 0$. By an argument using a flattening of f, we infer that $\kappa(D) \geq 0$.
4.8. Theorem Let X be a normal projective variety and let Δ be an effective \mathbb{R}-divisor such that (X, Δ) is log-terminal. Let D be $a \mathbb{Q}$-divisor such that D $\left(K_{X}+\Delta\right)$ is nef and abundant. If $\kappa_{\sigma}(D)=0$, then $\kappa(D)=0$.

Proof. We may assume that X is non-singular and Supp Δ is a normal crossing divisor by $3.33-(1)$. Let $D=P_{\sigma}(D)+N_{\sigma}(D)$ be the σ-decomposition. Then $P_{\sigma}(D) \approx 0$ by 1.12. Then $N_{\sigma}(D) \cdot C \in \mathbb{Q}$ for any irreducible curve $C \subset X$. Since the prime components of $N_{\sigma}(D)$ are numerically linearly independent, $N_{\sigma}(D)$ is an effective \mathbb{Q}-divisor.

Suppose that the irregularity $q(X)=0$. Then any divisor numerically equivalent to zero is \mathbb{Q}-linearly equivalent to zero. Thus $P_{\sigma}(D) \sim_{\mathbb{Q}} 0$ and $\kappa(D)=0$.

Thus we may assume that $q(X)>0$. Let $\alpha: X \rightarrow \operatorname{Alb} X$ be the Albanese mapping and let $X \rightarrow Y \rightarrow \operatorname{Alb} X$ be the Stein factorization. Then, by 4.1,

$$
0=\kappa_{\sigma}(D) \geq \kappa_{\sigma}\left(\left.D\right|_{X_{y}}\right)+\kappa_{\sigma}(Y) \geq 0
$$

for a 'general' fiber X_{y} of $y \in Y$. Thus $0=\kappa_{\sigma}\left(\left.D\right|_{X_{y}}\right)=\kappa(Y)$. Therefore, by [50, Theorem 13], $Y \rightarrow \operatorname{Alb} X$ is isomorphic and hence the Albanese mapping α is a fibration. In particular $q(X) \leq \operatorname{dim} X$. Since α induces an isomorphism $\alpha^{*}: \operatorname{Pic}^{0}(Y) \rightarrow \operatorname{Pic}^{0}(X)$, there exist an integer $b \in \mathbb{N}$ and a numerically trivial divisor L of $Y=\operatorname{Alb} X$ such that $b N_{\sigma}(D)$ and $b D$ are Cartier with $b N_{\sigma}(D)-b D \sim$ $\alpha^{*}(b L)$. Thus $\kappa\left(\left.D\right|_{X_{y}}\right)=0$. Then we have $\kappa_{\sigma}(D, \operatorname{det} f)=0$ by 4.5. Since $K_{Y}=0$, we have $\kappa(D) \geq 0$ by 4.7.
4.9. Corollary Let X be a normal projective variety and let Δ be a \mathbb{Q}-divisor such that (X, Δ) is log-terminal. If $\kappa_{\sigma}\left(K_{X}+\Delta\right)=0$, then $\kappa\left(K_{X}+\Delta\right)=0$.

Remark The abundance 4.8 was proved for $L=K_{X}$ for a non-singular projective variety X admitting a minimal model, by Kawamata [56]. The idea of applying Iitaka's addition formula for κ to the Albanese map is originally by Tsunoda (cf. [114]).

