
CHAPTER V

Numerical Kodaira dimension

We give a criterion for an R-divisor to be pseudo-effective in §1 by applying the
Kawamata–Viehweg vanishing theorem. In §2, we introduce two invariants, denoted
by κσ(D) and κν(D), respectively, both of which seem to be the candidates and
deserve to be called the numerical D-dimension for a pseudo-effective divisor D.
Both invariants have many properties expected for numerical D-dimension, which
we prove using the results in §1. In §3, we introduce the notion of ω-sheaves, which
is useful for the study of direct images of relative pluricanonical sheaves. The
notion of weak positivity introduced by Viehweg is refined also in §3. We prove
some addition theorems for κ and κσ and for log-terminal pairs in §4. These are
slight generalizations of Viehweg’s results in [147]. In the last part of §4, we prove
the abundance theorem in a special case where κσ = 0, as an application of the
addition theorems.

§1. Pseudo-effective R-divisors

§1.a. Base-point freeness.

1.1. Lemma Let ∆ and D be effective R-divisors without common prime com-

ponents on a normal variety X and let x be a point of X.

(1) If (X, bD) and (X, b/(b− 1)∆) are log-terminal at x for some b > 1, then

(X,D + ∆) is log-terminal at x.
(2) Suppose that X is non-singular at x and multx ∆ < 1. Then (X,∆) is

log-terminal at x.
(3) Suppose that X is non-singular at x, (X, bD) is log-terminal at x, and

multx ∆ < (b− 1)/b for some b > 1. Then (X,∆ +D) is log-terminal at

x.

Proof. (1) Let f : Y → X be a bimeromorphic morphism from a non-singular
variety such that the union of the exceptional locus G =

∑
Gi, the proper transform

DY of D, and the proper transform ∆Y of ∆ is a simple normal crossing divisor.
Then we can write

KY = f∗(KX + bD)+
∑

aiGi− bDY = f∗
(
KX +

b

b− 1
∆

)
+
∑

ciGi−
b

b− 1
∆Y
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for real numbers ai, ci. If x ∈ f(Gi), then ai, ci > −1. Furthermore, xbDYy =

x(b/(b− 1))∆Yy = 0 over a neighborhood of x. Since 1/b+ (b− 1)/b = 1, we have

KY = f∗(KX +D + ∆) +
∑ ai + (b− 1)ci

b
Gi −DY −∆Y .

Thus (X,D + ∆) is log-terminal at x.
(2) Suppose that the bimeromorphic morphism f : Y → X in the proof of (1)

is a succession of blowups

Y := Xl
µl−→ Xl−1 → · · · → X1

µ1−→ X0 := X

along non-singular centers Wk ⊂ Xk−1. Let ∆k be the proper transform of ∆ in Xk

and set wk := codimWk, Ek := µ−1
k (Wk), and rk := multWk

∆k−1. We may assume
that the image of Wk in X contains x and that rk ≤ multx ∆ < 1 by replacing X
with an open neighborhood of x. Then

KXk
= µ∗

k(KXk−1
+ ∆k−1) + (wk − 1− rk)Ek −∆k

where wk − 1− rk ≥ 1− rk > 0. Therefore,

KY = f∗(KX + ∆) +
∑l

k=1
(wk − 1− rk)φ∗kEk −∆Y ,

where φk is the composite Y = Xl → Xk and ∆Y = ∆l. Thus (X,∆) is log-terminal
at x.

(3) follows from (1) and (2). ¤

1.2. Proposition Let x be a point of an n-dimensional non-singular projective

variety X and let ∆ be an effective R-divisor such that (X,∆) is log-terminal at x.
Let Ex be the exceptional divisor for the blowing-up ρx : Z → X at x and let L be

a Z-divisor of X. If ρ∗x(L− (KX + ∆))− nEx is ample, then x 6∈ Bs |L|.
Proof. For the proper transform ∆Z of ∆ in Z, we have

KZ = ρ∗x(KX + ∆) + (n− 1−multx ∆)Ex −∆Z .

There exists a birational morphism µ : Y → Z from a non-singular projective variety
such that the union E of the exceptional locus for f := ρx ◦ µ : Y → X and

f−1(Supp ∆) is a simple normal crossing divisor. Let E =
∑l

i=0Ei be the prime
decomposition in which E0 is the proper transform of Ex. By comparing KY with
KX + ∆, we have real numbers ai for 0 ≤ i ≤ l such that

KY = f∗(KX + ∆) +
∑l

i=0
aiEi.

Here a0 = n−1−multx ∆. If x ∈ f(Ei), then ai > −1, since (X,∆) is log-terminal
at x. Now the R-divisor

f∗L+
∑l

i=0
aiEi − nµ∗Ex −KY

is nef and big. We define

R :=
∑l

i=0
riEi :=

∑l

i=0
aiEi − nµ∗Ex.
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Then r0 = −1 − multx ∆ ≤ −1. If x ∈ f(Ei) and if {x} 6= f(Ei), then ri > −1.
Hence there exist ideal sheaves J0,J1 of OZ such that

(1) µ∗OY ( pRq ) = J0 ∩ J1 ⊂ OZ ,
(2) SuppOZ/J0 = Ex and Ex ∩ SuppOZ/J1 = ∅.

Thus J := f∗OY ( pRq ) is an ideal sheaf of OX and x is an isolated point of
SuppOX/J . On the other hand,

H1(X, f∗OY ( pRq )⊗OX(L)) = 0,

by the vanishing theorem II.5.9. Therefore, the composite

H0(X,OX(L))→ H0(X,OX(L)⊗ (OX/J ))→ OX(L)⊗ C(x)

is surjective and hence x 6∈ Bs |L|. ¤

1.3. Theorem Let D be a pseudo-effective R-divisor of a non-singular projec-

tive variety X. Then there exists an ample divisor A such that

x 6∈ Bs
∣∣ ptDq +A

∣∣ ∪ Bs | xtDy +A|
for any t ∈ R>0 and for any point x ∈ X with σx(D) = 0.

Proof. Let ρ : Z → X be the blowing-up at a point x with σx(D) = 0 and let
Ex be the exceptional divisor. If H is a very ample divisor of X, then |ρ∗H − Ex|
is base point free. Therefore ρ∗(kH)− nEx is ample for k > n := dimX. We fix a
number 0 < α < 1. Then we can take an ample divisor A such that

ρ∗((1− α)A−KX + 〈−tD〉)− nEx and ρ∗((1− α)A−KX − 〈tD〉)− nEx

are both ample for any t > 0 and for any x ∈ X, since {c1(〈tD〉)} is bounded
in N1(X). Then, for any t > 0, there exists a member ∆ ∈ |tD + αA|num with
multx ∆ < 1, since σx(D) = 0. Here (X,∆) is log-terminal at x by 1.1. We set

L1 := ptDq +A and L2 := xtDy +A. Then

ρ∗(L1 − (KX + ∆))− nEx and ρ∗(L2 − (KX + ∆))− nEx

are both ample by

ρ∗(L1 − (KX + ∆))− nEx
∼∼∼ ρ∗((1− α)A−KX + 〈−tD〉)− nEx,

ρ∗(L2 − (KX + ∆))− nEx
∼∼∼ ρ∗((1− α)A−KX − 〈tD〉)− nEx.

Therefore, x 6∈ Bs |L1| ∪ Bs |L2| by 1.2. ¤

1.4. Corollary Let A be an ample divisor of X such that A−KX − (dimX)H
is ample for some very ample divisor H. Then the following two conditions are

equivalent for an R-divisor D of X:

(1) D is pseudo-effective;
(2) h0(X, ptDq +A) 6= 0 for any t ∈ R>0.
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Proof. It is enough to show (1)⇒ (2). In the proof of 1.3, we choose a point
x ∈ X with σx(D) = 0 and x 6∈ Supp〈D〉, and choose a number 0 < α < 1 with
ρ∗((1 − α)A − KX) − nEx being ample. Let us fix t > 0 and choose a member
∆ ∈ |tD + αA|num with multx ∆ < 1. We set L1 = ptDq +A. Then

ρ∗(L1 − (KX + ∆ + 〈−tD〉))− nEx
∼∼∼ ρ∗((1− α)A−KX)− nEx

is ample. Here (X,∆ + 〈−tD〉) is log-terminal at x by 1.1. Thus x 6∈ Bs |L1| by
1.2. In particular, H0(X,L1) 6= 0. ¤

We have the following generalization of III.1.7-(3):

1.5. Corollary Suppose that σx(D) = 0 for a pseudo-effective R-divisor D and

a point x ∈ X. Then, for any ample R-divisor A, there is an effective R-divisor ∆
such that ∆ ∼∼∼ D +A and x 6∈ Supp∆.

Recall that the numerical base locus NBs(D) is the set of points with σx(D) > 0.
This is a countable union of proper subvarieties. In fact,

NBs(D) =
⋃

m>0
Bs
∣∣ pmDq +A

∣∣

by 1.3. If Nσ(D) = 0, then codim NBs(D) ≥ 2. If NBs(Pσ(D)) is not a Zariski-
closed subset, then D admits no Zariski-decompositions.

1.6. Corollary The numerical base locus NBs(D) has no isolated points: if

σx(D) > 0, then there is a curve γ ⊂ NBs(D) passing through x.

Proof. Assume that x is an isolated point of NBs(D). Since NBs(D) depends
only on the Chern class c1(D), we may assume that Supp〈D〉 63 x. By 1.3, x is
also an isolated point of Bs | xmDy + A| for an ample divisor A and for infinitely
many m ∈ N. By [151], for such m, there exists k ∈ N with x 6∈ Bs |k( xmDy +A)|.
Since k(mD + A) = k( xmDy + A) + k〈mD〉, we have σx(mD + A) = 0. This is a
contradiction. ¤

1.7. Corollary Let Γ be a prime divisor.

(1) For a pseudo-effective R-divisor D, there is an ample divisor A such that

σΓ(tD +A)Z ≤ tσΓ(D) for any t ∈ R>0 and

lim
t→∞

1

t
σΓ(tD +A)Z = σΓ(D).

(2) If B is a big R-divisor, then σΓ(tB)Z − tσΓ(B) is bounded for t > 0.

Proof. (1) By 1.3, there is an ample divisor A such that σΓ(tPσ(D)+A)Z = 0
for any t > 0. Therefore σΓ(tD +A)Z ≤ tmultΓNσ(D) = tσΓ(D). Furthermore,

1

tk
σΓ(tkD +A)Z ≥

1

tk
σΓ(t(kD +A))Z.

Therefore

lim
t→∞

1

t
σΓ(tD +A)Z ≥ lim

k→∞
σΓ(D + (1/k)A) = σΓ(D).
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(2) By (1), we have an ample divisor A with σΓ(tB + A)Z ≤ tσΓ(B). Since
B is big, there exist a positive integer k and an effective R-divisor ∆ such that
kB ∼ A+ ∆. Therefore, for t > k,

σΓ(tB)Z ≤ σΓ((t− k)B +A)Z + multΓ ∆ ≤ (t− k)σΓ(B) + multΓ ∆. ¤

Remark The author was informed 1.7-(2) from H. Tsuji, who seemed to have
similar results to 1.2 and 1.3 by applying some L2-vanishing theorem.

1.8. Problem Let D be a pseudo-effective R-divisor, A an ample divisor, and
Γ a prime divisor. Then is tσΓ(D)− σΓ(tD +A) bounded for t > 0 ?

Let B be a big R-divisor of X. The set

SBs(B) :=
⋂

∆∈|B|Q
Supp∆

is called the stable base locus of B. Since |B|Q is the set of effective R-divisors
Q-linearly equivalent to B, we have

SBs(B) =
⋂∞

m=1
Bs |mB| =

⋃
multΓ B 6∈Q

Γ ∪
⋂∞

m=1
Bs
∣∣
xmBy

∣∣ .

We introduce the following R-version of the stable base locus:

SBs(B)R :=
⋂

∆∈|B|R
Supp ∆.

Note that SBs(B) and SBs(B)R are Zariski-closed subsets of X containing NBs(B).
For an ample R-divisor A, let us consider the set

G(B,A) := {t ∈ R | B + tA is big and NBs(B + tA) 6= SBs(B + tA)R}.
1.9. Lemma

(1) NBs(B) =
⋃

t>0 SBs(B + tA)R.

(2) If B + tA is big, then (t− ε, t) ∩G(B,A) = ∅ for some ε > 0.
(3) If t ∈ G(B,A) and if NBs(B + tA) is a Zariski-closed subset, then t is an

isolated point of G(B,A).

Proof. (1) If x ∈ NBs(B), i.e., σx(B) > 0, then σx(B + tA) > 0 for some
t > 0. Thus x ∈ SBs(B+ tA)R. Suppose that x 6∈ NBs(B). Then x 6∈ SBs(B+ qH)
for any q ∈ Q>0 and for an ample Q-divisor H, by 1.3. For any t ∈ R>0, we can
find q ∈ Q>0 such that tA− qH is ample. Thus

SBs(B + tA)R ⊂ SBs(B + qH)R ∪ SBs(tA− qH)R ⊂ SBs(B + qH).

Hence x 6∈ SBs(B + tA)R for t > 0.
(2) We consider a sequence {SBs(B+t′A)R} of Zariski-closed subsets. If t1 < t2

and B + t1A is big, then SBs(B + t1A)R ⊃ SBs(B + t2A)R. By the Noetherian
condition, we have

⋂
t>t′

SBs(B + t′A)R = SBs(B + t0A)R

for some t0 < t. Then SBs(B + t′A)R = NBs(B + t′A)R = SBs(B + t0A)R for
t > t′ ≥ t0.
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(3) If NBs(B) is Zariski-closed, then NBs(B) = SBs(B+ t1A)R for some t1 > 0
by (1). Hence SBs(B + tA)R = SBs(B + t1A)R for 0 < t < t1. Thus the assertion
follows from (2). ¤

Therefore, NBs(B) is Zariski-closed for ‘almost all’ big R-divisors B. Note that if t
is an accumulation point of G(B,A), then B+ tA admits no Zariski-decomposition.

§1.b. Restriction to general subvarieties. We shall generalize the argu-
ment of 1.2.

1.10. Proposition Let C be a non-singular projective curve of a non-singular

projective variety X of dimension n and let ∆ be an effective R-divisor such that

(X,∆) is log-terminal around C and C 6⊂ Supp ∆. Let EC be the exceptional divisor

for the blowing-up ρ : Z → X along C and let L be a Z-divisor of X. If

ρ∗(L− (KX + ∆))− (n− 1)EC

is ample, then the restriction homomorphism H0(X,L)→ H0(C,L|C) is surjective.

Proof. The proof is similar to that of 1.2. We have

KZ = ρ∗(KX + ∆) + (n− 2)EC −∆Z

for the proper transform ∆Z of ∆. We can take a birational morphism µ : Y → Z
from a non-singular projective variety and a normal crossing divisor E =

∑
Ei of

Y as the union of the exceptional locus for f := ρ◦µ : Y → X and Supp(f ∗∆). We
may assume that f is an isomorphism over general points of C. Then

KY = f∗(KX + ∆) +
∑

aiEi,

for ai ∈ R. If f(Ei) ∩ C 6= ∅, then ai > −1. Now the R-divisor

f∗L+
∑

aiEi − (n− 1)µ∗EC −KY

is nef and big. We set R :=
∑
riEi =

∑
aiEi − (n − 1)µ∗EC . Then ri > −1

if f(Ei) ∩ C 6= ∅ and f(Ei) 6⊂ C. Let E0 be the proper transform of EC . Then

r0 = −1. Therefore µ∗OY ( pRq ) = J0 ∩ J1 for suitable ideal sheaves J0 and J1

such that

(1) SuppOZ/J0 ∩ SuppOZ/J1 = ∅,
(2) SuppOZ/J0 = EC ,
(3) SuppOZ(−EC)/J0 does not dominate C.

Thus IC/ρ∗J0 is a skyscraper sheaf for the defining ideal IC of C. The vanishing

theorem II.5.9 implies H1(X, f∗OY ( pRq )⊗OX(L)) = 0. Thus

H0(X,OX(L))→ H0(X,OX(L)⊗OX/ρ∗J0)

is surjective. Hence H0(X,L) → H0(C,L|C) is surjective by H1(X, IC/ρ∗J0) =
0. ¤
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1.11. Theorem Let D be a pseudo-effective R-divisor of a non-singular pro-

jective variety X. Suppose that D 6∼∼∼ 0 and Nσ(D) = 0. Then there exist an ample

divisor A and a positive number β such that h0(X, xmDy +A) > βm for mÀ 0.

Proof. NBs(D) is a countable union of subvarieties of codimension greater
than one. Thus there is a non-singular curve C as a complete intersection of non-
singular ample divisors such that C∩NBs(D) = ∅ and C 6⊂ Supp〈D〉. Let ρC : Z →
X be the blowing-up along C and let EC be the exceptional divisor. We fix a number
0 < α < 1. Then we can find an ample divisor A such that the R-divisor

ρ∗C((1− α)A−KX − 〈mD〉)− (n− 1)EC

is ample for any m ∈ N. We set Lm := xmDy +A for m ∈ N. Since σx(D) = 0 for
x ∈ C, there exists an effective R-divisor ∆m ∼R mD + αA such that (X,∆m) is
log-terminal around C and C 6⊂ Supp(∆m). The R-linear equivalence

Lm − (KX + ∆m) ∼R (1− α)A−KX − 〈mD〉
implies that

ρ∗C(Lm − (KX + ∆m))− (n− 1)EC

is ample. Thus, by 1.10, the restriction homomorphism

H0(X, xmDy +A)→ H0(C, ( xmDy +A)|C)

is surjective for any m ∈ N. Note that D · C > 0 since D 6∼∼∼ 0. Hence there is a
positive number β such that

h0(X, xmDy +A) ≥ h0(C, ( xmDy +A)|C) ≥ βm for mÀ 0. ¤

1.12. Corollary Let D be a pseudo-effective R-divisor. Then the following

three conditions are equivalent :

(1) D ∼∼∼ Nσ(D);
(2) For any ample divisor A, the function t 7→ h0(X, xtDy +A) is bounded ;
(3) For any ample divisor A, limt→∞(1/t) h0(X, xtDy +A) = 0.

Proof. The implication (2) ⇒ (3) is trivial and (3) ⇒ (1) follows from 1.11.
We shall show (1)⇒ (2). Now P := Pσ(D) is numerically trivial. By the argument

of 1.3, there is an ample divisor A′ such that
∣∣A′ −A− ptPq

∣∣ 6= ∅ for any t > 0.

Thus h0(X, xtDy +A) ≤ h0(X, xtNy +A′) for N := Nσ(D). Hence we may assume
D = N . There is a number k ∈ R>0 such that σΓ(kN + A) > 0 for any prime
component Γ of N . Thus σΓ(tN +A) > (t− k)σΓ(N) for t > k by III.1.9. Hence
h0(X, xtNy +A) = h0(X, xkNy +A) for t > k. ¤

The following result is a partial generalization of 1.10:

1.13. Proposition Let W ⊂ X be a non-singular subvariety of a non-singular

projective variety X and let ∆ be an effective R-divisor such that (X,∆) is log-

terminal around W and W 6⊂ Supp ∆. Let EW be the exceptional divisor for the
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blowing-up ρ : Z → X along W and let L be a Z-divisor of X. Suppose further that

(Z,EW + ρ∗∆) is log-canonical around EW and

ρ∗(L− (KX + ∆))− (codimW )EW

is ample. Then H0(X,L)→ H0(W,L|W ) is surjective.

Proof. Now ∆Z := ρ∗∆ is the proper transform of ∆. Thus

KZ = ρ∗(KX + ∆) + (codimW − 1)EW −∆Z .

Let us take a birational morphism µ : Y → Z and let f : Y → X be the composite
ρ ◦ µ. We may assume that Y is a non-singular projective variety and that there is

a normal crossing divisor E =
∑k

i=0Ei satisfying the following conditions:

(1) E0 is the proper transform of EW in Y ;

(2) KY = f∗(KX + ∆) +
∑k

i=0 aiEi for some ai ∈ R;
(3) If f(Ei) ∩W 6= ∅, then ai > −1.

We look at the R-divisor

R :=
∑k

i=0
riEi :=

∑k

i=0
aiEi − (codimW )µ∗EW .

Then f∗L+R−KY is nef and big. If ri > 0, then Ei is µ-exceptional. If f(Ei)∩W 6=
∅ and if f(Ei) 6⊂ W , then ri = ai > −1. If f(Ei) ⊂ W , then ri ≥ −1, since
(Z,EW + ∆Z) is log-canonical around EW . Obviously, r0 = −1. For the set

I := {0 ≤ i ≤ k| ri = −1 and f(Ei) ∩W 6= ∅},
we have ∑

i∈I
riEi ≥ −µ∗EW .

Thus µ∗OY ( pRq ) = OZ(−EW )∩J1 for an ideal sheaf J1 with EW ∩SuppOZ/J1 =
∅. Therefore,

f∗OY ( pRq ) ' IW ∩ ρ∗J1.

By the vanishing theorem II.5.9, we have

H1(X, f∗OY ( pRq )⊗OX(L)) = 0.

Thus H0(X,L)→ H0(W,L|W ) is surjective, since W ∩ SuppOX/ρ∗J1 = ∅. ¤

The following result is a partial generalization of 1.11:

1.14. Proposition Let X be a non-singular projective variety, D a pseudo-

effective R-divisor, and let W ⊂ X a non-singular subvariety. Assume that

(1) NBs(D) ∩W = ∅,
(2) W 6⊂ Supp〈D〉,
(3) Supp〈D〉 is normal crossing over a neighborhood of W ,

(4) locally on a neighborhood of W , every non-empty intersection of irreducible

components of Supp〈D〉 intersects W transversely.



2. NUMERICAL D-DIMENSIONS 173

Then there exists an ample divisor A such that the restriction homomorphism

H0(X, xtDy +A)→ H0(W, ( xtDy +A)|W )

is surjective for any t ∈ R>0.

Proof. By 1.3, there is an ample divisorH ofX such thatW∩Bs | xtDy+H| =
∅ for any t > 0. For a number 0 < ε ¿ 1, we choose a general member F of
| x(t/ε)Dy +H|. Then, for the R-divisor ∆ = εF + ε〈(t/ε)D〉, we have

• ∆ ∼R tD + εH,
• W 6⊂ Supp∆,
• (X,∆) is log-terminal around W ,

by 1.1. Let ρ : Z → X be the blowing-up along W and let EW be the exceptional
divisor. By construction, ρ∗F + (ρ∗〈D〉)red + EW is a normal crossing divisor
around EW . Hence (Z,EW + ρ∗∆) is log-canonical around EW . Let us consider
L := xtDy +A for an ample divisor A with ρ∗(A−εH−KX−〈tD〉)−(codimW )EW

being ample. Then ρ∗(L − (KX + ∆)) − (codimW )EW is ample. Thus, by 1.13,
we have the surjection H0(X,L)³ H0(W,L|W ). ¤

§2. Numerical D-dimensions

§2.a. Numerical D-dimensions for nef R-divisors. We recall an invariant
ν(D) = ν(D,X) called the numerical D-dimension defined for a nef R-divisor D
of an n-dimensional non-singular projective variety X. The Chern class c1(D) is
considered as an element of H1,1(X,R) = H2(X,R) ∩H1,1(X). Suppose that

Dk ·An−k = c1(D)k ∪ c1(A)n−k[X] = 0

for an integer k ≥ 1 and for an ample divisor A. Then c1(D)k ∈ Hk,k(X,R) is
zero by II.6.3. The invariant ν(D) is defined to be the largest integer k ≥ 0 with

c1(D)k 6= 0 in Hk,k(X,R). This is also the largest integer k with Dk · An−k 6= 0
for an ample divisor A. For a nef R-Cartier divisor of a projective variety, its ν is
defined by the pullback to a desingularization.

Remark Let π : X → S be a flat projective surjective morphism of varieties
and let D be a π-nef R-divisor of X. Suppose that any fiber Xs = π−1(s) is
irreducible. Then ν(D|Xs

) is constant.

The following lemma is well-known for Q-divisors and proved by the same
argument as usual.

2.1. Lemma Let D be a nef R-divisor of a non-singular projective variety X
of dimension n. Then the following properties hold :

(1) κ(D) ≤ ν(D);
(2) κ(D) = n if and only if ν(D) = n;
(3) If ν(D) = n, then there is an effective R-divisor ∆ such that D − ε∆ is

ample for any 0 < ε ≤ 1.
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2.2. Definition An R-divisor D is called nef and abundant if D is nef and
ν(D) = κ(D).

2.3. Lemma Let D be a nef R-divisor of a non-singular projective variety X
of dimension n. Then the following properties hold :

(1) If D is nef and abundant, then there exist a birational morphism µ : Y →
X, a surjective morphism f : Y → Z of non-singular projective varieties,

and a nef and big R-divisor B of Z such that µ∗D ∼Q f∗B;
(2) Let π : X → S be a fibration onto a normal variety and let F be a general

fiber. Then ν(D|F ) ≤ ν(D) ≤ ν(D|F ) + dimS.

Proof. (1) This is also well-known for Q-divisors (cf. [55]). By the same
argument, we can find a birational morphism λ : V → X, an equi-dimensional
surjective morphism q : V → Z, a birational morphism ϕ : Y → V , a semi-ample
big Q-divisor L of Z and an effective R-divisor E of Y satisfying the following
conditions:

• Y and Z are non-singular projective varieties;
• V is a normal projective variety;
• q is birational to the Iitaka fibration for D;
• µ∗D ∼Q f∗L+ E, where µ := λ ◦ ϕ and f := q ◦ ϕ.

Let A be an ample divisor of Y . Then, for ν = ν(D) = dimZ, we have

0 = (µ∗D)ν+1 ·An−ν−1 ≥ (f∗L)ν · E ·An−ν−1 ≥ 0.

Therefore, f(SuppE) 6= Z. Thus E = f∗∆ for an effective R-divisor ∆, by III.5.9.
Hence µ∗D ∼Q f∗B for the nef and big R-divisor B = L+ ∆.

(2) We may assume that S is projective. Let A and H be very ample divisors
of X and S, respectively. We set d := dimS, ν := ν(D), and ν ′ := ν(D|F ). Then

Dν′ · f∗Hd · An−d−ν′

> 0. Hence ν ≥ ν′. In order to show the other inequality,
we may assume that ν ′ < n − d and ν > d. If D is big, then D − ε∆ is ample
for 0 < ε < 1 for some effective R-divisor ∆. Hence (D − ε∆)|F is also ample and
D|F is big. In particular, ν = ν ′ + d. Suppose that ν < n. Let V =

⋂
Ai be the

complete intersection of (n − ν)-general members A1, A2, · · · , An−ν of |A|. Then
V is a non-singular projective variety and D|V is a nef and big R-divisor. Thus
Dν−d · f∗Hd ·An−ν > 0. In particular, ν ′ ≥ ν − d. ¤

§2.b. κσ. Let X be a non-singular projective variety of dimension n.

2.4. Lemma Let D be an R-divisor and let A be an ample divisor of X. Then

lim
t→∞

h0(X,A+ ptDq )

tn
< +∞.

Proof. We can take an effective R-divisor ∆ and an ample divisor H such
that D + ∆ ∼ H. Thus h0(X,A + ptDq ) ≤ h0(X,A + ptqH). Hence we are done
by the Riemann-Roch formula. ¤
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2.5. Definition Let D be a pseudo-effective R-divisor and A a divisor. If
H0(X,A+ xmDy ) 6= 0 for infinitely many m ∈ N, then we define:

σ+(D;A) := min{k ∈ Z≥0 | limm→∞m−k h0(X,A+ xmDy ) < +∞},
σ(D;A) := max{k ∈ Z≥0 | limm→∞m−k h0(X,A+ xmDy ) > 0},

σ−(D;A) := max{k ∈ Z≥0 | limm→∞m−k h0(X,A+ xmDy ) > 0}.

If H0(X,A+ xmDy ) 6= 0 only for finitely many m ∈ N, then we define σ+(D;A) =
σ(D;A) = σ−(D;A) = −∞. We define the following numerical versions of D-
dimension of X:

κσ(D) = κσ(D,X) := max{σ(D;A) | A is a divisor},
κ+

σ (D) = κ+
σ (D,X) := max{σ+(D;A) | A is a divisor},

κ−σ (D) = κ−σ (D,X) := max{σ−(D;A) | A is a divisor}.
2.6. Remark

(1) σ(D; 0) = σ+(D; 0) = κ(D).
(2) The definition of σ+(D;A) is similar to Fujita’s definition [23] of κ(L,F)

for a line bundle L and a coherent sheaf F .
(3) In the original version [104], σ(D;A) was defined as σ−(D;A) and κσ was

defined as κ−σ .
(4) There are inequalities

σ−(D;A) ≤ σ(D;A) ≤ σ+(D;A) ≤ σ(D;A) + 1,

κ−σ (D,X) ≤ κσ(D,X) ≤ κ+
σ (D,X) ≤ κσ(D,X) + 1.

(5) An R-divisor D is pseudo-effective if and only if κ−σ (D) ≥ 0, by 1.4.
(6) By replacing x y by p q , we define

σ(D;A)′ := max{k ∈ Z≥0 ∪ {−∞} | lim
m→∞

m−k h0(X,A+ pmDq ) > 0}.

Since c1( pmDq − xmDy ) are bounded in N1(X), we have

κσ(D) = max{σ(D;A)′ | A is a divisor}.
In the definition of κ±σ , we can also replace x y by p q .

2.7. Proposition Let D be a pseudo-effective R-divisor of a non-singular pro-

jective variety X of dimension n.

(1) If D′ is an R-divisor with D′ −D being pseudo-effective, then κσ(D′) ≥
κσ(D), κ+

σ (D′) ≥ κ+
σ (D), and κ−σ (D′) ≥ κ−σ (D). In particular, κσ(D),

κ+
σ (D), and κ−σ (D) depend only on the first Chern class c1(D) ∈ N1(X).

(2) Suppose that xkDy is pseudo-effective for some k ∈ N. Then κσ(D) =
maxk∈N κσ( xkDy ), κ+

σ (D) = maxk∈N κ
+
σ ( xkDy ), and κ−σ (D) = maxk∈N

κ−σ ( xkDy ). In particular, κ−σ (D) ≥ κ(D).
(3) κ+

σ (D) = n if and only if D is big. In this case, κσ(D) = κ−σ (D) = n.
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(4) κσ(f∗D) = κσ(D), κ+
σ (f∗D) = κ+

σ (D), and κ−σ (f∗D) = κ−σ (D) hold for

any proper surjective morphism f : Y → X from a non-singular projective

variety.

(5) If H ⊂ X is a non-singular ample prime divisor and if κσ(D) < dimX,

then κσ(D) ≤ κσ(D|H), κ+
σ (D) ≤ κ+

σ (D|H), and κ−σ (D) ≤ κ−σ (D|H).
(6) If D is nef, then κ−σ (D) = κ+

σ (D) = κσ(D) = ν(D).
(7) Let f : X → Y be a generically finite surjective morphism onto a projective

variety and let E be an effective R-divisor such that Nσ(D;X/Y ) ≥ E.

Then κσ(D) = κσ(D−E), κ+
σ (D) = κ+

σ (D−E), and κ−σ (D) = κ−σ (D−E).
(8) κ−σ (D) = 0 if and only if D ∼∼∼ Nσ(D). In this case, κ+

σ (D) = κσ(D) = 0.
(9) (Easy addition): Let f : X → Y be a fiber space and let F be a ‘general’

fiber. Then κσ(D) ≤ κσ(D|F ) + dimY , κ+
σ (D) ≤ κ+

σ (D|F ) + dimY , and

κ−σ (D) ≤ κ−σ (D|F ) + dimY .

Proof. (1) By 1.3, there is an ample divisor A such that

H0(X, xm(D′ −D)y +A) 6= 0

for any m > 0. Hence h0(X, xmD
′
y + 2A) ≥ h0(X, xmDy +A).

(2) Let l be a positive integer such that Supp〈lD〉 coincides with the union
of prime components Γ of 〈D〉 with multΓ〈D〉 6∈ Q. There is a constant c with
〈lD〉 ≤ c〈kD〉. We can choose the integer l above with l > ck + 1. Then there is
an ample divisor A such that

H0
(
X, xm((l − ck − 1)D + c xkDy )y +A

)
6= 0

for any m > 0 by 1.3. Since

m xlDy + 2A = mD + 2A+m(l − 1)D −m〈lD〉
≥ mD +A+m(l − ck − 1)D +mc xkDy +A,

we have

h0(X,m xlDy + 2A) ≥ h0(X, xmDy +A),

which implies the expected equalities.
(3) If D is big, then κ−σ (D) = n by (2). Conversely, assume that κ+

σ (D) = n.
Let A be a very ample divisor such that σ+(D;A) = n. Let H be another non-
singular very ample divisor such that H −A is ample. There is an exact sequence

0→ H0(X, xmDy +A−H)→ H0(X, xmDy +A)→ H0(H, ( xmDy +A)|H).

We note that

lim
m→∞

m−n+1 h0(H, ( xmDy+A)|H) < +∞, lim
m→∞

m−n+1 h0(X, xmDy+A) = +∞.

Hence mD − (H −A) is pseudo-effective for some m > 0. Thus D is big.
(4) Let H be an ample divisor of Y . Then f∗OY (H) ⊂ OX(A)⊕k for some

ample divisor A of X and a positive integer k. Hence h0(Y, xmf
∗Dy + H) ≤

k h0(X, pmDq +A). Thus κσ(f∗D) ≤ κσ(D), and the same inequalities for κ+
σ and
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κ−σ hold. For the converse, it is enough to take an ample divisor H of Y such that
H − f∗A is very ample for a given ample divisor A of X.

(5) We may assume that H 6⊂ Supp〈D〉. For an ample divisor A, let us consider
the exact sequences:

0→ OX( xmDy+A−(j+1)H)→ OX( xmDy+A−jH)→ OH( xmDy+A−jH)→ 0

for integers j ≥ 0. There is an integer k such that kH − A is ample. Then
h0(X, xmDy +A− kH) = 0, since D is not big. Therefore

h0(X, xmDy +A) ≤ k h0(H, ( xmDy +A)|H)

for any m > 0. Therefore κσ(D) ≤ κσ(D|H), and the same inequalities for κ+
σ and

κ−σ hold.
(6) We may assume thatD is not big. Let ν := ν(D) < n. Let A1, A2, . . . , An−ν

be general non-singular ample prime divisors of X. Then the intersections Vj :=⋂
i≤j Ai are non-singular, D|Vj

is not big for j < n − ν, and D|Vn−ν
is big. Then,

by (5), κ+
σ (D) ≤ κ+

σ (D|Vj
) ≤ dimVn−ν = ν(D). The converse inequality κ−σ (D) ≥

ν(D) follows from 1.14, since we may replace D so that Supp〈D〉 is a simple normal
crossing divisor.

(7) Let H be an ample divisor of Y . Then

mE ≤ Nσ(mD;X/Y ) = Nσ(mD + f∗H;X/Y ) ≤ Nσ(mD + f∗H)

for any m > 0. Therefore H0(X, xmDy + f∗H) ' H0(X, xm(D − E)y + f∗H).
(8) follows from 1.12.
(9) Let A be an ample divisor of X. We shall prove the following assertion by

induction on dimY : there is a constant c > 0 such that

h0(X, xmDy +A) ≤ cmdim Y h0(F, ( xmDy +A)|F )

for mÀ 0. Let H ⊂ Y be a ‘general’ ample divisor of Y . Then there is a positive
integer l such that D − lf∗H is not pseudo-effective. Thus h0(X, xmDy + A −
mlf∗H) = 0 for mÀ 0. Hence

h0(X, xmDy +A) ≤
∑ml−1

i=0
h0(f∗H, ( xmDy +A− if∗H)|f∗H)

≤ ml h0(f∗H, ( xmDy +A)|f∗H).

Thus we are done by induction. ¤

§2.c. Numerical domination.

2.8. Definition Let D1 and D2 be two R-divisors of a non-singular projective
variety X. We say that D1 dominates D2 if tD1−D2 is Q-linearly equivalent to an
effective R-divisor for some t ∈ Q>0. In this case, we write D1 º D2 or D2 ¹ D1.

2.9. Remark

(1) If D1 º D2 and D2 º D3, then D1 º D3.
(2) If D1 and D2 are effective R-divisors with SuppD1 ⊃ SuppD2, then

D1 º D2.
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(3) If D1 º D2, then κ(D1) ≥ κ(D2).

2.10. Definition Let D be an R-divisor and let W be a Zariski-closed proper
subset of a non-singular projective variety X. We say that D dominates W and
write D º W or W ¹ D if the following condition is satisfied: let µ : Y → X be
a birational morphism from a non-singular projective variety such that µ−1(W ) is
the support of an effective divisor E. Then µ∗D º E. Note that this condition
does not depend on the choices of µ : Y → X and E.

2.11. Lemma For any R-divisor D with 0 ≤ κ(D) < dimX,

κ(D) = min{dimW |W 6¹ D}.
Proof. If κ(D) = 0, then {x} 6¹ D for a point x 6∈ ⋃m>0 Bs

∣∣ pmDq
∣∣. Thus,

we may assume 0 < κ(D) < dimX. Let Φ: X ···→ Z be the Iitaka fibration for D.
If W ⊂ X is a general subvariety of dimW = κ(D) = dimZ, then µ∗D−βE is not
pseudo-effective for any β > 0, for a birational morphism µ : Y → X, and for an
effective divisor E with SuppE = µ−1(W ). On the other hand, if dimW < dimZ,
then µ−1W is contained the pullback of an ample divisorH of Z andH is dominated
by µ∗D. Hence D ºW . ¤

We shall give a numerical version of the notion of domination as follows:

2.12. Definition Let D1 and D2 be two R-divisors of a non-singular projective
variety. If the following condition is satisfied, we say that D1 dominates D2 numer-

ically and write D1 < D2 or D2 4 D1: for an ample divisor A and for any positive
number b > 0, there exist real numbers x > b and y > b such that xD1 − yD2 +A
is pseudo-effective.

For an ample divisor A and for a number x ∈ R≥0, we consider the set

D(x) := {y ∈ R≥0 | xD1 − yD2 +A is pseudo-effective}
and define a function

ϕ(x) =

{
sup{y ∈ D(x)}, if D(x) 6= ∅,
−∞, otherwise

with values in {±∞} ∪ R≥0. Then D1 < D2 if and only if limx→+∞ ϕ(x) = +∞.

2.13. Lemma

(1) If D1 < D2 and D2 < D3 and if D1 is pseudo-effective, then D1 < D3.

(2) If D1 º D2, then D1 < D2.

(3) If D1 and D2 are nef R-divisors with D1 < D2, then ν(D1) ≥ ν(D2).

Proof. (1) For a given positive number b, we choose numbers u, v ∈ R>b so
that uD2−vD3+A is pseudo-effective. Let c be a positive number with vc/(u+c) >
b and we choose numbers x, y ∈ R>c so that xD1 − yD2 + A is pseudo-effective.
Then

ux

u+ y
D1 −

yv

u+ y
D3 +A =

u

u+ y
(xD1 − yD2 +A) +

y

u+ y
(uD2 − vD3 +A)
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is pseudo-effective. Since y > c, we have yv/(u + y) > b. Since D1 is pseudo-
effective, we can choose x to satisfy ux/(u+ y) > b. Thus D1 < D3.

(2) Let t be a positive number such that tD1 −D2 is pseudo-effective. Then,
for any b > 0, there is a number m such that mt > b and m > b. Then (mt)D1 −
mD2 +A is pseudo-effective.

(3) Let b be an arbitrary positive integer. Then there exist real numbers x > b
and y > b such that xD1−yD2 +A is pseudo-effective. Then, for any 0 ≤ k ≤ ν :=
ν(D1), we have inequalities

xDν+1−k
1 Dk

2A
n−ν−1 +An−νDν−k

1 Dk
2 ≥ yDν−k

1 Dk+1
2 An−ν−1,

since D1 and D2 are nef. Hence, we infer that if Dν+1−k
1 Dk

2 is numerically trivial,

then Dν−k
1 Dk+1

2 is also numerically trivial by II.6.3. Therefore Dν+1
2 is numerically

trivial since Dν+1
1 is so. Thus ν ≥ ν(D2). ¤

2.14. Lemma Let X be a non-singular projective variety, D a nef and abun-

dant R-divisor, and E an effective R-divisor. If D < E, then D º E.

Proof. We can reduce to the following situation by 2.3-(1): there is a fibration
f : X → Y onto a non-singular projective variety such that D ∼Q f∗B for a nef and
big R-divisor B. Let F be a ‘general’ fiber of f . Then E|F 4 D|F ∼Q 0. It follows
that −E is relatively pseudo-effective over Y . Thus f(SuppE) 6= Y . Hence, there
is a positive integer l such that lf∗B − E is Q-linearly equivalent to an effective
R-divisor. ¤

2.15. Corollary Let f : X → Y be a surjective morphism from a non-singular

projective variety onto a projective variety, D a nef and abundant R-divisor of X,

and A an ample divisor of Y . Then the following conditions are equivalent :

(1) D < f∗A;
(2) D º f∗A;
(3) f is the composite of the Iitaka fibration X ···→ Z for D and a rational

map Z ···→ Y .

2.16. Definition Let D be an R-divisor and let W be a proper Zariski-closed
subset of a non-singular projective variety X. If the following condition is satisfied,
then we say that D dominates W numerically and write D < W or W 4 D: let
µ : Y → X be a birational morphism from a non-singular projective variety such
that µ−1(W ) is the support of an effective divisor E. Then µ∗D < E. Note that
this condition does not depend on the choices of µ : Y → X and E.

2.17. Lemma Let D be an R-divisor of a non-singular projective variety X,

W ⊂ X a Zariski-closed proper subset with W 4 D, and Z ⊂ X × U a dominant

family of closed subvarieties of X parameterized by a complex analytic variety U
such that general members Zu ⊂ X are non-singular. Then the restriction D|Zu

numerically dominates W ∩ Zu for a ‘general’ member Zu.
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Proof. Let ρ : X ′ → X be a birational morphism from a non-singular pro-
jective variety such that ρ−1(W ) is an effective reduced divisor E. Let Z ′ → Z
be a bimeromorphic morphism from a non-singular variety such that the induced
meromorphic map p : Z ′ ···→ X ′ from the first projection Z → X is a holomorphic.
For an ample divisor A of X ′ and for any positive number b, there exist x, y ∈ R>b

such that xρ∗D−yE+A is pseudo-effective. Then p∗(xρ∗D−yE+A) is relatively
pseudo-effective over U . Therefore, D|Zu

<W ∩Zu for a ‘general’ member Zu. ¤

2.18. Lemma Let π : X → S be a flat projective surjective morphism of com-

plex analytic varieties and let W ⊂ X be a proper closed analytic subspace such

that

(1) every fiber Xs = π−1(s) is irreducible and reduced,

(2) the sheaf OX/Ik
W is flat over S for any k ≥ 1 for the defining ideal IW

of W .

Let D be an R-Cartier divisor of X such that D|Xs
<W ∩Xs for a ‘general’ fiber

Xs. Then D|Xs
<W ∩Xs for any s ∈ S.

Proof. We may assume that S is a non-singular curve. Let ρ : Y → X be the
blowing-up along W and let E be the effective Cartier divisor such that OY (−E) '
ρ∗IW /(tor). Note that, for the composite f := π ◦ ρ : Y → S, every fiber Ys :=
f−1(s) is irreducible and reduced, and Ys → Xs is the blowing-up along the defining
ideal of Ws := W ×S {s}. For an f -ample divisor A of Y and for positive numbers
x, y, suppose that xρ∗D − yE + A is f -pseudo-effective. Then the restriction
(xρ∗D − yE +A)|Ys

to any fiber Ys is also pseudo-effective. Hence D|Xs
<Ws for

any s ∈ S. ¤

2.19. Lemma Let D be a pseudo-effective R-divisor of a non-singular pro-

jective variety X, H ⊂ X a non-singular ample prime divisor, and W ⊂ H a

Zariski-closed subset with D <W . Then D|H <W .

Proof. Let ρ : Y → X be a birational morphism from a non-singular projec-
tive variety such that ρ−1(W ) is a reduced divisor E and that the proper transform
H ′ of H is non-singular. For an ample divisor A of Y , we consider

σ(x, y) := σH′(xρ∗D − yE +A)

as a function on

D = {(x, y) ∈ R2
≥0 | xρ∗D − yE +A is pseudo-effective}.

Note that xρ∗D − yE + A − σ(x, y)H ′ is pseudo-effective for (x, y) ∈ D, and that
Db := {(x, y) ∈ D | x, y > b} is non-empty for any b > 0.

Suppose that sup{σ(x, y) | (x, y) ∈ Db} = ∞ for any b > 0. Then ρ∗D <
E +H ′ = ρ−1H. Hence D < H and D is big. Since H is ample, D|H is still big.
Thus D|H <W .

Next suppose that β := sup{σ(x, y) | (x, y) ∈ Db} < +∞ for some b > 0. Let
c be a positive number with cA+ βH ′ being ample. Then cA+ σ(x, y)H ′ is ample
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for (x, y) ∈ Db. Since

xρ∗D − yE + (1 + c)A = (xρ∗D − yE +A− σ(x, y)H ′) + cA+ σ(x, y)H ′,

xρ∗D − yE + (1 + c)A and its restriction (xρ∗D − yE + (1 + c)A)|H′ are pseudo-
effective. Therefore, D|H <W . ¤

§2.d. κν .

2.20. Definition For an R-divisor D, we define κν(D) = κν(D,X) as follows:

(1) If D is not pseudo-effective, then κν(D) := −∞;
(2) If D is big, then κν(D) := dimX;
(3) In the other case, κν(D) := min{dimW | D 6<W}.

2.21. Lemma If κν(D) = k < dimX = n, then, for any ample divisor A,

there exist a positive integer m and ‘general’ members A1, A2, . . . , An−k ∈ |mA|
such that D 6< A1 ∩ · · · ∩An−k.

Proof. Let W be a subvariety of X of dimension k with D 6< W . Then
there exist a positive integer m and members A0

1, A
0
2, . . . , A0

n−k ∈ |mA| such that

V 0 := A0
1 ∩ A0

2 ∩ · · · ∩ A0
n−k is a k-dimensional subspace with W ⊂ V 0. Hence

D 6< V 0. Let π : Z → U be a flat family of closed subspaces of X whose fibers are
complete intersections V = A1∩· · ·∩An−k for some members A1, . . . , An−k ∈ |mA|.
Suppose that V 0 is the fiber π−1(0) for a point 0 ∈ U . By applying 2.18 to the
flat morphism X × U → U and the closed subspace Z ⊂ X × U , we infer that D
does not dominate numerically a ‘general’ fiber V of π. ¤

In particular, if D is a non-big pseudo-effective R-divisor, then κν(D) is the
minimum of dimW for non-singular complete intersections W with D 6<W .

The following is an example of pseudo-effective divisor D such that κν(D) is
not the maximum of κ(L) for semi-ample Q-divisors L of non-singular projective
varieties Y with birational morphisms µ : Y → X such that µ∗D < L (cf. 2.22-(5)).

Example Let L be a divisor of degree zero of an elliptic curve E such that
mL 6∼ 0 except for m = 0. Let X → E be the P1-bundle associated with OE ⊕
OE(L) and H a tautological divisor. Then H is nef and ν(H) = 1. Suppose that
there exist a birational morphism µ : Y → X and a fiber space f : Y → Z such
that µ∗H < f∗B for an ample divisor B of Z. Then we can show that Z is a
point as follows: Assume the contrary. Then Z is a curve. Let F be a fiber of
f . If µ∗(xH + A) − yF is pseudo-effective for an ample divisor A and for positive
numbers x, y À 0, then A · H ≥ yF · µ∗H and hence F · µ∗H = 0. There is a
surjection

OF ⊕OF (τ∗L)³ OF (µ∗H|F )

for τ : F → E. Since OE(L) is not a torsion element in Pic(E), the surjection
above factors through the first projection or the second projection. Therefore,
µ(F ) is contained in one of two sections of X → E corresponding to the splittings
of OE ⊕OE(L). This is a contradiction.
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2.22. Proposition Let D be a pseudo-effective R-divisor of a non-singular

projective variety X of dimension n.

(1) κν(D) ≥ κσ(D).
(2) κν(D) = 0 if and only if D ∼∼∼ Nσ(D).
(3) Let H ⊂ X be a non-singular ample prime divisor. If κν(D) < n, then

κν(D) ≤ κν(D|H).
(4) κν(f∗D) = κν(D) for any proper surjective morphism f : Y → X.

(5) If D is nef, then κν(D) = ν(D).
(6) Let f : X → Y be a generically finite surjective morphism onto a projective

variety and let E be an effective R-divisor with Nσ(D;X/Y ) ≥ E. Then

κν(D) = κν(D − E).
(7) (Easy Addition): For a fiber space π : X → S, κν(D) ≤ κν(D|Xs

)+dimS
holds for a ‘general’ fiber Xs = π−1(s).

Proof. (1) Let A be a very ample divisor of X and let W ⊂ X be a non-
singular subvariety of dimension w < κσ(D) that is the complete intersection

⋂
Aj

of (n−w)-general members of |A|. It is enough to show that D <W by 2.21. The
conormal bundle N ∨

W/X is isomorphic to OX(−A)⊕(n−w). We consider the exact
sequence:

0→ H0(X, Iq+1
W OX(A+ xmDy ))→ H0(X, Iq

WOX(A+ xmDy ))→
→ H0(W,Symq(N ∨

W/X)⊗OW (A+ xmDy )),

for positive integers q, where IW is the defining ideal sheaf of W . Thus

h0(X, Iq+1
W O(A+ xmDy )) ≥ h0(X,A+ xmDy )−

(
n− w + q

n− w

)
h0(W, (A+ xmDy )|W ).

Let us consider a function q : N→ N such that limm→+∞ q(m) = +∞ and

log q(m) ≤ κσ(D)− ε− w
n− w logm

for a fixed positive number ε. Then the boundedness of m−w h0(W, (A+ xmDy )|W )
implies that there is a constant c such that

(
n− w + q(m)

n− w

)
h0(W, (A+ xmDy )|W ) < cmκσ(D)−ε

for mÀ 0. Hence H0(X, Iq(m)+1
W O(A+ xmDy )) 6= 0 for mÀ 0, since

limm→∞m−κσ(D) h0(X,A+ xmDy ) > 0.

Therefore, D <W .
(2) By (1) and 1.12, D ∼∼∼ Nσ(D) if κν(D) = 0. Conversely, assume that

D ∼∼∼ Nσ(D). We may assume that D = Nσ(D), since κν depends on the numerical
equivalence class. Let x be a point of X r SuppD, ρ : Z → X the blowing-up at
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x, E the exceptional divisor, and A a sufficiently ample divisor of X. Suppose that
D < {x}. Then, by 1.4, there is a function l : N→ N such that

h0(Z, ρ∗( xmDy +A)− l(m)E) 6= 0 and limm→∞ l(m) = +∞.
Since E 6⊂ Bs |ρ∗( xmDy + A)|, we have h0(X, xmDy + A) > l(m) contradicting
1.12.

(3) Let W ⊂ H be a non-singular subvariety of dimW < κν(D). Then D <W .
By 2.19, D|H <W . Hence κν(D|H) > dimW by 2.21.

(4) Let W ⊂ Y be a non-singular subvariety of dimension w < κν(D) that is
the complete intersection of general ample divisors. Then dim f(W ) = w. Thus
f∗D < W by the same argument as in 2.21. Hence κν(f∗D) ≥ κν(D). By (3)
above, if dimY > dimX, then κν(f∗D|H) ≥ κν(f∗D) for a general ample divisorH.
Therefore, in order to show the equality: κν(f∗D) = κν(D), we may assume that f
is generically finite. Let V ⊂ X be a general non-singular subvariety of dimension
v < κν(f∗D), ρ : X ′ → X the blowing-up along V , and E the exceptional divisor.
Let ρW : Y ′ → Y be the blowing-up along W := f−1(V ), EW the exceptional
divisor, and τ : Y ′ → X ′ the induced generically finite morphism. Note that Y ′ '
Y ×X X ′ and EW ' Y ×X E. There exist an ample divisor H on X ′ and positive
numbers x, y À 0 such that τ ∗(xρ∗D + H) − yEW is pseudo-effective. Thus
xρ∗D +H − yE is pseudo-effective. Hence D <W and we have the equality.

(5) Let W ⊂ X be a general non-singular subvariety of dimension w = ν(D),
ρ : Z → X the blowing-up along W , and EW the exceptional divisor. We take an
ample divisor A with ρ∗A − EW being ample. If ρ∗(xD + A) − yEW is pseudo-
effective for some x, y > 0, then

0 ≤ (ρ∗(xD +A)− yEW ) · (ρ∗D)w · (ρ∗A− EW )n−1−w

= ρ∗A · (ρ∗D)w · (ρ∗A− EW )n−1−w − yc(D|W )w

for a positive constant c. Hence y is bounded. Therefore, D 6< W and κν(D) ≤
ν(D). The other inequality follows from (1) and 2.7-(6).

(6) Let W ⊂ X be a non-singular subvariety of dimension w < κν(D), ρ : Z →
X the blowing-up along W , EW the exceptional divisor, and H an ample divisor
of Y . Then there exist positive numbers x, y À 0 such that ρ∗(xD+ f∗H)− yEW

is pseudo-effective. Let Γ be a prime component of E and let Γ′ be the proper
transform of Γ. Note that Γ′ = ρ∗Γ. We have

xmultΓE ≤ σΓ(xD;X/Y ) = σΓ(xD + f∗H;X/Y )

≤ σΓ′(ρ∗(xD + f∗H)− yEW ).

Therefore, the R-divisor

ρ∗(xD + f∗H)− yEW − xρ∗E
is pseudo-effective. Thus D − E <W .

(7) Suppose that κν(D) > κν(D|Xs
)+dimS for ‘general’ s ∈ S. Let W ⊂ X be

a non-singular subvariety of dimension κν(D|Xs
) + dimS. Since D < W , we have
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D|Xs
< W ∩ Xs for ‘general’ s ∈ S by 2.17. Thus κν(D|Xs

) > dimW − dimS.
This is a contradiction. ¤

Problem

(1) κσ(D) = κ±σ (D) = κν(D) for all pseudo-effective R-divisors D?
(2) κσ(D) = κσ(Pσ(D))? κν(D) = κν(Pσ(D))?

The affirmative answer to 1.8 implies the expected equalities in (2).

§2.e. Geometrically abundant divisors.

2.23. Definition Let X be a non-singular projective variety and let D be an
R-divisor.

(1) D is called abundant if κν(D) = κ(D).
(2) D is called geometrically abundant if the following conditions are satisfied:

(a) κ(D) ≥ 0;
(b) let X ···→ Z be the Iitaka fibration for D and let µ : Y → X be a

birational morphism from a non-singular projective variety such that
the composite f : Y → X ···→ Z is holomorphic. Then

κσ(µ∗D|Yz
) = 0

for a ‘general’ fiber Yz = f−1(z).

A geometrically abundant R-divisor is abundant by 2.7 and 2.22. A nef and abun-
dant R-divisor is geometrically abundant by 2.3-(1). The Zariski-decomposition
problem for a geometrically abundant R-divisor D is reduced to that of a big R-
divisor of the base variety of the Iitaka fibration for D.

2.24. Notation Let f : X → Y be a projective morphism from a normal
complex analytic space into a complex analytic space and let X → Y ′ → Y be
the Stein factorization. Let F be a ‘general’ fiber of X → Y ′. Note that F is a
connected component of a ‘general’ fiber of X → f(X). For an R-Cartier divisor
D of X, we denote

κν(D;X/Y ) = κν(D|F ) and κσ(D;X/Y ) = κσ(D|F ).

If D|F is abundant, then D is called f -abundant . If D|F is geometrically abundant,
then D is called geometrically f -abundant . Let D′ be another R-divisor of X. If
D1|F < D2|F (resp. D1|F º D2|F ), then we write D1 <f D2 (resp. D1 ºf D2).

2.25. Lemma Let f : X → Y be a projective surjective morphism of non-

singular varieties with connected fibers. Let D be an R-divisor of X with κ(D;X/Y )
= κσ(D;X/Y ) = 0. Then there exist a positive integer m, a reflexive R-sheaf Ξ of

rank one of Y , and an f -exceptional effective R-divisor E of X such that

mPσ(D;X/Y ) ∼ f∗Ξ− E.
If E 6= 0, then SuppE 6⊂ SuppNσ(D;X/Y ). If D is a Q-divisor, then Ξ is also a

reflexive Q-sheaf.
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If every reflexive sheaf of rank one on Y admits a meromorphic section, then we
can take Ξ above as an R-divisor.

Proof. We can consider the relative σ-decomposition with respect to f by
III.4.3 since f∗OX( xmDy ) 6= 0 for a positive integer m. Suppose that mD is
linearly equivalent to an effective divisor ∆. This is satisfied, for example, if Y
is Stein. Here we have Nσ(∆;X/Y ) = mNσ(D;X/Y ) and the effective R-divisor
Pσ(∆;X/Y ) = ∆−Nσ(∆;X/Y ) is linearly equivalent to mPσ(D;X/Y ). By 1.12,
Pσ(D;X/Y )|Xy

∼∼∼ 0 for a ‘general’ point y ∈ Y . Thus f(SuppPσ(∆;X/Y )) 6= Y
and hence Pσ(∆;X/Y ) = f∗Ξ0 −E for an R-divisor Ξ0 of Y and an f -exceptional
effective R-divisor E of X by III.5.8. Even if mD is not linearly equivalent to
any effective divisor, we can patch E locally defined over Y to the globally defined
effective R-divisor E of X. Thus mPσ(D;X/Y )−E ∼ f∗Ξ for some Ξ ∈ Ref1(Y )R.

Suppose that E 6= 0 and let Γ be an irreducible component of E. Then
σΓ(−E;X/Y ) = 0 and mσΓ(D;X/Y ) = σΓ(−E + mNσ(D;X/Y );X/Y ) by the
formula

mD ∼ f∗Ξ− E +mNσ(D;X/Y ).

In particular, for 0 < α < 1, we have

σΓ(−αE +mNσ(D;X/Y );X/Y ) = mσΓ(D;X/Y )

from the triangle inequality

σΓ(−E +mNσ(D;X/Y );X/Y ) ≤ σΓ(−αE +mNσ(D;X/Y );X/Y )

+ (1− α)σΓ(−E;X/Y ).

Suppose that SuppE ⊂ SuppNσ(D;X/Y ). Then mNσ(D;X/Y ) ≥ αE for some
0 < α < 1 and

σΓ(−αE +mNσ(D;X/Y );X/Y ) = mσΓ(D;X/Y )− αmultΓE

by III.1.8. This is a contradiction.
We shall show that Ξ ∈ Ref1(Y )Q if D is a Q-divisor. It is enough to consider

locally on Y . Hence we have only to show that Ξ0 above is a Q-divisor. For any
prime divisor Q ⊂ Y , there is a prime divisor Θ ⊂ X with Θ 6⊂ SuppNσ(D;X/Y )
and f(Θ) = Q. Thus

multΘ ∆ = multΘ f
∗Ξ0 = multΘ f

∗QmultQ Ξ0.

Hence Ξ0 is a Q-divisor. ¤

2.26. Corollary Under the same situation as 2.25, let µ : Z → Y be a bimero-

morphic morphism flattening f , f ′ : X ′ → Z a bimeromorphic transform of f by µ
from a non-singular variety, and ν : X ′ → X the induced bimeromorphic morphism.

Then there exists a reflexive R-sheaf ΞZ of rank one on Z such that

ν∗D ∼Q f ′
∗
ΞZ +Nσ(ν∗D;X ′/Z).

If D is a Q-divisor, then ΞZ is a reflexive Q-sheaf of rank one.
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Proof. By 2.25, there exist a positive integer m, a reflexive R-sheaf ΞZ of
rank one on Z, and an f ′-exceptional effective R-divisor E ′ of X ′ such that

mν∗D ∼ mf ′∗ΞZ − E′ +mNσ(ν∗D;X ′/Z).

If D is a Q-divisor, then ΞZ ∈ Ref1(Z)Q by 2.25. Let X1 be the normalization
of the main component of X ×Y Z and let λ : X ′ → X1 be the induced morphism.
Then λ∗E = 0. In particular,

0 ≤ mλ∗λ∗Nσ(ν∗D;X ′/Z) = mNσ(ν∗D;X ′/Z)− E′.

Hence E′ = 0 by 2.25. ¤

2.27. Lemma Let f : X → Y be a surjective morphism of normal projective

varieties and let D be a pseudo-effective geometrically f -abundant R-Cartier divisor

of X. Then D + f∗H is geometrically abundant for any big R-Cartier divisor H
of Y . More generally, if D < f∗H, then D − εf∗H is geometrically abundant for

some ε > 0.

Proof. We may assume that X and Y are non-singular and that there exist
morphisms h : X → Z and g : Z → Y such that Z is a non-singular projective
variety, f = g ◦ h, and that h is the relative Iitaka fibration for D. Let P be the
positive part Pσ(D;X/Z) of the relative σ-decomposition of D over Z. Then P is
pseudo-effective, since Nσ(D;X/Z) ≤ Nσ(D). By 2.25 and 2.26, we may assume
that P ∼Q h∗Ξ for a pseudo-effective g-big R-divisor Ξ of Z. Here, Ξ − ∆ is g-
ample for some effective R-divisor ∆ of Z. Hence, for any big R-divisor H of Y ,
Ξ − ∆ + kg∗H is big for some k ∈ N. Thus mΞ + kg∗H is big for any m ≥ 1.
Therefore, D + f∗H is geometrically abundant.

Next, suppose that D < f∗H. It is enough to show that the R-divisor Ξ above
is big. For an ample divisor A of X and for any b > 0, there exist rational numbers
x, y > b such that xD − yf∗H +A is pseudo-effective. Thus

xh∗Ξ− yf∗H + cNσ(D;X/Z) +A

is pseudo-effective for a constant c by III.1.9. Hence, by the same argument as in
II.5.6-(2), we infer that Ξ < g∗H. Since Ξ + g∗H is big,

xΞ− yg∗H + (Ξ + g∗H)

is pseudo-effective for x, y > bÀ 0. Thus Ξ is big. ¤

Applying 2.27 to the case where D is nef, we have:

2.28. Corollary Let f : X → Y be a surjective morphism of normal projective

varieties and let D be a nef and f -abundant R-Cartier divisor. Then D + f ∗H is

nef and abundant for any nef and big R-Cartier divisor H of Y . More generally, if

D < f∗H in addition, then D is nef and abundant.
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2.29. Definition Let X be a non-singular projective variety. The numerical

Kodaira dimensions of X of type σ and of type ν, respectively, are defined to be
the following numbers:

κσ(X) := κσ(KX) and κν(X) := κν(KX).

These are birational invariants by 2.7-(7) and 2.22-(6). Thus, even for a projective
variety V with singularities, we define κσ(V ) := κσ(X) and κν(V ) := κν(X) for a
non-singular model X of V .

Remark If a non-singular projective variety X admits a minimal model Xmin,
then κν(X) = κσ(X) = ν(KXmin

).

Conjecture (abundance) KX is abundant: κ(X) = κν(X).

In 4.2 below, we shall show that if KX is abundant, then KX is geometrically
abundant.

§3. Direct images of canonical sheaves

§3.a. Variation of Hodge structure. A (pure) Hodge structure (cf. [10])
consists of a free abelian group H of finite rank, a descending filtration

· · · ⊃ F p(HC) ⊃ F p+1(HC) ⊃ · · ·
of vector subspaces of HC = H ⊗ C, and an integer w such that

(1) F p(HC) = HC for p¿ 0 and F p(HC) = 0 for pÀ 0,

(2) F p(HC)⊕ Fw−p+1(HC) = HC for any p,

where denotes the complex conjugate. If we set Hp,q := F p(HC) ∩ F q(HC), then
Hp,q = 0 unless p+ q 6= w, HC =

⊕
p+q=w H

p,q, and F p(HC) =
⊕

i≥pH
i,w−i. The

filtration {F p(HC)} is called the Hodge filtration and w is called the weight . A
polarization (defined over Q) of the Hodge structure is a non-degenerate bilinear
form Q : H ×H → Q satisfying the following conditions:

(1) Q is symmetric if w is even, and is skew-symmetric if w is odd;
(2) Q(F p(HC), Fw−p+1(HC)) = 0;
(3) (

√
−1)p−qQ(x, x) > 0 for any 0 6= x ∈ Hp,q.

The map C : HC → HC defined by Cx = (
√
−1)p−qx for x ∈ Hp,q is called the Weil

operator , which is defined over R.
An example of Hodge structure is the cohomology group Hw(M,Z) modulo

torsion for a compact Kähler manifold M . It is of weight w and the Hodge filtration
is given by the hyper-cohomology group

F p(Hw(M,C)) = Hw(M,σ≥pΩ
•
M ) '

⊕
i≥p

Hw−i(M,Ωi
M )

for the complex

σ≥pΩ
•
M := [· · · → 0→ 0→ Ωp

M
d−→ Ωp+1

M
d−→ Ωp+2

M → · · · ]
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for p. If M is a projective variety and if l = c1(A) ∈ H2(M,Z) is the Chern class of
an ample divisor A, then we have the Hard Lefschetz theorem: the homomorphism

Li := (∪l)i : Hn−i(M,Q)→ Hn+i(M,Q)

given by the cup-product with li = l ∪ l ∪ · · · ∪ l is isomorphic for 0 ≤ i ≤ n. For
w ≤ n, the primitive cohomology group Pw(M,Z) is defined as the kernel of

Ln−w+1 : Hw(M,Z)→ H2n−w+2(M,Z)

modulo torsion. Then we have the Lefschetz decomposition

Hw(M,Q) =
⊕

i≥0
LiPw−2i(M,Q).

The primitive cohomology Pw(M,Z) has a Hodge structure by

P p,q(M,Z) = P p+q(M,Z) ∩Hp,q(M)

and has a polarization given by

Qw(x, y) = (−1)w(w−1)/2x ∪ y ∪ ln−w[M ].

Thus Hw(M,Q) also has a polarization as the direct sum of the polarizations on
Pw−2i(M,Q).

Let S be a complex analytic manifold. A variation of Hodge structure (cf. [32])
of weight w on S consists of a locally constant system H of free abelian groups of
finite rank on S and a descending filtration

· · · ⊃ Fp(H) ⊃ Fp+1(H) ⊃ · · ·
of holomorphic subbundles of H = H ⊗Z OS such that

(1) Hs and F p
s = Fp(H) ⊗ C(s) form a Hodge structure of weight w for any

point s ∈ S,
(2) the connection ∇ : H → Ω1

S ⊗H associated with H induces

∇(Fp(H)) ⊂ Ω1
S ⊗Fp−1(H)

for any p.

The second condition is called the Griffiths transversality condition. A polarization
of the variation of Hodge structure is a locally constant bilinear from Q : H ×H →
QS whose fiber Qs : Hs ×Hs → Q is a polarization of the Hodge structure Hs. An
example of variation of Hodge structure is the higher direct image sheaf Rwf∗ZX

modulo torsion for a proper smooth surjective morphism f : X → S from a Kähler
manifold X. If f is projective and if l ∈ H0(S,R2f∗QX) is induced from an f -ample
line bundle, then the primitive part of Rwf∗ZX for w ≤ dimX − dimS admits a
polarization.

Let H = (H,F p(HC), Q) be a polarized Hodge structure of weight w. We
consider groups

GK := {g ∈ Aut(HK) | Q(gx, gy) = Q(x, y)}
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for K = Z, Q, R, and C. Then GC is a complex algebraic group and GZ is a discrete
subgroup. Let Ď and D be the following sets of descending filtrations {F p} of
vector subspaces of HC:

Ď : =
{
{F p} | dimF p = dimF p(HC), Q(F p, Fw−p+1) = 0

}
,

D : =
{
{F p} ∈ Ď | (

√
−1)p−qQ(x, x) > 0 for non-zero x ∈ F p ∩ Fw−p

}
.

Then the Hodge filtration {F p(HC)} defines an element o of D. We write F p
o =

F p(HC), Hp,q
o := F p

o ∩F q
o , and Ho := (H,F p

o ). The set Ď has a structure of complex
projective manifold and D is an open subset, which is regarded as the classifying
space of Hodge structures on the abelian group H with the polarization Q. There
are a natural transitive action of GC on Ď and that of GR on D. Let B be the
stabilizer of GC at o:

B := {g ∈ GC | g(F p
o ) = F p

o }.
Then B is an algebraic subgroup and Ď is regarded as the homogeneous space
GC/B. The intersection V = B ∩ GR preserves the Hodge structure Ho. Thus Q
and the Weil operator Co of Ho are preserved. Hence V is contained in a unitary
group and is compact. The tangent space of the homogeneous space D = GR/V at
o is isomorphic to g/b for

g := {T ∈ End(HC) | Q(Tx, y) +Q(x, Ty) = 0}, b := {T ∈ g | T (F p
o ) ⊂ F p

o },
where g and b are the Lie algebras of GC and B, respectively. We have the decom-
position

g =
⊕

p∈Z
gp,−p and b =

⊕
p≥0

gp,−p,

for subspaces

gp,−p := {T ∈ g | THr,s
o ⊂ Hr+p,s−p

o }.
We also have an injection

g/b ↪→
⊕

p≥0
Hom(F p

o , HC/F
p
o ).

Let H = (H,F•(H), Q) be a polarized variation of Hodge structure defined

on a complex analytic manifold S. Let τ : S̃ → S be the universal covering map.
Let us fix a point s ∈ S and denote the polarized Hodge structure (Hs, F

p
s =

Fp(H) ⊗ C(s), Qs) by (Ho, F
p
o , Qo). Then τ−1H ' Ho ⊗ Z

S̃
, τ−1(Fp(H)) is a

subbundle of the trivial vector bundleHo⊗OS̃
, and we have a period map p : S̃ → D

into the classifying space D of Hodge structures on Ho compatible with Qo.
We have also a monodromy representation ρ : π1(S, s) → GZ compatible with

p: it satisfies p(γz) = ρ(γ)p(z) for z ∈ S̃ and γ ∈ π1(S, s). For a point s̃ ∈ S̃ over
s, the tangent map of p at s̃ is written as

Θ
S̃,s̃
' ΘS,s → (b⊕ g−1,1)/b ⊂ g/b

by the Griffith transversality. The composite

ΘS,s → g/b→ Hom(F p
o , HC/F

p
o )
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is given by the OS-linear map

Fp(H)
∇−→ Ω1

S ⊗H → Ω1
S ⊗ (H/Fp(H)).

Suppose that S is isomorphic to the Zariski-open subset M rD for a complex
analytic manifold M and a normal crossing divisor D. Then the local monodromies
of H around D is quasi-unipotent by a lemma of Borel (cf. [126, 4.5]). Let `Hcan

be the lower-canonical extension (cf. [71], [92]) of H, which is called the canonical
extension in the sense of Deligne. The upper-canonical extension uHcan is defined as
the dual of the lower-canonical extension of the dual H∨. If the local monodromies
of H are unipotent, then two canonical extensions coincide with each other, and are
denoted by Hcan. For • = ` and u, ∇ extends to a logarithmic connection (cf. [13]):

∇ : •Hcan → Ω1(logD)⊗ •Hcan.

We set
Fp(•Hcan) := j∗Fp(H) ∩ •Hcan ⊂ j∗H

for the open immersion j : S ↪→ M . Then Fp(•Hcan) are locally free OM -modules
and are subbundles of •Hcan. This is a consequence of the nilpotent orbit theorem
by Schmid [126, 4.12].

3.1. Definition A locally free sheaf of a projective variety is called numerically

semi-positive if its tautological line bundle is nef.

Kawamata [50, §4] has proved the following semi-positivity for variations of
Hodge structure:

3.2. Theorem Let M be a compact Kähler manifold, D a normal crossing

divisor, and let H be a polarized variation of Hodge structure of weight w de-

fined on S = M r D. Suppose that F0(H) = H, Fw+1(H) = 0, and that H has

only unipotent local monodromies along D. Then Fw(Hcan)⊗OC is a numerically

semi-positive vector bundle for any compact curve C ⊂ M . In particular, if M is

projective, then Fw(Hcan) is numerically semi-positive.

For the proof of 3.2, we may assume that D is a simple normal crossing divisor
by a suitable blowing-up of M , since the canonical extension is compatible with
pulling back for variations of Hodge structure with unipotent local monodromies.

Kawamata [53, Theorem 3] has proved another positivity:

3.3. Theorem Under the same situation as 3.2, if

ΘS,s → Hom(Fw
s , F

w−1
s /Fw

s )

is injective at a point s ∈ S, then det(Fw(Hcan))n > 0, where n = dimS = dimM .

Kollár [72] pointed out a gap in the proof of [53, Theorem 3] and gave a modifica-
tion. Kawamata’s original modification was mentioned there, but it does not seem
to be published yet. These modifications are applications of SL2-orbit theorem of
several complex variables (cf. [7], [48], [49]).

It is natural to consider the following:
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3.4. Conjecture In the situation of 3.2, if M is projective, then the line
bundle det(Fw(Hcan)) is nef and abundant.

This is considered as a version of the abundance conjecture. We have a partial
answer as follows:

3.5. Proposition The conjecture 3.4 is true if w ≤ 2.

Proof. By assumption, the natural homomorphism

(b⊕ g−1,1)/b→ Hom(Fw
o , F

w−1
o /Fw

o )

is injective. In fact, if Fw is given, then F 1 is determined by

F 1 = {x ∈ HC | Q(x, Fw) = 0}.
We may assume that D is a simple normal crossing divisor by the same reason as
above. If the local monodromy around a prime component Di is trivial, then H
extends to M r Supp(D − Di) as a variation of Hodge structure. Hence we may
assume that all the local monodromies around any prime component Di are non-
trivial. Let Γ be the image of the monodromy representation ρ : π1(S, s) → GZ.
Then Γ is a discrete subgroup of GR and the quotient Γ\D exists as a normal

complex analytic space, since V ∩Γ is a finite group. The period mapping p : S̃ → D
induces π : S → Γ\D. We infer that π is a proper morphism by [32, III, 9.6] or
by the nilpotent orbit theorem [126, 4.12]. By [53, Theorem 11], there exist a
birational morphism ν : M ′ → M from a non-singular projective variety, a fiber
space π′ : M ′ → Z onto a non-singular projective variety, an open subset Z? ⊂ Z,
and a generically finite proper surjective morphism τ : Z? → Γ\D such that

ν−1(S) = π′−1(Z?) and τ ◦ π′|ν−1(S) = π ◦ ν|ν−1(S).

Let W be the image of (ν, π′) : M ′ → M × Z. By considering the flattening of π′,
we may assume that any π′-exceptional divisor is exceptional for M ′ →W . Let F
be a general fiber of π. For the numerically semi-positive vector bundle Fw(Hcan),
the restriction Fw(Hcan)⊗OF is a flat vector bundle with only finite monodromies,
since it is associated with a constant variation of Hodge structure. Hence

ν∗ det(Fw(Hcan))⊗m ' π′∗L ⊗OM ′(−E)

for an invertible sheaf L of Z, a π′-exceptional effective divisor E, and a positive
integer m. Since E is exceptional for M ′ →W , we have

ν∗ det(Fw(Hcan))⊗m ' π′∗L
and thus L is nef. Let Y ⊂M be the complete intersection of general smooth ample
divisors with dimY = dimZ. Then p : Y ∩ S → Γ\D is generically finite. Thus

ΘY,y → Hom(Fw(H)⊗ C(y), (Fw−1(H)/Fw(H))⊗ C(y))

is injective for a general point y ∈ Y ∩ S. Hence

det(Fw(Hcan))dim Y · Y > 0 and Ldim Z > 0,

by 3.3. Therefore, det(Fw(Hcan)) is nef and abundant. ¤
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By applying a similar argument to the Kuranishi space of a compact complex
manifold, we have:

3.6. Proposition Under the same situation as 3.2, assume that M is pro-

jective and the variation of Hodge structure H is isomorphic to Rwf∗ZX modulo

torsion for a projective smooth morphism f : X → S with w = dimX − dimS.

Assume in addition that, for the fiber F = f−1(s), the homomorphism

H1(F,ΘF )→ Hom(H0(F,Ωw
F ), H1(F,Ωw−1

F ))

given by the cup-product is injective. Then det(Fw(Hcan)) is nef and abundant.

§3.b. ω-sheaves. Let f : X → Y be a proper surjective morphism from a
normal variety into a non-singular variety. For the dualizing sheaves ωX and ωY ,
we denote ωX/Y := ωX ⊗ f∗ω−1

Y and call it the relative dualizing sheaf . For the

twisted inverse f ! (cf. [37], [116], [117]), we have

f !OY ∼qis ω
•
X [−dimY ]

L
⊗ f∗ω−1

Y .

In particular, H−d(f !OY ) ' ωX/Y for d = dimX − dimY and H−k(f !OY ) = 0 for
k > d.

We recall the following results on the higher direct images of dualizing sheaves
proved by [71], [97], [13], [92], [121], [122], [135].

3.7. Theorem Let f : X → Y be a proper surjective morphism of complex

analytic varieties with d := dimX − dimY . Suppose that X is a Kähler manifold.

Then the following properties hold :

(1) (Torsion-freeness) Ri f∗ωX is a torsion free sheaf for any i;
(2) (Vanishing) Let g : Y → Z be a projective surjective morphism and let H

be a g-ample invertible sheaf. Then, for any p > 0 and i ≥ 0,

Rp g∗(H⊗ Ri f∗ωX) = 0;

(3) (Injectivity) In the situation of (2) above, suppose that Z is Stein. Let

s ∈ H0(Y,H⊗l) be a non-zero section for an integer l > 0. Then the

induced homomorphism

Hp(X,ωX ⊗ f∗H)
⊗f∗s−−−→ Hp(X,ωX ⊗ f∗H⊗(l+1))

is injective for any p ≥ 0;
(4) (Hodge filtration) Suppose that Y is non-singular and f is smooth outside

a normal crossing divisor D ⊂ Y . For i ≥ 0, let uHd+i be the upper-

canonical extension for the variation of Hodge structure

Hd+i = (Rd+i f∗ZX)|Y rD.

Then there is an isomorphism

Ri f∗ωX/Y ' Fd(uHd+i).
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(5) (Splitting) Suppose that d > 0 and let Z ⊂ X be an f -ample non-singular

divisor. Then the surjection

f∗ωZ ³ R1 f∗ωX

derived from the short exact sequence

0→ ωX → ωX(Z) = ωX ⊗OX(Z)→ ωZ → 0

admits a splitting ;
(6) (Decomposition) In the derived category Dc(OY ) of OY -modules with co-

herent cohomologies,

R f∗ωX ∼qis

⊕d

i=0
Ri f∗ωX [−i].

Remark Kawamata [50] showed (4) for i = 0 by applying some results of
Schmid [126]. Kollár [71] proved 3.7 in the case: X and Y are projective. The
argument in [71, I] implies (1) and (3) also in the case: X is compact Kähler and Y is
projective. Esnault–Viehweg [13] gave simple proofs of (1), (2), and (3) in the same
case. The assertion (4) in the algebraic case was proved by a different argument in
[97], which is effective for other cases. Moriwaki [92] proved (1) in the case: f is a
projective morphism, by applying the relative Kodaira vanishing theorem II.5.12.
The assertion (5) is derived from (4) by the same argument as [71, II]. If X is
projective, then (6) follows from (5). On the other hand, Saito [119] developed the
theory of Hodge modules and proved 3.7 in the case: f is a projective morphism,
in [120] (cf. [122]), where (6) is derived from the decomposition of related perverse
sheaves. In the case: f is a Kähler morphism, 3.7 is proved implicitly in [122].
Takegoshi [135] also proved the Kähler case by an L2-method and by analyzing
the Hodge ∗-operator. Takegoshi’s result is more general than 3.7; in the most
statements, ωX can be replaced with ωX ⊗ E for a Nakano-semi-positive vector
bundle E .

3.8. Definition A coherent sheaf F of a complex analytic variety Y is called
an ω-sheaf if there exists a proper morphism f : X → Y from a non-singular Kähler
space such that F is a direct summand of Ri f∗ωX for some i.

An ω-sheaf F is a torsion-free OY -module if SuppF = Y .

Remark (cf. [71]) If f : X → Y is a morphism from a non-singular projective
variety, then Ri f∗ωX is a direct summand of h∗ωZ for another morphism h : Z → Y
from a non-singular projective variety. This is shown as follows: let Z ⊂ X be a
non-singular ample divisor and let us consider the exact sequence

0→ ωX → ωX(Z)→ ωZ → 0.

By 3.7-(5), R1 f∗ωX is a direct summand of f∗ωZ . We have Ri f∗ωX(Z) = 0 for i >
0 by the relative Kodaira vanishing theorem II.5.12. Hence Ri−1 f∗ωZ ' Ri f∗ωX

for i ≥ 2. Thus we are done by induction.
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Remark It may be possible to generalize the notion of ω-sheaves in terms of
Hodge modules, etc. For example, it is expected that we can include in “ω-sheaves”
the sheaves of the form Fd(uH)⊗ωM , where M is a Kähler manifold and Fd(uH) is
the bottom filtration of the upper canonical extension uH of an abstract polarized
variation of Hodge structure defined outside a normal crossing divisor of M .

3.9. Corollary Let f : X → Y be a morphism of complex analytic varieties

and let F be an ω-sheaf on X. Then the following properties hold :

(1) (Torsion-freeness) Ri f∗F is an ω-sheaf for any i;
(2) (Vanishing) Let g : Y → Z be a projective morphism and let H be a g-

ample invertible sheaf. Then, for any p > 0 and i ≥ 0,

Rp g∗(H⊗ Ri f∗F) = 0;

(3) (Decomposition) In the derived category Dc(OY ),

R f∗F ∼qis

⊕
i≥0

Ri f∗F [−i].

Proof. Suppose that F is a direct summand of Rj h∗ωM for a morphism
h : M → X from a Kähler manifold. Then Ri f∗F is a direct summand of Ri+j(f ◦
h)∗ωM by 3.7-(6). Hence (1) and (2) hold for F . By 3.7-(6) for Rh∗ωM and by a
projection Rj h∗ωM → F , we have a projection

Ri+j(f ◦ h)∗ωM → Ri f∗(R
j h∗ωM )→ Ri f∗F

for any i such that the composite

Ri f∗F → Ri f∗(R
j h∗ωM )→ Ri+j(f ◦ h)∗ωM → Ri f∗F

is identical. Hence we have a quasi-isomorphism

R f∗F → R(f ◦ h)∗ωM [j]→
⊕

i≥0
Ri(f ◦ h)∗ωM [−i+ j]→

⊕
i≥0

Ri f∗F [−i]. ¤

3.10. Lemma Let X be a non-singular variety and let L be a Q-divisor with

Supp〈L〉 being normal crossing. Suppose either that mL ∼ 0 or that mL ∼ D for

a non-singular divisor D for some m ≥ 2 in which any component of D is not

contained in Supp〈L〉 and D ∪ Supp〈L〉 is a normal crossing divisor. Then there

exists a generically finite proper surjective morphism M → X from a non-singular

variety M such that ωX( pLq ) = OX(KX + pLq ) is a direct summand of f∗ωM .

In particular, if X is Kähler, then ωX( pLq ) restricted to a relatively compact open

subset is an ω-sheaf.

Proof. First we consider the case: mL ∼ 0. By applying II.5.10, we have a
cyclic covering τ : V → X from a normal analytic space with only quotient singu-
larities such that

τ∗ωV '
⊕m−1

i=0
OX

(
KX + piLq

)
.

Let µ : Y → V be a Hironaka’s desingularization. It is a finite succession of blowups
over a relatively compact open subset of V . Let f : Y → X be the composite. Then
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ωX( pLq ) is a direct summand of f∗ωY , since µ∗ωY ' ωV . Since ωX( pLq ) is of rank
one, it is a direct summand of f∗ωM for a connected component M of Y . If X is
Kähler, then f−1U is Kähler for any relatively compact open subset U ⊂ X, since

f is a projective morphism over U . Thus ωX( pLq )|U is an ω-sheaf.
Next, we consider the other case. Then Supp〈L′〉 is normal crossing and mL′ ∼

0 for the Q-divisor L′ := L−(1/m)D. Thus ωX( pLq ) = ωX( pL′q ) and the assertion
follows from the first case. ¤

3.11. Proposition Let π : X → S be a proper surjective morphism from a

non-singular variety into a Stein space and let L be an R-divisor of X such that

Supp〈L〉 is a normal crossing divisor. Suppose either

(1) L is a π-semi-ample Q-divisor, or

(2) π is a projective morphism and L is π-nef and π-abundant.

Then, for a relatively compact open subset Sc ⊂ S and for the pullback Xc = π−1Sc,

there exist

• a generically finite proper surjective morphism φ : M → Xc from a non-

singular variety

• a projective surjective morphism h : Z → Sc from a non-singular variety

with dimZ = dimS + κ(L;X/S),
• a proper surjective morphism f : M → Z over Sc, and

• an h-ample divisor H of Z

such that ωXc
( pLq ) is a direct summand of φ∗ωM (f∗H). In particular, if X is

Kähler, then ωX( pLq ) restricted to any relatively compact open subset of X is an

ω-sheaf.

Proof. In the proof, we replace S by a relatively compact open subset freely
without mentioning it. By II.4.3, we may replace X and L with X ′ and L′,
respectively by a generically finite proper surjective morphism ρ : X ′ → X and
L′ = ρ∗L. In fact, OX is a direct summand of ρ∗OX′(Rρ) for the ramification

divisor Rρ and II.4.3 implies that ωX( pLq ) is a direct summand of ρ∗ωX′( pL′q ).
In the case (2), we may assume that there exist a projective morphism h1 : Z1 →

S from a non-singular variety, a surjective morphism f1 : X → Z1 over S, and an h1-
nef and h1-big R-divisor D of Z1 such that L ∼Q f∗1D by the same argument as 2.3-
(1). In the case (1), we also have the same morphisms h1 : X → Z1, f1 : X → Z1,
and the same R-divisor D with L ∼Q f∗1D, where D is a Q-divisor.

We may also assume that there is an effective R-divisor B of Z1 such that

• H1 := D −B is an h1-ample Q-divisor,
• pL− f∗1Bq = pLq ,
• Supp f∗1 (B) ∪ Supp〈L〉 is a normal crossing divisor.

Then L1 := L − f∗1B ∼Q f∗1 (H1) is a π-semi-ample Q-divisor such that Supp〈L1〉
is normal crossing and pLq = pL1

q .
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Let λ : Z → Z1 be a finite surjective morphism from a non-singular variety
such that H := λ∗(H1) is a Z-divisor (cf. II.5.11). Let Y → X ×Z1

Z be a
bimeromorphic morphism from a non-singular variety into the main component of
X ×Z1

Z and let ψ : Y → X and f2 : Y → Z be the induced morphisms. Then
ψ∗L ∼Q f∗2H. We can take Y so that Suppψ∗〈L〉 is normal crossing. Let m > 1 be
an integer such that ψ∗(mL) is Cartier and ψ∗(mL) ∼ f∗2 (mH). Then, by II.5.10,
we have a cyclic covering τ : V → Y from a normal complex analytic space V with
only quotient singularities such that

τ∗ωV ' ωY ⊗
⊕m−1

i=0
OY

(
piψ∗Lq − if∗2H

)
.

Thus ωY ( pψ∗Lq ) is a direct summand of τ∗ωV (τ∗f∗2H). Since V has only rational
singularities, ωV is isomorphic to the direct image of the dualizing sheaf of a desin-
gularization M → V . Let φ : M → X and f : M → Z be the induced morphisms.
Then ωX( pLq ) is a direct summand of φ∗ωM (f∗H). Since ωX( pLq ) is of rank one,
we can replace M by a connected component. ¤

3.12. Corollary Let π : X → S be a projective surjective morphism from a

normal variety into a Stein space. Let ∆ and L be an effective R-divisor and a

Q-Cartier Z-divisor, respectively, on X. Suppose that (X,∆) is log-terminal and

L−(KX +∆) is π-nef and π-abundant. Then the reflexive sheaf OX(L) restricted to

any relatively compact open subset of X is an ω-sheaf. Furthermore, for a relatively

compact open subset Sc ⊂ S and for the pullback Xc = π−1Sc, there exist

• a generically finite surjective morphism φ : M → Xc from a non-singular

variety,

• a projective morphism h : Z → Sc from a non-singular variety with dimZ−
dimS = κ(L− (KX + ∆);X/S),

• a surjective morphism f : M → Z over Sc, and

• an h-ample divisor H of Z

such that OXc
(L) is a direct summand of φ∗ωM (f∗H).

Proof. We also replace S by a relatively open subset freely. Let µ : X ′ →
X be a bimeromorphic morphism from a non-singular variety projective over S
such that the union of the proper transform of ∆ and the µ-exceptional locus
is a normal crossing divisor. Then pRq is a µ-exceptional effective divisor for
R := KX′ − µ∗(KX + ∆). Now

µ∗L+R−KY = µ∗(L− (KX + ∆))

is (π ◦ µ)-nef and (π ◦ µ)-abundant. Therefore, by 3.11, OX′( pµ∗L+Rq ) is an
ω-sheaf. Since pµ∗L+Rq ≥ xµ∗Ly , we have

OX(L) ' µ∗OX′( pµ∗L+Rq ). ¤

The following is a generalization of 3.7-(3) and also is that of a similar injec-
tivity obtained in [55]:
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3.13. Proposition (Injectivity) Let π : X → S be a proper surjective mor-

phism from a Kähler manifold and let L and D be R-divisors X such that D is

effective, and Supp〈L〉 and Supp〈L+D〉 are normal crossing. Suppose that one of

the following two conditions is satisfied :

(1) L is a π-semi-ample Q-divisor and κ(aL−D;X/S) ≥ 0;
(2) π is a projective morphism and L is a π-nef and π-abundant R-divisor

with L <π D.

Then the natural homomorphism

Ri π∗OX(KX + pLq )→ Ri π∗OX(KX + pL+Dq )

is injective for any i.

Proof. Since the statement is local, we may assume that S is Stein. Fur-
thermore, we replace S by an open subset freely without mentioning it. By 2.14

and by the proof of 3.11, we may assume that there exist a projective morphism
h : Z → S from a non-singular variety, a surjective morphism f : X → Z, and an
h-ample divisor H of Z such that L = f∗H and that aL−D is linearly equivalent
to an effective R-divisor for some a ∈ N. Then the result follows from 3.7-(3). ¤

We have also the following generalization of 3.7-(2):

3.14. Proposition (Vanishing) Let f : X → Y and g : Y → S be proper

surjective morphisms such that g is projective and X is a Kähler manifold. Let

π be the composite g ◦ f and let L be an R-divisor of X with Supp〈L〉 being normal

crossing. Suppose that one of the following conditions is satisfied :

(1) L is a π-semi-ample Q-divisor with κ(aL − f ∗A;X/S) ≥ 0 for some g-
ample divisor A of Y ;

(2) f is a projective morphism, L is a π-nef and f -abundant R-divisor such

that L <π f
∗A for a g-ample divisor A of Y .

Then Rp g∗(R
i f∗ωX( pLq )) = 0 for any p > 0 and for any i ≥ 0.

Proof. Similarly to the above, we replace S by an open subset freely. We
note that L is π-abundant in the case (2), by 2.28. We may assume that there is
an effective g-ample divisor H of Y . Then

Rp π∗ωX( pLq )→ Rp π∗ωX( pLq + f∗H)

is injective for any p ≥ 0, by 3.13. Applying 3.9-(2) and 3.9-(3), we infer that if
p > 0, then

Rp g∗
(
Ri f∗ωX( pLq )

)
↪→ Rp g∗

(
OY (H)⊗ Ri f∗ωX( pLq )

)
= 0. ¤

3.15. Corollary Let f : X → Y and g : Y → S be projective surjective mor-

phisms where X is normal, and let π be the composite g ◦ f . Let ∆ be an effective

R-divisor and L be a Q-Cartier Z-divisor of X satisfying the following conditions:

(1) (X,∆) is log-terminal ;
(2) L− (KX + ∆) is π-nef and π-abundant ;
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(3) L− (KX + ∆) <π f
∗A for a g-ample divisor A on Y .

Then Ri f∗OX(L) restricted to any relatively compact open subset of Y is an ω-sheaf

for any i. If p > 0, then

Rp g∗(R
i f∗OX(L)) = 0.

3.16. Definition Let f : X → Y be a surjective morphism of normal projective
varieties.

(1) An ω-sheaf F on X is called ω-big over Y if there exist surjective mor-
phisms φ : M → X, p : M → Z, and q : Z → Y satisfying the following
conditions:
(a) M is a compact Kähler manifold and Z is a non-singular projective

variety;
(b) f ◦ φ = q ◦ p;
(c) F is a direct summand of Ri φ∗ωM (p∗A) for some i and for some

ample divisor A of Z.
(2) A coherent torsion-free sheaf F of X is called an ω̂-sheaf if there exist

an ω-sheaf G and a generically isomorphic injection G ↪→ F∧ into the
double-dual F∧ of F .

(3) An ω̂-sheaf G onX is called ω-big over Y if there is a generically isomorphic
injection F ↪→ G∧ from an ω-sheaf F that is ω-big over Y .

By 3.9 and 3.14, we have:

3.17. Corollary Let f : X → Y be a surjective morphism of normal projective

varieties and let F be an ω-sheaf on X that is ω-big over Y . Then any higher direct

image sheaf Ri f∗F is ω-big over Y and Hp(Y,Ri f∗F) = 0 for p > 0.

3.18. Lemma Let F be an ω-sheaf of a non-singular projective variety X of

dimension n and let A be an ample divisor of X. Suppose that ρ∗x(A) − nEx is

ample for a general point x ∈ X, where ρx : Qx(X)→ X is the blowing-up at x and

Ex is the exceptional divisor. Then F ⊗ OX(A) is generically generated by global

sections.

Proof. We may assume that F = Rp h∗ωZ for a surjective morphism h : Z →
X from a non-singular projective variety and for some p ≥ 0. For a general point
x ∈ X, set X ′ := Qx(X), Z ′ := Z ×X X ′, and let h′ : Z ′ → X ′ be the induced
morphism. Then Rp h′∗ωZ′/X′ ' ρ∗x(Rp h∗ωZ/X), since h is smooth along h−1(x).
Hence

ρ∗x(Rp h∗ωZ)⊗OX′(ρ∗xA− Ex) ' Rp h′∗ωZ′ ⊗OX′(ρ∗xA− nEx)

is an ω-big ω-sheaf and

H1(X ′, ρ∗x(Rp h∗ωZ)⊗OX′(ρ∗xA− Ex)) = 0

by 3.14. Thus we have the surjection

H0(X,Rp h∗ωZ ⊗OX(A))³ Rp h∗ωZ ⊗OX(A)⊗ C(x). ¤



3. DIRECT IMAGES OF CANONICAL SHEAVES 199

The following result is similar to 3.18:

3.19. Lemma Let π : X → S be a projective morphism from a normal variety

into a Stein variety. Let F be a coherent sheaf on X such that

Rp π∗(F ⊗OX(A′)) = 0

for any p > 0 and for any π-ample divisor A′. Then F ⊗OX(A) is π-generated for

a divisor A such that A− (dim SuppF)H is π-ample for a π-very ample divisor H.

Proof. By the same argument as [71, I, 3.1], we shall prove by induction
on dim SuppF . Let x ∈ SuppF be an arbitrary point. Suppose first that the
local cohomology sheaf F ′ := H0

{x}(F) is not zero. Then, for the quotient sheaf

F ′′ := F/F ′, we have H0
{x}(F ′′) = 0. Since F ′ is a coherent skyscraper sheaf, we

have only to show the surjectivity of

π∗(F ′′ ⊗O(A))→ F ′′ ⊗O(A)⊗ C(x).

Therefore we can reduce to the case H0
{x}(F) = 0 and dim SuppF > 0. Let

X1 ∈ |H| be a general member containing x. Then the homomorphism

F ⊗OX(−X1)→ F
is injective. Let F1 := F ⊗ OX1

(H). Then A − H − (dim SuppF1)H is π-ample,
since dim SuppF1 ≤ dim SuppF − 1. We have a surjective homomorphism

π∗(F ⊗OX(A))³ π∗(F1 ⊗OX1
(A−H))

and a vanishing

Rp π∗(F1 ⊗OX(A′)) ' Rp+1 π∗(F ⊗OX(A′)) = 0

for p > 0 for any π-ample divisor A′. Thus, by induction, the homomorphism

π∗(F ⊗OX(A))→ F ⊗OX(A)⊗ C(x)

is surjective. ¤

§3.c. Weak positivity and pseudo-effectivity.

3.20. Definition Let F be a torsion-free coherent sheaf of a non-singular
projective variety Y .

(1) For a point y ∈ Y , F is called (globally) generated at y or generated by

global sections at y if the evaluation homomorphism H0(Y,F)⊗OY → F
is surjective at y.

(2) Ŝm(F) denotes the double-dual of the symmetric tensor product Symm(F)

for m ≥ 0, where Ŝ0(F) = OX .
(3) ⊗̂m(F) denotes the double-dual of the tensor product F⊗m for m ≥ 0,

where ⊗̂0(F) = OX .

(4) d̂et(F) denotes the double-dual of
∧r F for r = rankF > 0.
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Let Q be an R-divisor and let y be a point of Y r
⋂

m∈Z Supp〈mQ〉. We
introduce the symbol F [[Q]]. If Q is a Z-divisor, then we identify F [[Q]] with the
double-dual of F ⊗OY (Q).

(5) F [[Q]] is called dd-ample at y if Ŝm(F)⊗OY ( xmQy − A) is generated by
global sections at y for an ample divisor A and m > 0 with y 6∈ Supp〈mQ〉.
(Here, “dd-ample” is an abbreviation for “ample modulo double-duals.”)

(6) If F [[Q]] is dd-ample at some point y as above, then it is called big .
(7) Let A be an ample divisor. F [[Q]] is called weakly positive at y if for any

a ∈ N, there is b ∈ N such that y 6∈ Supp〈abQ〉 and

Ŝab(F)⊗OY ( xabQy + bA)

is generated by global sections at y. Note that the condition does not
depend on the choice of A.

(8) If F [[Q]] is weakly positive at a point of Y , then F [[Q]] is called weakly

positive.

Remark

(1) Let F → G be a homomorphism of torsion free coherent sheaves that is
surjective over an open neighborhood of y. Then, if F is generated by
global sections at y, then G is so. Thus if F is dd-ample at y and weakly
positive at y, respectively, then so is G. In particular, if F is generated by
global sections at y, then F is weakly positive at y.

(2) If F [[Q]] is dd-ample at y, then F [[Q]] is weakly positive at y. Conversely,
if F [[Q]] is weakly positive at y, then F [[Q + A]] is dd-ample at y for any
ample Q-divisor A.

(3) F [[Q]] is dd-ample at y if and only if F [[Q−A]] is weakly positive at y for
an ample Q-divisor A.

(4) The set of points at which F is generated by global sections is a Zariski-
open subset. In fact, its complement is the support of the cokernel of

H0(Y,F)⊗OY → F .
In particular, the set of points y at which F [[Q]] is dd-ample is also Zariski-
open. However, the set of points at which F [[Q]] is weakly positive is only
an intersection of countable Zariski-open subsets. A weakly positive sheaf
in the sense of Viehweg [147] is a sheaf that is weakly positive at every
point of some dense Zariski-open subset.

3.21. Lemma Let f : X → Y be a surjective morphism from a non-singular

projective variety onto a projective variety, L an R-divisor of X, and F = f−1(y)
the fiber over a point y ∈ Y such that f is smooth along F and Supp〈L〉 ∩ F = ∅.
If one of the following conditions is satisfied, then there is an ample divisor H of

Y such that

H0(X, xlLy + f∗H)→ H0(F, lL|F )

is surjective for any lÀ 0:
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(1) κ(L) ≥ 0, SBs(L) ∩ F = ∅, and the evaluation homomorphism

f∗f∗OX( xmaLy −mKX)→ OX( xmaLy −mKX)

is surjective along F for some positive integers m and a;
(2) L is pseudo-effective, NBs(L) ∩ F = ∅, and L|F is ample.

Proof. We may replace X by a blowing-up X ′ → X such that X ′ → Y is still
smooth over y. Let H be an ample divisor of Y .

(1) By replacing m, we may assume that F ∩Bs |mL| = ∅ and F ∩Bs |m(aL+
bf∗H −KX)| = ∅ for some b ∈ N. Hence we may assume that there are effective
R-divisors ∆1, ∆2 such that Supp(∆1 + ∆2) is a normal crossing divisor and

Bs |mL−∆1| = Bs |m(aL+ bf∗H −KX)−∆2| = F ∩ Supp(∆1 + ∆2) = ∅.
Since f is flat along F , y is a non-singular point of Y . Let µ : Y ′ → Y be the blowing-
up at y and let ν : X ′ → X be the blowing-up along F . Then X ′ ' X ×Y Y ′. Let
f ′ : X ′ → Y ′ be the induced morphism and let E = µ−1(y) and G = ν−1(F ) be
exceptional divisors. Then cµ∗H − E is ample for cÀ 0. We set

Dl := lL− l − a
m

∆1 −
1

m
∆2 + (b+ c)f∗H.

Then, for any l ≥ a,

ν∗Dl −G−KX′ =
l − a
m

ν∗(mL−∆1) + ν∗
(
aL− 1

m
∆2 + bf∗H −KX

)

+ f ′
∗
(cµ∗H − (dimY )E)

is semi-ample and

H1(X ′, pν∗Dl
q −G)→ H1(X ′, pν∗Dl

q )

is injective by 3.7-(3). Therefore,

H0(X, xlLy + (b+ c)f∗H)→ H0(F, lL|F )

is surjective.
(2) For some ample divisor A of X, the restriction homomorphism

H0(X, xlLy +A)→ H0(F, ( xlLy +A)|F )

is surjective for any l > 0 by 1.14. Since L|F is ample, L + bf∗H is big and
c(L+ bf∗H)−A−∆ is ample for some b, c ∈ N, and an effective R-divisor ∆ with
F ∩ Supp ∆ = ∅. By the proof of 1.14,

H0(X, xmL+ c(L+ bf∗H)y )→ H0(F, (m+ c)L|F )

is also surjective for any m > 0. ¤

3.22. Lemma Let f : X → Y be a surjective morphism from a non-singular

projective variety onto a projective variety, L an R-divisor of X, and F = f−1(y)
the fiber over a point y ∈ Y such that f is smooth along F and Supp〈L〉 ∩ F = ∅.
Suppose that f∗f∗OX( xmLy )→ OX( xmLy ) is surjective along F for some m > 0.
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Let H be an ample divisor of Y . Then (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (5) hold

for the following conditions:

(1) f∗OX( xaLy )⊗OY (−H) is generated by global sections at y for some a > 0;
(2) κ(L) = κ(L,X/Y ) + dimY and SBs(L) ∩ F = ∅;
(3) There is a positive integer b such that f∗OX( xaLy )⊗OY (bH) is generated

by global sections at y for any a > 0;
(4) For any a > 0, there is a positive integer b such that f∗OX( xabLy ) ⊗
OY (bH) is generated by global sections at y;

(5) L is pseudo-effective and NBs(L) ∩ F = ∅.
If L|F is ample, then (2) ⇒ (1) and (5) ⇒ (3) also hold.

Proof. (1)⇒ (2): The equality for κ follows from II.3.13, since h0(X, xaLy −
f∗H) 6= 0. Let Ψ = Φm/Y : X ···→ P = PY (f∗OX( xmLy )) be the meromorphic
mapping associated with f∗f∗OX( xmLy ) → OX( xmLy ) which is surjective along
F . Then Ψ is holomorphic along F . We may assume that Ψ is holomorphic by
replacing X by a blowing-up and that Ψ induces the Iitaka fibration for L restricted
to a general fiber of f . Then, for the tautological line bundle OP (1), we have
Ψ∗OP (1) ' OX(mL − ∆) for an effective R-divisor ∆ with F ∩ Supp∆ = ∅.
On the other hand, OP (1) ⊗ p∗OY (bH) is very ample for the structure morphism
p : P → Y for some b ∈ N. By assumption, Bs |m(aL − f ∗H)| ∩ F = ∅. Thus
κ(L) = κ(L,X/Y ) + dimY and SBs(L) ∩ F = ∅.

(2) ⇒ (1): Here, we assume L|F is ample. Let Φ = Φk : X ···→ |kL|∨ be the
Iitaka fibration for L associated with the linear system |kL| for some k ∈ I(L).
Then Φ and Ψ are birational to each other, since κ(L;X/Y ) = dimX − dimY and
κ(L) = dimX. Furthermore, Φ is holomorphic along F and is an embedding near
F . By replacing X by a blowing-up with center away from F , we may assume
that kL−∆k is ample for an effective R-divisor ∆k with F ∩ Supp ∆k = ∅. Then
c(kL −∆k) − f∗H is ample and free for some c > 0. By 3.21, there is a positive
integer b such that

H0(X, xlLy + bf∗H)→ H0(F, lL|F )

is surjective for lÀ 0. By the proof of 3.21,

H0(X, x(l + (b+ 1)ck)Ly − f∗H)→ H0(F, (l + (b+ 1)ck)L|F )

is also surjective. In particular, f∗OX( xlLy − f∗H) ⊗ C(y) ' H0(F, lL|F ) and
f∗OX( xlLy − f∗H) is generated by global sections at y for lÀ 0.

(3) ⇒ (4) is trivial.
(4)⇒ (5): For any a > 0, we can choose b > 0 so that F ∩Bs |b(aL+f ∗H)| = ∅.

Thus (5) follows.
(5) ⇒ (3) follows from 3.21 under the assumption: L|F is ample. ¤

Let F be a non-zero torsion-free coherent sheaf on a non-singular projective
variety Y and let p : P(F) = PY (F) → Y be the associated projective morphism
defined as Projan Sym(F). Let U be the maximum open subset of Y over which F
is locally free. Let P′(F) → P(F) be the normalization of the component of P(F)
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containing p−1(U) and letX → P′(F) be a birational morphism from a non-singular
projective variety that is an isomorphism over U . We assume that X r f−1U is a
divisor for the composite f : X → P(F) → Y . Let OF (1) be the tautological line
bundle of P(F) associated with F and let L0 be a Cartier divisor of X linearly
equivalent to the pullback of OF (1). There is a natural inclusion F ↪→ f∗OX(L0)
which is an isomorphism over U . By III.5.10-(3), there is an f -exceptional effective

divisor E such that f∗OX(a(L0+E)) ' Ŝa(F) for any a ∈ N. We now fix the divisor
E above and set L := L0 + E. Note that Nσ(L + E′;X/Y ) ≥ E′, for another f -
exceptional effective divisor E ′. In particular, if L+ E′ is pseudo-effective, then L
is so and NBs(L+ E′) = NBs(L) ∪ SuppE′.

By applying 3.22, we have the following criterion.

3.23. Theorem In the situation above, let y be a point of U and let Q be an

R-divisor of Y with y 6∈ Supp〈Q〉. Then the equivalences (1) ⇔ (2) ⇔ (3), and (4)
⇔ (5) ⇔ (6) hold for the following conditions:

(1) Ŝa(F)[[aQ−H]] is weakly positive at y for some a > 0 for an ample divisor

H;
(2) F [[Q]] is dd-ample at y;
(3) L+ f∗Q is big and SBs(L+ f∗Q) ∩ f−1(y) = ∅;
(4) There is an ample divisor H of Y such that Ŝm(F)⊗OY ( xmQy +H) is

globally generated at y for any m > 0;
(5) F [[Q]] is weakly positive at y;
(6) L+ f∗Q is pseudo-effective and NBs(L+ f∗Q) ∩ f−1(y) = ∅.

Proof. (1) ⇒ (2): There is a surjection Symm(Syma(F)) ³ Symma(F).

Hence Ŝm(Ŝa(F))→ Ŝma(F) is induced and it is surjective over the open subset U
where F is locally free. Hence, by definition,

Ŝ2am(F)⊗OY ( x2mQy − 2mH)⊗OY (mH) ' Ŝ2am(F)⊗OY ( x2mQy −mH)

is generated by global sections at y for some m > 0.
(2) ⇒ (1) is trivial.
(2) ⇔ (3) and (4) ⇔ (5) ⇔ (6) are shown in 3.22. ¤

Remark A numerically semi-positive vector bundle on Y is a locally free sheaf
that is weakly positive at every point of Y .

3.24. Corollary Let F be a torsion-free coherent sheaf of Y and let Q be an

R-divisor.

(1) If F [[Q′]] is weakly positive for an R-divisor Q′ with Q−Q′ being pseudo-

effective, then F [[Q]] is weakly positive.

(2) Let Qk (k = 1, 2, . . .) be a sequence of R-divisors such that c1(Q) =
limk→∞ c1(Qk) in N1(Y ). If F [[Qk]] are all weakly positive, then F [[Q]]
is weakly positive.

Proof. We consider the morphism f : X → Y and L above and apply (6) ⇔
(5) of 3.23.
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(1) L+ f∗Q is pseudo-effective. If y is a ‘general’ point, then NBs(L+ f ∗Q′)∩
f−1(y) = ∅ and y 6∈ NBs(Q−Q′). Thus NBs(L+ f∗Q) ∩ f−1(y) = ∅.

(2) L+ f∗Q is pseudo-effective since it is a limit of pseudo-effective R-divisors.
Let A be an ample divisor of X. Then, for any positive integer m, there is a number
km such that mf∗(Q − Qk) + A is ample for any k ≥ km. For a point x ∈ X, we
have

σx(m(L+f∗Q)+A) ≤ σx(m(L+f∗Qk))+σx(mf∗(Q−Qk)+A) = σx(m(L+f∗Qk))

for k ≥ km. Hence, if NBs(L+f∗Qk)∩f−1(y) = ∅ for any k, then NBs(L+f∗Q)∩
f−1(y) = ∅. ¤

3.25. Lemma (cf. [36, Theorem 5.2], [148, Lemma 3.2]) Let F and G are

torsion-free coherent sheaves on Y , Q an R-divisor, and y a point of Y r Supp〈Q〉
such that F and G are locally free at y.

(1) If F [[Q]] and G[[Q]] are weakly positive (resp. dd-ample) at y, then so is

(F ⊕ G)[[Q]].
(2) If F [[Q]] is weakly positive (resp. dd-ample) at y and if G is generated by

global sections at y, then (F ⊗ G)[[Q]] is weakly positive (resp. dd-ample)
at y.

(3) If F [[Q]] is weakly positive (resp. dd-ample) at y, then

Ŝa(F)[[aQ]], ⊗̂a(F)[[aQ]], and d̂et(F)[[(rankF)Q]]

are weakly positive (resp. dd-ample) at y, for a > 0.
(4) If F [[Q]] and G[[Q]] are weakly positive (resp. dd-ample) at y, then so is

(F ⊗ G)∧[[2Q]].

(5) If Ŝa(F)[[aQ]] is weakly positive (resp. dd-ample) at y for some a > 0,
then F [[Q]] is weakly positive (resp. dd-ample) at y.

(6) Let τ : Y ′ → Y be a morphism (resp. generically finite morphism) from

a non-singular projective variety such that τ is smooth along τ−1(y).
Let E be a τ -exceptional effective divisor. Then F [[Q]] is weakly posi-

tive (resp. dd-ample) at y if and only if τ ∗F ⊗OY ′(E)[[τ∗Q]] is so at any

point of τ−1(y).

Proof. (1) Suppose that F [[Q]] and G[[Q]] are weakly positive at y. By 3.23,

there exist an ample divisor H of Y and k0 ∈ N such that Ŝk(F)⊗OY ( xkQy +H)

and Ŝk(G)⊗OY ( xkQy +H) are generated by global sections at y for any k ≥ k0. Let

b be a positive integer such that Ŝi(F)⊗OY ( xiQy+bH) and Ŝj(G)⊗OY ( xjQy+bH)
are generated by global sections at y for any 0 ≤ i, j ≤ k0−1. For integers m ≥ 2k0

and 0 ≤ n ≤ m, if n < k0, then m− n ≥ k0. Hence
(
Ŝm−n(F)⊗OY ( x(m− n)Qy )⊗ Ŝn(G)⊗OY ( xnQy )

)∧
⊗OY ((b+ 1)H)

is generated by global sections at y. Since

Ŝm(F ⊕ G) '
⊕m

n=0

(
Ŝm−n(F)⊗ Ŝn(G)

)∧
,
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Ŝm(F ⊕ G) ⊗ OY ( xmQy + (b + 1)H) is generated by global sections at y. Hence
(F ⊕ G)[[Q]] is weakly positive at y.

The case in which F [[Q]] and G[[Q]] are dd-ample at y is reduced to the case
above by the following property: F [[Q]] is dd-ample at y if and only if F [[Q−A]] is
weakly positive at y for some ample Q-divisor A with y 6∈ SuppA.

(2) There is a homomorphism O⊕r
Y → G surjective at y. Thus F⊕r → F ⊗G is

also surjective at y. Since F⊕r[[Q]] is weakly positive or dd-ample at y by (1), so is
F ⊗ G[[Q]].

(3) This is proved by the same argument as [36, Theorem 5.2] with properties
obtained in (1), (2), and 3.23-(1), -(4).

(4) Ŝ2(F ⊕ G)[[2Q]] is weakly positive (resp. dd-ample) at y and (F ⊗ G)∧ is a

direct summand of Ŝ2(F ⊕ G). Thus (4) follows.

(5) It is derived from the homomorphism Ŝm(Ŝa(F))→ Ŝma(F).
(6) Let X ′ → X×Y Y

′ be a birational morphism from a non-singular projective
variety into the main component. Then we can define a divisor L′ on X ′ for
τ∗F similarly to L for F . Let λ : X ′ → X and f ′ : X ′ → Y ′ be the induced
morphisms. Then we can write E ′ −G = L′ − λ∗L for effective divisors E′ and G
which are exceptional for X ′ → Y . If L′ + f ′

∗
(τ∗Q + E) is pseudo-effective, then

L′ + f ′
∗
(τ∗Q+ E) +G is pseudo-effective and

NBs(L′ + f ′
∗
(τ∗Q+E))∩ λ−1f−1(y) ⊃ NBs(L′ + f ′

∗
(τ∗Q+E) +G)∩ λ−1f−1(y).

There is an f -exceptional effective divisor E ′′ of X such that E′ + f ′
∗
E ≤ λ∗E′′,

since X r f−1U is a divisor. Thus

λ−1 NBs(L+ f∗Q) ⊂ NBs(λ∗(L+ f∗Q+ E′′))

⊂ NBs(λ∗(L+ f∗Q) + E′ + f ′
∗
E) ∪ λ−1(SuppE′′)

= NBs(L′ + f ′
∗
(τ∗Q+ E) +G) ∪ λ−1(SuppE′′).

Hence if τ∗(F) ⊗ OY ′(E)[[τ∗Q]] is weakly positive at any point of τ−1(y), then
L+ f∗Q is pseudo-effective and NBs(L+ f∗Q)∩ f−1(y) = ∅. Thus F [[Q]] is weakly
positive at y. The inverse implication is trivial. We can reduce the case of dd-
ample to the case of weakly positive above by replacing Q by Q−A for some ample
Q-divisor A. ¤

§3.d. ω-sheaves and weak positivity.

3.26. Lemma Let H be a polarized variation of Hodge structure of weight

w ≥ 0 defined on M r D for a non-singular projective variety M and a normal

crossing divisor D. Suppose that F0(H) = H and Fw+1(H) = 0 for the Hodge

filtration F•(H) of H = H⊗OMrD. Then, without the assumption of monodromies,

Fw(uHcan) is weakly positive at every point of M rD.

Proof. We may assume that D is a simple normal crossing divisor. By Kawa-
mata’s covering lemma II.5.11, we have a finite Galois morphism τ : Y →M from
a non-singular projective variety such that τ−1D is also a simple normal crossing
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divisor and τ−1H has only unipotent local monodromies along τ−1D. Let FM

be the w-th filter Fw(uHcan) and let FY be the corresponding w-th filter to the
canonical extension of τ−1H. Then there is a natural injection

FY ↪→ τ∗FM

which is isomorphic outside τ−1D. Since FY is numerically semi-positive by 3.2,
FM is weakly positive at every point of M rD. ¤

3.27. Corollary For a torsion-free ω-sheaf F on a non-singular projective

variety Y , F ⊗ ω−1
Y is weakly positive at every point of a dense Zariski-open subset

of Y .

Proof. We may assume F = Ri f∗ωX for a surjective morphism f : X → Y
from a compact Kähler manifold and for some i ≥ 0. Let µ : Y ′ → Y be a birational
morphism from a non-singular projective variety such that X×Y Y

′ → Y ′ is smooth
outside a normal crossing divisor E of Y ′. Then there is a bimeromorphic morphism
X ′ → X×Y Y

′ into the main component from a compact Kähler manifold such that
f ′ : X ′ → Y ′ is smooth outside E. Then Ri f ′∗ωX′/Y ′ is weakly positive at every

point of Y ′ rE by 3.7-(4) and 3.26. Since µ is birational, Rp µ∗(R
i f ′∗ωX′) = 0 for

any p > 0, by 3.14. Thus there is a natural injection

µ∗(R
i f ′∗ωX′/Y ′) ↪→ µ∗(R

i f ′∗ωX′/Y ) ' Ri(µ ◦ f ′)∗ωX′/Y ' Ri f∗ωX/Y .

Therefore, F ⊗ ω−1
Y = Ri f∗ωX/Y is weakly positive at every point of a dense

Zariski-open subset. ¤

We shall give in §3.e below a generalization of the following weak positivity
theorem by Viehweg [147]:

3.28. Theorem Let f : X → Y be a surjective morphism of non-singular

projective varieties. Then f∗(ω
⊗m
X/Y ) is weakly positive for any m ≥ 1.

Here, the case m = 1 is derived from 3.27 (cf. [50, Theorem 5]).
We recall the following lemma by Viehweg [147, 3.2] which is important for

the proof of 3.28: let f : X → Y be a proper surjective morphism of non-singular
varieties, τ : Y ′ → Y a finite surjective morphism from a non-singular variety,
σ : V → X ×Y Y ′ the normalization map, and δ : X ′ → V a bimeromorphic mor-
phism from a non-singular variety. Let f ′ : X ′ → Y ′ be the induced morphism and
let p1, p2 be the projections from X ×Y Y ′.

X ′ δ−−−−→ V
σ−−−−→ X ×Y Y ′ p1−−−−→ X

yp2

yf

Y ′ τ−−−−→ Y.

3.29. Lemma Suppose that f is smooth over an open subset U0 ⊂ Y and τ is

étale over an open subset U1 ⊂ Y . Let U2 ⊂ Y be an open subset such that

(1) f is flat over U2,
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(2) f−1(y) is reduced for any y ∈ U2,

(3) the branch divisor of V → X is a normal crossing divisor over U2.

Then, for any m ∈ N, there exist injections

σ∗δ∗(ω
⊗m
X′/Y ′) ↪→ p∗1ω

⊗m
X/Y and f ′∗(ω

⊗m
X′/Y ′) ↪→ τ∗

(
f∗(ω

⊗m
X/Y )

)

which are isomorphic over τ−1(U0 ∪ U1 ∪ U2).

Proof. Since τ is flat, we have isomorphisms

ωX×Y Y ′/Y ′ ' p∗1ωX/Y and ωX×Y Y ′/X ' p∗2ωY ′/Y ,

by [37], [145]. Thus X×Y Y
′ is Gorenstein. Since f−1U2 → U2 is smooth outside a

Zariski-closed subset of f−1U2 of codimension greater than one, X×Y Y
′ is normal

over U2. Therefore, σ is isomorphic over τ−1(U0 ∪ U1 ∪ U2). There is a trace map
σ∗ωV → ωX×Y Y ′ , where ωV = OV (KV ). Since σ is finite and bimeromorphic,
σ∗σ∗ωV → ωV is surjective and its kernel is a torsion sheaf. Hence the trace map
induces an injection

ωV/Y ′ = ωV ⊗ σ∗p∗2ω
−1
Y ′ ↪→ σ∗ωX×Y Y ′/Y ′ ' σ∗p∗1ωX/Y .

For m ∈ N, let ω
[m]
V/Y ′ denote the double-dual of ω⊗m

V/Y ′ . Then we have

ω
[m]
V/Y ′ ↪→ ωV/Y ′ ⊗ σ∗p∗1ω

⊗(m−1)
X/Y

and the composite

σ∗ω
[m]
V/Y ′ ↪→ σ∗ωV/Y ′ ⊗ p∗1ω⊗(m−1)

X/Y ↪→ p∗1ω
⊗m
X/Y .

There is a natural injection

δ∗(ω
⊗m
X′/Y ′) ↪→ ω

[m]
V/Y ′

given by the double-dual. This is also isomorphic over τ−1(U0 ∪ U1 ∪ U2), since V
has only rational singularities over τ−1U2. Thus we have the first injection. The
second injection is derived from the flat base change

p2∗

(
p∗1ω

⊗m
X/Y

)
' τ∗

(
f∗(ω

⊗m
X/Y )

)
. ¤

3.30. Lemma Under the same situation as 3.29, there is an injection

Rp f ′∗ωX′/Y ′ ↪→ τ∗
(
Rp f∗ωX/Y

)

for any p, which is an isomorphism over τ−1(U0 ∪ U1 ∪ U2).

Proof. The composite of trace maps

σ∗δ∗ωX′/Y ′ → σ∗ωV/Y ′ → ωX×Y Y ′/Y ′ ' p∗1ωX/Y

is an isomorphism over τ−1(U0 ∪U1 ∪U2). The vanishing Rq(σ ◦ δ)∗ωX′/Y ′ = 0 for
q > 0 by [30] (cf. 3.14, II.5.12) induces the expected injection

Rp f ′∗ωX′/Y ′ ' Rp p2∗

(
σ∗δ∗ωX′/Y ′

)
↪→ Rp p2∗p

∗
1ωX/Y ' τ∗ Rp f∗ωX/Y . ¤
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3.31. Proposition (cf. 3.27) Let F be an ω-big ω̂-sheaf on a non-singular

projective variety Y . Then F ⊗ ω−1
Y is big.

Proof. Let f : X → Z and g : Z → Y be surjective morphisms of non-singular
varieties in which X is compact Kähler and Z is projective. Let A be an ample
divisor of Z and set h = g ◦ f . It is enough to show that Rp h∗ωX/Y (f∗A) is
big for any p ≥ 0. Let H be an ample divisor of Y and let us take m ∈ N with
mA− g∗H being ample. Then there exist a finite surjective morphism τ : Y ′ → Y
a non-singular projective variety and an ample divisor H ′ of Y ′ with τ∗H ∼ mH ′

by II.5.11. Let X ′ and Z ′ be desingularizations of the main components of the
fiber products X ×Y Y ′ and Z ×Y Y ′, respectively. Let h′ : X ′ → Y ′, f ′ : X ′ → Z ′,
g′ : Z ′ → Y ′, and τZ : Z ′ → Z be the induced morphisms. By 3.30, we have a
generically isomorphic injection

Rp h′∗
(
ωX′/Y ′(f ′

∗
τ∗ZA)

)
↪→ τ∗

(
Rp h∗ωX/Y (f∗A)

)
.

In particular, the tensor product τ ∗(Rp h∗ωX/Y (f∗A)) ⊗ OY ′(−H ′) contains a

sheaf Rp h′∗ωX′/Y ′(f ′
∗
(τ∗ZA − g′

∗
H ′)), which is weakly positive by 3.27. Hence

Rp h∗ωX/Y (f∗A) is big. ¤

3.32. Theorem Let Y be a normal projective variety and let L be an invertible

ω-sheaf. Then there exist a birational morphism ϕ : M → Y from a non-singular

projective variety M and a nef Q-divisor D of M such that Supp〈D〉 is a normal

crossing divisor and

L ' ϕ∗ωM ( pDq ).

Proof. Let µ : Z → Y be a birational morphism from a non-singular projective
variety, f : X → Z a surjective morphism from a compact Kähler manifold, and L
a Cartier divisor of Y such that

(1) L ' OY (L) is a direct summand of µ∗(R
j f∗ωX) for some j,

(2) f is smooth outside a simple normal crossing divisor E =
∑
Ei, and

(3) the µ-exceptional locus is contained in E.

The sheaf Rj f∗ωX/Z is isomorphic to the upper-canonical extension of the d-the

Hodge filtration of the variation of Hodge structures associated with Rd+j f∗CX ,
where d = dimX − dimY . Let τ : Z ′ → Z be a finite Galois morphism from a
non-singular projective variety Z ′ that is a unipotent reduction for the variation of
Hodge structure; here, the local monodromies of the pullback are unipotent. We
may assume that the branch locus of τ is contained in a normal crossing divisor
as in II.5.11. Then we have the canonical extension E of the d-th filtration of the
induced variation of Hodge structure. This is numerically semi-positive by 3.2.
For the Galois group G of τ , the G-invariant part of τ∗E is the lower-canonical
extension and that of τ∗(E ⊗ ωZ′) is isomorphic to Rj f∗ωX . Now we have an
injection OZ(µ∗L) ↪→ Rj f∗ωX and a generic surjection Rj f∗ωX → OZ(µ∗L+E1)
for a µ-exceptional effective divisor E1, which is surjective outside a Zariski-closed
subset of codimension greater than one. Since Rj f∗ωX is the G-invariant part of
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τ∗(E ⊗ ωZ′), we have an injection OZ′(τ∗µ∗L) ↪→ E ⊗ ωZ′ . Similarly, we have an
effective divisor ∆′ ⊂ Z ′ such that there is a generic surjection

E ⊗ ωZ′ → OZ′(τ∗µ∗L+ τ∗E1 + ∆′)

whose cokernel is supported on a Zariski-closed subset of codimension greater than
one. Then ∆′ ≤ Rτ for the ramification divisor Rτ = KZ′−τ∗KZ , since there is an
injection E ↪→ τ∗

(
Rj f∗ωX/Z

)
by 3.30. There exist effective Q-divisors ∆ and RZ

of Z such that ∆′ = τ∗∆ and Rτ = τ∗RZ , since ∆′ and Rτ are G-invariant. Note
that xRZy = 0. Let ν : Z ′′ → Z ′ be a birational morphism from a non-singular
projective variety such that there exist a ν-exceptional effective divisor E ′

2 and a
surjection

ν∗(E ⊗ ωZ′)³ OZ′′(ν∗τ∗(µ∗L+ E1 + ∆)− E′
2).

Since E is numerically semi-positive, the divisor

ν∗τ∗(µ∗L+E1 + ∆)− ν∗KZ′ −E′
2 = ν∗τ∗(µ∗L+ E1 − (RZ −∆)−KZ)− E′

2

is nef. Furthermore, ν∗τ∗(E1 + ∆) − E′
2 is an effective Cartier divisor. We may

assume that the Galois group G acts holomorphically on Z ′′. Since E′
2 is also G-

invariant, there is an effective Q-Cartier divisor E2 on the quotient variety Z ′′/G
such that E′

2 = λ∗E2, where λ : Z ′′ → Z ′′/G is the quotient morphism. Let
ρ : Z ′′/G→ Z be the induced morphism. Then ρ∗(µ∗L+E1 + ∆−KZ −RZ)−E2

is nef and ρ∗(E1 + ∆) − E2 is an effective Q-divisor. Let δ : M → Z ′′/G be a
birational morphism from a non-singular projective variety such that the union of
the exceptional locus for ϕ := µ◦ρ◦ δ : M → Y and the proper transform of E ⊂ Z
is a normal crossing divisor. Let RM be the Q-divisor KM − δ∗ρ∗(KZ +RZ). Then
pRM
q ≥ 0. We know the Q-divisor

D := ϕ∗L+ δ∗ρ∗(E1 + ∆)− δ∗E2 −KM +RM

is nef. We shall consider the Q-divisor

EM := δ∗ρ∗(E1 + ∆)− δ∗E2 +RM .

Let Γ be a prime component of of EM . Since ρ∗(E1 + ∆) − E2 is effective, c :=
multΓEM ≥ multΓRM > −1. On the other hand, if Γ is not ϕ-exceptional, then
c = c1 − c2, where c1 := multΓ δ

∗ρ∗∆ and c2 := multΓ δ
∗ρ∗RZ . Since ∆ ≤ RZ ,

c ≤ 0. Hence pEM
q is a ϕ-exceptional effective divisor on M . Therefore

ϕ∗OM (KM + pDq ) = ϕ∗OM (ϕ∗L+ pEM
q ) ' OZ(L). ¤

§3.e. Direct images of relative pluricanonical sheaves. Let f : X → Y
be a proper surjective morphism from a normal variety onto a non-singular variety.
We denote the relative canonical divisor KX−f∗KY by KX/Y . Then OX(KX/Y ) '
ωX/Y . For a Cartier divisor D of X, we denote ωX/Y (D) = ωX/Y ⊗ OX(D) and
ωX(D) = ωX ⊗OX(D), for short.

3.33. Lemma Let ∆ be an effective R-divisor of X, L a Cartier divisor of X,

and k a positive integer. Suppose that KX + ∆ is R-Cartier.
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(1) Let ρ : X̃ → X be a bimeromorphic morphism from a non-singular va-

riety. For the R-divisor R := K
X̃
− ρ∗(KX + ∆), let pRq = R̃+ − R̃−

be the decomposition into the positive and the negative parts of the prime

decomposition and set

∆̃ := 〈−R〉+ R̃− and L̃ := ρ∗L+ kR̃+.

Then

L̃− k
(
K

X̃/Y
+ ∆̃

)
= ρ∗(L− k(KX/Y + ∆))

and there is an isomorphism

ρ∗OX̃
(L̃) ' OX(L).

(2) Suppose that X is non-singular and Supp∆ is a normal crossing divisor.

Let τ : Y ′ → Y be a generically finite surjective morphism from a non-

singular variety and let δ : X ′ → X ×Y Y ′ be a bimeromorphic morphism

from a non-singular space. Let f ′ : X ′ → Y ′ and λ : X ′ → X be the

induced morphisms. For the R-divisor R∆ := KX′ − λ∗(KX + ∆), let
pR∆
q = R′

+ − R′
− be the decomposition into the positive and the negative

parts of the prime decomposition, and set Rτ := KY ′ − τ∗KY ,

∆′ := 〈−R∆〉+R′
−, and L′ := λ∗L+ kR′

+ − kf ′
∗
Rτ .

Then

L′ − k(KX′/Y ′ + ∆′) = λ∗(L− k(KX/Y + ∆)).

(3) Under the situation of (2), suppose that τ is finite. Then there is a gener-

ically isomorphic injection

f ′∗OX′(L′) ↪→ τ∗ (f∗OX(L)) .

(4) Under the situation of (2), suppose that τ is bimeromorphic and the mor-

phism from the main component of X ×Y Y ′ to Y ′ is flat. Then

τ∗(f
′
∗OX′(L′))∧ ⊂ f∗OX(L).

(5) Under the situation of (2), there exist a τ -exceptional effective divisor E
and a generically isomorphic injection

f ′∗OX′(L′) ↪→ (τ∗f∗OX(L))
∧ ⊗OY ′(E).

Proof. (1) The equality is straightforward and the isomorphism follows from

that R̃+ is ρ-exceptional.
(2) The equality is also straightforward.
(3) For the ramification divisor Rλ := KX′ − λ∗KX , we have R∆ = Rλ − λ∗∆.

Hence pR∆
q ≤ Rλ and R′

+ ≤ Rλ. We have an injection

δ∗(ω
⊗m
X′/Y ′) ↪→ p∗1ω

⊗m
X/Y
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for any m ∈ N by 3.29, where p1 is the first projection X ×Y Y ′ → X. The
injection is isomorphic over a dense Zariski-open subset of Y ′. Hence we also have
an injection

δ∗OX′(k(R′
+ − f ′

∗
Rτ )) ↪→ δ∗OX′(k(Rλ − f ′∗Rτ )) ↪→ OX×Y Y ′ ,

which is an isomorphism over a dense open subset of Y ′, equivalently, the injec-
tion δ∗OX′(kR′

+) ↪→ δ∗OX′(kRλ) is so. In fact, it follows from that OX×Y Y ′ →
δ∗OX′(kRλ) is an isomorphism over a dense open subset of Y ′ along which τ is
étale. Thus we have the expected generically isomorphic injection

f ′∗OX′(L′) ↪→ p2∗ (p∗1OX(L)) ' τ∗ (f∗OX(L))

by a flat base change.
(4) (f ′∗OX′(L′))∧ ' f ′∗OX′(L′ + E) for an f ′-exceptional divisor E. On the

other hand, λ∗OX′(L′ + E) ⊂ OX(L), since E is also λ-exceptional.
(5) Let Y ′ → V → Y be the Stein factorization of τ , where we write µ : Y ′ → V

and φ : V → Y . Then there is a Zariski-open subset U ⊂ Y such that codim(Y r
U) ≥ 2 and φ−1U is non-singular. Hence we have a generically isomorphic injection

µ∗f
′
∗OX′(L′) ↪→ φ∗ (f∗OX(L))

∧

by (3) and by taking j∗ for the open immersion j : φ−1U ↪→ V . Let G be the
cokernel of

µ∗µ∗f
′
∗OX′(L′)→ f ′∗OX′(L′)⊕ µ∗

(
φ∗ (f∗OX(L))

∧)
.

Then f ′∗OX′(L′) ⊂ G/(tor) and

G/(tor) ⊂ (τ∗f∗OX(L))
∧ ⊗OY ′(E)

for a µ-exceptional effective divisor E. Thus we are done. ¤

3.34. Lemma (cf. [147, 5.2]) Suppose that X and Y are projective varieties.

Let L be a Cartier divisor of X, ∆ an effective R-divisor of X, and let k be an

integer greater than one satisfying the following conditions:

(1) KX + ∆ is R-Cartier ;
(2) (X,∆) is log-terminal over a non-empty open subset of Y ;
(3) L− k(KX/Y + ∆) is nef and f -abundant.

Let H be an ample divisor of Y and let l be a positive integer such that

OY (lH)⊗ f∗OX(L)

is big in the sense of 3.20. Then

ωY ((l − xl/ky )H)⊗ f∗OX(L)

is an ω-big ω̂-sheaf. In particular,

ωY ((k − 1)H)⊗ f∗OX(L)

is an ω-big ω̂-sheaf for any ample divisor H of Y .
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Proof. By 3.33-(1), we may assume thatX is non-singular and Supp∆ is nor-
mal crossing. We can replace X by a further blowing-up. There is an f -exceptional
effective divisor E such that f∗OX(mL+mE) is the double-dual of f∗OX(mL) for
any m ∈ N, by III.5.10-(3). Replacing X by a blowing-up, we may assume that
the image of

f∗f∗OX(L+ E)→ OX(L+ E)

is an invertible sheaf which is written as OX(L+E −B) for an effective divisor B
of X. There is a positive integer a such that the sheaf

OY ((al − 1)H)⊗ Ŝa(f∗OX(L))

is generically generated by global sections. Note that the inequality

(al − 1)(k − 1)

ak
<
pl(k − 1)

k

q
= l − xl/ky

holds. The natural homomorphism

Syma(f∗OX(L+ E))→ f∗OX(a(L+ E))

factors through Ŝa(f∗OX(L)) and the image of the composite

f∗ Syma(f∗OX(L+ E))→ f∗f∗OX(a(L+ E))→ OX(a(L+ E))

is OX(a(L + E − B)). Therefore, if we replace X by a further blowing-up, then
there exist an f -exceptional effective divisor E ′ and an f -vertical effective divisor
C of X such that OX(a(L+ E −B) + E′) is the image of

f∗Ŝa(f∗OX(L))→ OX(a(L+ E))

and OX(P ′) is the image of

H0
(
Y,OY ((al − 1)H)⊗ Ŝa(f∗OX(L))

)
⊗OX → OX(a(L+ E) + (al − 1)f∗H)

for the divisor

P ′ := a(L+ E −B) + E′ − C + (al − 1)f∗H.

Here, Bs |P ′| = ∅. We may assume that Supp(E + B + E ′ + C + ∆) is a normal
crossing divisor. For any ε > 0, L− k(KX/Y + ∆) + εf∗H is nef and abundant by
2.28. Let us consider an R-divisor

P := L− (KX/Y + ∆) +
k − 1

k
(E −B) +

k − 1

ak
(E′ − C) + (l − xl/ky )f∗H.

Then

P − k − 1

ak
P ′ − 1

k
(L− k(KX/Y + ∆) + εf∗H) = αf∗H
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for some ε, α > 0. Thus P is nef and abundant, and P º f ∗H. Hence f∗OX(KX +
pPq ) is an ω-big ω-sheaf and there is a generically isomorphic injection

f∗OX(KX + pPq ) ↪→ ωY ((l − xl/ky )H)⊗ f∗OX

(
L− x

k − 1

k
B + ∆y

)∧

↪→ ωY ((l − xl/ky )H)⊗ f∗OX(L−B)∧

= ωY ((l − xl/ky )H)⊗ f∗OX(L)∧.

Thus the first assertion is proved. Let l0 be the minimum of l ∈ N such that
ωY (l0H)⊗f∗OX(L) is an ω-big ω̂-sheaf. Then OY (l0H)⊗f∗OX(L) is big by 3.31.
Thus l0 − xl0/ky ≥ l0, equivalently, l0 ≤ k − 1. Thus we are done. ¤

3.35. Theorem Let f : X → Y be a surjective morphism from a normal projec-

tive variety onto a non-singular projective variety. Let ∆ be an effective R-divisor

of X, L a Cartier divisor of X, Q an R-divisor of Y , and k a positive integer

satisfying the following conditions:

(1) KX + ∆ is R-Cartier ;
(2) (X,∆) is log-terminal over a non-empty open subset of Y ;
(3) L+ f∗Q− k(KX/Y + ∆) is nef and f -abundant.

Then f∗OX(L)[[Q]] is weakly positive. Suppose the following condition is also satis-

fied :

(4) L+ f∗Q− k(KX/Y + ∆) < f∗H for an ample divisor H of Y .

Then

ωY ( pQq )⊗ f∗OX(L)

is an ω-big ω̂-sheaf.

Proof. Step 1. A reduction step. We can replace X by a blowing-up by
3.33-(1). Thus we may assume that X is non-singular and Supp f ∗Q ∪ Supp ∆
is normal crossing. Furthermore, we may assume that SuppQ is normal crossing,
which is related to the proof of the second assertion. In fact, for a suitable birational
morphism τ : Y ′ → Y from a non-singular projective variety, we may assume that
X → Y factors through Y ′, and τ−1(SuppQ) is normal crossing. Then

L+ f∗Q− k(KX/Y ′ + ∆)− kRτ < f
∗H

for the effective divisor Rτ = KY ′ − τ∗KY . Thus X → Y ′ and τ∗Q satisfy the
conditions above. For the morphism f ′ : X → Y ′, we have a generically isomorphic
injection

τ∗
(
ωY ′( pτ∗Qq )⊗ f ′∗OX(L)

)
⊂
(
ωY ( pQq )⊗ f∗ωX(L)

)∧
.

Thus we may assume that SuppQ is normal crossing.
Step 2. The first assertion in the case Q = 0. We fix an ample divisor H

of Y . Let τ : Y ′ → Y be a finite Galois surjective morphism from a non-singular
projective variety such that τ ∗H = mH ′ for a divisor H ′ of Y ′ for m À 0. Let
X ′ → X ×Y Y

′, λ : X ′ → X, f ′ : X ′ → Y ′, R∆, Rτ , ∆′, and L′ be the same objects
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as in 3.33-(2). Here we assume that Supp ∆′ is a normal crossing divisor. Then
(X ′,∆′) is log-terminal over a non-empty open subset of Y ′,

L′ − k(KX′/Y ′ + ∆′) = λ∗(L− k(KX/Y + ∆))

is a nef and f ′-abundant R-divisor, and there is a generically isomorphic injection

f ′∗OX′(L′) ↪→ τ∗(f∗OX(L)).

If k = 1, then ωY ′(H ′) ⊗ f ′∗OX′(L′ − x∆′
y ) is an ω-big ω-sheaf by 3.12 and

2.28. Since f ′∗OX′(L′ − x∆′
y ) ↪→ f ′∗OX′(L′) is generically isomorphic, ωY ′(H ′) ⊗

τ∗(f∗OX(L)) is an ω-big ω̂-sheaf. If k ≥ 2, then ωY ′((k − 1)H ′) ⊗ τ∗(f∗OX(L))
is an ω-big ω̂-sheaf by 3.34. Hence, by 3.27, τ∗(f∗OX(L)) ⊗ OY ′(kH ′) is a big
weakly positive sheaf in the both cases above. Thus f∗OY (L)[[(k/m)H]] is big for
mÀ 0 and hence f∗OY (L) is weakly positive.

Step 3 The second assertion in the case Q = 0. Assume that L− k(KX/Y +
∆) < f∗H. Then we may assume that there are surjective morphisms p : X → Z
and q : Z → Y with f = q ◦ p for a non-singular projective variety Z, and a nef and
big R-divisor A′ of Z such that

(1/k)L− (KX/Y + ∆) ∼Q p∗A′

by 2.3, 2.15, and 2.28. There is an effective R-divisor G of Z such that A′ −G is
an ample Q-divisor and (X,∆+p∗G) is log-terminal over a non-empty open subset
of Y . Therefore, we may assume that ∆ is a Q-divisor and

(1/k)L− (KX/Y + ∆) ∼Q p∗A

for an ample Q-divisor A. We can find a rational number α > 0 such that L −
k(KX/Y +∆)−αf∗H is semi-ample. Let τ : Y ′ → Y be the finite Galois surjective
morphism in Step 2 for m > (k−1)/α and let H ′ be the same ample divisor. Then
the Q-divisor

L′ − k(KX′/Y ′ + ∆′)− (k − 1)f ′∗H ′ = λ∗
(
L− k(KX/Y + ∆)− k − 1

m
f∗H

)

is semi-ample. Thus ωY ′ ⊗ f ′∗OX′(L′) is an ω-big ω̂-sheaf by 3.34. By the proof
of 3.34, we have an ω-big ω-sheaf F ′ with a Gal(τ)-linearization and a generically
isomorphic injection

F ′ ↪→ ωY ′ ⊗ (f ′∗OX′(L′))∧

which is compatible with Gal(τ)-linearizations. Hence there is a generically isomor-
phic injection

F ↪→ ωY ⊗ (f∗OX(L))∧

from a direct summand F of τ∗F ′. Hence ωY ⊗ f∗OX(L) is an ω-big ω̂-sheaf.
Step 4 The case Q 6= 0. By Step 1, we assume SuppQ and Supp ∆∪Supp f ∗Q

are normal crossing divisors. We set ∆Q := ∆ + 〈−(1/k)f∗Q〉. Then x∆Qy is f -
vertical and

L+ k( p1kf
∗Qq )− k(KX/Y + ∆Q) = L+ f∗Q− (KX/Y + ∆)
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is nef and f -abundant. Thus

f∗OX

(
L+ k( p1kf

∗Qq )
)

is weakly positive by Step 2. If the condition (4) is satisfied, then

ωY ⊗ f∗OY

(
L+ k( p1kf

∗Qq )
)

is an ω-big ω̂-sheaf by Step 3. Since p(1/k)f∗Qq ≤ f∗( p(1/k)Qq ),

F1 := f∗OX(L)⊗OY

(
k( p1kQ

q )
)

is weakly positive. If the condition (4) is satisfied, then ωY ⊗F1 is an ω-big ω̂-sheaf.
For a positive integer m > 0, let τ : Y ′ → Y be a finite surjective Galois morphism

from a non-singular projective variety such that τ ∗( pmQq ) = mkQ′ for a Cartier
divisor Q′ with SuppQ′ being normal crossing. Let X ′ → X ×Y Y ′, f ′ : X ′ → Y ′,
R∆, ∆′, and L′ be the same objects as in 3.33-(2). Since

L′ + f ′
∗
τ∗Q− k(KX′/Y ′ + ∆′) = λ∗(L+ f∗Q− k(KX/Y + ∆))

is nef and f ′-abundant, and since p(1/k)τ∗Qq ≤ Q′,

F2 := f ′∗OX′(L′)⊗OY ′(kQ′)

is weakly positive. If the condition (4) is satisfied, then ωY ′⊗F2 is an ω-big ω̂-sheaf.
By the injection of 3.33-(3),

f∗OX(L)[[ 1
m ( pmQq )]]

is weakly positive for any m > 0. Thus so is f∗OX(L)[[Q]] by 3.24-(2). If the
condition (4) is satisfied, then we have a generically isomorphic Gal(τ)-linearized
injection

F ′′ ↪→ (ωY ′(kQ′)⊗ τ∗(f∗OX(L)))
∧

from an ω-big ω-sheaf F ′′. Hence, by the same argument as above, ωY ( pQq ) ⊗
f∗OX(L) is an ω-big ω̂-sheaf. ¤

3.36. Corollary Suppose that X is non-singular. Let ∆ and D be R-divisors

of X and let Q be an R-divisor of Y satisfying the following conditions:

(1) Supp∆ ∪ Supp〈D〉 is a normal crossing divisor ;
(2) x∆y is f -vertical ;
(3) D + f∗Q− (KX/Y + ∆) is nef and f -abundant.

Let k be a positive integer such that

x∆ +
1

k
〈−kD〉y

is f -vertical. Then f∗OX( pkDq )[[kQ]] is weakly positive, and ωY (H + pkQq ) ⊗
f∗OX( pkDq ) is an ω-big ω̂-sheaf for any ample divisor H of Y .
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Proof. We have

pkDq − k(KX/Y + ∆ +
1

k
〈−kD〉) = kD − k(KX/Y + ∆).

Apply 3.35 to the divisors L = pkDq and L = pkDq + f∗H. ¤

3.37. Corollary For a big divisor H of Y , there is a positive integer a satis-

fying the following condition: if a Cartier divisor L of X, an effective R-divisor ∆
of X, an R-divisor Q of Y , and a positive integer k satisfy the conditions (1)–(3)
of 3.35, then

OY (aH + pQq )⊗ f∗OX(L)

is generically generated by global sections.

Proof. ωY (H + pQq ) ⊗ f∗OX(L) is an ω̂-sheaf by 3.35. Thus we can find a
positive integer a such that

OY (aH + pQq )⊗ (f∗OX(L))∧

is generically generated by global sections by 3.18.
Let τ : Y ′ → Y be a birational morphism from a non-singular projective variety

flattening f such that τ−1(SuppQ) is a normal crossing divisor. Let X ′ → X×Y Y
′,

λ : X ′ → X, f ′ : X ′ → Y ′, R∆, Rτ , ∆′, and L′ be the same objects defined in 3.33-
(4). Then L′, ∆′, k, and τ∗Q satisfy the same conditions as (1)–(3) of 3.35 for the
morphism f ′ : X ′ → Y ′. Therefore, there is a positive integer a such that

OY ′(aτ∗H + pτ∗Qq )⊗ f ′∗OX′(L′)∧

is generically generated by global sections. Since pµ∗Qq ≤ µ∗( pQq ),

OY (aH + pQq )⊗ f∗OX(L)

is generically generated by global sections by 3.33-(4). ¤

3.38. Corollary Suppose that X is non-singular. Let ∆ and D be R-divisors

of X and let Q be an R-divisor of Y satisfying the following conditions:

(1) Supp∆ ∪ Supp〈D〉 and SuppQ are normal crossing divisors;
(2) x∆y is f -vertical ;
(3) D + f∗Q− (KX/Y + ∆) is nef and f -abundant ;
(4) D + f∗Q− (KX/Y + ∆) < f∗H.

Then, for any big divisor H of Y , there exist positive integers b and d such that

f∗OX( pmbDq )⊗OY ( pmbQq − (m− d)H)

is generically generated by global sections for any m > 0.

Proof. The R-divisor P := D + f∗Q − (KX/Y + ∆) is nef and abundant by
2.28. Furthermore, by 2.27, there exist a positive integer c and an effective R-
divisor G on X such that cP −f∗H ∼Q G. We may assume that Supp(∆+ 〈−D〉+
G) ∪ Supp f∗Q is a normal crossing divisor. For m, b > 0, we set

∆m,b := ∆ +
1

mb
〈−mbD〉+ 1

b
G.
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Then, for any m > 0, there is an integer b > c such that (X,∆m,b) is log-terminal
over a non-empty open subset of Y and

(b− c)mP ∼Q mbD + f∗(mbQ)−mb(KX/Y + ∆)−mf∗H −mG
= pmbDq + f∗(mbQ−mH)−mb(KX/Y + ∆m,b)

is nef and abundant. Thus there is a constant d such that

OY (dH)⊗ f∗OX( pmbDq )⊗OY ( pmbQq −mH)

is generically generated by global sections by 3.37. ¤

3.39. Lemma Let L be a Cartier divisor of X, ∆ an effective R-divisor of X,

Θ a divisor of Y , and k ≥ 2 an integer satisfying the following conditions:

(1) KX + ∆ is R-Cartier ;
(2) (X,∆) is log-terminal over a non-empty open subset of Y ;
(3) L− k(KX/Y + ∆) is nef and f -abundant ;
(4) there is an injection OY (Θ) ↪→ f∗OX(L)∧.

Then there is a number α ∈ Q>0 such that f∗OX(L)[[−αΘ]] is weakly positive and

ωY (H − xαΘy )⊗ f∗OX(L)

is an ω-big ω̂-sheaf for any ample divisor H.

Proof. We follow the proof of 3.34 and fix an ample divisor H of Y . We may
assume that X is non-singular and Supp ∆ is normal crossing. We can replace X
by a further blowing-up. Let E and B be effective divisors appearing in the proof
of 3.34. Then, after replacing X by a blowing-up, we have an effective divisor D
such that

D + f∗Θ ∼ L+ E −B.
We may assume Supp(∆+E+B+D) is a normal crossing divisor. We fix a positive
integer b > 1 such that x(1/b)D + ∆y is f -vertical. Now f∗OX(L) is weakly positive
by 3.35. We have a positive integer d such that

Ŝa(b−1)(f∗OX(L))⊗OY (dH)

is generically generated by global sections for aÀ 0 by 3.23. We fix such an integer
a. As in the proof of 3.34, we may assume that OX(a(b− 1)(L+ E −B) + E′) is
the image of

f∗Ŝa(b−1)(f∗OX(L))→ OX(a(b− 1)(L+ E))

for an f -exceptional effective divisor E ′ and that OX(P ′) is the image of

H0
(
Y, Ŝa(b−1)(f∗OX(L)⊗OY (dH))

)
⊗OX → OX(a(b− 1)(L+ E −B) + E′)

for the divisor

P ′ := a(b− 1)(L+ E −B) + E′ − C + df∗H
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for an f -vertical effective divisor C. Moreover, we may assume Supp(C +E ′ +B+
E + ∆ +D) is a normal crossing divisor. Let Dh and Dv be the f -horizontal and
the f -vertical parts of D, respectively. Note that Bs |P ′| = ∅ and

P ′ = a(b(L+ E −B)−Dv)− af∗Θ− aDh + E′ − C + df∗H.

We set

P := L− (KX/Y + ∆) +
k − 1

k
(E −B)− k − 1

bk
Dh

+
k − 1

abk
(E′ − C − aDv) + f∗

(
δH − k − 1

bk
Θ

)

for δ > (k − 1)d/(abk). Then

P − k − 1

abk
P ′ − εf∗H ∼Q

1

k
L− (KX/Y + ∆) +

(
δ − (k − 1)d

abk
− ε
)
f∗H

is nef and abundant for some ε > 0 by 2.28. We can take δ ¿ 1 if aÀ 0. Since

x
k − 1

k
B +

k − 1

bk
Dh + ∆y ≤ B + x

1

b
D + ∆y ,

we can write

−∆ +
k − 1

k
(E −B)− k − 1

bk
Dh +

k − 1

abk
(E′ − C − aDv) = −∆′ + E′′ −G−B′

for an effective R-divisor ∆′ with x∆
′
y = 0, an f -exceptional effective divisor E ′′,

an f -vertical effective divisor G, and an effective divisor B ′ with f∗OX(L−B′)∧ '
f∗OX(L)∧. We set L := L+E′′ −G−B′ and α := (k − 1)/(bk). Then there is an
inclusion f∗OX(L)∧ ⊂ f∗OX(L)∧ and

L+ f∗(δH − αΘ)− (KX/Y + ∆′) = P < f∗H.

Hence, f∗OX(L)[[δH − αΘ]] is big and

ωY (H − xαΘy )⊗ f∗OX(L)

is an ω-big ω̂-sheaf, by 3.35. Taking δ → 0, we infer that f∗OX(L)[[−αΘ]] is also
weakly positive by 3.24-(2). ¤

Let f : X → Y be a surjective morphism of non-singular projective varieties.
The morphism f is called a semi-stable reduction in codimension one or a semi-

stable morphism in codimension one if there is a Zariski-open subset Y ◦ ⊂ Y with
codim(Y r Y ◦) ≥ 2 such that, for any prime divisor Γ ⊂ Y , f ∗Γ is a reduced
and normal crossing divisor over f−1(Y ◦). Even though f is not a semi-stable
reduction in codimension one, there exist a finite surjective morphism τ : Y ′ → Y
from a non-singular projective variety and a desingularization X ′ → X ×Y Y

′ such
that the induced morphism f ′ : X ′ → Y ′ is a semi-stable reduction in codimension
one (cf. [62], [147, Proposition 6.1], [88, 4.6]). This (f ′, τ) is called also a semi-
stable reduction of f in codimension one.
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3.40. Lemma Let f : X → Y be a surjective morphism of non-singular projec-

tive varieties that is a semi-stable reduction in codimension one. Let L be a divisor

of X, ∆ an R-divisor, and k a positive integer satisfying the following conditions:

(1) (X,∆) is log-terminal over a non-empty open subset of Y ;
(2) L− k(KX/Y + ∆) is nef and f -abundant.

Then, for any positive integer m, there is a positive number α such that

f∗OX(mL)[[−α d̂et(f∗OX(L))]]

is weakly positive.

Proof. Let r be the rank of f∗OX(L). Let X [r] be the r-fold fiber product
X×Y · · ·×Y X over Y . Then X [r] has only toroidal singularities over a Zariski-open
subset Y ◦ ⊂ Y with codim(Y r Y ◦) ≥ 2. Let pi : X

[r] → X be the i-th projection
for 1 ≤ i ≤ r. Then

ωX[r]/Y '
⊗r

i=1
p∗iωX/Y

over Y ◦. Let δ : X(r) → X [r] be a birational morphism from a projective non-
singular space which is an isomorphism over a dense Zariski-open subset of Y . Let
f (r) : X(r) → Y and πi = pi ◦ δ : X(r) → X be the induced morphisms. We can
write

E −G = KX(r)/Y −
∑r

i=1
π∗

iKX/Y

for effective divisors E and G such that E is δ-exceptional over Y ◦ and f (r)(SuppG)
is contained in Y r Y ◦. We set

L(r) :=
∑r

i=1
π∗

i L+ kE and ∆(r) :=
∑r

i=1
π∗

i ∆ +G.

Then (X(r),∆(r)) is log-terminal over a non-empty open subset of Y and

L(r) − k(KX(r)/Y + ∆(r)) =
∑r

i=1
π∗

i (L− k(KX/Y + ∆)).

Thus f
(r)
∗ OX(r)(L(r)) is weakly positive by 3.35 and we have an isomorphism

(
f

(r)
∗ OX(r)(L(r))

)∧
' ⊗̂r(f∗OX(L)).

Since d̂et(f∗OX(L)) is a subsheaf of the right hand side, we have an injection

d̂et(f∗OX(L))⊗m ↪→
(
f

(r)
∗ OX(r)(mL(r))

)∧

for m > 0. Note that, for m > 0, f
(r)
∗ OX(r)(mL(r)) is weakly positive and there is

an isomorphism (
f

(r)
∗ OX(r)(mL(r))

)∧
' ⊗̂r(f∗OX(mL)).

Hence, by 3.39,

f
(r)
∗ OX(r)(mL(r))[[−α d̂et(f∗OX(L))]]
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is weakly positive for some α > 0. From the generically surjective homomorphism

⊗̂r(f∗OX(mL))→ Ŝr(f∗OX(mL)),

we infer that f∗OX(mL)[[−(α/r) d̂et(f∗OX(L))]] is also weakly positive. ¤

§4. Abundance and Addition

§4.a. Addition Theorem.

4.1. Theorem Let f : X → Y be a fiber space from a normal projective variety

into a non-singular projective variety, ∆ an effective R-divisor of X such that

KX + ∆ is R-Cartier and (X,∆) is log-canonical over a non-empty open subset of

Y . Let D be an R-Cartier divisor of X such that D − (KX/Y + ∆) is nef.

(1) For any R-divisor Q of Y ,

κσ(D + f∗Q) ≥ κσ(D;X/Y ) + κσ(Q).

In particular, for a ‘general’ fiber Xy = f−1(y),

κσ(KX + ∆) ≥ κσ(KXy
+ ∆|Xy

) + κσ(KY ).

(2) Suppose that (X,∆) is log-terminal over a non-empty open subset of Y
and that D − (KX/Y + ∆) is f -abundant. Then

σ(D; f∗H)′ ≥ κ(D;X/Y )

for some ample divisor H of Y , where σ( ; )′ is defined in 2.6. If

D − (KX/Y + ∆) < f∗H, then

κ(D,X) = κ(D;X/Y ) + dimY.

In particular, if Y is of general type, then

κ(KX + ∆) = κ(KXy
+ ∆|Xy

) + dimY.

Proof. By 3.33-(1), we may assume that X is non-singular and Supp ∆ ∪
Supp〈D〉 is normal crossing. For a divisor A of X and for m ∈ N, we set

r(mD;A) := rank f∗OX

(
pmDq +A

)
.

Then we have

σ(D|Xy
;A|Xy

)′ = max

{
k ∈ Z≥0 ∪ {−∞}

∣∣∣ lim
m→∞

r(mD;A)

mk
> 0

}

for a ‘general’ fiber Xy = f−1(y). Note that

κσ(D;X/Y ) = max{σ(D|Xy
;A|Xy

)′ | A is ample}.
If κ(D;X/Y ) ≥ 0, then, by 3.9,

κ(D;X/Y ) = lim
m→∞

log r(mD; 0)

logm

(1) Let A be an ample divisor of X such that (1/2)A+ 〈−mD〉 is ample for any
m ∈ Z. Since D + (1/2)A − (KX/Y + ∆) is ample, we can find a positive rational
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number ε ¿ 1 such that D + (1/2)A − (KX/Y + (1 − ε)∆) is also ample. Then
(X, (1− ε/m)∆) is log-terminal over a non-empty open subset, and

pmDq +A−m(KX/Y + (1− ε/m)∆)

= (m− 1)
(
D − (KX/Y + ∆)

)
+
(
D + (1/2)A− (KX/Y + (1− ε)∆)

)

+ ((1/2)A+ 〈−mD〉)
is ample for any m ∈ N. There exists an ample divisor H of Y such that OY (H)⊗
f∗OX( pmDq + A) is generically generated by global sections for any m ∈ N, by
3.37. In particular, there exists a generically isomorphic injection

O⊕r(mD;A)
Y ↪→ OY (H)⊗ f∗OX( pmDq +A),

which induces the injection

OY ( xmQy +H)⊕r(mD;A) ↪→ OY ( xmQy + 2H)⊗ f∗OX( pmDq +A).

Therefore,

h0
(
X, pm(D + f∗Q)q +A+ 2f∗H

)

≥ h0
(
X, pmDq + f∗( xmQy ) +A+ 2f∗H

)
≥ r(mD;A) · h0(Y, xmQy +H).

Varying m ∈ N, we have the expected inequality.
(2) We may assume that κ(D;X/Y ) ≥ 0. By 3.36 and 3.37, we have an

ample divisor H of Y such that, for each mÀ 0 with r(mD; 0) > 0, there exists a
generically isomorphic injection

O⊕r(mD;0)
Y ↪→ OY (H)⊗ f∗OX( pmDq ).

Therefore,

h0(X, pmDq + 2f∗H) ≥ r(mD; 0) · h0(Y,H).

By varying m and H we have the first inequality. Next, suppose that D− (KX/Y +
∆) < f∗H. By 3.38, there exist positive integers b and d such that a generically
isomorphic injection

O⊕r(mbD;0)
Y ↪→ OY (−(m− d)H)⊗ f∗OX( pmbDq )

exists for any m > 0. Therefore,

h0(X, pmbDq ) ≥ r(mbD; 0) · h0(Y, (m− d)H).

By varying m and by the easy addition for κ, we have the expected equality. If Y
is of general type, then the equality above for D = KX/Y + ∆ + f∗H for an ample
divisor H of Y and the property KY º H imply the last equality. ¤

4.2. Corollary Let X be a normal projective variety, ∆ an effective R-divisor,

and D an R-divisor such that (X,∆) is log-canonical and D − (KX + ∆) is nef.

Then the following three conditions are equivalent :

(1) D is abundant : κν(D) = κ(D);
(2) κσ(D) = κ(D);
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(3) D is geometrically abundant.

Proof. It is enough to show (2) ⇒ (3). Let m be an integer in I(D). We may
assume the Iitaka fibration Φ = ΦmD : X ···→ Y is holomorphic. Then D º Φ∗H
for an ample divisor H of Y . By 4.1, we have

κ(D) = κσ(D) = κσ(D + Φ∗H)

= κσ(D;X/Y ) + dimY = κσ(D;X/Y ) + κ(D)

Hence κσ(D;X/Y ) = 0. ¤

Remark (1) The abundance conjecture: κ(X) = κν(X) for projective
varieties X is reduced to the following conjecture by 4.2: if κν(X) > 0,
then κ(X) > 0.

(2) By the abundance theorem [59] (cf. [83], [84]) and the existence of min-
imal models [89] for threefolds, the abundance conjecture is true for a
projective variety X with dimX ≤ 3 or with κ(X) ≥ dimX − 3.

Let f : X → Y be a fiber space from a normal projective variety onto a non-
singular projective variety. Let D be a Q-Cartier divisor of X and let ∆ be an
effective R-divisor of X such that KX + ∆ is R-Cartier and that (X,∆) is log-
terminal over a non-empty open subset of Y . Let b be a positive integer with bD
being Cartier.

Let τ : Y ′ → Y be a generically finite morphism from a non-singular projective
variety. Let X ′ → X×Y Y

′ be a birational morphism from a projective non-singular
variety and let λ : X ′ → X and f ′ : X ′ → Y ′ be the induced morphisms. We assume
that the union of the non-étale locus of λ and λ−1(Supp ∆) is a normal crossing
divisor. As in 3.33, we set R∆ := KX′ −λ∗(KX +∆) and Rτ := KY ′ − τ∗KY . Let
pR∆
q = R′

+ −R′
− be the decomposition into the positive and the negative parts of

the prime decomposition, and set

∆′ := R′
− + 〈−R∆〉 and D′ := λ∗D +R′

+ − f ′
∗
Rτ .

Then (X ′,∆′) is log-terminal over a non-empty open subset of Y ′ and the equalities

KX′ + ∆′ = λ∗(KX + ∆) +R′
+,

D′ − (KX′/Y ′ + ∆′) = λ∗(D − (KX/Y + ∆))

hold. Here, bD′ is also Cartier.

4.3. Claim If (X,∆) is log-terminal, then f ′
∗OX′(bD′) is independent of the

choice of birational morphisms X ′ → X ×Y Y ′.

Proof. R′
− = 0 by assumption. For a birational morphism ϕ : X ′′ → X ′ from

a projective non-singular space such that the composite X ′′ → X ′ → X ×Y Y ′

satisfies the same conditions as X ′ → X ×Y Y ′, if we set

R′′
∆ := KX′′ − ϕ∗λ∗(KX + ∆), pR′′

∆
q = R′′

+ −R′′
−,

∆′′ := R′′
− + 〈−R′′

∆〉, D′′ := ϕ∗λ∗D +R′′
+ − ϕ∗f ′

∗
Rτ ,
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then R′′
∆ = Rϕ + ϕ∗R∆ and R′′

− = 0. Hence, by II.4.3-(2),

R′′
+ = Rϕ + pϕ∗R∆

q ≥ ϕ∗( pR∆
q ) = ϕ∗R′

+.

Since R′′
+ − ϕ∗R′

+ is ϕ-exceptional, we have an isomorphism

OX′(bD′) ' ϕ∗OX′′(bD′′). ¤

There exists a Zariski-open subset Y ◦ ⊂ Y such that codim(Y r Y ◦) ≥ 2 and
τ is a finite morphism over Y ◦. Thus there exist a τ -exceptional effective divisor

Êb and a generically isomorphic injection

f ′∗OX′(bD′) ↪→
(
τ∗(f∗OX(bD))⊗OY ′(Êb)

)

by 3.33-(5). In particular, we have inequalities

κ(d̂et(f ′∗OX′(bD′)), Y ′) ≤ κ(d̂et(f∗OX(bD)), Y ),

κσ(d̂et(f ′∗OX′(bD′)), Y ′) ≤ κσ(d̂et(f∗OX(bD)), Y ).

We note that, if f is a semi-stable reduction in codimension one and if D−(KX/Y +
∆) is nef and f -abundant, then

κσ(d̂et(f∗OX(mbD)), Y ) ≥ κσ(d̂et(f∗OX(bD)), Y )

for m > 0, by 3.40.

4.4. Definition

κσ(D,det f ;Y ′) := max
b>0

κσ(d̂et(f ′∗OX′(bD′)), Y ′),

κσ(D,det f) := min
Y ′→Y

κσ(D,det f ;Y ′).

4.5. Theorem Let f : X → Y be a fiber space from a normal projective variety

onto a non-singular projective variety. Let D be a Q-Cartier divisor on X and let

∆ be an effective R-divisor such that

(1) KX + ∆ is R-Cartier,

(2) (X,∆) is log-terminal over a non-empty open subset of Y ,

(3) D − (KX/Y + ∆) is nef and f -abundant.

Then, for an ample divisor H and for b ∈ N with bD being Cartier,

σ(bD; f∗H) ≥ κ(D;X/Y ) + κσ(D,det f).

If κσ(D,det f) = dimY , then

κ(D,X) = κ(D;X/Y ) + dimY.

Proof. We may assume that κ(D;X/Y ) ≥ 0 and X is non-singular.
Suppose first that f is a semi-stable reduction in codimension one. Let b be a

positive integer such that bD is Cartier and b ∈ I(D|Xy
) for a ‘general’ fiber Xy.

For m > 0, let Gm be the image of the multiplication mapping

Ŝm(f∗OX(bD))→ f∗OX(mbD)∧.
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Then

lim
m→∞

m−κ(D;X/Y ) rankGm > 0.

By 3.40, we infer that

f∗OX(bD)[[−α d̂et(f∗OX(bD))]]

is weakly positive for some α ∈ Q>0. Thus there is a big divisor H on Y such that

G∧m ⊗ d̂et(f∗OX(bD)))⊗(−mα) ⊗OY (H)

is generically generated by global sections for a large integer m with mα ∈ Z by
3.23. In particular, there is an injection

O⊕ rankGm

Y ⊗ d̂et(f∗OX(bD)))⊗mα ⊗OY (H) ↪→ f∗OX(mbD)∧ ⊗OY (2H).

Therefore,

σ(bD + E; f∗H) ≥ κ(D;X/Y ) + κσ(d̂et(f∗OX(bD))), Y )

for an f -exceptional effective divisor E of X. If d̂et(f∗OX(bD))) is big, then there
is a positive integer d such that G∧m ⊗OY (−(m− d)H) is generically generated by
global sections for mÀ 0. Thus there is an injection

O⊕ rankGm

Y ⊗OY ((m− d)H) ↪→ f∗OX(mbD)∧.

Therefore,

κ(bD + E) = κ(D;X/Y ) + dimY.

Next, we consider the general case. Let Ỹ → Y be a birational morphism from

a non-singular projective variety flattening f . Let Y ′ → Ỹ be a finite surjective
morphism from a non-singular projective variety and let X ′ → X ×Y Y ′ be a bi-
rational morphism from a non-singular projective variety into the main component
such that the induced morphism f ′ : X ′ → Y ′ is a semi-stable reduction in codi-
mension one. Let λ : X ′ → X and τ : Y ′ → Y be the induced morphisms. We
consider R-divisors R∆, R′

+, ∆′, and D′ as before. Then we have

σ(bD′ + E; f ′
∗
τ∗H) ≥ κ(D;X/Y ) + κσ(d̂et(f ′∗OX′(bD′)), Y ′)

≥ κ(D;X/Y ) + κσ(D,det f)

for a λ-exceptional effective divisor E. Since bR′
+ + E is λ-exceptional, from the

inequality bD′ + E ≤ λ∗(bD) + bR′
+ + E, we have

σ(bD′ + E; f ′
∗
τ∗H) ≤ σ(bD; f∗H).

Therefore,

σ(bD; f∗H) ≥ κ(D;X/Y ) + κσ(D,det f).

If κσ(D,det f) = dimY , then

κ(D,X) ≥ κ(bD′ + E) = κ(D;X/Y ) + dimY ≥ κ(D,X). ¤
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§4.b. Abundance theorem for κσ = 0.

4.6. Theorem Let f : X → Y be a fiber space from a normal projective variety

onto a non-singular projective variety. Let L be a Cartier divisor of X and let ∆
be an effective R-divisor of X such that

(1) KX + ∆ is R-Cartier,

(2) (X,∆) is log-terminal over a non-empty open subset of Y ,

(3) L− (KX/Y + ∆) is nef and abundant.

Suppose that rank f∗OX(L) = 1 and κσ(f∗OX(L)∧) = 0. Then κ(f∗OX(L)∧) = 0.

Proof. We may assume that X is non-singular, Supp∆ is normal crossing
by 3.33-(1). Since f∗OX(L − x∆y ) is weakly positive by 3.35, we may assume
that x∆y = 0. Furthermore, we can replace Y by a generically finite morphism
Y ′ → Y , by 3.33. Then ωY ⊗ f∗OX(L) is an ω-sheaf and moreover, there exists
a surjective morphism h : M → Y from a non-singular projective variety M such
that ωY ⊗ f∗OX(L) is a direct summand of h∗ωM by 3.10, 3.11. Replacing Y by
a generically finite morphism Y ′ → Y , we may assume that

• h is smooth outside a normal crossing divisor B ⊂ Y ,
• the local monodromies of the locally constant system H = Rdh∗CM |Y rB

along B are unipotent, where d = dimM − dimY .

Then the d-th filter Fd(Hcan) of the canonical extension Hcan of H = H ⊗OY rB

is a numerically semi-positive vector bundle by 3.2 ([50, Theorem 17]). Since
h∗ωM/Y ' Fd(Hcan), f∗OX(L) is a nef line bundle. Therefore, f∗OX(L) is numer-

ically trivial, since κσ(f∗OX(L)) = 0. The metric induced on Fd(Hcan) has only
logarithmic singularities along B and is semi-positive on Y r B. Hence f∗OX(L)
is a flat subbundle of H over Y rB (cf. [22], [126], [52], [53], [72]). Then

(f∗OX(L))⊗k ' OY

for some k ∈ N by a result [10, 4.2.8.(iii)(b)] of Deligne concerning with the semi-
simplicity of monodromies. Thus κ(f∗OX(L)) = 0. ¤

4.7. Proposition Let f : X → Y be a fiber space from a normal projective

variety onto a non-singular projective variety. Let D be a Q-Cartier divisor of X,

and ∆ an effective R-divisor of X such that

(1) KX + ∆ is R-Cartier,

(2) (X,∆) is log-terminal over a non-empty open subset of Y ,

(3) D − (KX/Y + ∆) is nef and abundant.

Suppose that κ(D;X/Y ) = 0 and κσ(D,det f) = 0. Then κ(D) ≥ 0.

Proof. We may assume that X is non-singular, Supp ∆ ∪ Supp〈D〉 is normal
crossing, and that f is semi-stable in codimension one. There is an f -effective
divisor E of X such that f∗OX(m(D + E)) is isomorphic to the invertible sheaf
f∗OX(mD)∧ for any m > 0 with mD being Cartier. Let N(D, f) be the set
of natural numbers m ∈ N with mD being Cartier and f∗OX(mD) 6= 0. Let
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Fm := |m(D + E)|fix,f be the relative fixed divisor of mD with respect to f for
m ∈ N(D, f), which is determined by:

f∗f∗OX(m(D + E)) ' OX(m(D + E)− Fm) ⊂ OX(m(D + E)).

Let Gm be the maximum effective Q-divisor of Y satisfying Fm ≥ f∗Gm. Here, for
a prime divisor B of Y ,

multB Gm = min
{ multΓ Fm

multΓ f∗B

∣∣∣ Γ is a prime divisor with f(Γ) = B
}
.

We have an injection

f∗
(
f∗OX(m(D + E))

)⊗l
↪→ OX(lm(D + E))

for l > 0. Thus lFm − Fml is the pullback of an effective divisor of Y . Therefore,

lFm − Fml = f∗(lGm −Gml).

In particular, the Q-divisor

N := NQ(D + E) :=
1

m
(Fm − f∗Gm)

does not depend on m ∈ N(D, f). If lGm is Cartier, then so is Gml and hence
Gml = 0, since f∗OX(Fml) ' OY . Thus N coincides with the negative part

N = lim
N(D,f)3m→∞

1

m
Fm

of the f -sectional decomposition of D + E. Then we can take a Q-divisor Ξ on Y
such that mΞ is Cartier and

f∗OX(mD)∧ ' OY (mΞ)

form ∈ N(D, f) with Gm = 0 (cf. [88, §5 Part II]). In particular, D+E−N ∼Q f∗Ξ.
We have κσ(Ξ) = 0, since κσ(D,det f) = 0. We fix a positive integer m ∈ N(D, f)
with Gm = 0. Then mN and mΞ are Cartier, and m(D +E −N) ∼ f ∗(mΞ).

Let τ : Y ′ → Y be a finite Galois surjective morphism from a non-singular pro-
jective variety such that τ ∗Ξ is Cartier. For a birational morphism δ : X ′ → X×Y Y

′

from a non-singular projective variety into the main component, let λ : X ′ → X
and f ′ : X ′ → Y ′ be the induced morphisms. We consider the same R-divisors R∆,
R′

+, R′
−, Rτ , ∆′, and D′ = λ∗D+R′

+ − f ′∗Rτ as before. We may assume that the
union of Suppλ−1〈D〉, SuppR′

+, SuppR′
−, Supp ∆′, and Supp f∗Rτ is a normal

crossing divisor. We define

C := mλ∗D + (m− 1)λ∗E − (m− 1)λ∗N − (m− 1)f ′∗τ∗Ξ +R′
+ − f ′

∗
Rτ .

Then C is a Q-divisor and

C − (KX′/Y ′ + ∆′) = D′ − (KX′/Y ′ + ∆′) + (m− 1)λ∗(D + E −N − f∗Ξ)
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is nef and abundant. We set L = pC −∆′q . Then

δ∗OX′(L) = δ∗OX′( p−λ∗E + λ∗N −∆′q +R′
+ − f ′

∗
Rτ )⊗ p∗2OY ′(τ∗Ξ)

↪→ δ∗OX′( pλ∗Nq )⊗ p∗2OY ′(τ∗Ξ)

for projections p1 : X ×Y Y ′ → X ′ and p2 : X ×Y Y ′ → Y ′.
We shall show the natural injection

OY ′ → f ′∗OX′( pλ∗Nq )

is isomorphic as follows: Assume the contrary. Then there exists a prime divisor B ′

of Y ′ such that Suppλ∗N contains all the prime divisors Γ′ of X ′ with f ′(Γ′) = B′.
The same property hold for the prime divisors conjugate to B ′ over Y . Hence
SuppN contains all the prime divisors Γ of X with f(Γ) = τ(B ′). This contradicts
Gm = 0.

Therefore, we have an injection

f ′∗OX′(L) ⊂ OY ′(τ∗Ξ).

Here L − (KX′/Y ′ + 〈−C + ∆′〉) is nef and abundant. Thus κσ(f ′∗OX′(L)∧) = 0
and hence κ(f ′

∗OX′(L)∧) = 0 by 4.6. Therefore κ(Ξ) = 0 and κ(D + E) ≥ 0. By
an argument using a flattening of f , we infer that κ(D) ≥ 0. ¤

4.8. Theorem Let X be a normal projective variety and let ∆ be an effective

R-divisor such that (X,∆) is log-terminal. Let D be a Q-divisor such that D −
(KX + ∆) is nef and abundant. If κσ(D) = 0, then κ(D) = 0.

Proof. We may assume that X is non-singular and Supp∆ is a normal cross-
ing divisor by 3.33-(1). Let D = Pσ(D) + Nσ(D) be the σ-decomposition. Then
Pσ(D) ∼∼∼ 0 by 1.12. Then Nσ(D) · C ∈ Q for any irreducible curve C ⊂ X. Since
the prime components of Nσ(D) are numerically linearly independent, Nσ(D) is an
effective Q-divisor.

Suppose that the irregularity q(X) = 0. Then any divisor numerically equiva-
lent to zero is Q-linearly equivalent to zero. Thus Pσ(D) ∼Q 0 and κ(D) = 0.

Thus we may assume that q(X) > 0. Let α : X → AlbX be the Albanese
mapping and let X → Y → AlbX be the Stein factorization. Then, by 4.1,

0 = κσ(D) ≥ κσ(D|Xy
) + κσ(Y ) ≥ 0

for a ‘general’ fiber Xy of y ∈ Y . Thus 0 = κσ(D|Xy
) = κ(Y ). Therefore, by

[50, Theorem 13], Y → AlbX is isomorphic and hence the Albanese mapping
α is a fibration. In particular q(X) ≤ dimX. Since α induces an isomorphism
α∗ : Pic0(Y ) → Pic0(X), there exist an integer b ∈ N and a numerically trivial
divisor L of Y = AlbX such that bNσ(D) and bD are Cartier with bNσ(D)− bD ∼
α∗(bL). Thus κ(D|Xy

) = 0. Then we have κσ(D,det f) = 0 by 4.5. Since KY = 0,
we have κ(D) ≥ 0 by 4.7. ¤

4.9. Corollary Let X be a normal projective variety and let ∆ be a Q-divisor

such that (X,∆) is log-terminal. If κσ(KX + ∆) = 0, then κ(KX + ∆) = 0.
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Remark The abundance 4.8 was proved for L = KX for a non-singular pro-
jective variety X admitting a minimal model, by Kawamata [56]. The idea of
applying Iitaka’s addition formula for κ to the Albanese map is originally by Tsun-
oda (cf. [114]).


