
CHAPTER IV

Divisors on bundles

We calculate σ-decompositions of pseudo-effective divisors defined over varieties
given by toric construction or defined over varieties admitting projective bundle
structure. In §1, we recall some basics on toric varieties, extracting from the book
[110], and we prove the existence of Zariski-decomposition for pseudo-effective R-
divisors on toric varieties. The notion of toric bundles is introduced in §2: a toric
bundle is a fiber bundle of a toric variety whose transition group is the open torus.
We give a counterexample to the Zariski-decomposition conjecture by constructing a
divisor on such a toric bundle. We also consider projective bundles over curves in §3.
We prove the existence of Zariski-decomposition for pseudo-effective R-divisors on
the bundles. The content of the preprint [106] is written in §4, where we study the
relation between the stability of a vector bundle E and the pseudo-effectivity of the
normalized tautological divisor ΛE . For example, the vector bundles with ΛE being
nef are characterized by semi-stability, Bogomolov’s inequality, and projectively flat
metrics. We shall classify and list the A-semi-stable vector bundles of rank two for
an ample divisor A such that ΛE is not nef but pseudo-effective. In particular, we
can show that ΛE for the tangent bundle E of any K3 surface is not pseudo-effective.

§1. Toric varieties

§1.a. Fans. We begin with recalling the notion of toric varieties. Let N be a
free abelian group of finite rank and let M be the dual N∨ = Hom(N,Z). We denote
the natural pairing M×N→ Z by 〈 , 〉. For subsets S and S ′ of NR = N⊗R and
for a subset R ⊂ R, we set

S + S ′ = {n+ n′ | n ∈ S, n′ ∈ S ′}, RS = {rn | n ∈ S, r ∈ R},
S∨ = {m ∈ MR | 〈m,n〉 ≥ 0 for n ∈ S}, S⊥ = {m ∈ MR | 〈m,n〉 = 0 for n ∈ S}.
A subset σ ⊂ NR is called a convex cone if R≥0σ = σ and σ + σ = σ. If
σ =

∑
x∈S R≥0x for a subset S ⊂ NR, then we say that S generates the convex

cone σ. The set σ∨ for a convex cone σ is a closed convex cone of MR = M ⊗ R,
which is called the dual cone of σ. It is well-known that σ = (σ∨)∨ for a closed
convex cone σ. The dimension of a convex cone σ is defined as that of the vector
subspace NR,σ = σ + (−σ). The quotient vector space NR(σ) = NR/NR,σ is dual
to the vector space σ⊥. The vector subspace (σ∨)⊥ ⊂ NR is the maximum vector
subspace contained in σ. If (σ∨)⊥ = 0, then σ is called strictly convex . A face
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114 IV. DIVISORS ON BUNDLES

τ ≺ σ is a subset of the formm⊥∩σ for some elementm ∈ σ∨. The relative interior
of σ is denoted by Int σ, which is just the complement of the union of proper faces of
σ. A real-valued function h : σ → R is called upper convex if h(x+y) ≥ h(x)+h(y)
and h(rx) = rh(x) hold for any x, y ∈ σ, r ∈ R≥0. A real-valued function h on σ

is called lower convex if −h is upper convex.
A convex cone σ generated by a finite subset of NR is called a convex polyhedral

cone. The dual cone of a convex polyhedral cone is also convex polyhedral. A convex
cone σ generated by a finite subset of N is called a convex rational polyhedral cone

(with respect to N).
Let σ be a convex rational polyhedral cone. We define Nσ to be the submodule

(σ + (−σ)) ∩ N and N(σ) to be the quotient N/Nσ. Then Nσ,R = Nσ ⊗ R =
NR,σ, N(σ)R = N(σ) ⊗ R = NR(σ), and σ⊥ ' Hom(N(σ),R). The submodule
M(σ) := σ⊥ ∩ M is isomorphic to Hom(N(σ),Z). The intersection σ∨ ∩ M is a
finitely generated semi-group, which is known as Gordan’s lemma. If σ is strictly
convex, then σ∨ ∩M generates the abelian group M.

A fan Σ of N is a set of strictly convex rational polyhedral cones of NR with
respect to N satisfying the following conditions:

(1) If σ ∈ Σ and τ ≺ σ, then τ ∈ Σ;
(2) If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ≺ σ1 and σ1 ∩ σ2 ≺ σ2.

A fan always contains the zero cone 0 = {0}. For a strictly convex rational poly-
hedral cone σ, the set of its faces is a fan, which is denoted by the same symbol
σ. Let Σ be a fan of N. The union

⋃
σ of all σ ∈ Σ is called the support of

Σ and is denoted by |Σ|. The intersection of N and the vector subspace of NR

generated by |Σ| is denoted by NΣ. The quotient N/NΣ is denoted by N(Σ). If Σ

is a finite set, then Σ is called finite. A finite fan with |Σ| = NR is called complete.
Let N′ be another free abelian group of finite rank and let Σ′ be a fan of N′. A
homomorphism φ : N → N′ of abelian groups is called compatible with Σ and Σ′,
and is regarded as a morphism (N,Σ)→ (N′,Σ′) of fans if the following condition
is satisfied: For any σ ∈ Σ, there is a cone σ′ ∈ Σ′ such that φ(σ) ⊂ σ′. If the
following condition is satisfied in addition, then Σ is called proper over Σ′ and φ
is called proper : For any σ′ ∈ Σ′,

Σσ′ := {σ ∈ Σ | φ(σ) ⊂ σ′}
is a finite fan with |Σσ′ | = φ−1(σ′). If N′ = N, φ is the identity, and |Σ′| = |Σ|,
then Σ′ is called a subdivision of Σ. If Σ′ is proper over Σ, then it is called a proper

subdivision or a locally finite subdivision of Σ.
Let σ ⊂ NR be a strictly convex rational polyhedral cone. The affine toric

variety TN(σ) is defined as the affine scheme over C associated with the semi-group
ring C[σ∨ ∩ M]. The associated analytic space TN(σ)an = Specan C[σ∨ ∩ M] is
denoted by TN(σ). For a face τ ≺ σ, an open immersion TN(τ ) ⊂ TN(σ) is defined
by the inclusion σ∨ ∩M ⊂ τ∨ ∩M. We set TN = TN(0) for the zero cone 0, which
is an algebraic torus. The associated analytic space TN := Tan

N
is isomorphic to

N⊗C?. The toric variety TN(Σ) associated with a fan Σ is defined as the natural
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union of TN(σ) for σ ∈ Σ. This is a separated scheme locally of finite type over
Spec C. The associated analytic space is denoted by TN(Σ). There are an action
of TN on TN(Σ) and an equivariant open immersion TN ⊂ TN(Σ). Toric varieties
are normal.

For a strictly convex rational polyhedral cone σ ⊂ NR, there is a natural
surjective C-algebra homomorphism C[σ∨ ∩M]³ C[σ⊥ ∩M] given by

σ∨ ∩M 3 m 7→
{
m, if m ∈ σ⊥,

0, otherwise.

This induces a closed immersion

TN(σ) ↪→ TN(σ).

The left hand side is an orbit of TN and is denoted by Oσ. In fact, for the composite
πσ : TN → TN(σ) ↪→ TN(σ), we have

πσ(t) = t · πσ(1) = πσ(1) · t
for t ∈ TN and for the unit 1 of TN, where · indicates the left and right actions of
TN on TN(σ). For a face τ ≺ σ, let σ/τ be the image of σ under NR → N(τ )R,
which is also a strictly convex rational polyhedral cone with respect to N(τ ). Then
(σ/τ )∨ ∩M(τ ) is identified with σ∨ ∩ τ⊥ ∩M. The Zariski-closure of Oτ in TN(σ)
is isomorphic to TN(τ )(σ/τ ) by a natural surjective homomorphism C[σ∨ ∩M] ³

C[σ∨ ∩ τ⊥ ∩M] given by

σ∨ ∩M 3 m 7→
{
m, if m ∈ τ⊥,

0, otherwise.

For a fan Σ of N and for a cone σ ∈ Σ, the set

Σ/σ := {σ′/σ | σ ≺ σ′ ∈ Σ}
is a fan of N(σ). Then the Zariski-closure V(σ) of Oσ in TN(Σ) is isomorphic to
TN(σ)(Σ/σ). If σ ∈ Σ is not a proper face of another cone in Σ, then it is called a
maximal cone. In this case, Oσ = V(σ).

An element m ∈ M is regarded as a nowhere-vanishing regular function on TN,
which is denoted by e(m). It is also a rational function on the toric variety TN(Σ)
associated with a fan Σ of N. An integral primitive vector v ∈ N is called a vertex

of Σ if R≥0v ∈ Σ. The set of vertices of Σ is denoted by Ver(Σ) or Ver(N,Σ).
For v ∈ Ver(Σ), let Γv be the prime divisor V(R≥0v). Then the principal divisor
div(e(m)) is written by ∑

v∈Ver(Σ)
〈m, v〉Γv

as a Weil divisor. Since div ◦e is a group homomorphism M → Div(TN(Σ)), the
principal R-divisor div(e(m′)) is also defined for m′ ∈ MR; if m′ =

∑
rimi, then

div(e(m′)) =
∑

ri div(e(mi)),

where ri ∈ R, mi ∈ M.
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Remark (1) TN(σ) is non-singular if and only if the set Ver(N,σ) is
a basis of the free abelian group Nσ. Similarly, TN(σ) has only quotient
singularities if and only if Ver(N,σ) is a basis of the Q-vector space Nσ⊗Q.
A fan Σ is called non-singular if TN(Σ) is non-singular.

(2) Let φ : (N,Σ) → (N′,Σ′) be a morphism into another free abelian group
N′ of finite rank with a fan Σ′. Then it induces a morphism φ∗ : TN(Σ)→
TN′(Σ′) which is equivariant under the homomorphism TN → TN′ . If φ is
proper, then φ∗ is proper.

(3) There is a proper subdivision Σ′ of Σ such that Σ′ is non-singular. In
particular, TN(Σ′)→ TN(Σ) is a proper birational morphism from a non-
singular variety.

(4) If Σ is a finite fan such that |Σ| is a convex cone, then the toric variety X =
TN(Σ) is proper over an affine toric variety. The vanishing Hp(X,OX) = 0
for p > 0 holds, which is shown in a general form in [62, Chapter I, §3]
and [9, §7] (cf. [110, §2.2]). In particular, toric varieties have only rational
singularities.

1.1. Lemma Let φ : (N,Σ) → (L,Λ) be a morphism of fans and let f =
φ∗ : TN(Σ)→ TL(Λ) be the associated morphism of toric varieties. Then

f
−1

TL(λ) ' TN(Σλ)

for λ ∈ Λ. Moreover,

f
−1

Oλ =
⊔

φ(σ)⊂λ, φ(σ)∩Intλ6=∅
Oσ.

If f is proper, then f−1(V(λ)) is set-theoretically the union
⋃

φ(σ)⊂λ, φ(σ)∩Intλ 6=∅
V(σ).

Proof. The first isomorphism is derived from the definition of f, which is given
by the gluing of natural morphisms TN(σ)→ TL(λ) for σ ⊂ φ−1(λ).

For a cone σ ∈ Σ, let λ1 ∈ Λ be the minimum cone containing φ(σ). Then
λ1 = λ if and only if φ(σ) ⊂ λ and φ(σ) ∩ Int λ 6= ∅. The transpose φ∨ : L∨ →
N∨ = M induces λ⊥

1 ∩ L∨ → σ⊥ ∩ M. Hence f(Oσ) ⊂ Oλ1
. By considering the

orbit decomposition of f−1Oλ, we have the equality for f−1Oλ. In the proper case,
taking the closure, we have the equality for f−1(V(λ)), since f is a closed map. ¤

An element 0 6= a ∈ N defines a 1-parameter subgroup TZa ⊂ TN. If a ∈ |Σ|,
then we have a morphism φa : (Z,R≥0)→ (N,Σ) of fans by φa(1) = a. The induced
morphism fa = φa∗ : TZ(R≥0) ' A1 → TN(Σ) of toric varieties is an extension of
TZa ⊂ TN. Let σ ∈ Σ be the minimum cone containing a. Then fa(0) = πσ(1) ∈ Oσ

for the origin 0 ∈ A1, where πσ is the composite TN → TN(σ) ↪→ TN(σ). Thus
limt→0 fa(t) · P = πσ(P ) for any point P ∈ TN. If P ∈ Oτ for some face τ ≺ σ,
then limt→0 fa(t) · P = πσ/τ (P ), where πσ/τ is the composite TN(τ ) → TN(σ) '
Oσ ⊂ TN(τ )(σ/τ ). Suppose that P ∈ Oτ for τ ∈ Σ with τ 6⊂ σ and that a′ := a
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mod Nτ ∈ N(τ ) is contained in |Σ/τ |. Let σ′/τ ∈ Σ/τ be the minimum cone
containing a′. Then limt→0 fa(t) · P = πσ′/τ (P ).

1.2. Lemma A complete subvariety of X = TN(Σ) of dimension k < dim NΣ

is rationally equivalent to a complete effective algebraic k-cycle supported on the

union of V(τ ) with dim |Σ/τ | = k.

Proof. Let V be such a complete subvariety of X. Then V is contracted to a
point by X → TN(Σ). Thus we may assume that |Σ| generates NR. We consider

the action of the 1-parameter subgroup TZa for 0 6= a ∈ N ∩ |Σ|. Let fa : A1 → X

be the morphism defined above. The action of TZa on X extends to a rational map
ψ : A1 × X ···→ X. It is a morphism over A1 × TN, where ψ(t, P ) = fa(t) · P . We
have a toric variety Y and a proper birational morphism µ : Y → A1 × X of toric
varieties such that ϕ = ψ ◦µ : Y → X is a morphism. Let V be the proper transform
of A1 × V in Y. Then the projection p : V → A1 is a proper flat morphism. In
particular, the image of (p, ϕ) : V → A1 × X is also proper and flat over A1. For
the fiber Vt = p−1(t), the image ϕ(Vt) is just V multiplied by fa(t) for t 6= 0. The
push-forward ϕ∗V0 is a complete effective algebraic k-cycle rationally equivalent
to V. Here, any prime component of ϕ∗V0 is preserved by the action of TZa. We

set a1 = a and choose elements a2, . . . al ∈ N ∩ |Σ| such that
∑l

i=1 Zai ⊂ N is a
finite index subgroup, where l = rankN. Applying the same limit argument for a2

to prime components of ϕ∗V0, we have a new complete effective algebraic k-cycle
which is preserved by the actions of TZa1

and TZa2
. Applying the same argument

successively, we finally have a complete effective algebraic k-cycle V∗ such that V∗

is rationally equivalent to V and that SuppV∗ is preserved by the action of TN.
Hence Supp V∗ is written as the union of some orbits Oτ , where dim Oτ ≤ k < l.
Thus we are done. ¤

Remark Let τ be a cone in Σ. In our notation, N(τ )Σ/τ is the intersection
of N(τ ) and the vector subspace of N(τ )R generated by |Σ/τ |, and N(τ )(Σ/τ ) is
the quotient N(τ )/N(τ )Σ/τ . We have an isomorphism

V(τ ) = TN(τ )(Σ/τ ) ' TN(τ )Σ/τ
(Σ/τ )× TN(τ )(Σ/τ ).

Thus any complete subvariety of V(τ ) of dimension equal to dim |Σ/τ | is a fiber of
the projection V(τ )→ TN(τ )(Σ/τ ).

§1.b. Support functions. Let Σ be a finite fan of N. A Σ-linear support

function h is a continuous function h : |Σ| → R that is linear on every σ ∈ Σ.
For a subset K ⊂ R, let SFN(Σ,K) be the set of Σ-linear support functions h
with h(N ∩ |Σ|) ⊂ K. Then SFN(Σ,Z) ⊗ Q ' SFN(Σ,Q) and SFN(Σ,Q) ⊗ R '
SFN(Σ,R). In fact, in the vector space Map(Ver(N,Σ),R) =

∏
v∈Ver(N,Σ) R, the

subspace SFN(Σ,R) is determined by a finite number of relations defined over Q.
A Σ-convex support function h is a continuous function h : |Σ| → R satisfying

the following conditions:

(1) The restriction h|σ to σ ∈ Σ is upper convex for any σ ∈ Σ;
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(2) For any σ ∈ Σ, there is a finite fan Λσ of N with |Λσ| = σ such that h|σ
is Λσ-linear.

For a subset K ⊂ R, the set of Σ-convex support functions h with h(|Σ| ∩N) ⊂ K is
denoted by SFCN(Σ,K). Functions contained in SFCN(Σ,Z) and SFCN(Σ,Q) are
called integral and rational, respectively.

For h ∈ SFCN(Σ,R) and for a closed convex cone C ⊂ |Σ|, we define

¤h(C) := {m ∈ MR | 〈m,x〉 ≥ h(x) for any x ∈ C},
4h(C) :=

∑
x∈C

R≥0(x, h(x)) + R≥0(0,−1) ⊂ NR × R.

Then ¤h(C) is a convex set and 4h(C) is a closed convex cone, since Σ is finite
and h is Σ-convex. If C is a convex polyhedral cone, then 4h(C) is so. The dual
cone of 4h(C) is written by

C∨ × {0} ∪ R≥0(¤h(C)× {−1}).
In particular, ¤h(C) = ∅ if and only if 4h(C) 3 (0, 1). When ¤h(C) 6= ∅, we define
a function by

(IV-1) h†C(x) := inf{〈m,x〉 | m ∈ ¤h(C)}.

Then h†C(x) ≥ h(x) for x ∈ C. Since 4h(C) = (4h(C)∨)∨,

(IV-2) h†C(x) = max{r ∈ R | (x, r) ∈ 4h(C)}
for x ∈ C.

1.3. Lemma The following conditions are equivalent :

(1) h is upper convex on C;
(2) 4h(C) = {(x, r) ∈ C × R | h(x) ≥ r};
(3) ¤h(C) 6= ∅ and h†C(x) = h(x) for x ∈ C.

Proof. (1) ⇒ (2): The right hand side is a convex cone contained in the left.
On the other hand, (x, h(x)) is contained in the right for x ∈ C. Thus the equality
holds.

(2) ⇒ (3): We infer (0, 1) 6∈ 4h(C), which implies ¤h(C) 6= ∅. The equality

h†C = h on C follows directly from the equality (IV-2).

(3) ⇒ (1): By the definition (IV-1), we infer that h†C is upper convex on C.
Thus we are done. ¤

1.4. Lemma (1) If C ′ is a face of C, then

4h(C ′) = 4h(C) ∩ (C ′ × R).

In particular, h†C′(x) = h†C(x) for x ∈ C ′ provided that ¤h(C) 6= ∅.
(2) ¤h(C) 6= ∅ if and only if ¤h((C∨)⊥) 6= ∅.
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Proof. (1) Let (x, t) be an element of the right hand side. Then x =
∑
rixi

and t ≤ ∑ rih(xi) for finitely many vectors xi ∈ C and for real numbers ri > 0.
The face C ′ is written as l⊥ ∩ C for some l ∈ C∨. Then 〈l, x〉 = 0 implies that
xi ∈ C ′ for any i. In particular, (x, t) ∈ 4h(C ′). Thus we have the equality.

(2) follows from (1) and from that ¤h(C) = ∅ if and only if (0, 1) ∈ 4h(C). ¤

1.5. Lemma Suppose that h ∈ SFCN(Σ,K) for K = Q or R. Then there is a

finite subdivision Σ′ of Σ such that h ∈ SFN(Σ′,K).

Proof. For a cone σ ∈ Σ, let Λσ be a fan with |Λσ| = σ such that h|σ ∈
SFN(σ,K). Any one-dimensional face of the convex polyhedral cone 4h(σ) except
R≥0(0,−1) is written by R≥0(v, h(v)) for some v ∈ Ver(Λσ). Therefore, the image
σλ of a face λ of 4h(σ) under the first projection NR×R→ NR is a convex rational

polyhedral cone with respect to N. The function h is linear on σλ. There is a finite
subdivision Σ′ of Σ such that σλ is a union of cones belonging to Σ′ for any σ ∈ Σ

and λ ≺ 4h(σ). Here, h ∈ SFN(Σ′,K). ¤

Remark Among the finite subdivisions of 1.5, we can find the maximum:
There exists a finite subdivision Σ] of Σ satisfying h ∈ SFN(Σ],K) such that

Σ′ - Σ] for any finite subdivision Σ′ satisfying h ∈ SFN(Σ′,K). This is shown by
1.15 below, for example.

1.6. Lemma Let g : Ver(Σ) → K is a map for K = Z, Q or R. Then there

exists a unique function h ∈ SFCN(Σ,K) satisfying the following conditions:

(1) g(v) = h(v) for v ∈ Ver(Σ);
(2) If h′ ∈ SFCN(Σ,K) satisfies h′(v) ≥ g(v) for any v ∈ Ver(Σ), then h′(x) ≥

h(x) for any x ∈ |Σ|.
The function h is called the convex interpolation of g in [62, Chapter I, §2].
Proof. First, we consider the case K ⊃ Q. For σ ∈ Σ and x ∈ σ, we set

4(σ) :=
∑

v∈Ver(σ)
R≥0(v, g(v)) + R≥0(0,−1), and

h0
σ(x) := max{r ∈ R | (x, r) ∈ 4(σ)}.

Then h0
σ
∈ SFCN(σ,K). If τ ≺ σ, then 4(τ ) = 4(σ) ∩ (τ × R) by the same

argument as in 1.4. Thus h0
τ
(x) = h0

σ
(x) for any x ∈ τ . In particular, we have a

function h0 ∈ SFCN(Σ,K) such that h0|σ = h0
σ for any σ ∈ Σ and h0(v) = g(v) for

v ∈ Ver(Σ). The function h0 satisfies the second required condition for h by 1.3.
Next, we consider the case K = Z. If Σ is non-singular, then h0 ∈ SFCN(Σ,Q)

is integral. Otherwise, let us consider a non-singular finite subdivision Σ] of Σ. We

set g] : Ver(Σ]) → Z by g](v) = ph0(v)q . Let h be the function in SFCN(Σ],Q)
satisfying the required condition for g]. Then h is integral. Thus h is the convex
interpolation of g. ¤

Let X be the toric variety TN(Σ) associated with the fan Σ and let j : TN ↪→ X

be the open immersion.
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For h ∈ SFCN(Σ,Z), we define a coherent OX-submodule Fh of j∗OTN
by

H0(TN(σ),Fh) =
⊕

m∈¤h(σ)∩M
e(m) ⊂ C[M]

for σ ∈ Σ. The subsheaf is invariant under the action of TN. Conversely, any
TN-invariant coherent OX-submodule of j∗OTN

, which is complete, is written as Fh

for some h ∈ SFCN(Σ,Z) (cf. [62, Chapter I, §2]). Here, h ∈ SFN(Σ,Z) if and
only if Fh is invertible. If h′ ∈ SFCN(Σ,Z) is the convex interpolation of the map
Ver(Σ) 3 v 7→ h(v) ∈ Z, then Fh′ is the double-dual of Fh.

For h ∈ SFCN(Σ,R), we define an R-divisor of X by

Dh :=
∑

v∈Ver(Σ)
(−h(v))Γv.

The associated R-divisor Dan
h on the analytic variety TN(Σ) is denoted by Dh. For

K = Z, Q, or R, any K-divisor of X supported in XrTN is expressed as Dh for some
h ∈ SFCN(Σ,K) by 1.6. Moreover, any K-divisor D of X is K-linearly equivalent to
Dh for some h ∈ SFCN(Σ,K), since D|TN

is a principal K-divisor. If h′ ∈ SFCN(Σ,Z)

is the convex interpolation of the map Ver(Σ) 3 v 7→ ph(v)q ∈ Z, then xDhy = Dh′

and Fh′ = OX(Dh′).

1.7. Remark Suppose that h ∈ SFN(Σ,K) for K = Z, Q or R. Then Dh

is K-Cartier. In fact, the restriction of Dh to TN(σ) for σ ∈ Σ coincides with the
principal K-divisor −div(e(lσ)) for lσ ∈ MK such that h(x) = 〈lσ, x〉 for x ∈ σ. The
choice of lσ is unique up to σ⊥∩MK. Let hσ(x) = h(x)−〈lσ, x〉. If dim σ = dim |Σ|,
then hσ is a function defined on |Σ| which is independent of the choice of lσ. Even
if dim σ < dim |Σ|, hσ is regarded as a function defined on |Σ/σ| which belongs
to SFN(σ)(Σ/σ,K). Here, the restriction of Dh to V(σ) is K-linearly equivalent to
Dhσ .

1.8. Remark If τ = σ ∩ σ′ for two maximal cones σ, σ′ ∈ Σ such that
dim τ = dim |Σ| − 1, then there is an isomorphism V(τ ) ' P1 × TN(τ ), in which
V(σ/τ ) ' {0} × TN(τ ) and V(σ′/τ ) ' {∞} × TN(τ ). Here,

Dhσ |V(τ ) = −hσ(v′)
(
{∞} × TN(τ )

)

for the primitive element v′ ∈ N(τ ) generating the ray σ′/τ . In particular, for a
fiber F ' P1 of V(τ )→ TN(τ ), we have

Dh · F = −hσ(y) = 〈lσ, y〉 − 〈lσ′ , y〉

for y ∈ σ′ ∩ N r σ with y mod Nτ = v′.

Suppose that |Σ| is a convex cone. For h ∈ SFCN(Σ,R), we write ¤h = ¤h(|Σ|)
and 4h = 4h(|Σ|) for short. If |Σ| = NR, then ¤h is compact, since −h(−ei) ≥
〈m, ei〉 ≥ h(ei) for a basis {ei} of NR and for m ∈ ¤h. If h ∈ SFCN(Σ,Z) and Fh

is reflexive, then ¤h ⊂ MR is the set of m ∈ MR satisfying div(e(m)) + Dh ≥ 0.
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The vector space H0(X,Fh) admits an action of TN. Since this is a subspace of
H0(TN,OTN

) ' C[M], we have an isomorphism

(IV-3) H0(X,Fh) '
⊕

m∈¤h∩M
Ce(m).

Suppose that h ∈ SFCN(Σ,R) is the convex interpolation of Ver(Σ) 3 v 7→ h(v) ∈ R
in the sense of 1.6 for K = R. Then

(IV-4) H0(X, xDhy ) '
⊕

m∈¤h∩M
Ce(m)

by (IV-3). Furthermore, ¤h 6= ∅ if and only if there is an effective R-divisor R-
linearly equivalent to Dh (cf. 1.16-(1) below).

1.9. Lemma Suppose that |Σ| is convex. Let σ be a maximal cone of Σ and

let K = Z, Q, or R. For a function h ∈ SFN(Σ,K), let lσ and hσ be the same as in

1.7. Then the following three conditions are equivalent :

(1) hσ(x) ≤ 0 for any x ∈ |Σ|;
(2) ¤h 6= ∅ and h†|Σ|(x) = h(x) for any x ∈ σ;

(3) There is a TN-invariant effective K-divisor ∆ on X such that ∆∩V(σ) = ∅
and ∆ ∼K Dh on X.

Proof. (1) ⇔ (2): (1) is equivalent to: lσ ∈ ¤h, which implies (2). For y ∈
|Σ|rσ, let us choose x ∈ Int σ and a number 0 < t < 1 such that (1− t)x+ ty ∈ σ.

Since h†|Σ| is upper convex, we have

〈lσ, y〉 =
1

t

(
h†|Σ|((1− t)x+ ty)− (1− t)h†|Σ|(x)

)
≥ h†|Σ|(y) ≥ h(y)

under the condition of (2).
(1) ⇒ (3): The K-Cartier divisor Dhσ = div(e(lσ)) + Dh is effective on X and

is away from V(σ).
(3)⇒ (1): ∆ is written by Dh+div(e(m)) for somem ∈ MK. Then 〈m, v〉 = h(v)

for v ∈ Ver(σ). In particular, m = lσ ∈ ¤h. ¤

1.10. Corollary If |Σ| is a convex cone, then the following conditions are

equivalent for h ∈ SFN(Σ,K):

(1) h is upper convex on |Σ|;
(2) lσ ∈ ¤h for any maximal cone σ;
(3) For any point p ∈ X, there is an effective divisor ∆ of X such that ∆ ∼K Dh

and p 6∈ ∆;
(4) For any two maximal cones σ, σ′ ∈ Σ with τ = σ ∩σ′ being of codimen-

sion one, the intersection number Dh · F is non-negative for a fiber F of

V(τ )→ TN(τ );
(5) For any two maximal cones σ, σ′ ∈ Σ with σ ∩ σ′ being of codimension

one, hσ(y) ≤ 0 for any y ∈ σ′.
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Proof. (1) ⇔ (2) is shown in 1.9. (3) ⇒ (4) is trivial. (4) ⇔ (5) is shown in
1.8.

(2) ⇒ (3): Let Z ⊂ X be the set of points p such that p ∈ ∆ for any effective
divisor ∆ ∼K Dh. Then Z is a Zariski-closed subset invariant under the action of
T. If Z 6= ∅, then V(σ) ⊂ Z for a maximal cone σ ∈ Σ. By 1.9-(3), we have Z = ∅.

(5) ⇒ (2): Let us fix y ∈ |Σ| r σ. We take x ∈ Int σ and consider a line
segment {x(t) = (1 − t)x + ty | t ∈ [0, 1]}. If x is in a general position, then there
exist a sequence of maximal cones σi and numbers ti ∈ [0, 1) for 0 ≤ i ≤ k such
that

• σ0 = σ, t0 = 0, y ∈ σk,
• σi ∩ σi+1 is of codimension one for any i < k,
• {t ∈ [0, 1] | x(t) ∈ σi} = [ti, ti+1] for i < k and x(t) ∈ σk for t ≥ tk.

The function hσ(x(t)) is linear on each [ti, ti+1] for i < k and on [tk, 1]. Thus (5)
implies that h(x(t)) is upper convex on [0, 1]. Hence hσ(y) ≤ 0 and lσ ∈ ¤h. ¤

Suppose still that |Σ| is convex. A support function h ∈ SFN(Σ,R) is called
strictly upper convex with respect to Σ if it is upper convex on |Σ| and the set

{x ∈ |Σ| ; 〈m,x〉 = h(x)}
is a cone belonging to Σ for any m ∈ ¤h.

1.11. Lemma Suppose that |Σ| is a convex cone and let h ∈ SFN(Σ,R). For

a maximal cone σ ∈ Σ, let lσ be the same as in 1.7. Then the following conditions

are equivalent :

(1) h is strictly convex with respect to Σ;
(2) lσ ∈ ¤h and

{x ∈ |Σ| ; h(x) = 〈lσ, x〉} = σ

for any maximal cone σ ∈ Σ;
(3) For maximal cones σ, σ′ ∈ Σ with σ ∩ σ′ being of codimension one,

h(y) < 〈lσ, y〉 for any y ∈ σ′ r σ;
(4) For maximal cones σ, σ′ ∈ Σ with τ = σ ∩ σ′ being of codimension one,

the intersection number Dh · F is positive for a fiber F of V(τ )→ TN(τ ).

Proof. (1) ⇒ (2) and (2) ⇒ (3) are trivial. (3) ⇔ (4) is shown in 1.8.
(3) ⇒ (2): Let σ be a maximal cone of Σ. We fix y ∈ |Σ|r σ, take x ∈ Int σ,

and consider the line segment {x(t) = (1− t)x+ ty | t ∈ [0, 1]}. By choosing x in a
general position, we may assume that there exist maximal cones σi and numbers
ti ∈ [0, 1) satisfying the same condition as in the proof of 1.10. Then hσ(y) < 0
by (3). Thus (2) follows.

(2) ⇒ (1): For m ∈ ¤h, the set

Cm = {x ∈ |Σ| ; h(x) = 〈m,x〉}
is a convex polyhedral cone. For a point y ∈ IntCm, let σ ∈ Σ be a maximal cone
containing y. Then

Cm ∩ σ = (lσ −m)⊥ ∩ σ
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is a face of σ, since m−lσ ∈ σ∨. By (2), lσ−m ∈ C∨
m and Cm∩σ = (lσ−m)⊥∩Cm

is also a face of Cm. Thus Cm = Cm ∩ σ ≺ σ by y ∈ IntCm. In particular,
Cm ∈ Σ. ¤

§1.c. Relative toric situations. Let L be another free abelian group and
let Λ be a finite fan of L. Let φ : (N,Σ) → (L,Λ) be a proper morphism of fans
and let f : X = TN(Σ) → S = TL(Λ) be the induced morphism. We shall consider
the relative σ-decomposition over S of the R-Cartier divisor Dh for a function h ∈
SFN(Σ,R). By 1.4, we have

4h(φ−1ν) = 4h(φ−1λ) ∩ (φ−1ν × R)

for ν ≺ λ. Moreover, for any λ ∈ Λ, the condition ¤h(φ−1λ) 6= ∅ is equivalent
to ¤h(φ−10) 6= ∅ for the zero cone 0 ∈ Λ. If ¤h(φ−10) 6= ∅, then we can define a
function over |Σ| by

h†(x) := h†
Σ/Λ(x) := h†φ−1λ

(x)

for x ∈ φ−1λ, which is independent of the choice of λ for x.

1.12. Lemma h†
Σ/Λ ∈ SFCN(Σ,R).

Proof. For any λ ∈ Λ, we have

¤h†(φ−1λ) = ¤h(φ−1λ), and 4h†(φ−1λ) = 4h(φ−1λ).

By the same argument as in 1.5, there is a finite subdivision Σ′ of Σ such that the
image of any face of 4h(φ−1λ) under the first projection NR × R→ NR is a union
of some cones belonging to Σ′. Thus h† ∈ SFN(Σ′,R). ¤

Remark h†
Σ/Λ is not necessarily integral for h ∈ SFN(Σ,Z).

1.13. Lemma (1) ¤h(φ−10) ∩M 6= ∅ if and only if f∗OX( xDhy ) 6= 0.
(2) If f∗OX( xDhy ) 6= 0, then Dh − Dh† is identical to the f-fixed part of |Dh|.
(3) The following conditions are equivalent to each other :

(a) h is upper-convex on φ−1(λ) for any λ ∈ Λ;
(b) ¤h(φ−10) 6= ∅ and h† = h;
(c) For any λ ∈ Λ and for any maximal cone σ ∈ Σλ, hσ(x) ≤ 0 for

x ∈ Σλ, where hσ is as in 1.7;
(d) Dh is f-nef.

If h ∈ SFN(Σ,Z), then these are also equivalent to:
(e) Dh is f-free.

Proof. (1) follows from the isomorphism (IV-4). (2) follows from (IV-4) and
1.10. The assertion (3) is proved as follows: (a) ⇔ (b) follows from 1.3. (e) ⇒ (d)
is well-known. (d) ⇒ (b), (b) ⇔ (c), and (b) ⇔ (e) are shown in 1.10. (c) ⇒ (d)
is derived from 1.10-(3). ¤

1.14. Lemma For a support function h ∈ SFN(Σ,R), the following conditions

are equivalent :
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(1) Dh is f-ample;
(2) For any λ ∈ Λ, for any two maximal cones σ, σ′ ∈ Σλ with τ = σ ∩ σ′

being of codimension one, the intersection number Dh ·F is positive for a

fiber F of V(τ )→ TN(τ );
(3) h is strictly convex on Σλ for any λ ∈ Λ.

Proof. (1) ⇒ (2) is trivial. (2) ⇔ (3) is shown in 1.11.
(2) ⇒ (1): First, we consider the case h ∈ SFN(Σ,Q). Then kh ∈ SFN(Σ,Z)

for some k > 0 and kDh = Dkh is f-free by 1.13-(3). Hence Dh is f-ample if and
only if Dh · γ > 0 for any irreducible curve γ contained in a fiber of f. By 1.2, we
infer that Dh is f-ample if and only if the condition (2) is satisfied.

Next, we consider the general case. Note that SFN(Σ,R) ' SFN(Σ,Q) ⊗ R.
Hence there is a support function h1 ∈ SFN(Σ,Q) such that Dh1

· F > 0 for any τ

in the condition (2). In particular, Dh1
is an f-ample Q-Cartier divisor. Since Λ

is finite, we can find a positive number ε such that (Dh − εDh1
) · F ≥ 0 for any τ .

Therefore, Dh − εDh1
is f-nef and thus Dh is an f-ample R-Cartier divisor. ¤

Remark Since Σ is finite, there is a finite subdivision Σ′ of Σ such that Σ′ is
non-singular and the composite TN(Σ′)→ X→ S is projective (cf.[9], [110]). This
is a toric version of relative Chow’s lemma.

1.15. Lemma Let h be a function in SFN(Σ,K) for K = Z, Q, or R. Suppose

that h is upper convex on φ−1λ for any λ ∈ Λ. Then there exist a free abelian

group N[, homomorphisms µ : N → N[, ν : N[ → L, a fan Σ[ of N[, and a support

function h[ ∈ SFN[
(Σ[,K) such that

(1) µ is surjective and ν ◦ µ = φ,
(2) (N,Σ)→ (N[,Σ[) and (N[,Σ[)→ (L,Λ) are morphisms of fans,

(3) the function h(x)− h[(µ(x)) is linear on x ∈ |Σ|,
(4) h[ is strictly convex on (Σ[)λ = {σ[ ∈ Σ[ | ν(σ[) ⊂ λ} for any λ ∈ Λ.

In particular, Dh is K-linearly equivalent to the pullback of the relatively ample

K-divisor Dh[
of TN[

(Σ[) over S.

Proof. We set

Vh = {x ∈ |Σ| ; φ(x) = 0 and h(−x) = −h(x)},
Cλ,m = {x ∈ |Σλ| ; 〈m,x〉 = h(x)}

for λ ∈ Λ and m ∈ ¤h(φ−1λ). Then Cλ,m is a convex cone, since

h(x+ y) ≥ h(x) + h(y) = 〈m,x+ y〉 ≥ h(x+ y)

for x, y ∈ Cλ,m. If x, −x ∈ Cλ,m, then x ∈ Vh, since λ is strictly convex. If x ∈ Vh,
then x ∈ Cλ,m for any λ, m by −h(−x) ≥ 〈m,x〉 ≥ h(x). Therefore, for any λ and
m, Vh is the maximum vector subspace of NR contained in the convex cone Cλ,m.

Let N[ be the image of the natural homomorphism µ : N → NR/Vh. Then
µ(Cλ,m) is a strictly convex rational polyhedral cone and the set

Σ[ = {µ(Cλ,m) | λ ∈ Λ,m ∈ ¤h(φ−1λ)}
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is a fan of N[. Here, the support of (Σ[)λ coincides with ν−1λ for the induced ho-
momorphism ν : N[ → L. We choose a maximal cone σ ∈ Σ0 and lσ ∈ ¤h(φ−10)∩K

satisfying h(x) = 〈lσ, x〉 for x ∈ σ. We define h[ ∈ SFN(Σ,K) by h[(x) :=
h(x) − 〈lσ, x〉. Then h[ descends to a support function belonging to SFN[

(Σ[,K).
Thus h[ is strictly convex on (Σ[)λ for any λ ∈ Λ. ¤

1.16. Lemma Let h be a Σ-linear support function.

(1) Dh is f-pseudo-effective if and only if ¤h(φ−10) 6= ∅.
(2) Suppose that Dh is f-pseudo-effective. Then

σΓv
(Dh;X/S) = h†

Σ/Λ(v)− h(v)

for v ∈ Ver(Σ). In particular, Dh is f-movable if and only if h†
Σ/Λ(v) =

h(v) for any v ∈ Ver(Σ).

Proof. By taking a finite subdivision of Σ, we may assume from the first that
X is non-singular and there is a function a ∈ SFN(Σ,Z) with A = Da being f-ample.

(1) For λ ∈ Λ, let us denote Sλ = TL(λ) and Xλ = TN(Σλ) = f−1Sλ. If
m ∈ ¤h(φ−1λ), then div(e(m)) + Dh ≥ 0 over Xλ. Hence if ¤h(φ−10) 6= ∅, then
Dh restricted to Xλ is R-linearly equivalent to an effective R-divisor for any λ ∈ Λ.
Thus one implication follows. Next, suppose that ¤h(φ−10) = ∅. This is equivalent
to 4h(φ−10) 3 (0, 1), i.e.,

(0, 1) =
∑

v∈Ver(Σ0)
rv(v, h(v))

for some rv ∈ R≥0. If m ∈ M ∩ ¤l(kh+a)(φ
−10) for some k, l ∈ N, then 〈m, v〉 ≥

lkh(v) + la(v) for all v ∈ Ver(Σ0). Thus

0 =
1

l

∑
rv〈m, v〉 ≥

∑
(krvh(v) + a(v)) = k +

∑
a(v).

In particular, if k À 0, then no effective R-divisor on X0 = f−1TL is linearly
equivalent to l(kDh + A) for any l ∈ N, by (IV-4). Thus the other implication
follows.

(2) Let us fix a vertex v ∈ Ver(Σ). For λ ∈ Λ with φ(v) ∈ λ, we have

inf{multΓv ∆ | 0 ≤ ∆ ∼R Dh|Xλ} = inf{〈m, v〉 − h(v) | m ∈ ¤h(φ−1λ)}
= h†

Σ/Λ(v)− h(v),

by (IV-4). Hence, if Dh is f-big, then h†
Σ/Λ(v)− h(v) = σΓv

(Dh;X/S). In general,

σΓv (Dh;X/S) ≤ h†
Σ/Λ(v)−h(v) holds. In order to show the equality in general case,

we may assume σΓv
(Dh;X/S) = 0, by replacing Dh with Dh−σΓv

(Dh;X/S)Γv. We

shall derive a contradiction from the assumption: h†
Σ/Λ(v) > h(v). Then there

exist vertices vi ∈ Ver(Σλ) and real numbers ri > 0 such that v =
∑
rivi and∑

rih(vi) > h(v). However (h + εa)†
Σ/Λ(v) = (h + εa)(v) for any ε > 0, since
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Dh+εa = Dh + εA is f-big. Hence

h(v) + εa(v) ≥
∑

ri(h(vi) + εa(vi)) =
∑

rih(vi) + ε
∑

ria(vi).

Taking ε→ 0, we have a contradiction. ¤

1.17. Theorem (cf. [57]) Let f : X = TN(Σ) → S = TL(Λ) be the morphism

induced from a proper morphism φ : (N,Σ) → (L,Λ) of finite fans. Then any f-

pseudo-effective R-Cartier divisor of X admits a relative Zariski-decomposition over

S.

Proof. We may assume that X is non-singular and is projective over S. We
have only to consider the R-divisor Dh for h ∈ SFN(Σ,R) with ¤h(φ−10) 6= ∅.
There is a finite subdivision Σ′ of Σ with h† = h†

Σ/Λ ∈ SFN(Σ′,R). We may assume

that X′ = TN(Σ′) is non-singular and is projective over S. Let µ : X′ → X be the
induced projective birational morphism. Then the effective R-divisor µ∗Dh−Dh† is
the negative part of the relative σ-decomposition of µ∗Dh over S by 1.16-(2). This
is a relative Zariski-decomposition over S since the positive part Dh† is relatively
nef by 1.13-(3). ¤

1.18. Theorem Let f : X → Y be a proper surjective morphism of normal

complex analytic varieties. Suppose that, for any point y ∈ Y , there exist an open

neighborhood Y, a proper morphism (N,Σ) → (L,Λ) of finite fans, and a smooth

morphism Y → TL(Λ) such that

f−1Y ' TN(Σ)×TL(Λ) Y

over Y. Then any f -pseudo-effective R-Cartier divisor of X admits a relative

Zariski-decomposition over Y .

Proof. Let D be an f -pseudo-effective R-Cartier divisor on X. For a point
y ∈ Y , let X = f−1Y for the open neighborhood Y above. We have the vanishing
Ri f∗OX = 0 for i > 0 and an isomorphism

R1 f∗O?
X ' R2 f∗ZX .

Hence we may assume that there exist an R-Cartier divisor E of Y and a support
function h ∈ SFN(Σ,R) such that D|X ∼R f∗E + p∗1Dh for the first projection
p1 : X → TN(Σ). By 1.17, there exists a bimeromorphic morphism µ : X ′ → X such
that the positive part P of the relative σ-decomposition of µ∗(D|X ) is relatively
nef over Y. By 1.15, we may assume that the R-divisor P is relatively ample over
X . Then µ and P are uniquely determined up to isomorphisms. Gluing X ′ and P
for such neighborhoods Y, we obtain a bimeromorphic morphism g : X ′ → X such
that the positive part of the relative σ-decomposition of g∗D is relatively nef over
Y and is relatively ample over X. ¤
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§2. Toric bundles

§2.a. Definition of toric bundles. We shall give a relative version of the
notion of toric variety (cf. [125]). Let M and N be the same free abelian groups as
before.

2.1. Definition Let S be a complex analytic space and let

L : M 3 m 7−→ Lm ∈ Pic(S)

be a group homomorphism. For a subset S ⊂ M, we set

L[S] :=
⊕

m∈S
Lm.

For a strictly convex rational polyhedral cone σ ⊂ NR, the affine toric bundle over
S of type (N,σ,L) is defined by

TN(σ,L) = SpecanS L[σ∨ ∩M].

Similarly, for a fan Σ of N, the toric bundle TN(Σ,L) of type (N,Σ,L) is defined
as the natural union of TN(σ,L) for σ ∈ Σ.

Remark L is regarded as an element of N ⊗ Pic(S) = H1(S,N ⊗ O?
S), in

which N⊗O?
S is regarded as the sheaf of germs of holomorphic mappings S → TN.

By the action of TN on TN(Σ), TN(Σ,L) → S is the fiber bundle obtained from
TN(Σ)×S → S by the twist by L. The cohomology class in H1(S,N⊗O?

S) attached
to the principal fiber bundle TN(0,L)→ S is −L.

There is a natural surjectiveOS-algebra homomorphism L[σ∨∩M]³ L[σ⊥∩M]
such that the kernel is L[(σ∨ r σ⊥) ∩M]. This induces a closed immersion

TN(σ)(0,L) ↪→ TN(σ,L).

The left hand side is fiberwise an orbit of TN and is denoted by Oσ(L). For a face
τ ≺ σ, the closure of Oτ (L) in TN(σ,L) is isomorphic to TN(τ )(σ/τ ,L) by the
natural surjective homomorphism

L[σ∨ ∩M]³ L[σ∨ ∩ τ⊥ ∩M].

The closure V(σ,L) of Oσ(L) in TN(Σ,L) is isomorphic to TN(σ)(Σ/σ,L).
Suppose that S is a normal complex analytic variety. Let p : Y → S be the

morphism TN(Σ,L)→ S. An element m ∈ M defines a meromorphic section e(m)
of p∗L−m by the natural embedding

OS ' L−m ⊗ Lm ↪→ L−m ⊗ L[M].

For a vertex v ∈ Ver(Σ), let Γv be the prime divisor V(R≥0v,L). The divisor
div(e(m)) associated with the meromorphic section e(m) of p∗L−m is written by

∑
v∈Ver(Σ)

〈m, v〉Γv

as a Weil divisor. In particular,

OY

(∑
v∈Ver(Σ)

〈m, v〉Γv

)
' p∗L−m.
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Even for m ∈ MR, we can define div(e(m)) to be an R-Cartier divisor by the
linearity of div ◦e : M → CDiv(Y,R). Similarly, we denote by Lm the image of
m under L ⊗ R : MR → Pic(S,R). Then div(e(m)) ∼R f∗L−m for m ∈ MR. For
h ∈ SFCN(Σ,R), we define

Dh =
∑

v∈Ver(Σ)
(−h(v))Γv.

If h ∈ SFN(Σ,R), then Dh is R-Cartier.

Remark We can consider a kind of differential form:

d log e(m) = e(m)−1 d e(m)

for m ∈ M. It is not a well-defined meromorphic 1-form on Y = TN(Σ,L). Sup-
pose that Σ is a non-singular fan and S is non-singular. Let B be the normal
crossing divisor Y r TN(0,L). Then d log e(m) is regard as a global section of the
sheaf Ω1

Y/S(logB) of germs of relative logarithmic 1-forms. Moreover, we have an

isomorphism
M⊗OY ' Ω1

Y/S(logB).

In particular, KY +B ∼ p∗KS .

2.2. Proposition Let Y be a toric bundle TN(Σ,L) over a complex analytic

space S and let X be a toric bundle TN0
(Σ0,L0) over Y . Let p : Y → S and

π : X → Y be the structure morphisms. Assume that L0 : M0 = Hom(N0,Z) →
Pic(Y ) is the composite of a homomorphism M0 → SFN(Σ,Z) ⊕ Pic(S) and the

natural homomorphism SFN(Σ,Z)⊕Pic(S) 3 (h,M) 7→ OY (Dh)⊗ p∗M∈ Pic(Y ).

Then X is isomorphic to a toric bundle TN0⊕N(Σ̃, L̃) over S and π is induced from

the second projection N0 ⊕ N→ N.

Proof. The homomorphism M0 → SFN(Σ,Z) ⊕ Pic(S) is defined by an ele-
ment h ∈ SFN(Σ,Z) ⊗ N0 and by a homomorphism L1 : M0 → Pic(S). Here h is
regarded as a continuous function |Σ| → (N0)R = N0 ⊗ R such that the restriction
h|σ to a cone σ ∈ Σ is linear and is induced from a homomorphism Nσ → N0. For
m0 ∈ M0, we write by 〈m0,h〉 the support function x 7→ 〈m0,h(x)〉. Then

Lm0
0 = OY (D〈m0,h〉)⊗ p∗Lm0

1 .

For σ ∈ Σ, we can take a homomorphism ψσ : M0 → M such that the composite
M0 → M→ Mσ is dual to the homomorphism Nσ → N0 above defined by h. Then
〈m0,h(x)〉 = 〈ψσ(m0), x〉 for x ∈ σ. In particular,

¤〈m0,h〉(σ) = {m ∈ MR | 〈m,x〉 ≥ 〈m0,h(x)〉 for x ∈ σ} = ψ∨
σ(m0) + σ∨.

For cones σ0 ∈ Σ0 and σ ∈ Σ, let Yσ ⊂ Y be the open subset TN(σ,L)
and let Xσ0,σ ⊂ π−1Yσ be the open subset TN0

(σ0,L0) over Yσ. Then Yσ '
SpecanS L[σ∨ ∩M] and the invertible sheaf OYσ (Dh) for h ∈ SFN(Σ) is associated
with the L[σ∨∩M]-module L[¤h(σ)∩M]. Similarly, Xσ0,σ ' SpecanYσ L0[σ

∨
0 ∩M0].

Therefore, Xσ0,σ ' SpecanS Aσ0,σ for the subalgebra

Aσ0,σ =
⊕

m0∈M0∩σ∨
0 , m∈¤〈m0,h〉(σ)

Lm0
1 ⊗ Lm ⊂ L̃[M0 ⊕M],
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where L̃ := L1 ⊕ L ∈ (N0 ⊕ N)⊗ Pic(S). For the cone

C(σ0,σ;h) := {(x0, x) ∈ (N0)R ⊕ NR | x0 + h(x) ∈ σ0, x ∈ σ},
we have an isomorphism Xσ0,σ ' TN0⊕N(C(σ0,σ;h), L̃) over S, since

{(m0,m) ∈ M0 ⊕M | m0 ∈ σ∨
0 , m ∈ ¤〈m0,h〉(σ)} = C(σ0,σ;h)∨ ∩ (M0 ⊕M).

The structure morphism π : Xσ0,σ → Yσ is interpreted as a morphism of toric
bundles over S which is induced from the second projection N0 ⊕ N→ N.

For faces τ 0 ≺ σ0 and τ ≺ σ, the cone C(τ 0, τ ;h) is a face of C(σ0,σ;h)
and the open immersion Xτ0,τ ⊂ Xσ0,σ is induced from the open immersion as
toric bundles over S. For other cones σ′

0 ∈ Σ0 and σ′ ∈ Σ, we have C(σ0,σ;h) ∩
C(σ′

0,σ
′;h) = C(σ0 ∩ σ′

0,σ
′ ∩ σ;h). Thus

Σh := {C(σ0,σ;h) | σ0 ∈ Σ0, σ ∈ Σ}
is a fan of N0 ⊕ N and X ' TN0⊕N(Σh, L̃) over S. ¤

§2.b. Pseudo-effective divisors on toric bundles. Suppose that Σ is a
complete fan and that S is a normal complex analytic variety. Let p : Y → S be
the structure morphism of the toric bundle Y = TN(Σ,L).

2.3. Lemma (1) For a line bundle M of Y , there exist a line bundle N
of S and a support function h ∈ SFN(Σ,Z) such thatM' p∗N⊗OY (Dh).
In particular, there is an isomorphism

p∗M' N ⊗L[¤h ∩M].

(2) For an R-Cartier divisor D of Y , there exists a support function h ∈
SFN(Σ,R) such that D ∼R p

∗Ξ +Dh for some Ξ ∈ Pic(S,R).

Proof. From the vanishing Ri p∗OY = 0 for i > 0, we have exact sequences

0→ Pic(S)→ Pic(Y )→ H0(S,R2 p∗ZY ),

0→ Pic(S,R)→ Pic(Y,R)→ H0(S,R2 p∗RY ).

On the toric variety TN(Σ), any line bundle is associated with the Cartier divisor
Dh for some h ∈ SFN(Σ,Z), and any R-Cartier divisor is R-linearly equivalent to
Dh for some h ∈ SFN(Σ,R). Thus, in (1),M⊗OY (−Dh) restricted to a fiber of p
is numerically trivial for some h ∈ SFN(Σ,Z), and hence M' p∗N ⊗OY (Dh) for
a line bundle N of S. Similarly, in (2), D − Dh is p-numerically trivial for some
h ∈ SFN(Σ,R). Hence D −Dh ∼R p

∗Ξ for some Ξ ∈ Pic(S,R). Note that there is
an isomorphism p∗OY (Dh) ' L[¤h ∩M] by (IV-4), since p is proper. ¤

For h ∈ SFN(Σ,R), we write h† = h†
NR

for short. Let M be an invertible sheaf

of Y such that M ' f∗N ⊗ OY (Dh) for some N ∈ Pic(S) and h ∈ SFN(Σ,Z).
Then the following conditions are mutually equivalent by 1.13:

(1) h is upper convex on NR; (2) ¤h 6= ∅ and h† = h;
(3) M is p-free; (4) M is p-nef.
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Furthermore,M is p-ample if and only if h is strictly upper convex with respect to
Σ by 1.14. Let D be an R-Cartier divisor of Y such that D ∼R f

∗E+Dh for some
R-Cartier divisor E of S and for h ∈ SFN(Σ,R). Then the following conditions are
mutually equivalent by 1.16:

(1) ¤h 6= ∅ and h = h†; (2) h is upper convex; (3) D is p-nef.

If D is p-pseudo-effective, then σΓv
(D;Y/S) = h†(v)−h(v) for v ∈ Ver(Σ) by 1.16.

Suppose that S is a normal projective variety. We study the (absolute) σ-
decomposition for a pseudo-effective R-Cartier divisor of Y = TN(Σ,L). For an
R-Cartier divisor E of S and for a support function h ∈ SFN(Σ,R), we define

¤PE(E, h) := {m ∈ ¤h | E + Lm is pseudo-effective},
¤Nef(E, h) := {m ∈ ¤h | E + Lm is nef}.

These are compact convex subsets of MR.

2.4. Proposition Suppose that S is a normal projective variety. Let D =
p∗E +Dh be an R-Cartier divisor of Y = TN(Σ,L) for h ∈ SFN(Σ,R).

(1) D is pseudo-effective if and only if ¤PE(E, h) 6= ∅.
(2) The following conditions are equivalent to each other :

(a) D is nef ;
(b) lσ ∈ ¤Nef(E, h) for any maximal cone σ ∈ Σ, where lσ ∈ MR is

defined by h(x) = 〈lσ, x〉 for x ∈ σ (cf. 1.7);
(c) ¤Nef(E, h) 6= ∅ and, for any x ∈ NR,

h(x) = min{〈m,x〉 | m ∈ ¤Nef(E, h)}.
(3) Suppose that D is pseudo-effective. Then

σp−1Θ(D) = min{σΘ(E + Lm) | m ∈ ¤PE(E, h)},
σΓv

(D) = min{〈m, v〉 | m ∈ ¤PE(E, h)} − h(v),
for any prime divisor Θ ⊂ S and for any v ∈ Ver(Σ).

(4) Suppose that D is pseudo-effective. Then D is movable if and only if

σp−1Θ(D) = σΓv
(D) = 0 for any prime divisor Θ ⊂ S and for any v ∈

Ver(Σ).
(5) Suppose that D is pseudo-effective. Then D is numerically movable if and

only if

{m ∈ ¤h | (E + Lm)|Θ is pseudo-effective } 6= ∅, and

{m ∈ ¤PE(E, h) | h(v) = 〈m, v〉} 6= ∅,
for any prime divisor Θ ⊂ S and for any v ∈ Ver(Σ).

Proof. The image c ∈ N⊗N1(S) of L ∈ N⊗Pic(S) satisfies 〈m, c〉 = c1(Lm) ∈
N1(S) for m ∈ MR. Let us consider the set

Ω := {(e, h,m) ∈ N1(S)× SFN(Σ,R)×MR | m ∈ ¤h, e+ 〈m, c〉 ∈ PE(S)}.
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Then π : Ω → N1(S) × SFN(Σ,R) is proper, since ¤h is compact for h ∈ SFN(Σ).
In particular, π(Ω) is closed. Let us consider

ϕ : N1(S)× SFN(Σ,R) 3 (e, h) 7→ p∗e+ c1(Dh) ∈ N1(Y ).

Then (1) means that ϕ−1(PE(Y )) = π(Ω). We note the following R-equivalence
relation for m ∈ MR:

(IV-5) Dh + p∗E ∼R div(e(m)) +Dh + p∗(E + Lm).

Thus ϕ−1(PE(Y )) ⊃ π(Ω). In the proof, we may assume that S and Y are non-
singular and Y is projective over S.

(1) It is enough to show ϕ−1(Big(Y )∩NS(Y )Q) ⊂ π(Ω). Thus we may assume
that D is a big Q-divisor. In particular, E is a Q-divisor and h is rational. Then
kD are kE is Cartier and H0(Y, kD) 6= 0 for some k ∈ N. In particular, H0(S,Lm +
kE) 6= 0 for some m ∈ M ∩ k¤h by (IV-4). Hence (c1(E), h) ∈ π(Ω).

(2) (a) ⇒ (b): Let σ ∈ Σ be a maximal cone. Then V(σ,L) is a section of
p : Y → S and hσ(x) = h(x) − 〈lσ, x〉 ≤ 0 for any x ∈ NR, since Dh is p-nef.
Note that Dhσ ∩ V(σ,L) = ∅ and Dhσ = Dh + div(e(lσ)). Therefore, Dh|V(σ,L) is

R-linearly equivalent to Llσ . Thus E + Llσ is nef and lσ ∈ ¤Nef(E, h).
(b) ⇒ (c): For any y ∈ NR, there is a maximal cone σ ∈ Σ containing y ∈ σ.

Then h(y) = 〈lσ, y〉 = min{〈m, y〉 | m ∈ ¤Nef(E, h)}.
(c) ⇒ (b): h is upper-convex by the expression. For a vector x0 ∈ σ, there is

an m0 ∈ ¤Nef(E, h) such that h(x0) = 〈lσ, x0〉 = 〈m0, x0〉. Since m0− lσ ∈ σ∨, we
infer that m0 = lσ ∈ ¤Nef(E, h).

(b) ⇒ (a): Let W be the intersection of the supports of effective R-Cartier
divisors Dh + div(e(m)) for m ∈ ¤Nef(E, h). Then W is written as the union of
V(σ,L) for suitable cones σ ∈ Σ. In particular, if W 6= ∅, then W ⊃ V(σ,L) for a
maximal cone σ. Thus W = ∅ and D is nef.

(3) If f : Ω→ R is a lower semi-continuous function, then

f̃(e, h) := inf{f(e, h,m) | (e, h,m) ∈ Ω} = min{f(e, h,m) | (e, h,m) ∈ Ω},
which gives rise to a lower semi-continuous function on π(Ω). For a prime divisor
Θ ⊂ S, σΘ is lower semi-continuous on PE(S). For a vertex v ∈ Ver(Σ), m 7→ 〈m, v〉
is linear. Hence

r(E, h,Θ) := min{σΘ(E + Lm) | m ∈ ¤PE(E, h)},
r(E, h, v) := min{〈m, v〉 | m ∈ ¤PE(E, h)} − h(v)

are well-defined, and (E, h) 7→ r(E, h,Θ) and (E, h) 7→ r(E, h, v) are lower semi-
continuous on π(Ω).

If m ∈ ¤PE(E, h), then

σp−1Θ(D) ≤ σp−1Θ(p∗(E + Lm)) = σΘ(E + Lm),

σΓv
(D) ≤ multΓv

(div(e(m)) +Dh) = 〈m, v〉 − h(v),
by (IV-5), since div(e(m)) + Dh is an effective R-divisor containing no fiber of p.
Thus σp−1Θ(D) ≤ r(E, h,Θ) and σΓv

(D) ≤ r(E, h, v).
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Suppose that D is a big Q-divisor. Then E is a Q-divisor and h is rational. By
(IV-4) and (IV-5), we infer that any effective Q-divisor Q-linearly equivalent to D
is written by div(e(m)) +Dh + p∗∆ for some m ∈ ¤h ∩MQ and for some effective
Q-divisor ∆ ∼Q E + Lm. Thus σp−1Θ(D) = r(E, h,Θ) and σΓv

(D) = r(E, h, v).
By the lower semi-continuity, the expected equalities also hold for any pseudo-

effective R-divisor D = p∗E +Dh.
(4) Let Γ ⊂ Y be a prime divisor with σΓ(D) > 0. This is stable under the

action of TN. Therefore, Γ = p−1Θ for a prime divisor Θ ⊂ S or Γ = Γv for a
vertex v ∈ Ver(Σ). Thus we have the equivalence.

(5) If D|Γ is not pseudo-effective for a prime divisor Γ ⊂ Y , then Γ = Γv for
a vertex v ∈ Ver(Σ) or Γ = p−1Θ for a prime divisor Θ ⊂ S. In case Γ = Γv,
we choose lv ∈ MR satisfying h(v) = 〈lv, v〉 and let hv ∈ SFN(v)(Σ/R≥0v,R) be

the function defined by hv(x) = h(x) − 〈lv, x〉. Since Dhv ∼R Dh + p∗L−lv , the
restriction D|Γv

is pseudo-effective if and only if ¤PE(E + Llv , hv) ∩ v⊥ 6= ∅ by
(1). This is equivalent to the existence of m ∈ ¤PE(E, h) with h(v) = 〈m, v〉.
In case Γ = p−1Θ, we note that Γ is a toric bundle over Θ. By considering the
normalization of Θ, we infer from (1) that D|p−1Θ is pseudo-effective if and only if
(E + Lm)|Θ is pseudo-effective for some m ∈ ¤h. Thus we are done. ¤

2.5. Theorem Let S be a non-singular projective variety such that

(1) PE(S) ⊂ N1(S) = NS(S) ⊗ R is a convex rational polyhedral cone with

respect to NS(S), and

(2) Nef(S) = PE(S).

Then any pseudo-effective R-Cartier divisor of a projective toric bundle TN(Σ,L)
over S admits a Zariski-decomposition.

Proof. We may assume that Y = TN(Σ,L) is non-singular and projective.
Then a pseudo-effective R-divisor D of Y is R-linearly equivalent to p∗E + Dh

for an R-divisor E of S and for an h ∈ SFN(Σ,R) such that ¤PE(E, h) 6= ∅. By
assumption,

PE(S) = {ξ ∈ N1(S) | ξ · γi ≥ 0 (1 ≤ i ≤ k)}
for some 1-cycles γ1, γ2, . . . , γk of S. Let c : M → N1(S) be the homomorphism
defined by c(m) = c1(Lm) and let c∨ : N1(S)→ NR be its dual. Both c and c∨ are
defined over Q. Then the cone R≥0(¤PE(E, h)× {−1}) is the dual cone of

4(E, h) = 4h +
∑k

i=1
R≥0(c

∨(γi),−E · γi).

For x ∈ NR, let us define

h‡(x) = min{〈m,x〉 | m ∈ ¤PE(E, h)}.
Then h‡(x) ≥ h(x) and ¤PE(E, h) = ¤PE(E, h‡). Moreover, h‡ ∈ SFCN(Σ,R),
since the image of any face of 4(E, h) under the first projection NR × R → NR

is a rational polyhedral cone. Let Σ′ be a finite subdivision of Σ such that h‡ ∈
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SFN(Σ′,R) and let µ : Y ′ = TN(Σ′,L)→ Y be the associated proper bimeromorphic
morphism. Then

Nσ(µ∗D) =
∑

v∈Ver(Σ′)
(h‡(v)− h(v))Γv

by 2.4-(3). Here Pσ(µ∗D) ∼R p
∗E +Dh‡ , which is nef by 2.4-(2). ¤

§2.c. Examples of toric bundles. Let S be a non-singular projective variety
and let L1, L2, . . . , Lr be divisors of S. Let p : P = P(E) → S be the projective
bundle associated with E =

⊕r
i=1OS(Li). This is described as a toric bundle

TN(Σ,L) as follows:

(1) N is of rank r − 1 with a basis e1, e2, . . . , er−1;
(2)

L =
∑r−1

i=1
ei ⊗OS(Li − Lr) ∈ N⊗ Pic(S);

(3) We set er = −∑r−1
i=1 ei ∈ N. The fan Σ consists of the faces of the

(r − 1)-dimensional cones

σi :=
∑

1≤j≤r, j 6=i
R≥0 ej (1 ≤ i ≤ r).

Let h : NR → R be the function defined by

h

(∑r−1

j=1
xjej

)
=

{
xi, if x ∈ σi for i < r;

0, if x ∈ σr.

Then h ∈ SFN(Σ,Z). In fact, h(x) = min{〈li, x〉 | 1 ≤ i ≤ r} for the dual basis
(l1, l2, . . . , lr−1) of M to (e1, e2, . . . , er−1) and lr = 0. Note that h(ei) = 0 for i < r,
and h(er) = −1, where Ver(Σ) = {e1, e2, . . . , er}. In particular, Dh is just the
prime divisor Γer

and hence Dh ∼ H − p∗Lr for the tautological divisor H = HE .
We consider the standard convex polytope

¤ :=
{

s = (s1, s2, . . . , sr) ∈ [0, 1]r
∣∣∣
∑r

i=1
si = 1

}
,

where [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}. For s ∈ ¤, an R-divisor ∆ of S, and for a real
number b ≥ 0, we define

∆(s) := ∆ + b
(∑r

i=1
siLi

)
,

¤PE(∆, L•, b) := {s ∈ ¤ | ∆(s) is pseudo-effective}.
If we identify MR ' Rr−1 by the dual basis to (e1, e2, . . . , er−1), then

¤h =
{

(m1,m2, . . . ,mr−1) ∈ Rr−1
≥0

∣∣∣
∑r−1

i=1
mi ≤ 1

}
,

and hence¤PE(bLr+∆, bh) is identified with the set of vectors (m1,m2, . . . ,mr−1) ∈
Rr−1

≥0 such that
∑r−1

i=1 mi ≤ b and

∆ +
∑r−1

i=1
miLi +

(
b−

∑r−1

i=1
mi

)
Lr ∈ PE(S).
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Thus, if b > 0, there is an identification ¤PE(∆ + bLr, bh)↔ ¤PE(∆, L•, b) by

si = mi/b for i < r, and sr = 1− 1

b

∑r−1

i=1
mi.

2.6. Lemma Let D be an R-divisor of P numerically equivalent to p∗∆ + bH
for an R-divisor ∆ of S and b ∈ R.

(1) D is pseudo-effective if and only if b ≥ 0 and ¤PE(∆, L•, b) 6= ∅.
(2) D is nef if and only if b ≥ 0 and ∆ + bLi is nef for any 1 ≤ i ≤ r.
(3) D is movable if and only if b ≥ 0 and the following two conditions are

both satisfied :
(a) For any prime divisor Θ ⊂ S, there is a vector s ∈ ¤PE(∆, L•, b)

such that σΘ(∆(s)) = 0;
(b) For any 1 ≤ j ≤ r, a vector s = (s1, s2, . . . , sr) with sj = 0 is

contained in ¤PE(∆, L•, b).
(4) D is numerically movable if and only if b ≥ 0, and the condition (b) above

and the following condition are satisfied : For any prime divisor Θ ⊂ S,

there is a vector s ∈ ¤ such that ∆(s)|Θ is pseudo-effective.

Proof. (1) D is numerically equivalent to bDh + p∗(bLr + ∆). This is p-
pseudo-effective if and only if b ≥ 0. Hence (1) follows from 2.4-(1) and from the
identification ¤PE(∆ + bLr, bh)↔ ¤PE(∆, L•, b).

(2) A maximal cone of Σ is one of σi for 1 ≤ i ≤ r. For l1, l2, . . . , lr ∈ M

introduced above, we set h(i)(x) := h(x) − 〈li, x〉. Then D is nef if and only if
∆ + bLr and ∆ + bLr + Lbli = ∆ + bLi for i < r are all nef, by 2.4-(2).

(3) follows from by 2.4-(3), since

σΓei
(D) = min{bsi | s ∈ ¤PE(∆, L•, b)} for 1 ≤ i ≤ r,

σp−1Θ(D) = min{σΘ(∆(s)) | s ∈ ¤PE(∆, L•, b)}.
(4) follows from 2.4-(5). ¤

We consider the special case: r = 2. We may assume L2 = 0 and may write L =
L1. Then E = OS(L)⊕OS , P = TN(Σ,L) for N = Z, Σ = {{0}, [0,+∞), (−∞, 0]},
and Lm = OS(mL) for m ∈ Z. The support function h ∈ SFN(Σ,R) is written by
h(x) = min{0, x}, ¤h = [0, 1] ⊂ R = MR, and Dh ∼ H for the tautological divisor
H = HE of P. The prime divisors Γ1 and Γ−1 corresponding to the vertices in
Ver(Σ) = {1, −1} are sections of p. Here, Γ1 = div(e(1)) +Dh ∼ −p∗L +H and
Γ−1 = Dh. Let D be an R-divisor of P. Then D ∼R p

∗E + bH for some R-divisor
E of S and for some b ∈ R. By 2.6-(1), D is pseudo-effective if and only if b ≥ 0
and E + mL is pseudo-effective for some 0 ≤ m ≤ b. By 2.6-(2), in case b ≥ 0,
D is nef if and only if E and E + bL are both nef. If Nef(S) = PE(S), then any
numerically movable R-divisor D is nef, since D|Γ1

∼R E and D|Γ−1
∼R E + bL.

Therefore, we have proved the following:

2.7. Corollary In the situation of 2.6, suppose that every effective divisor of

S is nef and r = 2. Then Pν(D) is nef for a pseudo-effective R-divisor D of P.
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2.8. Example In the situation above where r = 2, L1 = L, L2 = 0, suppose
that there is an infinite sequence {En}∞n=1 of R-divisors of S such that

(1) c1(En) ∈ PE(S) for any n,
(2) limn→∞ c1(En) = c1(L),
(3) En − tL 6∈ PE(S) for any n and t > 0.

We fix a number 0 < α < 1 and consider pseudo-effective R-divisors Dα
n = p∗En +

αΓ1. Then Dα
n ∼R p∗(En − αL) + αH. Thus Dα

n |Γ1
∼R En − αL is not pseudo-

effective. If (Dα
n − rΓ1)|Γ1

is pseudo-effective, then r ≥ α. Hence

νΓ1
(Dα

n) = σΓ1
(Dα

n) = α.

We setDα
∞ := p∗L+αΓ1. Then σΓ1

(Dα
∞) = 0 byDα

∞ ∼R p
∗((1−α)L)+αΓ−1. Thus

the function σΓ1
is not continuous on PE(P), since c1(D

α
∞) = limn→∞ c1(D

α
n). If we

choose S, L, and Pn = c1(En) as follows, then they satisfy the condition above: Let
S be the product E×E for an elliptic curve E without complex multiplication and
let L be a fiber of the first projection. Since PE(S) = Nef(S) is a cone isometric to

{(x, y, z) ∈ R3 | z2 ≥ x2 + y2, z ≥ 0},
we can find a sequence {Pn} of points of PE(S) such that Pn − tc1(L) 6∈ PE(S) for
any t > 0 and c1(L) = limn→∞ Pn.

2.9. Lemma In the situation of the P1-bundle above, assume that dimS = 2,
L is nef, and that E is a non-singular irreducible curve of S with E2 < 0. Then

the R-divisor D = p∗E + bH with b ≥ 0 admits a Zariski-decomposition.

Proof. By taking the σ-decomposition of D, we may assume that D is mov-
able. Thus E is pseudo-effective and E + bL is nef by 2.6-(3), since L is nef. Note
that D is big. From the equivalence relations

D ∼R bΓ−1 + p∗E ∼R bΓ1 + p∗(E + bL),

we infer that NBs(D) coincides with the non-singular complete intersection V :=
Γ1 ∩ p−1E. Let ψ : Z → P be the blowing-up along the ideal sheaf

J := OP(−m1Γ1) +OP(−m2p
∗E),

where m1 and m2 are positive integers satisfying m2E
2 = −m1(L · E). Then the

exceptional set G0 := ψ−1(V ) is isomorphic to the P1-bundle

PV (OV (−m1Γ1)⊕OV (−m2p
∗E)) ' PE(OE(m1L)⊕OE(−m2E)).

Let ν : W → Z be the normalization and let ρ : W → X be the composite. Then W
has only quotient singularities and G = ν−1G0 is isomorphic to G0 by construction.
The prime divisor G is Q-Cartier and OW (−kG) ' ρ∗J /(tor) for some k ∈ N. Let
r be the minimum positive number with (ρ∗D−rG)|G being pseudo-effective. Then
(ρ∗D − rG)|G is nef but not big, since G is the P1-bundle associated with a semi-
stable vector bundle over the curve E. Thus ρ∗D− rG is nef, since NBs(ρ∗D) ⊂ G.
Let µ : Y → W be a birational morphism from a non-singular projective variety.
Then (µ∗ρ∗D − rµ∗G)|Γ is not big for any prime component Γ of µ∗G. Thus
Pσ(µ∗ρ∗D) = µ∗(ρ∗D − rG) by III.3.7. ¤
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Next, we consider a special case of P2-bundles in order to obtain a counterex-
ample to the existence of Zariski-decomposition.

In the description of the projective bundle P(E) = TN(Σ,L), we assume r = 3,
L3 = 0, i.e., E = OS(L1)⊕OS(L2)⊕OS . For the support function h ∈ SFN(Σ,Z),
we know Dh = Γe3

∼ H for the tautological divisor H = HE . For an R-divisor ∆
of S, ¤PE(∆, h) is identified with

Ω := {(x, y) ∈ R2
≥0 | x+ y ≤ 1, ∆ + xL1 + yL2 is pseudo-effective}.

We assume the following condition for S, L1, L2, and ∆:

(1) ¤PE(∆, h) = ¤Nef(∆, h);
(2) L1, L2, ∆ + L1, and ∆ + L2 are ample;
(3) α := inf{x + y | (x, y) ∈ Ω} > 0 and there exists a unique point P0 =

(x0, y0) ∈ Ω with x0 + y0 = α;
(4) Ω is not locally polyhedral at P0; In other words, if (z, u) ∈ R2 satisfies

zx0 + uy0 ≤ zx+ uy for any (x, y) ∈ Ω, then zx0 + uy0 < zx+ uy for any
(x, y) ∈ Ω r {P0}.

Example Let S be an abelian surface of the Picard number ρ(S) = 3. For
example, S = E ×E for an elliptic curve E without complex multiplication. Then
PE(S) = Nef(S) ⊂ N1(S) is a cone isometric to

C = {(x, y, z) ∈ R3 | z2 ≥ x2 + y2, z ≥ 0}.
For points ∆ = (−1,−1, 0) 6∈ C, L1 = (1, 0, a), L2 = (0, 1, a) for a > 1, the set

{(x, y) ∈ R2 | ∆ + xL1 + yL2 ∈ C}
is written by

{(x, y) | a2(x+ y)2 ≥ (x− 1)2 + (y − 1)2, x+ y ≥ 0}.
Thus S, L1, L2, and ∆ satisfy the condition above.

2.10. Theorem If S, L1, L2, and ∆ satisfy the condition above, then the

R-divisor B = p∗∆ +H on P(E) admits no Zariski-decompositions.

Proof. We may assume that Ω0 := {(x, y) ∈ Ω | y ≥ y0} is not locally
polyhedral at P0 = (x0, y0). In other words, if z, u ∈ R with z ≥ u ≥ 0 satisfies
zx + uy ≥ zx0 + uy0 for any (x, y) ∈ Ω, then zx + uy > zx0 + uy0 for any
(x, y) ∈ Ω0 r {P0}.

Let us consider the function on NR defined by

h‡(x) = min{〈m,x〉 | m ∈ ¤Nef(∆, h)}.
Then h‡(ze1 + ue2) = min{xz + yu | (x, y) ∈ Ω} for (z, u) ∈ R2. Here, note
that h‡ 6∈ SFCN(Σ,R), since Ω is not locally polyhedral at P0. We have h‡(e1) =
h‡(e2) = 0, and h‡(e3) = −1. Thus B is movable by 2.6-(3). For the maximal
cones σi =

∑
j 6=i R≥0ej , we have h‡|σ1

= h|σ1
and h‡|σ2

= h|σ2
, but h‡|σ3

6= 0;

for example, h‡(e1 + e2) = α > 0. Hence NBs(B) is just the section V(σ3,L) =
Γe1
∩ Γe2

, since NBs(B) is stable under the action of TN. The blowing-up of P
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along V(σ3,L) corresponds to the subdivision Σ[1] of Σ such that Ver(Σ[1]) =

{e1, e2, e3,−e3 = e1 + e2}. Let µ1 : P[1] = TN(Σ[1],L) → P be the blowing-up. We
denote the structure morphism P[1] → S by the same p. For the exceptional divisor
Γe1+e2

= V(R≥0(e1 + e2),L) ⊂ P[1], we have

σΓe1+e2
(µ∗

1B) = σΓe1+e2
(p∗∆ +Dh) = h‡(e1 + e2) = α,

by 2.6-(3). Thus Pσ(µ∗
1B) = p∗∆+Dh1

for the support function h1 ∈ SFN(Σ[1],R)

such that h1(v) = h‡(v) for any v ∈ Ver(Σ[1]). Then h‡(x) ≥ h1(x) ≥ h(x) for any
x ∈ NR and ¤PE(∆, h1) = ¤PE(∆, h). If h‡(2e1 + e2) = h1(2e1 + e2), then h‡(x) =
h1(x) for any x ∈ R≥0e1 + R≥0(e1 + e2); it contradicts the assumption: Ω0 is not
locally polyhedral at P0. Thus h‡(2e1+e2) > h1(2e1+e2) and the section V(R≥0e1+

R≥0(e1+e2),L) of P[1] → S is a connected component of NBs(Pσ(µ∗
1B)). Let P[2] →

P[1] be the blowing-up along the section, which corresponds to a subdivision Σ[2] of

Σ[1] such that Ver(Σ[2]) = Ver(Σ[1]) ∪ {2e1 + e2}. For the composite µ2 : P[2] → P
and for the projection p : P[2] → S, we have Pσ(µ∗

2B) = p∗∆ + Dh2
for h2 ∈

SFN(Σ[2],R) defined by h2(v) = h‡(v) for any v ∈ Ver(Σ[2]). Here, h‡(x) ≥ h2(x)
for x ∈ NR and h‡(3e1 + 2e2) > h2(3e1 + 2e2) by the same reason above. In
particular, the section V(R≥0(e1 + e2) + R≥0(2e1 + e2),L) of p : P[2] → S is a
connected component of NBs(Pσ(µ∗

2B)). In this way, we can construct a non-

singular subdivision Σ[n] of Σ such that

Ver(Σ[n]) = Ver(Σ) ∪ {e1 + e2, 2e1 + e2, . . . , ne1 + (n− 1)e2}
for n ≥ 2. Then, for the toric bundle p : P[n] := TN(Σ[n],L) → S, the induced
birational morphism P[n+1] → P[n] is just the blowing up along the section

V(R≥0(e1 + e2) + R≥0(ne1 + (n− 1)e2),L)

of p : P[n] → S, which is a connected component of NBs(Pσ(µ∗
nB)) for the birational

morphism µn : P[n] → P. Thus we are reduced to the following:

2.11. Lemma Let

· · · → Xn
µn→ Xn−1 → · · · → X1

µ1→ X0

be an infinite sequence of blowups in which centers Vn ⊂ Xn−1 are non-singular

subvarieties of codimension two for any n ≥ 1. Let En be the exceptional divisor

µ−1
n (Vn). Assume that there exist a sequence of pseudo-effective R-divisors Dn on

Xn satisfying the following conditions:

(1) µn(Vn+1) = Vn;
(2) σVn

(Dn−1) > 0;
(3) Dn = µ∗

nDn−1 − σVn
(Dn−1)En.

Then D0 admits no Zariski-decompositions.

Proof. Assume the contrary. Let f : Y → X0 be a birational morphism with
Pσ(f∗D0) being nef. We may assume that f is a succession of blowups with non-
singular centers. Suppose that the image V ′

1 of the composite E1 ⊂ X1 ···→ Y
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is not a divisor. Since codimV1 = 2, f is an isomorphism over a general point
of V1. On the other hand, V ′

1 ⊂ SuppNσ(f∗D0) and the divisor Nσ(f∗D0) is f -
exceptional, since Nσ(D0) = 0. This is a contradiction. Therefore V ′

1 is a prime
divisor and is the proper transform of E1. Furthermore, there is a Zariski-closed
subset S1 ⊂ X0 such that V1 6⊂ S1 and Y ···→ X1 is a morphism over X0 r S1.
The birational mapping Y ···→ X1 is considered as a succession of blowups with
non-singular centers over X0 r S1. There is a birational morphism ν1 : Y1 → Y
from a non-singular projective variety such that f1 : Y1 ···→ X1 is a morphism and
ν1 is an isomorphism over X0 r S1. Note that Pσ(f∗1D1) = ν∗1Pσ(f∗D0). Let V ′

2

be the image of the composite E2 ⊂ X2 ···→ Y1. By the same argument as above,
V ′

2 is a divisor and is the proper transform of E2. Since ν1 is isomorphic outside
S1, E2 is not exceptional for the birational mapping X2 ···→ Y . Furthermore,
there is a Zariski-closed subset S2 ⊂ X1 such that µ−1

1 (S1) ⊂ S2, V2 6⊂ S2, and
the birational mapping Y2 ···→ X2 is a morphism over X1 r S2. There is also
a birational morphism ν2 : Y2 → Y1 from a non-singular projective variety such
that f2 : Y2 ···→ X2 is a morphism and ν2 is an isomorphism over X1 r S2. By
continuing the same arguments, we infer that the divisor En is not exceptional for
the birational mapping Xn ···→ Y for any n ≥ 1. This is a contradiction, since
f : Y → X0 has only finitely many exceptional divisors. ¤

§2.d. Explicit toric blowing-up. Let S be an n-dimensional complex an-
alytic manifold and let B1, B2, . . . , Br for r ≤ n be non-singular prime divisors
such that B =

∑
Bi is simple normal crossing. Let p : V = V(E) → S be the

geometric vector bundle associated with E = ⊕r
i=1OS(Bi). This is also considered

as a toric bundle as follows: let N\ =
∑r

i=1 Zei be a free abelian group with a base
(e1, e2, . . . , er), σ\ =

∑r
i=1 R≥0ei, and let

L\ =
∑r

i=1
ei ⊗OS(−Bi) ∈ N⊗ Pic(S).

Then V ' TN\(σ\,L\). Let M\ be the dual N\∨. The prime divisor Γei
corre-

sponding to a vertex ei ∈ Ver(σ\) is the geometric vector bundle associated with
the kernel of the projection E → OS(Bi). Let us consider the section T ⊂ V of p
determined by the surjective ring homomorphism

Sym(E∨) = L[σ∨
\ ∩M

\]³ OS

induced from the natural injections OS(−Bi) ⊂ OS (cf. Chapter II, §1.b). By the
identification T ' S, we have Bi = Γei

|T . If U ⊂ S is an open subset over which
OS(Bi) are trivial line bundles, then the composite

U ' p−1U ∩ T ⊂ p−1U ' Cr × U → Cr

is a smooth morphism and the pullback of the i-th coordinate hyperplane is Bi∩U .
Let Λ be a finite subdivision of σ\. Then we have a bimeromorphic morphism
f : TN\(Λ,L\) → V of toric bundles over S. Let us consider SΛ := f−1(T ). Then
SΛ is a normal variety and the bimeromorphic morphism f : SΛ → S satisfies the
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condition of 1.18, since f−1U is smooth over the toric variety TN\(Λ) for the open
subset U above. Note that f is isomorphic over S rB.

2.12. Definition The bimeromorphic morphism SΛ → S is called the toric

blowing-up of S along the simple normal crossing divisor B =
∑
Bi with respect

to the subdivision Λ.

Let Z be the intersection B1 ∩ B2 ∩ · · · ∩ Br which is smooth. If Z 6= ∅, then
T ∩ p−1Z = V(σ\,L\) ∩ p−1Z and

SΛ ×S Z =
⋃

λ∈Λ, λ∩Intσ\ 6=∅
V(λ,L\|Z)

by 1.1. Here V(λ,L\|Z) ' TN\(λ)(Λ/λ,L\|Z) and Λ/λ is a complete fan.

2.13. Proposition Let S be the toric bundle TN(Σ,L) over non-singular va-

riety Z for a non-singular fan Σ of a free abelian group N of rank l and for some

L ∈ N0 ⊗ Pic(Z). Let us fix mutually distinct vertices v1, v2, . . . , vr ∈ Ver(Σ) for

r ≤ l and set Bi = Γvi
= V(R≥0vi,L) ⊂ S. Let f : SΛ → S be the toric blowing-up

along the simple normal crossing divisor B =
∑
Bi with respect to a finite subdi-

vision Λ of σ\. Then SΛ is isomorphic to the toric bundle TN(Σ1,L) over Z for

a finite subdivision Σ1 of Σ and f is interpreted as the morphism of toric bundles

over Z associated with the subdivision.

Proof. By 2.2, the toric bundle TN\(Λ,L\) over S is isomorphic to the toric

bundle TN\⊕N(Σh, L̃) over Z for L̃ = 0⊕L ∈ (N\⊕N)⊗Pic(Z) and h ∈ SFN(Σ,Z)⊗
N\ defined as follows: As a function |Σ| → (N\)R, h is defined by

h(v) =

{
ei, if v = vi for 1 ≤ i ≤ l,
0, otherwise

for v ∈ Ver(Σ). Here Σh = {C(λ,σ;h) | λ ∈ Λ,σ ∈ Σ} for

C(λ,σ;h) = {(x′, x) ∈ (N\)R ⊕ NR | x′ + h(x) ∈ λ, x ∈ σ}.
Let Uσ ⊂ S be the open subset TN(σ,L). Then Uσ ' SpecanZ L[σ∨ ∩ M]. Let
Vλ,σ be the toric bundle TN\(λ,L\) over Uσ for a cone λ ∈ Λ or for λ = σ\. Then
p−1Uσ ' Vσ\,σ. We have an isomorphism Vλ,σ ' SpecanAλ,σ for the subalgebra

Aλ,σ =
⊕

m′∈λ∨∩M\, m∈¤〈m′,h〉(σ)
Lm ⊂ L̃[M\ ⊕M].

The section T ∩ p−1Uσ ⊂ p−1Uσ is determined by a surjective homomorphism
Aσ\,σ ³ L[σ∨ ∩M] which is induced from the summation

⊕
m′∈λ∨∩M\

Lm → Lm.

Then the fiber product of Vλ,σ and T over V is isomorphic to SpecanZ Bλ,σ for the
OZ-algebra Bλ,σ defined as the image of a similar homomorphism Aλ,σ → L[M].
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For m ∈ M, there exists an m′ ∈ λ∨ ∩ M\ with m ∈ ¤〈m′,h〉(σ) if and only if
m ∈ Ch(λ,σ)∨ ∩M for the cone

Ch(λ,σ) := σ ∩ h−1(λ) = {x ∈ σ | h(x) ∈ λ}.
Hence, Bλ,σ ' L[Ch(λ,σ)∨ ∩M]. Therefore, SΛ ' TN(Σ1,L) for the fan

Σ1 = {Ch(λ,σ) | λ ∈ Λ, σ ∈ Σ}. ¤

A function h ∈ SFN\(Λ,R) defines an R-Cartier divisor Dh on TN\(Λ,L\). We
denote its restriction to SΛ by the same symbol Dh.

Remark For h ∈ SFN\(Λ,Z), the invertible sheaf OV(Dh) is associated with
the L[σ∨

\ ∩M\]-module L[¤h(σ\) ∩M\]. Therefore, there is an isomorphism

f∗OSΛ
(Dh) '

∑

m∈¤h(σ\)∩M\

Lm
\ =

∑

m∈¤h(σ\)∩M\

OS

(
−
∑r

i=1
miBi

)
⊂ j∗OSrB

for the open immersion j : S rB ↪→ S.

Suppose that S is projective and Z =
⋂r

i=1Bi is non-empty and irreducible.
For h ∈ SFN\(Λ,R) and for an R-divisor E of S, we define

¤Nef(E|Z , h) := {m ∈ ¤h(σ\) | (E + Lm
\ )|Z is nef},

Note that h is defined only on |Λ| = σ\.

2.14. Lemma

(1) The following conditions are equivalent to each other :
(a) The restriction (Dh + f∗E)|f−1Z is nef ;

(b) lλ ∈ ¤Nef(E|Z , h) for any maximal cone λ ∈ Λ, where lλ ∈ M
\
R is

defined by h(x) = 〈lλ, x〉 for x ∈ λ;
(c) ¤Nef(E|Z , h) 6= ∅ and, for any x ∈ σ\,

h(x) = inf{〈m,x〉 | m ∈ ¤Nef(E|Z , h)}.
(2) Assume that E + Lm

\ is nef for any m ∈ σ∨
\ with (E + Lm

\ )|Z being nef.

Then Dh + f∗E is nef on SΛ if the restriction (Dh + f∗E)|f−1Z is nef.

Proof. (1) The proof is similar to 2.4-(2).
(a) ⇒ (b): The restriction of Dh + f∗E to f−1Z is nef if and only if its

restriction to TN\(λ)(Λ/λ,L\|Z) is nef for any λ ∈ Λ with λ ∩ Int σ\ 6= ∅. For

such a cone λ, let us choose lλ ∈ M
\
R such that h(x) = 〈lλ, x〉 for any x ∈ λ

and define hλ(y) := h(y) − 〈lλ, y〉 for y ∈ σ\. Then (E + Llλ)|Z is nef if λ is a
maximal cone. If λ1 and λ2 are maximal cones of Λ with dim λ1∩λ2 = r−1, then
λ1∩λ2∩ Int σ\ 6= ∅. By restricting Dh +p∗E to V(λ1∩λ2,L) over S, we infer that
〈lλ1

, x〉 ≥ h(x) for x ∈ λ1 ∪ λ2. Thus lλ ∈ ¤h(σ\) for a maximal cone λ by the
same argument as in the proof of 1.10-(5) ⇒ 1.10-(2). Thus lλ ∈ ¤Nef(E|Z , h).

(b) ⇔ (c) is shown by the same argument as in 2.4-(2).
(b) ⇒ (a): Let WZ be the intersection of the supports of effective R-Cartier

divisors Dh + div(e(m)) for all m ∈ ¤Nef(E|Z , h) in the toric bundle TN\(Λ,L\|Z)
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over Z. If WZ 6= ∅, then WZ ⊃ V(λ,L\|Z) for a maximal cone; this contradicts
lλ ∈ ¤Nef(E|Z , h). Hence WZ = ∅ and hence (Dh + f∗E)|f−1Z is nef.

(2) By assumption, if m ∈ ¤Nef(E|Z , h), then E + Lm
\ is nef. Let W be

the intersection of the supports of effective R-Cartier divisors Dh + div(e(m)) in
TN\(Λ,L\) for all m ∈ ¤Nef(E|Z , h). Suppose that (Dh + f∗E)|f−1Z is nef. Then
W = ∅ by the same argument above. Thus Dh + f∗E is nef. ¤

2.15. Proposition Let S be a non-singular projective variety and let B1, B2,

. . . , Br be non-singular prime divisors such that B =
∑r

i=1Bi is simple normal

crossing, r < dimS, and Z =
⋂r

i=1Bi is non-empty and irreducible. Let E be an

R-divisor of S such that

¤Nef(E) =
{

(mi)
r
i=1 ∈ Rr

∣∣ E −
∑r

i=1
miBi is nef

}
6= ∅.

Assume that ¤Nef(E) ⊂ N1(S) is a rational polyhedral convex set and

¤Nef(E) =
{

(mi) ∈ Rr
≥0 | (E −

∑
miBi)|Z is nef

}
.

Suppose either that NBs(E) ⊂ Z or that E admits a Zariski-decomposition. Then

there exist a toric blowing-up f : SΛ → S along B associated with a finite non-

singular subdivision Λ of the first quadrant cone σ\ ⊂ (N\)R for the free abelian

group N\ of rank r related to B and a support function h ∈ SFN\(Λ,R) such that

Dh + f∗E is nef and is the positive part of the σ-decomposition of f ∗E.

Proof. For the construction of the toric blowing-up, we consider the free
abelian group N\ with the basis (e1, e2, . . . , er) and the element L\ =

∑
ei ⊗

OS(−Bi) ∈ N\ ⊗ Pic(S). Let (δ1, δ2, . . . , δr) be the basis of M\ = (N\)∨ dual to
(e1, e2, . . . , er). By the identification (mi)↔ m =

∑
miδi, we can regard ¤Nef(E)

as a subset of M
\
R. We consider the following function on σ\:

h†(x) := min{〈m,x〉 | m ∈ ¤Nef(E)}.
Then h† ∈ SFCN\(σ\,R). Note that h† is non-negative on σ\. Let Λ be a non-
singular finite subdivision of σ\ such that h† ∈ SFN\(Λ,R). Then E† := Dh† +f∗E
is nef by 2.14, since ¤Nef(E) ⊂ ¤Nef(E|Z , h†).

The positive part Pσ(f∗E) of the σ-decomposition is written by Dh + f∗E for
some h ∈ SFN\(Λ,R), since Λ is non-singular. Here,

h(v) = multΓv
Nσ(f∗E) = σΓv

(f∗E) ≥ 0

for any v ∈ Ver(Λ). Note that Dh + f∗E = Pσ(f∗E) ≥ E†, since E† is nef. In
particular, h(v) ≤ h†(v) for any v ∈ Ver(Λ) and hence h(x) ≤ h†(x) for x ∈ σ\.

Let v ∈ Ver(Λ) be a vertex contained in Int σ\. Then the corresponding prime
divisor Γv ⊂ SΛ is isomorphic to V(Λ/R≥0v,L\|Z) over Z. The restriction of

Dh +f∗E to Γv is pseudo-effective. Then, by 2.4-(1), there is an lv ∈ M
\
R such that

(1) h(v) = 〈lv, x〉,
(2) 〈lv, x〉 ≥ h(x) for any x ∈ ⋃v∈λ∈Λ

λ,

(3) E + Llv
\ is nef.
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Since lv ∈ ¤Nef(E), we have h(v) = 〈lv, v〉 ≥ h†(v). Thus h(v) = h†(v).
Suppose that NBs(E) ⊂ Z. If a vertex v ∈ Ver(Λ) is not contained in Int σ\,

then f(Γv) 6⊂ Z. Thus σΓv
(f∗E) = h(v) = 0. Therefore Pσ(f∗E) = E† and it gives

the Zariski-decomposition.
Next suppose that there is a vertex v ∈ Ver(Λ) such that h(v) < h†(v). Then

v 6∈ Int σ\. There is a vertex v′ ∈ Ver(N,Σ) contained in Int σ\ such that C(v, v′) =
R≥0v + R≥0v

′ is a two-dimensional cone contained in Λ. Here h(v′) = h†(v′). The
blowing-up ν : Y → SΛ along the intersection Γv ∩ Γv′ corresponds to a finite
subdivision Λ′ of Λ in which the new vertex w = v + v′ ∈ Ver(Λ′) corresponds to
the exceptional divisor Γw. We have

h†(w) = h†(v) + h†(v′) = σΓw
(ν∗f∗E) = multΓw

Nσ(ν∗f∗E),

h(w) = h(v) + h(v′) = multΓw
ν∗Nσ(f∗E),

σΓw
(ν∗Pσ(f∗E)) = h†(w)− h(w) = h†(v)− h(v) > 0.

Next, we consider the blowing-up of Y along Γv ∩ Γw whose exceptional divisor
corresponds to w + v = 2v + v′. By continuing the process, we have a sequence
Yk → Yk−1 → · · · → Y1 = Y → SΛ of blowups such that the exceptional divisor of
νk : Yk → Yk−1 corresponds to wk = kv + v′. For the morphisms fi : Yi → Y → S,
we have the following equalities:

h†(wk) = kh†(v) + h†(v′) = σΓwk
(f∗kE),

σΓwk−1
(f∗k−1E) + h(v) = multΓwk

ν∗kNσ(f∗k−1E),

σΓwk
(ν∗kPσ(f∗k−1E)) = h†(wk)−multΓwk

ν∗kNσ(f∗k−1E)

= h†(v)− h(v) + h†(wk−1)− σΓwk−1
(f∗k−1E) > 0.

Thus the process does not terminate. Hence, E admits no Zariski-decompositions
by 2.11. Therefore, if E admits a Zariski-decomposition, then h†(v) = h(v) for any
v ∈ Ver(Λ) and hence Pσ(f∗E) is equal to the nef R-divisor E†. ¤

§3. Vector bundles over a curve

§3.a. Filtration of vector bundles.

3.1. Lemma Let X be a complex analytic variety and let

0→ E1 → E2 → E3 → 0

be an exact sequence of vector bundles on X. Let πi : Pi → X be the projective

bundle PX(Ei) for i = 1, 2, 3. For the tautological line bundle OE1
(1), let F be the

vector bundle on P1 determined by the commutative diagram

(IV-6)

0 −−−−→ π∗
1E1 −−−−→ π∗

1E2 −−−−→ π∗
1E3 −−−−→ 0

y
y

∥∥∥

0 −−−−→ OE1
(1) −−−−→ F −−−−→ π∗

1E3 −−−−→ 0,
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and let q : P12 = PP1
(F) → P1 be the natural projection. Then, there is a mor-

phism ρ : P12 → P2 over X such that ρ is isomorphic to the blowing-up along

P3 ⊂ P2. Moreover, the divisor E = ρ−1P3 is isomorphic to P1×Y P3 over P3, and

ρ∗OE2
(1) ' q∗OF (1)⊗OP12

(−E).

Proof. The diagram (IV-6) induces a surjective homomorphism q∗π∗
1E2 ³

OF (1) defining ρ above. Let I be the defining ideal sheaf of P3 in P2. Then there
is a surjective homomorphism

(IV-7) π∗
2E1 ³ IOE2

(1)

inducing E1 ' π2∗(IOE2
(1)). There is a commutative diagram

ρ∗π∗
2E1 q∗π∗

1E1 −−−−→ q∗OE1
(1)

y
y

ρ∗(IOE2
(1)) −−−−→ ρ∗OE2

(1) OF (1).

Thus ρ∗(IOE2
(1))/(tor) is isomorphic to the line bundle q∗OE1

(1). Hence ρ∗I/(tor)
is the defining ideal of the Cartier divisor E = PP1

(q∗E3) ' P1 ×Y P3 of P12. Here
OP12

(−E) ⊗ ρ∗OE2
(1) ' q∗OE1

(1) holds. Let µ : Q → P2 be the blowing-up along
P3. Then there is a morphism ϕ : P12 → Q such that ρ = µ◦ϕ. There is a morphism
Q → P1 over X by the pullback µ∗ of (IV-7). From (IV-6), we infer that there is
a morphism Q→ P12 over P1 which is the inverse of ϕ. ¤

Remark If rank E1 = 1, then P1 ' X and P12 ' P2.

Let X be a complex analytic variety and let

E• = [0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E ]
be a sequence of vector subbundles of E on X such that Gri(E•) = Ei/Ei−1 is a
non-zero vector bundle for 1 ≤ i ≤ l. The number l is called the length of E• and
is denoted by l(E•).

Let us consider the following functor F from the category of complex analytic
spaces over X into the category of sets: for a morphism f : Y → X, let ϕi : f

∗Ei ³
Li be surjective homomorphisms into line bundles Li of Y for 1 ≤ i ≤ l and let
ui : Li → Li+1 be homomorphisms for 1 ≤ i < l such that the diagrams

f∗Ei −−−−→ f∗Ei+1

ϕi

y
yϕi+1

Li
ui−−−−→ Li+1

are all commutative. Let F (Y/X) be the set of the collections (ϕi, ui)
l
i=1 above

modulo isomorphisms.

3.2. Lemma-Definition The functor F above is representable by a projective

smooth morphism over X. The representing morphism is denoted by

π = πl : PX(E•) = P(E•) = P(E1 ⊂ E2 ⊂ · · · ⊂ El)→ X.
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Proof. We shall prove by induction on l. If l = 1, then F is representable by
the projective bundle PX(E) = P(E1). For the projective bundle p1 : P(E1) → X,
let K1 be the kernel of p∗1E1 → OE1

(1). Then K1 is a subbundle of p∗1Ei for any i.
Let E ′i be the quotient vector bundle p∗1Ei/K1. Then we have a sequence of vector
bundles

OE1
(1) ⊂ E ′2 ⊂ E ′3 ⊂ · · · ⊂ E ′l .

By induction, the functor F with respect to the filtration above but starting from
E ′2 is represented by

Q = PP(E1)(E ′2 ⊂ · · · ⊂ E ′l )→ P(E1).
Let ((ϕi : f

∗Ei → Li), ui) be an element of F (Y/X) for a morphism f : Y → X
from an analytic space. Then ϕ1 induces a morphism f1 : Y → P(E1) over X and
ϕi induces a surjective homomorphism f ∗

1 E ′i ³ Li. Hence the element of F (Y/X)
defines a morphism Y → Q over X. Conversely, from a morphism h : Y → Q,
we have a morphism f1 : Y → Q → P(E1), surjective homomorphisms f∗

1 E ′i ³ Li

into line bundles for 2 ≤ i ≤ l, and compatible homomorphisms ui : Li → Li+1

for 2 ≤ i < l. We define L1 = f∗1OE1
(1), ϕ1 : f∗E1 → L1 to be the pullback of

p∗1E1 → OE1
(1), ϕi to be the composite f∗Ei → f∗1 E ′i → Li for 2 ≤ i ≤ l, and

u1 : L1 → L2 to be the composite

L1 = f∗1OE1
(1)→ f∗1 E ′2 → L2.

Then (ϕi, ui) is an element of F (Y/X). In this way, we infer that Q→ X represents
F with respect to E•. ¤

For 1 ≤ k ≤ l, we define the following filtrations:

E•≤k = [E1 ⊂ · · · ⊂ Ek], E•≥k = [Ek ⊂ · · · ⊂ El].
Let ((ϕi : π

∗Ei → Li), ui) be the universal element of F (P(E•)/X). Note that ui are
all injective. By considering (ϕi, ui) for i ≤ k or i ≥ k, we have natural morphisms
P(E•)→ P(E•≤k) and P(E•)→ P(E•≥k). We have a Cartesian commutative diagram

(IV-8)

P(E•) −−−−→ P(E•≥k)
y

y

P(E•≤k) −−−−→ P(Ek)

for 1 ≤ k ≤ l. Here vertical arrows are smooth projective morphisms by the
proof of 3.2. We infer that the horizontal arrows are bimeromorphic by 3.1. The
bimeromorphic morphism P(E1 ⊂ E2) → P(E2) is an isomorphism if and only if E1
is a line bundle. Thus P(E•) → P(E•≥k) is an isomorphism for some k > 1 if and
only if l = 2 and E1 is a line bundle.

3.3. Lemma

(1) The pullback of P(Ek+1/Ek) ⊂ P(Ek+1) by the morphism P(E•≥k+1) →
P(Ek+1) is isomorphic to

P(Ek+1/Ek ⊂ · · · ⊂ El/Ek).
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(2) Let Ek be the pullback of P(Ek+1/Ek) ⊂ P(Ek+1) by the composite P(E•)→
P(E•≥k+1)→ P(Ek+1) for 1 ≤ k ≤ l− 1. Then Ek is a divisor isomorphic

to

P(E1 ⊂ · · · ⊂ Ek)×X P(Ek+1/Ek ⊂ · · · ⊂ El/Ek).

Here, Ek is not exceptional for the bimeromorphic morphism P(E•)
→ P(E•≥k+1) if and only if k = rank E1 = 1.

(3) For indices 1 ≤ a(1) < a(2) < · · · < a(e) ≤ l − 1, the intersection⋂e
j=1Ea(j) is isomorphic to the fiber product

e+1∏

j=1

P(Ea(j−1)+1/Ea(j−1) ⊂ · · · ⊂ Ea(j)/Ea(j−1))

over X, where a(0) = 0 and a(e+ 1) = l.
(4) Let Hi be the pullback of the tautological divisor HEi

by the composite

P(E•)→ P(E•≤i)→ P(Ei). Then Hi+1 −Hi ∼ Ei for 1 ≤ i ≤ l − 1.

Proof. Let f : Y → X be an analytic space over X.
(1) Let F ′ be the similar functor to F with respect to the filtration E•≥k+1. Let

(ϕi, ui) be an element of F ′(Y/X). Then it induces a morphism into P(Ek+1/Ek) ⊂
P(Ek+1) if and only if the the composite f∗Ek → f∗Ek+1 → Lk+1 is zero. Thus we
have the expected isomorphism.

(2) Let (ϕi, ui) be an element of F (Y/X). Then it induces a morphism into
P(Ek+1/Ek) ⊂ P(Ek+1) if and only if uk : Lk → Lk+1 is zero. Thus Ek is expressed
as above. This is a divisor since dimEk = dim P(Ek) + dim P(E/Ek) − dimX =
dim P(E)−1. This is not exceptional if and only if P(E•≤k)→ X is an isomorphism.
It is equivalent to: k = rank E1 = 1.

(3) Let (ϕi, ui) be an element of F (Y/X). It induces a morphism into the
intersections of Ea(j) if and only if ua(j) = 0 for any j. Thus the isomorphism
exists.

(4) The pullback of P(Ek+1/Ek) ⊂ P(Ek+1) by the morphism P(Ek ⊂ Ek+1) →
P(Ek+1) is a divisor whose pullback is Ek. The linear equivalence follows from
3.1. ¤

3.4. Lemma The projective morphism P(E•)→ X is also characterized by the

following way inductively :

〈2〉 P(E1 ⊂ E2) is the blown-up of P(E2) along P(E2/E1).
〈3〉 P(E1 ⊂ E2 ⊂ E3) is the blown-up of P(E2 ⊂ E3) along P(E2/E1 ⊂ E3/E1).
...
〈l〉 P(E1 ⊂ · · · ⊂ El) is the blown-up of P(E2 ⊂ · · · ⊂ El) along P(E2/E1 ⊂
· · · ⊂ El/E1).

Proof. By the Cartesian diagrams (IV-8) and by 3.1, it is enough to show
that the pullback of P(E/E1) ⊂ P(E) by P(E•≥2)→ P(E) is isomorphic to

P(E2/E1 ⊂ · · · ⊂ E/E1).
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This is done in 3.3-(1). ¤

3.5. Lemma Let L1, L2, . . . , Ll+1 be invertible sheaf on X and set Ek =
⊕k

i=1Li for 1 ≤ k ≤ l + 1. Then, for the filtration E• = [E0 ⊂ E1 ⊂ · · · ⊂ El+1], the

variety PX(E•) is isomorphic to the toric bundle TN(Σ,L) over X for some fan Σ

of a free abelian group N of rank l with a basis (e1, e2, . . . , el) and for the element

L =
∑l

i=1
ei ⊗

(
Li ⊗ L−1

l+1

)
∈ N⊗ Pic(X).

Proof. We may assume l ≥ 1. If l = 1, then P(E•) is a P1-bundle asso-
ciated with E2 = L1 ⊕ L2. Thus it is enough to take the standard fan Σ =
{R≥0e1,R≥0(−e1), {0}}. For l ≥ 2, we shall construct the fan Σ of the abelian
group N satisfying the required condition by induction on l. We consider a free
abelian group Nl+1 of rank l + 1 containing N such that Nl+1 = N ⊕ Zel+1 for
a new element el+1 ∈ Nl+1. For 1 ≤ i ≤ l, we define Ni :=

∑
1≤j≤i Zej and

vi+1 := −∑1≤j≤i ei ∈ Ni. Let πi : Ni+1 → Ni be the homomorphism given by

πi(ej) = ej for j ≤ i and πi(ei+1) = −vi+1. Let us consider the first quadrant cone

σl+1 =
∑l

i=1 R≥0ei and the following cones of NR for 1 ≤ i ≤ l:

σi =
∑

1≤j≤l, i6=j

R≥0ej + R≥0vl+1, σ′
i =

∑

1≤j≤l, i6=j

R≥0ej + R≥0(−vl+1).

Let Σ[ be the fan of N consisting of all the faces of the cones σi for 1 ≤ i ≤ l + 1.

Then we have an isomorphism TN(Σ[,L) ' PX(El). Similarly, let Σ] be the fan

of N consisting of all the faces of σi and σ′
i for 1 ≤ i ≤ l. Then Σ] is a finite

subdivision of Σ[ and the associated morphism TN(Σ],L)→ TN(Σ[,L) is just the

blowing up of PX(El) along the section PX(El/El−1). Thus TN(Σ],L) ' P(El−1 ⊂
El). Here, the P1-bundle structure TN(Σ]) → TNl−1

(Σ[
l−1) ' P(El−1) is induced

from πl−1 : N → Nl−1. By induction, there exists a fan Σl−1 of Nl−1 such that
TNl−1

(Σl−1,L) ' PX(E•≤l−1). The fiber product of P(El−1 ⊂ El) and P(E•≤l−1)
over P(El−1) is isomorphic to P(E•). Thus the set

Σl = {σ ∩ π−1
l−1τ | σ ∈ Σ], τ ∈ Σl−1}

is a fan giving an isomorphism TN(Σl,L) ' PX(E•). ¤

§3.b. Projective bundles over a curve. This subsection is devoted to prov-
ing the following:

3.6. Theorem Every pseudo-effective R-divisor of a projective bundle PC(E)
defined over a non-singular projective curve C associated with a vector bundle E
admits a Zariski-decomposition.

We may assume r = rank E > 1. Let p : P(E) = PC(E) → C be the structure
morphism of the projective bundle, HE a tautological divisor associated with E ,



3. VECTOR BUNDLES OVER A CURVE 147

and OE(1) the tautological line bundle OP(HE). Let F be a fiber of p. Then
N1(P(E)) = Rc1(F ) + Rc1(HE). The Harder-Narasimhan filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E
is characterized by the following two conditions:

(1) Ei/Ei−1 is a non-zero semi-stable vector bundle for any 1 ≤ i ≤ l;
(2) µ(Ei/Ei−1) > µ(Ei+1/Ei) for 1 ≤ i ≤ l−1, where µ(E) := deg(E)/ rank(E).

The number l is called the length of the Harder–Narasimhan filtration of E and is
denoted by l(E). We define µmax(E) := µ(E1) and µmin(E) := µ(E/El−1). We have
only to study the Zariski-decomposition problem for the R-divisor Dt := HE − tF
for t ∈ R. We begin with the following:

3.7. Lemma Let F1, F2, . . . , Fn be vector bundles on a non-singular projec-

tive curve C and let Z be the fiber product

PC(F1)×C PC(F2)×C · · · ×C PC(Fn).

For the projections pi : Z → PC(F i), y = (y1, y2, . . . , yn) ∈ Rn, t ∈ R, and a fiber

F of p : Z → C, let D(y, t) be the R-divisor
∑n

i=1
yip

∗
iHFi − tF.

(1) Suppose that

H0(C,Syma1(F1)⊗ Syma2(F2)⊗ · · · ⊗ Syman(Fn)) 6= 0

for some a1, . . . , an ∈ Z≥0. Then
∑n

i=1
aiµmax(F i) ≥ 0.

(2) D(y, t) is pseudo-effective if and only if y ∈ Rn
≥0 and

∑n

i=1
yiµmax(F i) ≥ t.

(3) D(y, t) is nef if and only if y ∈ Rn
≥0 and

∑n

i=1
yiµmin(F i) ≥ t.

Proof. (1) Let F i
• be the Harder–Narasimhan filtration of F i. By considering

successive quotients of symmetric tensors, we can find non-negative integers bi
k for

1 ≤ i ≤ n and for 0 ≤ k ≤ l(F i) such that

∑l(Fi)

k=1
bik = ai

and the vector bundle

B =
⊗n

i=1

(⊗l(Fi)

k=1
Symbi

k Grk(F i
•)
)

admits a non-zero global section. Here B is semi-stable (cf. [82]) and hence

µ(B) =
∑n

i=1

∑l(Fi)

k=1
bikµ(Grk(F i))
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is non-negative. Thus
∑n

i=1
aiµmax(F i) ≥ µ(B) ≥ 0.

(2) The R-linear equivalence relation

D(y, t) ∼R

∑n

i=1
yi(HFi − µmax(F i)F ) +

(∑n

i=1
yiµmax(F i)− t

)
F

gives one implication. In order to show the other one, we have only to consider
the case where y ∈ Zn and t ∈ Z, since the set of the first Chern classes of big
Q-divisors is dense in the pseudo-effective cone. Then we have an isomorphism

p∗OZ(D(y, t)) '
⊗n

i=1
Symyi(F i)⊗OC(−tP ),

where P = p(F ) ∈ C. Hence, if |D(y, t)| 6= ∅, then y ∈ Zn
≥0 and

∑n
i=1 yiµmax(F i) ≥

t by (1). Thus we are done.
(3) The R-linear equivalence relation

D(y, t) ∼R

∑n

i=1
yi(HFi − µmin(F i)F ) +

(∑n

i=1
yiµmin(F i)− t

)
F

gives one implication. If D(y, t) is nef, then the restriction to the subspace

P(F1/F1
l(F1)−1)×C · · · ×C P(Fn/Fn

l(Fn)−1)

is also nef. Hence y ∈ Rn
≥0 and

∑
yiµmin(F i) ≥ t by (2). Thus we are done. ¤

By applying 3.7 to the case n = 1, E = F1, we have:

3.8. Corollary The R-divisor Dt is pseudo-effective if and only if t ≤ µmax(E).
It is nef if and only if t ≤ µmin(E).

3.9. Lemma HE − µ(E1)F admits a Zariski-decomposition.

Proof. We may assume that E is not semi-stable. Thus l = l(E) ≥ 2. Let
ρ : Y = P(E1 ⊂ E)→ P(E) be the blowing-up along P(E/E1). Then the exceptional
divisor E is isomorphic to P(E1) ×C P(E/E1) by 3.1. Let π : Y → P(E1) be the
induced projective bundle structure. The restrictions of ρ and π to E are the first
and the second projections, respectively. We shall calculate the ν-decomposition
of ρ∗(HE − µ(E1)F ). Since π∗HE1

∼ ρ∗HE − E, the conormal bundle OE(−E)
is isomorphic to π∗OE1

(1) ⊗ ρ∗OE/E1
(−1). Therefore, by 3.7, the restriction of

ρ∗(HE − µ(E1)F ) − αE to E is pseudo-effective if and only if 0 ≤ α ≤ 1 and
µ(E1) ≤ αµ(E1) + (1− α)µ(E2/E1). Since µ(E1) > µ(E2/E1), these inequalities hold
if and only if α = 1. Therefore Pν(ρ∗(HE − µ(E1)F )) is equal to the nef R-divisor
π∗(HE1

− µ(E1)F ). Thus we have a Zariski-decomposition. ¤

3.10. Proposition If l(E) = 2, then every pseudo-effective R-divisor of P(E)
admits a Zariski-decomposition.
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Proof. Dt is pseudo-effective but not nef if and only if µ(E/E1) < t ≤ µ(E1).
Let ρ : Y → P(E) and E be the same as in 3.9. By the same argument, the R-divisor
(ρ∗(Dt)−αE)|E is pseudo-effective if and only if t ≤ αµ(E1)+(1−α)µ(E/E1). Since
µ(E/E1) < t ≤ µ(E1), the minimum α1 satisfying the inequality above attains the
equality: t = α1µ(E1) + (1− α1)µ(E/E1). Thus Pν(ρ∗Dt) is nef by

Pν(ρ∗Dt) ∼R α1π
∗(HE1

− µ(E1)F ) + (1− α1)ρ
∗(HE − µ(E/E1)F ). ¤

We assume l ≥ 3. Let S = P(E1 ⊂ · · · ⊂ El) → C be the projective smooth
morphism defined in 3.2 for the Harder–Narasimhan filtration E•. Let ρ : S → P(E)
be the induced birational morphism and let Ek for 1 ≤ k ≤ l−1 and Hi for 1 ≤ i ≤ l
be the divisors defined in 3.3. Note that E =

∑l−1
k=1Ek is a simple normal crossing

divisor. By 3.9, we may assume µ(E/El−1) < t < µ(E1), equivalently Dt = HE− tF
is not nef but big. Let us define µi = µ(Ei/Ei−1) for 1 ≤ i ≤ l = l(E) and

αk(t) := max

{
0,

t− µk+1

µ1 − µk+1

}
.

for 1 ≤ k ≤ l − 1. Let αt be the vector (α1(t), α2(t), · · · , αl−1(t)). Note that
αk(t) = 0 for t ≤ µk+1 and αk(t) ≥ αk′(t) for k ≤ k′. We define an R-divisor by

Dt(y) = Dt(y1, y2, . . . , yl−1) = ρ∗HE − tF −
∑l−1

i=1
yiEi

for y = (y1, y2, . . . , yl−1) ∈ Rl−1.

3.11. Lemma (1) Nσ(ρ∗Dt) = Nν(ρ∗Dt) =
∑l−1

k=1 αk(t)Ek. Moreover,

NBs(ρ∗Dt) = {s ∈ S | σs(Pσ(ρ∗Dt)) > 0} ⊂ E.

(2) Dt(y) is nef if and only if its restriction to Z =
⋂l−1

k=1Ek is nef. This is

also equivalent to that y is contained in the polytope

¤(µ•, t) :=
{

y ∈ Rl−1
≥0 | 0 ≤ y1 ≤ y2 ≤ · · · ≤ yl−1 ≤ 1,

l−1∑

k=1

(µk − µk+1)yk ≥ t− µl

}
.

Proof. (1) We denote the total transform of HE by H and that of F by the
same symbol F on a projective variety birational to P(E). Then H = Hl on S.

We introduce the following non-negative numbers:

βj(t) :=





α1(t), j = 1;

αj(t)− αj−1(t), 2 ≤ j ≤ l − 1;

1− αl(t), j = l.

Then we can write

Dt(αt) ∼R

∑l

j=1
βj(t)Hj − tF

∼R

∑k

j=1
βj(t)(Hj − µ1F ) +

∑l

j=k+1
βj(t)(Hj − µk+1F )(IV-9)

+ (αk(t)µ1 + (1− αk(t))µk+1 − t)F
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for 1 ≤ k ≤ l− 1. Here Hi − µ1F is the pullback of a pseudo-effective R-divisor by
S → P(Ei) for i ≤ k. Since Ek dominates P(Ei) for i ≤ k, we have σEk

(Hi−µ1F ) = 0
for i ≤ k. There is a linear equivalence relation

Hj − µk+1F ∼ Ej−1 + · · ·+ Ek+1 + (Hk+1 − µk+1F )

for j > k+1, where Hk+1−µk+1F is nef. Hence σEk
(Hj−µk+1F ) = 0 for j ≥ k+1.

Therefore, Dt(αt) is pseudo-effective and σEk
(Dt(αt)) = 0 by (IV-9). Moreover,

we infer NBs(ρ∗Dt) ⊂ E by (IV-9) for k = 1. Thus Dt(αt) is movable.
For an index 1 ≤ k ≤ l − 1, we can write

(IV-10) Dt(y) ∼R

(
yk(Hk − µ1F )−

∑k−1

j=1
yjEj

)

+
(
(1− yk)(Hl − µk+1F ) +

∑l−1

j=k+1
(yk − yj)Ej

)

+
(
ykµ1 + (1− yk)µk+1 − t

)
F.

By 3.7, Hi−µkF is pseudo-effective for i ≥ k. Let ρk : Ek → P(Ek)×C P(E/Ek) be
the natural birational morphism. Suppose that Dt(y)|Ek

is pseudo-effective. Then
its push-forward by ρk∗ is also pseudo-effective. Suppose first that Ek+1/Ek is not
a line bundle. Then Ej |Ek

is ρk-exceptional for any j ≥ k + 1. Hence yk ≤ 1
and t ≤ ykµ1 + (1 − yk)µk+1 by (IV-10) and 3.7. Suppose next that Ek+1/Ek is a
line bundle. Then Ej |Ek

is ρk-exceptional for any j > k + 1. Here Hk+1|Ek
is the

pullback of HEk+1/Ek
of P(Ek+1/Ek) ' C, which is numerically equivalent to µk+1F .

Thus the inequalities yk+1 ≤ 1 and ykµ1 + (1 − yk)µk+1 ≥ t follow from (IV-10),
the R-linear equivalence relation

Ek+1 ∼R Hl − El−1 − · · · − Ek+2 −Hk+1,

and from 3.7.
Hence, if Dt(y)|Ek

is pseudo-effective, then αk(t) ≤ yk. Since Dt(αt)|Ek
are all

pseudo-effective, we infer that νEk
(Dt) = αk(t) for any k by III.3.12. Therefore

Nσ(ρ∗Dt) = Nν(ρ∗Dt) =
∑
αk(t)Ek.

(2) We can write

Dt(y) ∼R y1(H1 − µ1F ) +
∑l−1

j=2
(yj − yj−1)(Hj − µjF ) + (1− yl−1)(Hl − µlF )

+
(
y1µ1 +

∑l−1

j=2
(yj − yj−1)µj + (1− yl−1)µl − t

)
F.

If y ∈ ¤(µ•, t), then Dt(y) is nef, since Hi − µiF is nef for 1 ≤ i ≤ l. Conversely

suppose that Dt(y) is nef. The intersection Z =
⋂l−1

k=1Ek is isomorphic to

P(E1)×C P(E2/E1)×C · · · ×C P(El/El−1).

Since Dt(y)|Z is nef, we have y ∈ ¤(µ•, t) by 3.7. ¤
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Let N\ be a free abelian group of rank l − 1 with a basis (e\
1, e

\
2, . . . , e

\
l−1) and

let (δ\
1, δ

\
2, . . . , δ

\
l−1) be the dual basis of M\ = (N\)∨. We consider

L\ =
∑l−1

k=1
e\
i ⊗OS(−Bi) ∈ N

\ ⊗ Pic(S) and σ\ =
∑l−1

k=1
R≥0e

\
i ∈ N

\
R

in order to have a toric blowing up of S along E. We note that the polytope ¤(µ•, t)
is identified with the same subset

¤Nef(H − tF ) = {m ∈ M
\
R | H − tF + Lm

\ is nef}
as in 2.15 for the R-divisor H − tF by y ↔ ∑

yiδ
\
i . Here, the subset satisfies the

condition of 2.15 by 3.11-(2). Let h† ∈ SFCN\(σ\,R) be the support function
defined by

h†(x) = min{〈m,x〉 | m ∈ ¤Nef(H − tF )}
and let Λ be a finite subdivision of σ\ with h† ∈ SFN\(σ\,R). Then, for the toric
blowing up f : SΛ → S along E associated with Λ, we have a nef R-Cartier divisor
P † := Dh† +H − tF on SΛ. If H − tF admits a Zariski-decomposition, then P † is
the positive part of a Zariski-decomposition by 2.15.

3.12. Lemma Suppose that the Harder–Narasimhan filtration of E is split :

Ei =
⊕i

k=1
Ek/Ek−1.

Then H − tF admits a Zariski-decomposition. In particular, P † is the positive part

of a Zariski-decomposition of H − tF .

Proof. Let us consider

Z = P(E1)×C P(E2/E1)×C · · · ×C P(El/El−1)→ C

and the pullback H i of the tautological divisor HEi/Ei−1
to Z for any i. Then there

is a birational morphism

M = PZ(OZ(H1)⊕ · · ·OZ(H l))→ PC(E),
since E• is split. We know Nef(Z) = PE(Z) and Nef(Z) ⊂ N1(Z) is a rational
polyhedral cone. Therefore, every pseudo-effective R-divisor on the toric bundle M
over Z admits a Zariski-decomposition by 2.5. ¤

The following proof is more explicit than above and it does not use 2.15:

Another proof of 3.12. The projective bundle M in the proof above is
written as a toric bundle TN(Σ,L) over Z, where N is a free abelian group of rank
l− 1 with a basis (e1, e2, . . . , el−1), L =

∑
ei ⊗OZ(Hi −H l), and Σ is a complete

fan of N defined as in §2.c. Here Ver(Σ) = {e1, e2, . . . , el−1, el} for el = −∑l−1
i=1 ei.

We have the support function h ∈ SFN(Σ,Z) defined by h(x) = min({〈δi, x〉 | 1 ≤
i ≤ l − 1} ∪ {0}), where (δ1, . . . , δl−1) is the dual basis to (e1, e2, . . . , el). Then
Dh = Γel

∼ λ∗HE − q∗H l for the structure morphism q : M → Z. We define

Hi = OZ(H1)⊕OZ(H2)⊕ · · · ⊕ OZ(Hi)



152 IV. DIVISORS ON BUNDLES

for 1 ≤ i ≤ l. Then we have a filtration H• = [H1 ⊂ H2 ⊂ · · · ⊂ Hl] of subbundles
of Hl. We can show that there is a birational morphism PZ(H•) → S = PC(E•)
which is an isomorphism over an open neighborhood of E ⊂ S and that the total
transform of Ei ⊂ S in PZ(H•) is just the same Ei with respect to the filtration
H•. By 3.5, we can write PZ(H•) as a toric bundle TN(Σl,L) over Z, where

Ver(Σl) = {e1, e2, . . . , el, w1, w2, . . . , wl−1}, for wi :=
∑i

j=1 ej . Note that w1 = e1
and wl−1 = −el. Then Ei = Γwi

= V(R≥0wi,L) ⊂ TN(Σl,L). The pullback

of H − tF in PC(E) to PZ(H•) is written by Dh + q∗(H l − tF ) for the structure
morphism q : PZ(H•) → Z. We can apply the method of 2.5 to constructing the
Zariski-decomposition of Dh + q∗(H l − tF ), since PE(Z) = Nef(Z) is a polyhedral
cone. Then, by 3.7,

¤Nef(H l − tF, h) =

{
m ∈ ¤h

∣∣ ∑l−1

i=1
miHi +

(
1−

∑l−1

i=1
mi

)
H l − tF is nef

}

=

{
m ∈ Rl−1

≥0

∣∣ ∑l−1

i=1
mi ≤ 1,

∑l−1

i=1
miµi +

(
1−

∑l−1

i=1
mi

)
µl ≥ t

}
.

Therefore, the dual cone 4 of R≥0(¤Nef(H l − tF, h)× {−1}) is written by

4 =
∑l−1

i=1
R≥0(ei, 0) + R≥0(el,−1) + R≥0

(∑l−1

i=1
(µi − µl)ei,−t

)
.

We set h‡(x) = max{r ∈ R | (x, r) ∈ 4}. We shall construct a finite subdivision

Σ] of Σ as follows: The maximal cones of Σ] are

σi =
∑

1≤j≤l,i6=j
R≥0ej ,

σ′
i =

∑
1≤j≤l−1,i6=j

R≥0ej + R≥0

(∑l−1

i=1
(µi − µl)ei

)
,

for 1 ≤ i ≤ l−1. Then h‡ ∈ SFN(Σ],R) and hence Dh‡ +q∗(H l− tF ) on TN(Σ],L)
is the positive part of the Zariski-decomposition.

On the other hand, let us consider the toric blowup X → P(H•) along E =∑
Ei associated with a finite subdivision Λ of σ\. Then, by 2.13, X is isomorphic

to the toric bundle TN(Σ′,L) over Z for a fan Σ′ defined as follows: Let us define
h ∈ SFN(Σl,Z)⊗ N\ by

h(v) =

{
e\
i , if v = wi for 1 ≤ i ≤ l − 1,

0, otherwise.

Then Σ′ = {Ch(λ,σ) | λ ∈ Λ, σ ∈ Σl}, where Ch(λ,σ) = σ ∩ h−1(λ).
We can identify ¤Nef(H − tF ) with ¤Nef(H l − tF, h) by

y 7→ m = y1δ1 +
∑l−1

i=2
(yi − yi−1)δi.
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The dual NR → N
\
R of the linear transformation coincides with h over the cone

σ[ :=
∑l

i=1 R≥0wi. Thus

h†(h(x)) = h‡(x)

for x ∈ σ[. Note that h‡ is linear on σ′
i ∈ Σ]. The set {σ[ ∩ σ′

i | 1 ≤ i ≤ l − 1}
of cones generates a finite subdivision of σ[. We take Λ to be the corresponding
subdivision of σ\ by h. Then h† ∈ SFN\(Λ,R). Let Σ′ be the finite subdivision of Σl

corresponding to Λ. Then Σ′ is a finite subdivision of Σ]. Here, P † = Dh† +H−tF
on X is equal to Dh‡ + q∗(H l − tF ). Thus P † is the positive part of the Zariski-
decomposition. ¤

Now we are ready to prove the main result 3.6 of §3.b.

Proof of 3.6. There is a connected analytic space Θ and a sequence of vector
subbundles

0 = Ẽ0 ⊂ Ẽ1 ⊂ Ẽ2 ⊂ · · · ⊂ Ẽl
on C × Θ satisfying the following conditions: let (Ei)θ be the restriction of Ẽ to
C × {θ}.

(1) Ẽi/Ẽi−1 ' p∗1(Ei/Ei−1) for any 1 ≤ i ≤ l for the first projection p1;
(2) There is a point 0 ∈ Θ such that the sequence (Ei)0 is split, i.e,

(Ei)0 '
⊕i

k=1
Ek/Ek−1;

(3) There is a point θ ∈ Θ such that (Ei)θ = Ei for any i.

Let S̃ → C ×Θ be the projective smooth morphism defined by

S̃ = PC×Θ(Ẽ1 ⊂ · · · ⊂ Ẽl).

Then we have similar effective divisors Ẽk for 1 ≤ k ≤ l− 1. We also have the toric
blowing-up f̃ : S̃Λ → S̃ associated with the subdivision Λ and P̃ † = Dh† + f̃∗(H −
tF ) that is relatively nef over Θ. Let Γ̃v be the prime divisor of S̃Λ associated with

v ∈ Ver(Λ). Here the restrictions of P̃ † and Γ̃v to the fiber over θ ∈ Θ coincide with

P † and Γv, respectively. The restriction of P̃ † to the fiber over 0 is the positive
part of a Zariski-decomposition by 3.12. In particular, P † is nef and big and the
restriction of P † to Γv is not big for any v ∈ Ver(Λ), by III.3.7. Again by III.3.7,
we infer that P † is the positive part of the Zariski-decomposition of H − tF . ¤

§4. Normalized tautological divisors

§4.a. Projectively flatness and semi-stability. We shall prove the follow-
ing theorem which may be well-known. It is derived from the study of stable vector
bundles and Einstein–Hermitian metrics by Narasimhan and Seshadri [107], Mehta
and Ramanathan [78], [79], Donaldson [12], Uhlenbeck and Yau [142], and Bando
and Siu [3].
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4.1. Theorem Let E be a reflexive sheaf of rank r on a non-singular com-

plex projective variety X of dimension d. Then the following three conditions are

equivalent :

(1) E is locally free and the normalized tautological divisor ΛE is nef ;
(2) E is A-semi-stable and

(
c2(E)−

r − 1

2r
c21(E)

)
·Ad−2 = 0

for an ample divisor A;
(3) E is locally free and there is a filtration of vector subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E
such that Ei/Ei−1 are projectively flat and the averaged first Chern classes

µ(Ei/Ei−1) are numerically equivalent to µ(E) for any i.

Here, a vector bundle E is called projectively flat if it admits a projectively flat
Hermitian metric h, namely, the curvature tensor Θh is written by

Θh = ω · idE

for a 2-form ω, as an End(E)-valued C∞-2-form. We need some preparations for
the proof.

Let U(r) be the unitary group of degree r and let PU(r) be the quotient group
U(r)/U(1) by the center U(1) ' S1. Let O?

X × U(r) be the direct product of the
sheaf O?

X of germs of holomorphic unit functions and the constant sheaf U(r). Let
GL(r,OX) be the sheaf of germs of holomorphic r × r regular matrices and let
O?

X U(r) be the image of the natural homomorphism

O?
X ×U(r)→ GL(r,OX).

Then we have an exact sequence:

1→ S1 → O?
X ×U(r)→ O?

X U(r)→ 1,

in which the homomorphism from S1 is given by s 7→ (s−1, s).

4.2. Lemma The image of the homomorphism

H1(X,O?
X U(r))→ H1(X,GL(r,OX))

is regarded as the set of all the isomorphism classes of vector bundles E of X of

rank r admitting projectively flat Hermitian metrics.

Proof. Let (E , h) be a projectively flat Hermitian vector bundle of rank r.
Then there are an open covering {Uλ} of X and positive-valued C∞-functions aλ

on Uλ such that a−1
λ h is a flat metric on Uλ. Thus we may assume that there exist

holomorphic sections
eλ
1 , e

λ
2 , . . . , e

λ
r ∈ H0(Uλ, E),

such that, for any 1 ≤ i, j ≤ r,
h(eλ

i , e
λ
j ) = aλδi,j ,
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where δi,j denotes Kronecker’s δ. Let Tλ,µ be the transition matrix of E with respect
to the frame {(Uλ, e

λ
i )}:

(eλ
1 , e

λ
2 , . . . , e

λ
r ) · Tλ,µ = (eµ

1 , e
µ
2 , . . . , e

µ
r ).

Then Tλ,µ are holomorphic r × r regular matrices and satisfy

tTλ,µTλ,µ = aµa
−1
λ · id.

Locally on Uλ ∩ Uµ, there is a holomorphic function u such that aµa
−1
λ = |u|2.

Thus u−1Tλ,µ is unitary. Hence Tλ,µ ∈ H0(Uλ ∩ Uµ,O?
X U(r)). Therefore E ∈

H1(X,GL(r,OX)) comes from H1(X,O?
X U(r)).

Next suppose that E is contained in the image of H1(X,O?
X U(r)). Then, for a

suitable frame {(Uλ, e
λ
i )}, the corresponding transition matrix Tλ,µ is contained in

H0(Uλ ∩ Uµ,O?
X U(r)). Thus

tTλ,µTλ,µ = vλ,µ · id,

for a positive-valued C∞-function vλ,µ on Uλ ∩Uµ. By replacing the open covering
{Uλ} by a finer one, we may assume that there is a positive-valued C∞-function aλ

on Uλ such that vλ,µ = aµa
−1
λ . Let hλ be the Hermitian metric of E|Uλ

defined by

hλ(eλ
i , e

λ
j ) = aλδi,j .

Then hλ = hµ on Uλ ∩ Uµ. Hence we have a projectively flat metric on E . ¤

4.3. Corollary A vector bundle E of rank r is projectively flat if and only

if the associated Pr−1-bundle π : PX(E) → X is induced from a projective unitary

representation π1(X)→ PU(r).

Proof. There is a commutative diagram of exact sequences:

1 −−−−→ O?
X −−−−→ O?

X U(r) −−−−→ PU(r) −−−−→ 1
∥∥∥

y
y

1 −−−−→ O?
X −−−−→ GL(r,OX) −−−−→ PGL(r,OX) −−−−→ 1.

Here note that O?
X is the center of both O?

X U(r) and GL(r,OX). Let E be an

element of H1(X,GL(r,OX)) whose image in H1(X,PGL(r,OX)) is contained in
the image of H1(X,PU(r)). Then we can check E comes from H1(X,O?

X U(r)) by
a diagram chasing. ¤

4.4. Lemma Let Y ⊂ X be a non-singular ample divisor of a non-singular

projective variety X of dimension d ≥ 3. Let EY be a vector bundle of Y and let

L be a line bundle of X such that EY is projectively flat and det EY ' L ⊗ OY .

Then there is a projectively flat vector bundle E of X satisfying det E ' L and

E ⊗ OY ' EY .
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Proof. We shall consider the following two homomorphisms:

det : O?
X U(r)→ O?

X , and p : O?
X U(r)→ PU(r).

Let µr ⊂ C? be the group of r-th roots of unity. Then we have an exact sequence

1→ µr → O?
X U(r)

(det, p)−−−−→ O?
X × PU(r)→ 1,

which induces an exact sequence

H1(X,µr)→ H1(X,O?
X U(r))→ H1(X,O?

X)×H1(X,PU(r))→ H2(X,µr).

By the weak Lefschetz theorem, we have isomorphisms

H1(X,µr) ' H1(Y,µr), H1(X,PU(r)) ' H1(Y,PU(r))

and injective homomorphisms

H1(X,O?
X) ↪→ H1(Y,O?

Y ), H2(X,µr) ↪→ H2(Y,µr).

Thus we can find E by a diagram chasing. ¤

4.5. Lemma Let E be an A-stable reflexive sheaf with ∆2(E) ·Ad−2 = 0 for an

ample divisor A. Then E is a projectively flat vector bundle.

This is proved in [3, Corollary 3] in the Kähler situation. But here, we give an-
other proof by using the argument of [79, 5.1] which is valid only in the projective
situation.

Proof. If E is locally free, then it follows from works of Donaldson [12],
Mehta–Ramanathan [78], [79] as well as Uhlenbeck–Yau [142]. Thus we have
only to prove that E is locally free in the case d ≥ 3. Let S be the complete in-
tersection of smooth divisors A1, A2, . . . , Ad−2 contained in the linear system |mA|
for a sufficiently large m ∈ N. Then E|S = E ⊗ OS is a locally free sheaf and it is
A-stable by [79]. Hence E|S is a projectively flat vector bundle. By 4.4, there is a
projectively flat vector bundle E ′ such that

det E ′ ' det E , E ′ ⊗OS ' E ⊗OS .

By the argument of [79, 5.1], we have an isomorphism E ' E ′. ¤

4.6. Proposition Let E be an A-semi-stable reflexive sheaf with ∆2(E)·Ad−2 =
0 for an ample divisor A. Then E is locally free.

Proof. We shall prove by induction on rank E . We may assume E is not
A-stable by 4.5. Then there is an exact sequence

0→ F → E → G → 0,

where F and G are non-zero torsion-free sheaves satisfying µA(F) = µA(E) =
µA(G). Thus F and the double-dual G∧ = G∨∨ of G are also A-semi-stable sheaves.
In particular, Bogomolov’s inequalities

∆2(F) ·Ad−2 ≥ 0, ∆2(G∧) ·Ad−2 ≥ 0
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hold. Note that ∆2(G) − ∆2(G∧) is represented by an effective algebraic cycle of
codimension two supported in SuppG∧/G. By the formula (II-9), we infer that

∆2(G) = ∆2(G∧), ∆2(F) ·Ad−2 = ∆2(G∧) ·Ad−2 = 0,

and µ(F) = µ(G) = µ(E). By the induction, F and G∧ are locally free. Suppose
that G 6= G∧. Then E defines a non-zero element of H0(X, Ext1(G,F)). On the
other hand, we have Ext2(G∧/G,F) = 0, since codim SuppG∧/G ≥ 3. It implies
Ext1(G,F) = 0, a contradiction. Hence G = G∧ and E is also locally free. ¤

Proof of 4.1. (1) ⇒ (2): Let C ⊂ X be a smooth projective curve. Then
the normalized tautological divisor of the restriction E|C is also nef. Thus E|C is
semi-stable. Hence E is A-semi-stable and Bogomolov’s inequality ∆2(E) ·Ad−2 ≥ 0
holds for any ample divisor A. On the other hand,

0 ≤ Λr+1
E · π∗Ad−2 = −∆2(E) ·Ad−2.

Thus ∆2(E) = 0 in N2(X).
(2) ⇒ (3): If E is A-stable, then E is a projectively flat vector bundle by 4.5.

Otherwise, there is an exact sequence: 0→ F → E → G → 0 such that F and G are
non-zero torsion-free sheaf and µA(E) = µA(F) = µA(G). By the same argument
as in the proof of 4.6, we infer that F and G are also A-semi-stable vector bundles
with ∆2(F) · Ad−2 = ∆2(G) · Ad−2 = 0. Thus we have a filtration satisfying the
condition (3).

(3) ⇒ (1): If E is projectively flat, then f∗E is semi-stable for any morphism
f : C → X from a non-singular projective curve. Thus if E has a filtration satisfying
the condition (3), then f∗E is also semi-stable and ΛE is nef. ¤

Concerning with the invariant ν for nef R-divisors defined in Chapter V, §2.a,
we have the following:

4.7. Corollary If ΛE is nef, then ν(ΛE) = r − 1.

§4.b. The case of vector bundles of rank two. We next consider a weaker
condition: ΛE is pseudo-effective. We have the following result when rank E = 2.

4.8. Theorem Let E be an A-semi-stable vector bundle of rank two on a non-

singular complex projective variety X of dimension d ≥ 2 for an ample divisor A.

Suppose that the normalized tautological divisor ΛE is pseudo-effective. Then ΛE is

nef except for the following three cases:

(A) There exist divisors M1,M2 such that

M1 ·Ad−1 = M2 ·Ad−1 and E ' OX(M1)⊕OX(M2);

(B) There exist an unramified double-covering τ : Y → X and a divisor M of

Y such that

E ' τ∗OY (M);
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(C) There is an exact sequence

0→ OX(L1)→ E → IOX(L2)→ 0,

where I is an ideal sheaf with codim SuppOX/I = 2 and the divisor L1

is numerically equivalent to L2.

Remark Here Λ = ΛE is pseudo-effective in these exceptional cases. Further,
Λ is nef if and only if M1

∼∼∼M2 in the case (A), and M ∼∼∼ σ∗M for the non-trivial
involution σ : Y → Y over X in the case (B); Λ is not nef in the case (C).

4.9. Corollary If E is an A-stable vector bundle of rank two for an ample

divisor A such that the normalized tautological divisor ΛE is pseudo-effective. Then

ΛE is nef except for the case (B) in 4.8.

The idea of our proof of 4.8 is to consider the σ-decomposition of Λ. We shall
prove 4.8 after discussing exceptional cases.

Let X be a non-singular projective variety of dimension d and let A be an
ample divisor.

4.10. Lemma Let M1,M2 be divisors of X with M1 ·Ad−1 = M2 ·Ad−1. Then

the vector bundle E = OX(M1) ⊕ OX(M2) is A-semi-stable and |2ΛE | 6= ∅. The

Q-divisor ΛE is nef if and only if M1
∼∼∼M2.

Proof. If L ⊂ E is an invertible subsheaf, then it is a subsheaf of OX(M1)
or OX(M2). Thus L · Ad−1 ≤ (1/2)c1(E) · Ad−1. The symmetric tensor product
Sym2 E contains OX(M1 +M2) ' det E as a direct summand. Hence |2ΛE | 6= ∅. If
M1
∼∼∼M2, then ΛE is nef. Conversely if ΛE is nef, then M1 −M2

∼∼∼ 0 by 4.1, since

∆2(E) = −1

4
(M1 −M2)

2 = 0. ¤

4.11. Lemma Let τ : Y → X be an unramified double-covering from a non-

singular variety and let M be a divisor of Y . Then, for the vector bundle E =
τ∗OY (M), there is an isomorphism

τ∗E ' OY (M)⊕OY (σ∗M),

where σ : Y → Y is the non-trivial involution over X. In particular, E is semi-

stable with respect to any ample divisor of X and ΛE is pseudo-effective. Further,

ΛE is nef if and only if M ∼∼∼ σ∗M .

Proof. Let us consider the natural homomorphism φ : τ ∗τ∗OY → OY . Then
φ+ σ∗φ gives an isomorphism

τ∗τ∗OY ' OY ⊕OY .

Similarly from the natural homomorphism ϕ : τ ∗τ∗OY (M)→ OY (M), we have the
homomorphism

ϕ+ σ∗ϕ : τ∗E = τ∗τ∗OY (M)→ OY (M)⊕OY (σ∗M).

Since OY (M) is an invertible sheaf, we infer that the homomorphism also is an
isomorphism by considering it locally over X. ¤
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4.12. Lemma Let Z be a closed subspace locally of complete intersection of X
with codimZ = 2 and let L be an invertible sheaf of X. If there exists a locally free

sheaf E with an exact sequence

(IV-11) 0→ OX → E → IZL → 0,

for the defining ideal sheaf IZ of Z, then

(IV-12) Ext2(OZ ,L−1) ' OZ .

Conversely, if the isomorphism (IV-12) exists, then there is a naturally defined

cohomology class δ(Z,L) ∈ H2(X,L−1) such that δ(Z,L) = 0 if and only if there is

a locally free sheaf E with the exact sequence (IV-11).

Proof. Suppose that the locally free sheaf E exists. Then (IV-11) induces a
long exact sequence

0→ Hom(IZL,OX)→ Hom(E ,OX)→ Hom(OX ,OX)→ Ext1(IZL,OX)→ 0.

Therefore

OZ ' Ext1(IZL,OX) ' Ext2(OZ ,L−1).

Next suppose the isomorphism (IV-12) exists. The spectral sequence

Ep,q
2 = Hp(X, Extq(IZL,OX)) =⇒ Ep+q = Extp+q(IZL,OX)

induces an exact sequence

0→ H1(X,L−1)→ Ext1(IZL,OX)→ H0(Z,OZ)→ H2(X,L−1).

Let δ = δ(Z,L) be the image of 1 ∈ H0(Z,OZ) under the right homomorphism.
Then δ = 0 if and only if there is an extension of sheaves

0→ OX → E → IZL → 0

such that Ext1(E ,OX) = 0. It remains to show that E is locally free. We may
replace X by an open neighborhood of an arbitrary point. Thus we may assume
that there is an exact sequence

0→ OX → O⊕2
X → IZL → 0,

since Z is locally a complete intersection. Pulling back the sequence by E → IZL,
we have an exact sequence

0→ OX → Ẽ → E → 0,

which is locally split. By the snake lemma, we infer that Ẽ is locally free. Hence E
is locally free. ¤

Example Let X be a non-singular projective surface and let x be a point.
Suppose that the geometric genus pg(X) = dim H2(X,OX) = 0. Then there is a
locally free sheaf E with an exact sequence

0→ OX → E → mx → 0

for the maximal ideal mx at x.
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Let τ : Y → X be a generically finite proper surjective morphism from a variety
Y with only Gorenstein singularities and let ν : V → Y be the normalization. By
duality, there are trace maps ν∗ωV → ωY and τ∗ωY → ωX . The first trace map
induces an effective divisor C of V , which is called the conductor of Y , such that
KV = ν∗KY −C . If C = 0, then ν is an isomorphism. The pullback of differential
forms induces a homomorphism ν∗τ∗ωX → ωV , which gives rise to a splitting of
the composite of trace maps above. Thus there exist an effective divisor RV/X of
V and an effective Cartier divisor RY/X of Y such that

KV = ν∗τ∗KX +RV/X , KY = τ∗KX +RY/X , RV/X = τ∗RY/X − C.
The divisors RY/X and RV/X are called the ramification divisors of Y → X and
V → X, respectively.

4.13. Lemma If RY/X = 0, then τ is a finite étale morphism.

Proof. Since the ramification divisor RV/X is effective, the conductor C is
zero. Hence Y is normal. Let Y → W → X be the Stein factorization of τ ,
where we write µ : Y → W and p : W → X. Then the dualizing sheaf ωW is the
double-dual of µ∗ωY . Since RY/X = 0, we have isomorphisms ωW ' p∗ωX and
ωY ' µ∗ωW . Thus W → X is étale, since p is a finite morphism. In particular, W
is non-singular. Consequently, the birational morphism Y →W is isomorphic. ¤

Proof of 4.8. Bogomolov’s inequality ∆2(E)·Ad−2 ≥ 0 attains the equality if
and only if Λ = ΛE is nef by 4.1. We have only to show the equality ∆2(E)·Ad−2 = 0
except for the three exceptional cases. Let Λ = P +N be the σ-decomposition of
the pseudo-effective divisor Λ (cf. Chapter III, §1). Then there exist an R-divisor
D of X and a real number b such that

N ∼∼∼ bΛ + π∗D and P ∼∼∼ (1− b)Λ− π∗D.

We have P ·F ≥ 0 and N ·F ≥ 0 for a fiber F of the P1-bundle π : P = PX(E)→ X.
Thus 0 ≤ b ≤ 1. Let A1, A2, . . . , Ad−1 be general members of the linear system
|mA| for a sufficiently large m ∈ N. Then E|C is semi-stable for the non-singular
curve C = A1 ∩ A2 ∩ · · · ∩ Ad−1 by [78]. In particular, if (Λ + π∗E)|π−1(C) is

pseudo-effective for an R-divisor E of X, then E · Ad−1 ≥ 0. Note that N |π−1(C)

and P |π−1(C) are pseudo-effective. Thus D · Ad−1 ≥ 0 in the case b > 0, and

D ·Ad−1 ≤ 0 in the case b < 1.
First suppose that b < 1. Since P is movable, P 2 is regarded as a pseudo-

effective R-cycle of codimension two. Therefore

π∗(P
2) = −2(1− b)D

is a pseudo-effective R-divisor. Thus −D is pseudo-effective. If b > 0 in addition,
then D ∼∼∼ 0 since D · Ad−1 = 0. Hence N ∼∼∼ bΛ and P ∼∼∼ (1 − b)Λ. This is a
contradiction. Therefore b = 0. Thus −N ∼∼∼ −π∗D is pseudo-effective. Hence
N = 0 and Λ is movable. Since Λ2 = −π∗∆2(E), we have

−∆2(E) = π∗(H · Λ2) = π∗((H +mπ∗A) · Λ2)
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for any integer m. If m > 0 is large, then H + mπ∗A is ample and thus (H +
mπ∗A) ·Λ2 is pseudo-effective. Hence −∆2(E) is pseudo-effective. By Bogomolov’s
inequality, we have ∆2(E) ·Ad−2 = 0.

Next suppose that b = 1. Since P ∼∼∼ −π∗D is movable, so is −D. On the other
hand, b > 0 implies D ·Ad−1 ≥ 0. Hence D ∼∼∼ 0 and P ∼∼∼ 0. Let

N =
∑

σiΓi

be the prime decomposition. For each i, there are non-negative integers bi and
Q-divisors Di such that

Γi ∼Q biΛ + π∗Di.

Since Λ−σiπ
∗Di is pseudo-effective and since E|C is semi-stable, we haveDi·Ad−1 ≤

0. Hence bi > 0. Moreover, Di · Ad−1 = 0, since D ∼Q

∑
σiDi

∼∼∼ 0. We consider
the following three cases:

(I) bi ≥ 2 for some i;
(II) N has at least two irreducible components and bi = 1 for any Γi;

(III) N has only one irreducible component Γ1 and b1 = 1.

Let Y be an irreducible component Γ1. Then π : Y → X is a generically finite
surjective morphism of degree b1. By adjunction, we have

KY = π∗KX + ((b1 − 2)Λ + π∗D1)|Y .
Therefore RY/X ∼ ((b1 − 2)Λ + π∗D1)|Y . Since RY/X is effective,

π∗(((b1 − 2)Λ + π∗D1)|Y ) = π∗(((b1 − 2)Λ + π∗D1) · (b1Λ + π∗D1)) = 2(b1 − 1)D1

is an effective divisor of X.
We consider the case (I). We may assume that b1 ≥ 2. Then D1 ∼Q 0, since

D1 ·Ad−1 = 0. Hence Y ∼Q b1Λ. By the definition of σ-decomposition, we have

σi = σΓi
(Λ) =

1

b1
σΓi

(Y ).

Thus N has only one irreducible component Y and N = (1/b1)Y . Furthermore,
(b1− 2)Λ|Y ∼Q RY/X ≥ 0. Let us choose a positive integer m such that H +mπ∗A
is ample. Then

π∗((H +mπ∗A) · ((b1 − 2)Λ) · Y ) = b1(b1 − 2)π∗(H · Λ2) = −b1(b1 − 2)∆2(E)
is also a pseudo-effective cycle. Hence by Bogomolov’s inequality, if b1 ≥ 3, then
∆2(E) = 0 and hence Λ is nef by 4.1. This is a contradiction to: P ∼∼∼ 0. Therefore,
b1 = 2 and thus RY/X = 0. Hence π : Y → X is an étale double-covering by 4.13.
From the exact sequence

0→ OP(H − Y )→ OP(H)→ OY (H)→ 0,

we infer that E ' π∗OY (H). Thus E is of type (B).
Next we consider the case (II). Let Γ1, Γ2 be two irreducible components of N .

Then π∗(Γ1 · Γ2) = D1 + D2, since b1 = b2 = 1. Thus D1 + D2 is effective with
(D1 +D2) ·Ad−1 = 0. Therefore, D1 +D2 ∼ 0 and Γ1 +Γ2 ∼ 2Λ. Hence N has only
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two components and σ1 = σ2 = 1/2. We infer that every component of Γ1 ∩ Γ2 is
contracted by π from the vanishing π∗(Γ1 · Γ2) = 0. Therefore

π∗(H · Γ1 · Γ2) = −∆2(E) +D1 ·D2 = −∆2(E)−D2
1

is an effective cycle. On the other hand,

RΓ1/X ∼ (−Λ + π∗D1)|Γ1
.

Thus we have also an effective cycle

π∗(H ·RΓ1/X) = π∗(H · (−Λ + π∗D1) · (Λ + π∗D1)) = D2
1 + ∆2(E).

Hence −∆2(E) = D2
1 in N2(X) and Γ1 ∩ Γ2 = ∅. In particular, Γ1 and Γ2 are

mutually disjoint sections of the P1-bundle. Therefore

E ' π∗OΓ1
(H)⊕ π∗OΓ2

(H).

Thus this is of type (A).
Finally, we treat the case (III). For the unique component Y = Γ1, there is a

divisor L1 such that Y ∼ H − π∗L1. Since N = σ1Y ∼∼∼ Λ, we have σ1 = 1 and
det E ∼∼∼ 2L1. Note that

R = RY/X ∼ (−H + π∗(−L1 + det E))|Y .
By applying π∗ to the exact sequence

0→ OP(H − Y )→ OP(H)→ OY (H)→ 0,

we have another exact sequence

0→ OX(L1)→ E → IOX(L2)→ 0,

where L2 is a divisor linearly equivalent to det E−L1 and I = π∗OY (−R). Therefore
E is of type (C). This completes the proof. ¤

Concerning with the invariant κσ for pseudo-effective R-divisors defined in
Chapter V, §2.b, we have the following:

4.14. Corollary If E is an A-semi-stable vector bundle of rank two, then

κσ(ΛE) ≤ 1.

Proof. We may assume that Λ = ΛE is pseudo-effective. By 4.7, we may
assume further that Λ is not nef. By the proof of 4.8, the positive part P of the
σ-decomposition of Λ is numerically trivial and hence Λ ∼∼∼ N . Thus κσ(Λ) = 0. ¤

4.15. Theorem The tautological divisor of the tangent bundle of a K3 surface

is not pseudo-effective.

Proof. For the tangent bundle E = TX of a K3 surface X, det(E) = OX and
c2(E) = 24. By [150], E is A-stable for any ample divisor A. Since X is simply
connected, ΛE = HE is not pseudo-effective by 4.9. ¤

Remark Kobayashi proved κ(Λ) = −∞ in [66, Theorem C]. On the other
hand, the tangent bundle is generically semi-positive in the sense of Miyaoka [81].
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Problem For a K3 surface X, are there infinitely many prime divisors Γ ⊂
PX(TX) such that H|Γ are not pseudo-effective?

Actually, for some K3 surface X, there is a nef divisor L of PX(TX) with H ·L2 < 0
(cf. [112]). For example, if X is a smooth quadric surface, then L = H + 2π∗A is
free for a hyperplane section A. In this case, H · L2 = −8 < 0. A general member
Γ ∈ |L| is a non-singular surface birational to X, with K2

Γ = −40. Here H|Γ is not
pseudo-effective. In particular, the pullback of TX in Γ is not A′-semi-stable for an
ample divisor A′ of Γ.

Problem Let E be a vector bundle of rank two on a non-singular projective
surface X. Suppose that for any generically finite morphism f : Y → X from
any non-singular projective surface Y and for any ample divisor A of Y , f ∗E is
A-semi-stable. Then is ΛE nef?

If ΛE is not nef, then it is not pseudo-effective by 4.8 and is a negative example to
III.3.4.

4.16. Proposition If E is a vector bundle of rank two on a non-singular

projective surface whose normalized tautological divisor is not pseudo-effective, then

E is A-semi-stable for some ample divisor A.

Proof. Assume the contrary. Then there is an exact sequence

0→ L → E → IZM→ 0

such that IZ is the ideal sheaf of a subspace Z of dimZ ≤ 0 and (L −M) · A > 0
for any ample divisor A. Therefore L −M is pseudo-effective. By the formula,

ΛE = HE −
1

2
π∗(L+M) = HE − π∗L+

1

2
π∗(L −M),

we infer that ΛE is pseudo-effective. ¤

4.17. Corollary Let E be a vector bundle of rank two of a non-singular pro-

jective surface X. If D is a pseudo-effective R-divisor of X with 3D2 ≥ ∆2(E),
then ΛE + π∗D is pseudo-effective.

Proof. We may assume that Λ = ΛE is not pseudo-effective. By 4.16, E is
A-semi-stable for an ample divisor A. Thus Bogomolov’s inequality ∆2(E) ≥ 0
holds. Let D be a Q-divisor with 3D2 > ∆2(E). It is enough to show that Λ+π∗D
is big. Let m be a positive integer such that mΛ and mD are Z-divisors. Then D
is big by the Hodge index theorem and

π∗OP(m(Λ + π∗D)) ' π∗OP(mΛ)⊗OX(mD),

in which π∗OP(mΛ) is an A-semi-stable vector bundle with trivial first Chern class.
Therefore,

H2(X,π∗OP(m(Λ + π∗D)))∨ ' H0(X,π∗OP(mΛ)∨ ⊗OX(KX −mD)) = 0

for mÀ 0. Note that

Hp(P,OP(m(Λ + π∗D))) ' Hp(X,π∗OP(m(Λ + π∗D)))



164 IV. DIVISORS ON BUNDLES

for any p ≥ 0. Since (Λ + π∗D)3 = −∆2(E) + 3D2 > 0, we have

lim
m→∞

m−3χ(P,OP(m(Λ + π∗D))) > 0.

Therefore Λ + π∗D is big. ¤

Problem Let E be a vector bundle of rank two on a non-singular projective
variety X. Suppose that the normalized tautological divisor Λ = ΛE is not pseudo-
effective. Describe the set

V (X, E) := {D ∈ N1(X) | Λ + π∗D is pseudo-effective}.
For example, if X = P2 and E = TX , then V (X, E) = {a` | a ≥ 1/2}, where ` ⊂ P2

is a line.


