CHAPTER IV

Divisors on bundles

We calculate σ -decompositions of pseudo-effective divisors defined over varieties given by toric construction or defined over varieties admitting projective bundle structure. In $\S1$, we recall some basics on toric varieties, extracting from the book [110], and we prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R} divisors on toric varieties. The notion of toric bundles is introduced in $\S 2$: a toric bundle is a fiber bundle of a toric variety whose transition group is the open torus. We give a counterexample to the Zariski-decomposition conjecture by constructing a divisor on such a toric bundle. We also consider projective bundles over curves in $\S 3$. We prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R} -divisors on the bundles. The content of the preprint [106] is written in §4, where we study the relation between the stability of a vector bundle $\mathcal E$ and the pseudo-effectivity of the normalized tautological divisor $\Lambda_{\mathcal{E}}$. For example, the vector bundles with $\Lambda_{\mathcal{E}}$ being nef are characterized by semi-stability, Bogomolov's inequality, and projectively flat metrics. We shall classify and list the A-semi-stable vector bundles of rank two for an ample divisor A such that $\Lambda_{\mathcal{E}}$ is not nef but pseudo-effective. In particular, we can show that $\Lambda_{\mathcal{E}}$ for the tangent bundle \mathcal{E} of any K3 surface is not pseudo-effective.

§1. Toric varieties

§1.a. Fans. We begin with recalling the notion of toric varieties. Let N be a free abelian group of finite rank and let M be the dual $N^{\vee} = \operatorname{Hom}(N, \mathbb{Z})$. We denote the natural pairing $M \times N \to \mathbb{Z}$ by $\langle \ , \ \rangle$. For subsets S and S' of $N_{\mathbb{R}} = N \otimes \mathbb{R}$ and for a subset $R \subset \mathbb{R}$, we set

$$\mathcal{S} + \mathcal{S}' = \{n + n' \mid n \in \mathcal{S}, n' \in \mathcal{S}'\}, \quad R\mathcal{S} = \{rn \mid n \in \mathcal{S}, r \in R\},$$
$$\mathcal{S}^{\vee} = \{m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, n \rangle \ge 0 \text{ for } n \in \mathcal{S}\}, \quad \mathcal{S}^{\perp} = \{m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, n \rangle = 0 \text{ for } n \in \mathcal{S}\}.$$

A subset $\sigma \subset N_{\mathbb{R}}$ is called a *convex cone* if $\mathbb{R}_{\geq 0}\sigma = \sigma$ and $\sigma + \sigma = \sigma$. If $\sigma = \sum_{x \in S} \mathbb{R}_{\geq 0} x$ for a subset $S \subset N_{\mathbb{R}}$, then we say that S generates the convex cone σ . The set σ^{\vee} for a convex cone σ is a closed convex cone of $M_{\mathbb{R}} = M \otimes \mathbb{R}$, which is called the *dual cone* of σ . It is well-known that $\sigma = (\sigma^{\vee})^{\vee}$ for a closed convex cone σ . The dimension of a convex cone σ is defined as that of the vector subspace $N_{\mathbb{R},\sigma} = \sigma + (-\sigma)$. The quotient vector space $N_{\mathbb{R}}(\sigma) = N_{\mathbb{R}}/N_{\mathbb{R},\sigma}$ is dual to the vector space σ^{\perp} . The vector subspace $(\sigma^{\vee})^{\perp} \subset N_{\mathbb{R}}$ is the maximum vector subspace contained in σ . If $(\sigma^{\vee})^{\perp} = 0$, then σ is called *strictly convex*. A face

 $\tau \prec \sigma$ is a subset of the form $m^{\perp} \cap \sigma$ for some element $m \in \sigma^{\vee}$. The relative interior of σ is denoted by Int σ , which is just the complement of the union of proper faces of σ . A real-valued function $h: \sigma \to \mathbb{R}$ is called *upper convex* if $h(x+y) \ge h(x) + h(y)$ and h(rx) = rh(x) hold for any $x, y \in \sigma, r \in \mathbb{R}_{\ge 0}$. A real-valued function h on σ is called *lower convex* if -h is upper convex.

A convex cone σ generated by a finite subset of $N_{\mathbb{R}}$ is called a *convex polyhedral* cone. The dual cone of a convex polyhedral cone is also convex polyhedral. A convex cone σ generated by a finite subset of N is called a *convex rational polyhedral cone* (with respect to N).

Let σ be a convex rational polyhedral cone. We define N_{σ} to be the submodule $(\sigma + (-\sigma)) \cap N$ and $N(\sigma)$ to be the quotient N/N_{σ} . Then $N_{\sigma,\mathbb{R}} = N_{\sigma} \otimes \mathbb{R} = N_{\mathbb{R},\sigma}$, $N(\sigma)_{\mathbb{R}} = N(\sigma) \otimes \mathbb{R} = N_{\mathbb{R}}(\sigma)$, and $\sigma^{\perp} \simeq \operatorname{Hom}(N(\sigma),\mathbb{R})$. The submodule $M(\sigma) := \sigma^{\perp} \cap M$ is isomorphic to $\operatorname{Hom}(N(\sigma),\mathbb{Z})$. The intersection $\sigma^{\vee} \cap M$ is a finitely generated semi-group, which is known as Gordan's lemma. If σ is strictly convex, then $\sigma^{\vee} \cap M$ generates the abelian group M.

A fan Σ of N is a set of strictly convex rational polyhedral cones of $N_{\mathbb{R}}$ with respect to N satisfying the following conditions:

- (1) If $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, then $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$;
- (2) If $\sigma_1, \sigma_2 \in \Sigma$, then $\sigma_1 \cap \sigma_2 \prec \sigma_1$ and $\sigma_1 \cap \sigma_2 \prec \sigma_2$.

A fan always contains the zero cone $\mathbf{0} = \{0\}$. For a strictly convex rational polyhedral cone $\boldsymbol{\sigma}$, the set of its faces is a fan, which is denoted by the same symbol $\boldsymbol{\sigma}$. Let $\boldsymbol{\Sigma}$ be a fan of N . The union $\bigcup \boldsymbol{\sigma}$ of all $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ is called the *support* of $\boldsymbol{\Sigma}$ and is denoted by $|\boldsymbol{\Sigma}|$. The intersection of N and the vector subspace of $\mathsf{N}_{\mathbb{R}}$ generated by $|\boldsymbol{\Sigma}|$ is denoted by $\mathsf{N}_{\boldsymbol{\Sigma}}$. The quotient $\mathsf{N}/\mathsf{N}_{\boldsymbol{\Sigma}}$ is denoted by $\mathsf{N}(\boldsymbol{\Sigma})$. If $\boldsymbol{\Sigma}$ is a finite set, then $\boldsymbol{\Sigma}$ is called *finite*. A finite fan with $|\boldsymbol{\Sigma}| = \mathsf{N}_{\mathbb{R}}$ is called *complete*. Let N' be another free abelian group of finite rank and let $\boldsymbol{\Sigma}'$ be a fan of N' . A homomorphism $\boldsymbol{\phi} \colon \mathsf{N} \to \mathsf{N}'$ of abelian groups is called compatible with $\boldsymbol{\Sigma}$ and $\boldsymbol{\Sigma}'$, and is regarded as a morphism $(\mathsf{N}, \boldsymbol{\Sigma}) \to (\mathsf{N}', \boldsymbol{\Sigma}')$ of fans if the following condition is satisfied in addition, then $\boldsymbol{\Sigma}$ is called *proper* over $\boldsymbol{\Sigma}'$ and $\boldsymbol{\phi}$ is called *proper*: For any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}'$,

$$\Sigma_{\sigma'} := \{ \sigma \in \Sigma \mid \phi(\sigma) \subset \sigma' \}$$

is a finite fan with $|\Sigma_{\sigma'}| = \phi^{-1}(\sigma')$. If $\mathsf{N}' = \mathsf{N}$, ϕ is the identity, and $|\Sigma'| = |\Sigma|$, then Σ' is called a *subdivision* of Σ . If Σ' is proper over Σ , then it is called a *proper subdivision* or a *locally finite subdivision* of Σ .

Let $\boldsymbol{\sigma} \subset N_{\mathbb{R}}$ be a strictly convex rational polyhedral cone. The *affine toric* variety $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma})$ is defined as the affine scheme over \mathbb{C} associated with the semi-group ring $\mathbb{C}[\boldsymbol{\sigma}^{\vee} \cap \mathsf{M}]$. The associated analytic space $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma})^{\mathrm{an}} = \operatorname{Specan} \mathbb{C}[\boldsymbol{\sigma}^{\vee} \cap \mathsf{M}]$ is denoted by $\mathbb{T}_{\mathsf{N}}(\boldsymbol{\sigma})$. For a face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, an open immersion $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\tau}) \subset \mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma})$ is defined by the inclusion $\boldsymbol{\sigma}^{\vee} \cap \mathsf{M} \subset \boldsymbol{\tau}^{\vee} \cap \mathsf{M}$. We set $\mathsf{T}_{\mathsf{N}} = \mathsf{T}_{\mathsf{N}}(\mathbf{0})$ for the zero cone $\mathbf{0}$, which is an algebraic torus. The associated analytic space $\mathbb{T}_{\mathsf{N}} := \mathsf{T}_{\mathsf{N}}^{\mathsf{m}}$ is isomorphic to $\mathsf{N} \otimes \mathbb{C}^{\star}$. The *toric variety* $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\Sigma})$ associated with a fan $\boldsymbol{\Sigma}$ is defined as the natural union of $\mathsf{T}_N(\sigma)$ for $\sigma \in \Sigma$. This is a separated scheme locally of finite type over Spec \mathbb{C} . The associated analytic space is denoted by $\mathbb{T}_N(\Sigma)$. There are an action of T_N on $\mathsf{T}_N(\Sigma)$ and an equivariant open immersion $\mathsf{T}_N \subset \mathsf{T}_N(\Sigma)$. Toric varieties are normal.

For a strictly convex rational polyhedral cone $\sigma \subset N_{\mathbb{R}}$, there is a natural surjective \mathbb{C} -algebra homomorphism $\mathbb{C}[\sigma^{\vee} \cap M] \twoheadrightarrow \mathbb{C}[\sigma^{\perp} \cap M]$ given by

$$\boldsymbol{\sigma}^{\vee} \cap \mathsf{M} \ni m \mapsto \begin{cases} m, & \text{if } m \in \boldsymbol{\sigma}^{\perp}, \\ 0, & \text{otherwise.} \end{cases}$$

This induces a closed immersion

$$\mathsf{T}_{\mathsf{N}(\boldsymbol{\sigma})} \hookrightarrow \mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma}).$$

The left hand side is an *orbit* of T_{N} and is denoted by O_{σ} . In fact, for the composite $\pi_{\sigma} \colon \mathsf{T}_{\mathsf{N}} \to \mathsf{T}_{\mathsf{N}(\sigma)} \hookrightarrow \mathsf{T}_{\mathsf{N}}(\sigma)$, we have

$$\pi_{\sigma}(t) = t \cdot \pi_{\sigma}(1) = \pi_{\sigma}(1) \cdot t$$

for $t \in \mathsf{T}_{\mathsf{N}}$ and for the unit 1 of T_{N} , where \cdot indicates the left and right actions of T_{N} on $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma})$. For a face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, let $\boldsymbol{\sigma}/\boldsymbol{\tau}$ be the image of $\boldsymbol{\sigma}$ under $\mathsf{N}_{\mathbb{R}} \to \mathsf{N}(\boldsymbol{\tau})_{\mathbb{R}}$, which is also a strictly convex rational polyhedral cone with respect to $\mathsf{N}(\boldsymbol{\tau})$. Then $(\boldsymbol{\sigma}/\boldsymbol{\tau})^{\vee} \cap \mathsf{M}(\boldsymbol{\tau})$ is identified with $\boldsymbol{\sigma}^{\vee} \cap \boldsymbol{\tau}^{\perp} \cap \mathsf{M}$. The Zariski-closure of $\mathsf{O}_{\boldsymbol{\tau}}$ in $\mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma})$ is isomorphic to $\mathsf{T}_{\mathsf{N}(\boldsymbol{\tau})}(\boldsymbol{\sigma}/\boldsymbol{\tau})$ by a natural surjective homomorphism $\mathbb{C}[\boldsymbol{\sigma}^{\vee} \cap \mathsf{M}] \twoheadrightarrow \mathbb{C}[\boldsymbol{\sigma}^{\vee} \cap \boldsymbol{\tau}^{\perp} \cap \mathsf{M}]$ given by

$$\boldsymbol{\sigma}^{\vee} \cap \mathsf{M} \ni m \mapsto \begin{cases} m, & \text{if } m \in \boldsymbol{\tau}^{\perp}, \\ 0, & \text{otherwise.} \end{cases}$$

For a fan Σ of N and for a cone $\sigma \in \Sigma$, the set

$$\Sigma/\sigma := \{ \sigma'/\sigma \mid \sigma \prec \sigma' \in \Sigma \}$$

is a fan of $N(\sigma)$. Then the Zariski-closure $V(\sigma)$ of O_{σ} in $T_N(\Sigma)$ is isomorphic to $T_{N(\sigma)}(\Sigma/\sigma)$. If $\sigma \in \Sigma$ is not a proper face of another cone in Σ , then it is called a *maximal cone*. In this case, $O_{\sigma} = V(\sigma)$.

An element $m \in \mathsf{M}$ is regarded as a nowhere-vanishing regular function on T_{N} , which is denoted by $\mathsf{e}(m)$. It is also a rational function on the toric variety $\mathsf{T}_{\mathsf{N}}(\Sigma)$ associated with a fan Σ of N . An integral primitive vector $v \in \mathsf{N}$ is called a *vertex* of Σ if $\mathbb{R}_{\geq 0}v \in \Sigma$. The set of vertices of Σ is denoted by $\operatorname{Ver}(\Sigma)$ or $\operatorname{Ver}(\mathsf{N}, \Sigma)$. For $v \in \operatorname{Ver}(\Sigma)$, let Γ_v be the prime divisor $\mathsf{V}(\mathbb{R}_{\geq 0}v)$. Then the principal divisor div $(\mathsf{e}(m))$ is written by

$$\sum\nolimits_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})} \langle m, v \rangle \boldsymbol{\Gamma}_v$$

as a Weil divisor. Since div $\circ e$ is a group homomorphism $\mathsf{M} \to \operatorname{Div}(\mathsf{T}_{\mathsf{N}}(\Sigma))$, the principal \mathbb{R} -divisor div(e(m')) is also defined for $m' \in \mathsf{M}_{\mathbb{R}}$; if $m' = \sum r_i m_i$, then

$$\operatorname{div}(\mathbf{e}(m')) = \sum r_i \operatorname{div}(\mathbf{e}(m_i)),$$

where $r_i \in \mathbb{R}, m_i \in \mathsf{M}$.

IV. DIVISORS ON BUNDLES

- $\begin{array}{ll} \textbf{Remark} & (1) \ \mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma}) \ \text{is non-singular if and only if the set } \mathrm{Ver}(\mathsf{N},\boldsymbol{\sigma}) \ \text{is} \\ \text{a basis of the free abelian group } \mathsf{N}_{\boldsymbol{\sigma}}. \ \text{Similarly, } \mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma}) \ \text{has only quotient} \\ \text{singularities if and only if } \mathrm{Ver}(\mathsf{N},\boldsymbol{\sigma}) \ \text{is a basis of the } \mathbb{Q}\text{-vector space } \mathsf{N}_{\boldsymbol{\sigma}} \otimes \mathbb{Q}. \\ \text{A fan } \boldsymbol{\Sigma} \ \text{is called $non-singular$ if } \mathsf{T}_{\mathsf{N}}(\boldsymbol{\Sigma}) \ \text{is non-singular}. \end{array}$
- (2) Let $\phi: (N, \Sigma) \to (N', \Sigma')$ be a morphism into another free abelian group N' of finite rank with a fan Σ' . Then it induces a morphism $\phi_*: \mathsf{T}_N(\Sigma) \to \mathsf{T}_{N'}(\Sigma')$ which is equivariant under the homomorphism $\mathsf{T}_N \to \mathsf{T}_{N'}$. If ϕ is proper, then ϕ_* is proper.
- (3) There is a proper subdivision Σ' of Σ such that Σ' is non-singular. In particular, $\mathsf{T}_N(\Sigma') \to \mathsf{T}_N(\Sigma)$ is a proper birational morphism from a non-singular variety.
- (4) If Σ is a finite fan such that $|\Sigma|$ is a convex cone, then the toric variety $X = T_N(\Sigma)$ is proper over an affine toric variety. The vanishing $H^p(X, \mathcal{O}_X) = 0$ for p > 0 holds, which is shown in a general form in [62, Chapter I, §3] and [9, §7] (cf. [110, §2.2]). In particular, toric varieties have only rational singularities.

1.1. Lemma Let $\phi \colon (N, \Sigma) \to (L, \Lambda)$ be a morphism of fans and let $f = \phi_* \colon T_N(\Sigma) \to T_L(\Lambda)$ be the associated morphism of toric varieties. Then

$$f^{-1}T_{L}(\boldsymbol{\lambda}) \simeq T_{N}(\boldsymbol{\Sigma}_{\boldsymbol{\lambda}})$$

for $\lambda \in \Lambda$. Moreover,

$$\mathsf{f}^{-1}\mathsf{O}_{\boldsymbol{\lambda}} = \bigsqcup_{\phi(\boldsymbol{\sigma})\subset\boldsymbol{\lambda},\,\phi(\boldsymbol{\sigma})\cap\operatorname{Int}\boldsymbol{\lambda}\neq\emptyset}\mathsf{O}_{\boldsymbol{\sigma}}.$$

If f is proper, then $f^{-1}(V(\lambda))$ is set-theoretically the union

$$\bigcup_{\phi(\sigma)\subset \lambda, \, \phi(\sigma)\cap \operatorname{Int}\lambda\neq\emptyset} \mathsf{V}(\sigma)$$

PROOF. The first isomorphism is derived from the definition of f, which is given by the gluing of natural morphisms $T_N(\sigma) \to T_L(\lambda)$ for $\sigma \subset \phi^{-1}(\lambda)$.

For a cone $\sigma \in \Sigma$, let $\lambda_1 \in \Lambda$ be the minimum cone containing $\phi(\sigma)$. Then $\lambda_1 = \lambda$ if and only if $\phi(\sigma) \subset \lambda$ and $\phi(\sigma) \cap \operatorname{Int} \lambda \neq \emptyset$. The transpose $\phi^{\vee} \colon \mathsf{L}^{\vee} \to \mathsf{N}^{\vee} = \mathsf{M}$ induces $\lambda_1^{\perp} \cap \mathsf{L}^{\vee} \to \sigma^{\perp} \cap \mathsf{M}$. Hence $\mathsf{f}(\mathsf{O}_{\sigma}) \subset \mathsf{O}_{\lambda_1}$. By considering the orbit decomposition of $\mathsf{f}^{-1}\mathsf{O}_{\lambda}$, we have the equality for $\mathsf{f}^{-1}\mathsf{O}_{\lambda}$. In the proper case, taking the closure, we have the equality for $\mathsf{f}^{-1}(\mathsf{V}(\lambda))$, since f is a closed map. \Box

An element $0 \neq a \in \mathbb{N}$ defines a 1-parameter subgroup $\mathsf{T}_{\mathbb{Z}a} \subset \mathsf{T}_{\mathbb{N}}$. If $a \in |\Sigma|$, then we have a morphism $\phi_a : (\mathbb{Z}, \mathbb{R}_{\geq 0}) \to (\mathsf{N}, \Sigma)$ of fans by $\phi_a(1) = a$. The induced morphism $\mathsf{f}_a = \phi_{a_*} : \mathsf{T}_{\mathbb{Z}}(\mathbb{R}_{\geq 0}) \simeq \mathbb{A}^1 \to \mathsf{T}_{\mathsf{N}}(\Sigma)$ of toric varieties is an extension of $\mathsf{T}_{\mathbb{Z}a} \subset \mathsf{T}_{\mathsf{N}}$. Let $\sigma \in \Sigma$ be the minimum cone containing a. Then $\mathsf{f}_a(0) = \pi_{\sigma}(1) \in \mathsf{O}_{\sigma}$ for the origin $0 \in \mathbb{A}^1$, where π_{σ} is the composite $\mathsf{T}_{\mathsf{N}} \to \mathsf{T}_{\mathsf{N}(\sigma)} \hookrightarrow \mathsf{T}_{\mathsf{N}}(\sigma)$. Thus $\lim_{t\to 0} \mathsf{f}_a(t) \cdot P = \pi_{\sigma}(P)$ for any point $P \in \mathsf{T}_{\mathsf{N}}$. If $P \in \mathsf{O}_{\tau}$ for some face $\tau \prec \sigma$, then $\lim_{t\to 0} \mathsf{f}_a(t) \cdot P = \pi_{\sigma/\tau}(P)$, where $\pi_{\sigma/\tau}$ is the composite $\mathsf{T}_{\mathsf{N}(\tau)} \to \mathsf{T}_{\mathsf{N}(\sigma)} \simeq$ $\mathsf{O}_{\sigma} \subset \mathsf{T}_{\mathsf{N}(\tau)}(\sigma/\tau)$. Suppose that $P \in \mathsf{O}_{\tau}$ for $\tau \in \Sigma$ with $\tau \not\subset \sigma$ and that a' := a

mod $N_{\tau} \in N(\tau)$ is contained in $|\Sigma/\tau|$. Let $\sigma'/\tau \in \Sigma/\tau$ be the minimum cone containing a'. Then $\lim_{t\to 0} f_a(t) \cdot P = \pi_{\sigma'/\tau}(P)$.

1.2. Lemma A complete subvariety of $X = T_N(\Sigma)$ of dimension $k < \dim N_{\Sigma}$ is rationally equivalent to a complete effective algebraic k-cycle supported on the union of $V(\tau)$ with dim $|\Sigma/\tau| = k$.

PROOF. Let V be such a complete subvariety of X. Then V is contracted to a point by $X \to T_{N(\Sigma)}$. Thus we may assume that $|\Sigma|$ generates $N_{\mathbb{R}}$. We consider the action of the 1-parameter subgroup $\mathsf{T}_{\mathbb{Z}a}$ for $0 \neq a \in \mathsf{N} \cap |\mathbf{\Sigma}|$. Let $\mathsf{f}_a \colon \mathbb{A}^1 \to \mathsf{X}$ be the morphism defined above. The action of $\mathsf{T}_{\mathbb{Z}a}$ on X extends to a rational map $\psi \colon \mathbb{A}^1 \times \mathsf{X} \longrightarrow \mathsf{X}$. It is a morphism over $\mathbb{A}^1 \times \mathsf{T}_{\mathsf{N}}$, where $\psi(t, P) = \mathsf{f}_a(t) \cdot P$. We have a toric variety Y and a proper birational morphism $\mu: Y \to \mathbb{A}^1 \times X$ of toric varieties such that $\varphi = \psi \circ \mu \colon \mathsf{Y} \to \mathsf{X}$ is a morphism. Let \mathcal{V} be the proper transform of $\mathbb{A}^1 \times \mathsf{V}$ in Y . Then the projection $p: \mathcal{V} \to \mathbb{A}^1$ is a proper flat morphism. In particular, the image of $(p, \varphi) \colon \mathcal{V} \to \mathbb{A}^1 \times \mathsf{X}$ is also proper and flat over \mathbb{A}^1 . For the fiber $\mathcal{V}_t = p^{-1}(t)$, the image $\varphi(\mathcal{V}_t)$ is just V multiplied by $f_a(t)$ for $t \neq 0$. The push-forward $\varphi_* \mathcal{V}_0$ is a complete effective algebraic k-cycle rationally equivalent to V. Here, any prime component of $\varphi_* \mathcal{V}_0$ is preserved by the action of $\mathsf{T}_{\mathbb{Z}a}$. We set $a_1 = a$ and choose elements $a_2, \ldots a_l \in \mathsf{N} \cap |\mathbf{\Sigma}|$ such that $\sum_{i=1}^l \mathbb{Z} a_i \subset \mathsf{N}$ is a finite index subgroup, where $l = \operatorname{rank} N$. Applying the same limit argument for a_2 to prime components of $\varphi_*\mathcal{V}_0$, we have a new complete effective algebraic k-cycle which is preserved by the actions of $\mathsf{T}_{\mathbb{Z}a_1}$ and $\mathsf{T}_{\mathbb{Z}a_2}$. Applying the same argument successively, we finally have a complete effective algebraic k-cycle V_* such that V_* is rationally equivalent to V and that $\text{Supp} V_*$ is preserved by the action of T_N . Hence Supp V_{*} is written as the union of some orbits O_{τ} , where dim $O_{\tau} \leq k < l$. Thus we are done. \square

Remark Let τ be a cone in Σ . In our notation, $\mathsf{N}(\tau)_{\Sigma/\tau}$ is the intersection of $\mathsf{N}(\tau)$ and the vector subspace of $\mathsf{N}(\tau)_{\mathbb{R}}$ generated by $|\Sigma/\tau|$, and $\mathsf{N}(\tau)(\Sigma/\tau)$ is the quotient $\mathsf{N}(\tau)/\mathsf{N}(\tau)_{\Sigma/\tau}$. We have an isomorphism

$$\mathsf{V}(\tau) = \mathsf{T}_{\mathsf{N}(\tau)}(\Sigma/\tau) \simeq \mathsf{T}_{\mathsf{N}(\tau)_{\Sigma/\tau}}(\Sigma/\tau) \times \mathsf{T}_{\mathsf{N}(\tau)(\Sigma/\tau)}$$

Thus any complete subvariety of $V(\tau)$ of dimension equal to dim $|\Sigma/\tau|$ is a fiber of the projection $V(\tau) \to T_{N(\tau)(\Sigma/\tau)}$.

§1.b. Support functions. Let Σ be a finite fan of N. A Σ -linear support function h is a continuous function $h: |\Sigma| \to \mathbb{R}$ that is linear on every $\sigma \in \Sigma$. For a subset $\mathfrak{K} \subset \mathbb{R}$, let $\mathrm{SF}_{\mathsf{N}}(\Sigma, \mathfrak{K})$ be the set of Σ -linear support functions h with $h(\mathsf{N} \cap |\Sigma|) \subset \mathfrak{K}$. Then $\mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z}) \otimes \mathbb{Q} \simeq \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Q})$ and $\mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Q}) \otimes \mathbb{R} \simeq \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$. In fact, in the vector space $\mathrm{Map}(\mathrm{Ver}(\mathsf{N}, \Sigma), \mathbb{R}) = \prod_{v \in \mathrm{Ver}(\mathsf{N}, \Sigma)} \mathbb{R}$, the subspace $\mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$ is determined by a finite number of relations defined over \mathbb{Q} .

A Σ -convex support function h is a continuous function $h: |\Sigma| \to \mathbb{R}$ satisfying the following conditions:

(1) The restriction $h|_{\sigma}$ to $\sigma \in \Sigma$ is upper convex for any $\sigma \in \Sigma$;

IV. DIVISORS ON BUNDLES

(2) For any $\sigma \in \Sigma$, there is a finite fan Λ_{σ} of N with $|\Lambda_{\sigma}| = \sigma$ such that $h|_{\sigma}$ is Λ_{σ} -linear.

For a subset $\mathfrak{K} \subset \mathbb{R}$, the set of Σ -convex support functions h with $h(|\Sigma| \cap \mathbb{N}) \subset \mathfrak{K}$ is denoted by $\operatorname{SFC}_{\mathbb{N}}(\Sigma, \mathfrak{K})$. Functions contained in $\operatorname{SFC}_{\mathbb{N}}(\Sigma, \mathbb{Z})$ and $\operatorname{SFC}_{\mathbb{N}}(\Sigma, \mathbb{Q})$ are called integral and rational, respectively.

For $h \in SFC_N(\Sigma, \mathbb{R})$ and for a closed convex cone $C \subset |\Sigma|$, we define

$$\Box_h(C) := \{ m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, x \rangle \ge h(x) \text{ for any } x \in C \},$$
$$\Delta_h(C) := \sum_{x \in C} \mathbb{R}_{\ge 0}(x, h(x)) + \mathbb{R}_{\ge 0}(0, -1) \subset \mathsf{N}_{\mathbb{R}} \times \mathbb{R}.$$

Then $\Box_h(C)$ is a convex set and $\triangle_h(C)$ is a closed convex cone, since Σ is finite and h is Σ -convex. If C is a convex polyhedral cone, then $\triangle_h(C)$ is so. The dual cone of $\triangle_h(C)$ is written by

$$C^{\vee} \times \{0\} \cup \mathbb{R}_{>0}(\Box_h(C) \times \{-1\}).$$

In particular, $\Box_h(C) = \emptyset$ if and only if $\Delta_h(C) \ni (0,1)$. When $\Box_h(C) \neq \emptyset$, we define a function by

(IV-1)
$$h_C^{\dagger}(x) := \inf\{\langle m, x \rangle \mid m \in \Box_h(C)\}.$$

Then $h_C^{\dagger}(x) \ge h(x)$ for $x \in C$. Since $\triangle_h(C) = (\triangle_h(C)^{\vee})^{\vee}$,

(IV-2)
$$h_C^{\dagger}(x) = \max\{r \in \mathbb{R} \mid (x, r) \in \Delta_h(C)\}$$

for $x \in C$.

1.3. Lemma The following conditions are equivalent:

(1) h is upper convex on C;

(2) $\triangle_h(C) = \{(x,r) \in C \times \mathbb{R} \mid h(x) \ge r\};$

(3) $\Box_h(C) \neq \emptyset$ and $h_C^{\dagger}(x) = h(x)$ for $x \in C$.

PROOF. (1) \Rightarrow (2): The right hand side is a convex cone contained in the left. On the other hand, (x, h(x)) is contained in the right for $x \in C$. Thus the equality holds.

 $(2) \Rightarrow (3)$: We infer $(0,1) \notin \triangle_h(C)$, which implies $\Box_h(C) \neq \emptyset$. The equality $h_C^{\dagger} = h$ on C follows directly from the equality (IV-2).

(3) \Rightarrow (1): By the definition (IV-1), we infer that h_C^{\dagger} is upper convex on C. Thus we are done.

1.4. Lemma (1) If C' is a face of C, then

$$\Delta_h(C') = \Delta_h(C) \cap (C' \times \mathbb{R}).$$

In particular, $h_{C'}^{\dagger}(x) = h_{C}^{\dagger}(x)$ for $x \in C'$ provided that $\Box_{h}(C) \neq \emptyset$. (2) $\Box_{h}(C) \neq \emptyset$ if and only if $\Box_{h}((C^{\vee})^{\perp}) \neq \emptyset$.

1. TORIC VARIETIES

PROOF. (1) Let (x, t) be an element of the right hand side. Then $x = \sum r_i x_i$ and $t \leq \sum r_i h(x_i)$ for finitely many vectors $x_i \in C$ and for real numbers $r_i > 0$. The face C' is written as $l^{\perp} \cap C$ for some $l \in C^{\vee}$. Then $\langle l, x \rangle = 0$ implies that $x_i \in C'$ for any *i*. In particular, $(x, t) \in \Delta_h(C')$. Thus we have the equality.

(2) follows from (1) and from that $\Box_h(C) = \emptyset$ if and only if $(0,1) \in \triangle_h(C)$. \Box

1.5. Lemma Suppose that $h \in SFC_N(\Sigma, \mathfrak{K})$ for $\mathfrak{K} = \mathbb{Q}$ or \mathbb{R} . Then there is a finite subdivision Σ' of Σ such that $h \in SF_N(\Sigma', \mathfrak{K})$.

PROOF. For a cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, let $\Lambda_{\boldsymbol{\sigma}}$ be a fan with $|\Lambda_{\boldsymbol{\sigma}}| = \boldsymbol{\sigma}$ such that $h|_{\boldsymbol{\sigma}} \in \mathrm{SF}_{\mathsf{N}}(\boldsymbol{\sigma}, \mathfrak{K})$. Any one-dimensional face of the convex polyhedral cone $\Delta_h(\boldsymbol{\sigma})$ except $\mathbb{R}_{\geq 0}(0, -1)$ is written by $\mathbb{R}_{\geq 0}(v, h(v))$ for some $v \in \mathrm{Ver}(\Lambda_{\boldsymbol{\sigma}})$. Therefore, the image $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$ of a face $\boldsymbol{\lambda}$ of $\Delta_h(\boldsymbol{\sigma})$ under the first projection $\mathsf{N}_{\mathbb{R}} \times \mathbb{R} \to \mathsf{N}_{\mathbb{R}}$ is a convex *rational* polyhedral cone with respect to N . The function h is linear on $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$. There is a finite subdivision $\boldsymbol{\Sigma}'$ of $\boldsymbol{\Sigma}$ such that $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$ is a union of cones belonging to $\boldsymbol{\Sigma}'$ for any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $\boldsymbol{\lambda} \prec \Delta_h(\boldsymbol{\sigma})$. Here, $h \in \mathrm{SF}_{\mathsf{N}}(\boldsymbol{\Sigma}', \mathfrak{K})$.

Remark Among the finite subdivisions of **1.5**, we can find the maximum: There exists a finite subdivision Σ^{\sharp} of Σ satisfying $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma^{\sharp}, \mathfrak{K})$ such that $\Sigma' \preceq \Sigma^{\sharp}$ for any finite subdivision Σ' satisfying $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma', \mathfrak{K})$. This is shown by **1.15** below, for example.

1.6. Lemma Let $g: \operatorname{Ver}(\Sigma) \to \mathfrak{K}$ is a map for $\mathfrak{K} = \mathbb{Z}$, \mathbb{Q} or \mathbb{R} . Then there exists a unique function $h \in \operatorname{SFC}_{\mathsf{N}}(\Sigma, \mathfrak{K})$ satisfying the following conditions:

- (1) g(v) = h(v) for $v \in \operatorname{Ver}(\Sigma)$;
- (2) If $h' \in SFC_{\mathsf{N}}(\Sigma, \mathfrak{K})$ satisfies $h'(v) \ge g(v)$ for any $v \in Ver(\Sigma)$, then $h'(x) \ge h(x)$ for any $x \in |\Sigma|$.

The function h is called the convex interpolation of g in [62, Chapter I, §2].

PROOF. First, we consider the case $\mathfrak{K} \supset \mathbb{Q}$. For $\sigma \in \Sigma$ and $x \in \sigma$, we set

$$\Delta(\boldsymbol{\sigma}) := \sum_{v \in \operatorname{Ver}(\boldsymbol{\sigma})} \mathbb{R}_{\geq 0}(v, g(v)) + \mathbb{R}_{\geq 0}(0, -1), \text{ and } h^0_{\boldsymbol{\sigma}}(x) := \max\{r \in \mathbb{R} \mid (x, r) \in \Delta(\boldsymbol{\sigma})\}.$$

Then $h^0_{\boldsymbol{\sigma}} \in \operatorname{SFC}_{\mathsf{N}}(\boldsymbol{\sigma}, \mathfrak{K})$. If $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, then $\triangle(\boldsymbol{\tau}) = \triangle(\boldsymbol{\sigma}) \cap (\boldsymbol{\tau} \times \mathbb{R})$ by the same argument as in **1.4**. Thus $h^0_{\boldsymbol{\tau}}(x) = h^0_{\boldsymbol{\sigma}}(x)$ for any $x \in \boldsymbol{\tau}$. In particular, we have a function $h^0 \in \operatorname{SFC}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ such that $h^0|_{\boldsymbol{\sigma}} = h^0_{\boldsymbol{\sigma}}$ for any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $h^0(v) = g(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. The function h^0 satisfies the second required condition for h by **1.3**.

Next, we consider the case $\mathfrak{K} = \mathbb{Z}$. If Σ is non-singular, then $h^0 \in \operatorname{SFC}_N(\Sigma, \mathbb{Q})$ is integral. Otherwise, let us consider a non-singular finite subdivision Σ^{\sharp} of Σ . We set $g^{\sharp} \colon \operatorname{Ver}(\Sigma^{\sharp}) \to \mathbb{Z}$ by $g^{\sharp}(v) = \lceil h^0(v) \rceil$. Let h be the function in $\operatorname{SFC}_N(\Sigma^{\sharp}, \mathbb{Q})$ satisfying the required condition for g^{\sharp} . Then h is integral. Thus h is the convex interpolation of g.

Let X be the toric variety $\mathsf{T}_{\mathsf{N}}(\Sigma)$ associated with the fan Σ and let $j \colon \mathsf{T}_{\mathsf{N}} \hookrightarrow \mathsf{X}$ be the open immersion.

IV. DIVISORS ON BUNDLES

For $h \in SFC_N(\Sigma, \mathbb{Z})$, we define a coherent \mathcal{O}_X -submodule \mathcal{F}_h of $j_*\mathcal{O}_{\mathsf{T}_N}$ by

$$\mathrm{H}^{0}(\mathsf{T}_{\mathsf{N}}(\boldsymbol{\sigma}),\mathcal{F}_{h}) = \bigoplus_{m \in \Box_{h}(\boldsymbol{\sigma}) \cap \mathsf{M}} \mathsf{e}(m) \subset \mathbb{C}[\mathsf{M}]$$

for $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. The subsheaf is invariant under the action of T_{N} . Conversely, any T_{N} -invariant coherent \mathcal{O}_{X} -submodule of $j_*\mathcal{O}_{\mathsf{T}_{\mathsf{N}}}$, which is complete, is written as \mathcal{F}_h for some $h \in \mathrm{SFC}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ (cf. [62, Chapter I, §2]). Here, $h \in \mathrm{SF}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ if and only if \mathcal{F}_h is invertible. If $h' \in \mathrm{SFC}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ is the convex interpolation of the map $\mathrm{Ver}(\boldsymbol{\Sigma}) \ni v \mapsto h(v) \in \mathbb{Z}$, then $\mathcal{F}_{h'}$ is the double-dual of \mathcal{F}_h .

For $h \in SFC_{\mathsf{N}}(\Sigma, \mathbb{R})$, we define an \mathbb{R} -divisor of X by

$$\mathsf{D}_h := \sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})} (-h(v)) \boldsymbol{\Gamma}_v$$

The associated \mathbb{R} -divisor $\mathbb{D}_h^{\mathrm{an}}$ on the analytic variety $\mathbb{T}_{\mathsf{N}}(\Sigma)$ is denoted by D_h . For $\mathfrak{K} = \mathbb{Z}$, \mathbb{Q} , or \mathbb{R} , any \mathfrak{K} -divisor of X supported in $\mathsf{X} \smallsetminus \mathsf{T}_{\mathsf{N}}$ is expressed as D_h for some $h \in \mathrm{SFC}_{\mathsf{N}}(\Sigma, \mathfrak{K})$ by **1.6**. Moreover, any \mathfrak{K} -divisor D of X is \mathfrak{K} -linearly equivalent to D_h for some $h \in \mathrm{SFC}_{\mathsf{N}}(\Sigma, \mathfrak{K})$, since $\mathsf{D}|_{\mathsf{T}_{\mathsf{N}}}$ is a principal \mathfrak{K} -divisor. If $h' \in \mathrm{SFC}_{\mathsf{N}}(\Sigma, \mathbb{Z})$ is the convex interpolation of the map $\mathrm{Ver}(\Sigma) \ni v \mapsto \lceil h(v) \rceil \in \mathbb{Z}$, then $\lfloor \mathsf{D}_{h} \rfloor = \mathsf{D}_{h'}$ and $\mathcal{F}_{h'} = \mathcal{O}_{\mathsf{X}}(\mathsf{D}_{h'})$.

1.7. Remark Suppose that $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathfrak{K})$ for $\mathfrak{K} = \mathbb{Z}$, \mathbb{Q} or \mathbb{R} . Then D_h is \mathfrak{K} -Cartier. In fact, the restriction of D_h to $\mathsf{T}_{\mathsf{N}}(\sigma)$ for $\sigma \in \Sigma$ coincides with the principal \mathfrak{K} -divisor $-\operatorname{div}(\mathfrak{e}(l_{\sigma}))$ for $l_{\sigma} \in \mathsf{M}_{\mathfrak{K}}$ such that $h(x) = \langle l_{\sigma}, x \rangle$ for $x \in \sigma$. The choice of l_{σ} is unique up to $\sigma^{\perp} \cap \mathsf{M}_{\mathfrak{K}}$. Let $h^{\sigma}(x) = h(x) - \langle l_{\sigma}, x \rangle$. If dim $\sigma = \dim |\Sigma|$, then h^{σ} is a function defined on $|\Sigma|$ which is independent of the choice of l_{σ} . Even if dim $\sigma < \dim |\Sigma|$, h^{σ} is regarded as a function defined on $|\Sigma/\sigma|$ which belongs to $\operatorname{SF}_{\mathsf{N}(\sigma)}(\Sigma/\sigma, \mathfrak{K})$. Here, the restriction of D_h to $\mathsf{V}(\sigma)$ is \mathfrak{K} -linearly equivalent to $\mathsf{D}_{h^{\sigma}}$.

1.8. Remark If $\tau = \sigma \cap \sigma'$ for two maximal cones σ , $\sigma' \in \Sigma$ such that $\dim \tau = \dim |\Sigma| - 1$, then there is an isomorphism $V(\tau) \simeq P^1 \times T_{N(\tau)}$, in which $V(\sigma/\tau) \simeq \{0\} \times T_{N(\tau)}$ and $V(\sigma'/\tau) \simeq \{\infty\} \times T_{N(\tau)}$. Here,

$$\mathsf{D}_{h^{\sigma}}|_{\mathsf{V}(\boldsymbol{\tau})} = -h^{\boldsymbol{\sigma}}(v')\left(\{\infty\} \times \mathsf{T}_{\mathsf{N}(\boldsymbol{\tau})}\right)$$

for the primitive element $v' \in \mathsf{N}(\tau)$ generating the ray σ'/τ . In particular, for a fiber $F \simeq \mathsf{P}^1$ of $\mathsf{V}(\tau) \to \mathsf{T}_{\mathsf{N}(\tau)}$, we have

$$\mathsf{D}_h \cdot F = -h^{\boldsymbol{\sigma}}(y) = \langle l_{\boldsymbol{\sigma}}, y \rangle - \langle l_{\boldsymbol{\sigma}'}, y \rangle$$

for $y \in \sigma' \cap \mathsf{N} \smallsetminus \sigma$ with $y \mod \mathsf{N}_{\tau} = v'$.

Suppose that $|\mathbf{\Sigma}|$ is a convex cone. For $h \in \operatorname{SFC}_{\mathsf{N}}(\mathbf{\Sigma}, \mathbb{R})$, we write $\Box_h = \Box_h(|\mathbf{\Sigma}|)$ and $\Delta_h = \Delta_h(|\mathbf{\Sigma}|)$ for short. If $|\mathbf{\Sigma}| = \mathsf{N}_{\mathbb{R}}$, then \Box_h is compact, since $-h(-e_i) \geq \langle m, e_i \rangle \geq h(e_i)$ for a basis $\{e_i\}$ of $\mathsf{N}_{\mathbb{R}}$ and for $m \in \Box_h$. If $h \in \operatorname{SFC}_{\mathsf{N}}(\mathbf{\Sigma}, \mathbb{Z})$ and \mathcal{F}_h is reflexive, then $\Box_h \subset \mathsf{M}_{\mathbb{R}}$ is the set of $m \in \mathsf{M}_{\mathbb{R}}$ satisfying div $(\mathsf{e}(m)) + \mathsf{D}_h \geq 0$.

The vector space $\mathrm{H}^0(X, \mathcal{F}_h)$ admits an action of T_N . Since this is a subspace of $\mathrm{H}^0(\mathsf{T}_N, \mathcal{O}_{\mathsf{T}_N}) \simeq \mathbb{C}[\mathsf{M}]$, we have an isomorphism

(IV-3)
$$\mathrm{H}^{0}(\mathsf{X},\mathcal{F}_{h}) \simeq \bigoplus_{m \in \Box_{h} \cap \mathsf{M}} \mathbb{C}\mathsf{e}(m).$$

Suppose that $h \in SFC_{\mathsf{N}}(\Sigma, \mathbb{R})$ is the convex interpolation of $Ver(\Sigma) \ni v \mapsto h(v) \in \mathbb{R}$ in the sense of **1.6** for $\mathfrak{K} = \mathbb{R}$. Then

(IV-4)
$$\mathrm{H}^{0}(\mathsf{X}, \Box \mathsf{D}_{h}) \simeq \bigoplus_{m \in \Box_{h} \cap \mathsf{M}} \mathbb{C}\mathsf{e}(m)$$

by (IV-3). Furthermore, $\Box_h \neq \emptyset$ if and only if there is an effective \mathbb{R} -divisor \mathbb{R} -linearly equivalent to D_h (cf. **1.16**-(1) below).

1.9. Lemma Suppose that $|\Sigma|$ is convex. Let σ be a maximal cone of Σ and let $\Re = \mathbb{Z}$, \mathbb{Q} , or \mathbb{R} . For a function $h \in SF_N(\Sigma, \Re)$, let l_{σ} and h^{σ} be the same as in **1.7**. Then the following three conditions are equivalent:

- (1) $h^{\sigma}(x) \leq 0$ for any $x \in |\Sigma|$;
- (2) $\Box_h \neq \emptyset$ and $h^{\dagger}_{|\mathbf{\Sigma}|}(x) = h(x)$ for any $x \in \boldsymbol{\sigma}$;
- (3) There is a T_{N} -invariant effective \mathfrak{K} -divisor Δ on X such that $\Delta \cap \mathsf{V}(\boldsymbol{\sigma}) = \emptyset$ and $\Delta \sim_{\mathfrak{K}} \mathsf{D}_h$ on X .

PROOF. (1) \Leftrightarrow (2): (1) is equivalent to: $l_{\sigma} \in \Box_h$, which implies (2). For $y \in |\Sigma| \setminus \sigma$, let us choose $x \in \operatorname{Int} \sigma$ and a number 0 < t < 1 such that $(1-t)x + ty \in \sigma$. Since $h_{|\Sigma|}^{\dagger}$ is upper convex, we have

$$\langle l_{\boldsymbol{\sigma}}, y \rangle = \frac{1}{t} \left(h_{|\boldsymbol{\Sigma}|}^{\dagger} ((1-t)x + ty) - (1-t)h_{|\boldsymbol{\Sigma}|}^{\dagger}(x) \right) \ge h_{|\boldsymbol{\Sigma}|}^{\dagger}(y) \ge h(y)$$

under the condition of (2).

(1) \Rightarrow (3): The \mathfrak{K} -Cartier divisor $\mathsf{D}_{h^{\sigma}} = \operatorname{div}(\mathsf{e}(l_{\sigma})) + \mathsf{D}_{h}$ is effective on X and is away from $\mathsf{V}(\sigma)$.

 $(3) \Rightarrow (1)$: Δ is written by $\mathsf{D}_h + \operatorname{div}(\mathsf{e}(m))$ for some $m \in \mathsf{M}_{\mathfrak{K}}$. Then $\langle m, v \rangle = h(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\sigma})$. In particular, $m = l_{\boldsymbol{\sigma}} \in \Box_h$. \Box

1.10. Corollary If $|\Sigma|$ is a convex cone, then the following conditions are equivalent for $h \in SF_N(\Sigma, \mathfrak{K})$:

- (1) h is upper convex on $|\Sigma|$;
- (2) $l_{\boldsymbol{\sigma}} \in \Box_h$ for any maximal cone $\boldsymbol{\sigma}$;
- (3) For any point $p \in X$, there is an effective divisor Δ of X such that $\Delta \sim_{\mathfrak{K}} \mathsf{D}_h$ and $p \notin \Delta$;
- (4) For any two maximal cones σ, σ' ∈ Σ with τ = σ ∩ σ' being of codimension one, the intersection number D_h · F is non-negative for a fiber F of V(τ) → T_{N(τ)};
- (5) For any two maximal cones σ , $\sigma' \in \Sigma$ with $\sigma \cap \sigma'$ being of codimension one, $h^{\sigma}(y) \leq 0$ for any $y \in \sigma'$.

PROOF. (1) \Leftrightarrow (2) is shown in **1.9**. (3) \Rightarrow (4) is trivial. (4) \Leftrightarrow (5) is shown in **1.8**.

(2) \Rightarrow (3): Let $Z \subset X$ be the set of points p such that $p \in \Delta$ for any effective divisor $\Delta \sim_{\Re} D_h$. Then Z is a Zariski-closed subset invariant under the action of T. If $Z \neq \emptyset$, then $V(\sigma) \subset Z$ for a maximal cone $\sigma \in \Sigma$. By **1.9**-(3), we have $Z = \emptyset$.

 $(5) \Rightarrow (2)$: Let us fix $y \in |\Sigma| \setminus \sigma$. We take $x \in \operatorname{Int} \sigma$ and consider a line segment $\{x(t) = (1-t)x + ty \mid t \in [0,1]\}$. If x is in a general position, then there exist a sequence of maximal cones σ_i and numbers $t_i \in [0,1)$ for $0 \leq i \leq k$ such that

- $\boldsymbol{\sigma}_0 = \boldsymbol{\sigma}, t_0 = 0, y \in \boldsymbol{\sigma}_k,$
- $\sigma_i \cap \sigma_{i+1}$ is of codimension one for any i < k,
- $\{t \in [0,1] \mid x(t) \in \boldsymbol{\sigma}_i\} = [t_i, t_{i+1}] \text{ for } i < k \text{ and } x(t) \in \boldsymbol{\sigma}_k \text{ for } t \ge t_k.$

The function $h^{\sigma}(x(t))$ is linear on each $[t_i, t_{i+1}]$ for i < k and on $[t_k, 1]$. Thus (5) implies that h(x(t)) is upper convex on [0, 1]. Hence $h^{\sigma}(y) \leq 0$ and $l_{\sigma} \in \Box_h$. \Box

Suppose still that $|\Sigma|$ is convex. A support function $h \in SF_N(\Sigma, \mathbb{R})$ is called *strictly upper convex* with respect to Σ if it is upper convex on $|\Sigma|$ and the set

$$x \in |\mathbf{\Sigma}|; \langle m, x \rangle = h(x)$$

is a cone belonging to Σ for any $m \in \Box_h$.

1.11. Lemma Suppose that $|\Sigma|$ is a convex cone and let $h \in SF_N(\Sigma, \mathbb{R})$. For a maximal cone $\sigma \in \Sigma$, let l_{σ} be the same as in **1.7**. Then the following conditions are equivalent:

- (1) h is strictly convex with respect to Σ ;
- (2) $l_{\sigma} \in \Box_h$ and

$$\{x \in |\Sigma|; h(x) = \langle l_{\sigma}, x \rangle\} = \sigma$$

for any maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$;

- (3) For maximal cones σ , $\sigma' \in \Sigma$ with $\sigma \cap \sigma'$ being of codimension one, $h(y) < \langle l_{\sigma}, y \rangle$ for any $y \in \sigma' \smallsetminus \sigma$;
- (4) For maximal cones σ, σ' ∈ Σ with τ = σ ∩ σ' being of codimension one, the intersection number D_h · F is positive for a fiber F of V(τ) → T_{N(τ)}.

PROOF. (1) \Rightarrow (2) and (2) \Rightarrow (3) are trivial. (3) \Leftrightarrow (4) is shown in **1.8**.

(3) \Rightarrow (2): Let $\boldsymbol{\sigma}$ be a maximal cone of $\boldsymbol{\Sigma}$. We fix $y \in |\boldsymbol{\Sigma}| \setminus \boldsymbol{\sigma}$, take $x \in \text{Int } \boldsymbol{\sigma}$, and consider the line segment $\{x(t) = (1-t)x + ty \mid t \in [0,1]\}$. By choosing x in a general position, we may assume that there exist maximal cones $\boldsymbol{\sigma}_i$ and numbers $t_i \in [0,1)$ satisfying the same condition as in the proof of **1.10**. Then $h^{\boldsymbol{\sigma}}(y) < 0$ by (3). Thus (2) follows.

(2) \Rightarrow (1): For $m \in \Box_h$, the set

$$C_m = \{ x \in |\mathbf{\Sigma}| ; h(x) = \langle m, x \rangle \}$$

is a convex polyhedral cone. For a point $y \in \text{Int } C_m$, let $\sigma \in \Sigma$ be a maximal cone containing y. Then

$$C_m \cap \boldsymbol{\sigma} = (l_{\boldsymbol{\sigma}} - m)^\perp \cap \boldsymbol{\sigma}$$

1. TORIC VARIETIES

is a face of $\boldsymbol{\sigma}$, since $m - l_{\boldsymbol{\sigma}} \in \boldsymbol{\sigma}^{\vee}$. By (2), $l_{\boldsymbol{\sigma}} - m \in C_m^{\vee}$ and $C_m \cap \boldsymbol{\sigma} = (l_{\boldsymbol{\sigma}} - m)^{\perp} \cap C_m$ is also a face of C_m . Thus $C_m = C_m \cap \boldsymbol{\sigma} \prec \boldsymbol{\sigma}$ by $y \in \operatorname{Int} C_m$. In particular, $C_m \in \boldsymbol{\Sigma}$.

§1.c. Relative toric situations. Let L be another free abelian group and let Λ be a finite fan of L. Let $\phi: (\mathbb{N}, \Sigma) \to (\mathbb{L}, \Lambda)$ be a proper morphism of fans and let $f: X = T_{\mathbb{N}}(\Sigma) \to S = T_{\mathbb{L}}(\Lambda)$ be the induced morphism. We shall consider the relative σ -decomposition over S of the \mathbb{R} -Cartier divisor \mathbb{D}_h for a function $h \in SF_{\mathbb{N}}(\Sigma, \mathbb{R})$. By 1.4, we have

$$\Delta_h(\phi^{-1}\boldsymbol{\nu}) = \Delta_h(\phi^{-1}\boldsymbol{\lambda}) \cap (\phi^{-1}\boldsymbol{\nu} \times \mathbb{R})$$

for $\nu \prec \lambda$. Moreover, for any $\lambda \in \Lambda$, the condition $\Box_h(\phi^{-1}\lambda) \neq \emptyset$ is equivalent to $\Box_h(\phi^{-1}\mathbf{0}) \neq \emptyset$ for the zero cone $\mathbf{0} \in \Lambda$. If $\Box_h(\phi^{-1}\mathbf{0}) \neq \emptyset$, then we can define a function over $|\mathbf{\Sigma}|$ by

$$h^{\dagger}(x) := h^{\dagger}_{\Sigma/\Lambda}(x) := h^{\dagger}_{\phi^{-1}\lambda}(x)$$

for $x \in \phi^{-1} \lambda$, which is independent of the choice of λ for x.

1.12. Lemma
$$h_{\Sigma/\Lambda}^{\dagger} \in SFC_{\mathsf{N}}(\Sigma, \mathbb{R})$$

PROOF. For any $\lambda \in \Lambda$, we have

$$\Box_{h^{\dagger}}(\phi^{-1}\boldsymbol{\lambda}) = \Box_{h}(\phi^{-1}\boldsymbol{\lambda}), \quad \text{and} \quad \bigtriangleup_{h^{\dagger}}(\phi^{-1}\boldsymbol{\lambda}) = \bigtriangleup_{h}(\phi^{-1}\boldsymbol{\lambda}).$$

By the same argument as in **1.5**, there is a finite subdivision Σ' of Σ such that the image of any face of $\Delta_h(\phi^{-1}\lambda)$ under the first projection $N_{\mathbb{R}} \times \mathbb{R} \to N_{\mathbb{R}}$ is a union of some cones belonging to Σ' . Thus $h^{\dagger} \in SF_{\mathsf{N}}(\Sigma', \mathbb{R})$.

Remark $h_{\Sigma/\Lambda}^{\dagger}$ is not necessarily integral for $h \in SF_{N}(\Sigma, \mathbb{Z})$.

1.13. Lemma (1) $\Box_h(\phi^{-1}\mathbf{0}) \cap \mathsf{M} \neq \emptyset$ if and only if $f_*\mathcal{O}_{\mathsf{X}}(\llcorner \mathsf{D}_{h_{\perp}}) \neq 0$. (2) If $f_*\mathcal{O}_{\mathsf{X}}(\llcorner \mathsf{D}_{h_{\perp}}) \neq 0$, then $\mathsf{D}_h - \mathsf{D}_{h^{\dagger}}$ is identical to the f-fixed part of $|\mathsf{D}_h|$.

- (3) The following conditions are equivalent to each other:
 - (a) h is upper-convex on $\phi^{-1}(\lambda)$ for any $\lambda \in \Lambda$;
 - (b) $\Box_h(\phi^{-1}\mathbf{0}) \neq \emptyset$ and $h^{\dagger} = h$;
 - (c) For any $\lambda \in \Lambda$ and for any maximal cone $\sigma \in \Sigma_{\lambda}$, $h^{\sigma}(x) \leq 0$ for $x \in \Sigma_{\lambda}$, where h^{σ} is as in 1.7;
 - (d) D_h is f-nef.
 - If $h \in SF_{N}(\Sigma, \mathbb{Z})$, then these are also equivalent to:
 - (e) D_h is f-free.

PROOF. (1) follows from the isomorphism (IV-4). (2) follows from (IV-4) and **1.10**. The assertion (3) is proved as follows: (a) \Leftrightarrow (b) follows from **1.3**. (e) \Rightarrow (d) is well-known. (d) \Rightarrow (b), (b) \Leftrightarrow (c), and (b) \Leftrightarrow (e) are shown in **1.10**. (c) \Rightarrow (d) is derived from **1.10**-(3).

1.14. Lemma For a support function $h \in SF_N(\Sigma, \mathbb{R})$, the following conditions are equivalent:

IV. DIVISORS ON BUNDLES

- (1) D_h is f-ample;
- For any λ ∈ Λ, for any two maximal cones σ, σ' ∈ Σ_λ with τ = σ ∩ σ' being of codimension one, the intersection number D_h · F is positive for a fiber F of V(τ) → T_{N(τ)};
- (3) h is strictly convex on Σ_{λ} for any $\lambda \in \Lambda$.

PROOF. (1) \Rightarrow (2) is trivial. (2) \Leftrightarrow (3) is shown in **1.11**.

 $(2) \Rightarrow (1)$: First, we consider the case $h \in SF_{N}(\Sigma, \mathbb{Q})$. Then $kh \in SF_{N}(\Sigma, \mathbb{Z})$ for some k > 0 and $kD_{h} = D_{kh}$ is f-free by **1.13**-(3). Hence D_{h} is f-ample if and only if $D_{h} \cdot \gamma > 0$ for any irreducible curve γ contained in a fiber of f. By **1.2**, we infer that D_{h} is f-ample if and only if the condition (2) is satisfied.

Next, we consider the general case. Note that $\mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R}) \simeq \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Q}) \otimes \mathbb{R}$. Hence there is a support function $h_1 \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Q})$ such that $\mathsf{D}_{h_1} \cdot F > 0$ for any τ in the condition (2). In particular, D_{h_1} is an f-ample \mathbb{Q} -Cartier divisor. Since Λ is finite, we can find a positive number ε such that $(\mathsf{D}_h - \varepsilon \mathsf{D}_{h_1}) \cdot F \geq 0$ for any τ . Therefore, $\mathsf{D}_h - \varepsilon \mathsf{D}_{h_1}$ is f-nef and thus D_h is an f-ample \mathbb{R} -Cartier divisor. \Box

Remark Since Σ is finite, there is a finite subdivision Σ' of Σ such that Σ' is non-singular and the composite $\mathsf{T}_N(\Sigma') \to \mathsf{X} \to \mathsf{S}$ is projective (cf.[9], [110]). This is a toric version of relative Chow's lemma.

1.15. Lemma Let h be a function in $SF_N(\Sigma, \mathfrak{K})$ for $\mathfrak{K} = \mathbb{Z}$, \mathbb{Q} , or \mathbb{R} . Suppose that h is upper convex on $\phi^{-1}\lambda$ for any $\lambda \in \Lambda$. Then there exist a free abelian group N_{\flat} , homomorphisms $\mu \colon N \to N_{\flat}$, $\nu \colon N_{\flat} \to \mathsf{L}$, a fan Σ_{\flat} of N_{\flat} , and a support function $h_{\flat} \in SF_{N_{\flat}}(\Sigma_{\flat}, \mathfrak{K})$ such that

- (1) μ is surjective and $\nu \circ \mu = \phi$,
- (2) $(N, \Sigma) \rightarrow (N_{\flat}, \Sigma_{\flat})$ and $(N_{\flat}, \Sigma_{\flat}) \rightarrow (L, \Lambda)$ are morphisms of fans,
- (3) the function $h(x) h_{\flat}(\mu(x))$ is linear on $x \in |\Sigma|$,
- (4) h_{\flat} is strictly convex on $(\Sigma_{\flat})_{\lambda} = \{\sigma_{\flat} \in \Sigma_{\flat} \mid \nu(\sigma_{\flat}) \subset \lambda\}$ for any $\lambda \in \Lambda$.

In particular, D_h is \mathfrak{K} -linearly equivalent to the pullback of the relatively ample \mathfrak{K} -divisor D_{h_\flat} of $\mathsf{T}_{\mathsf{N}_\flat}(\Sigma_\flat)$ over S .

PROOF. We set

$$V_h = \{ x \in |\mathbf{\Sigma}| ; \ \phi(x) = 0 \text{ and } h(-x) = -h(x) \},\$$
$$C_{\boldsymbol{\lambda},m} = \{ x \in |\mathbf{\Sigma}_{\boldsymbol{\lambda}}| ; \ \langle m, x \rangle = h(x) \}$$

for $\lambda \in \Lambda$ and $m \in \Box_h(\phi^{-1}\lambda)$. Then $C_{\lambda,m}$ is a convex cone, since

$$h(x+y) \ge h(x) + h(y) = \langle m, x+y \rangle \ge h(x+y)$$

for $x, y \in C_{\lambda,m}$. If $x, -x \in C_{\lambda,m}$, then $x \in V_h$, since λ is strictly convex. If $x \in V_h$, then $x \in C_{\lambda,m}$ for any λ , m by $-h(-x) \ge \langle m, x \rangle \ge h(x)$. Therefore, for any λ and m, V_h is the maximum vector subspace of $N_{\mathbb{R}}$ contained in the convex cone $C_{\lambda,m}$.

Let N_{\flat} be the image of the natural homomorphism $\mu \colon \mathbb{N} \to \mathbb{N}_{\mathbb{R}}/V_h$. Then $\mu(C_{\lambda,m})$ is a strictly convex rational polyhedral cone and the set

$$\boldsymbol{\Sigma}_{\flat} = \{ \mu(C_{\boldsymbol{\lambda},m}) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, m \in \Box_{h}(\phi^{-1}\boldsymbol{\lambda}) \}$$

is a fan of \mathbb{N}_{\flat} . Here, the support of $(\Sigma_{\flat})_{\lambda}$ coincides with $\nu^{-1}\lambda$ for the induced homomorphism $\nu \colon \mathbb{N}_{\flat} \to \mathbb{L}$. We choose a maximal cone $\sigma \in \Sigma_{0}$ and $l_{\sigma} \in \Box_{h}(\phi^{-1}0) \cap \mathfrak{K}$ satisfying $h(x) = \langle l_{\sigma}, x \rangle$ for $x \in \sigma$. We define $h_{\flat} \in \mathrm{SF}_{\mathbb{N}}(\Sigma, \mathfrak{K})$ by $h_{\flat}(x) := h(x) - \langle l_{\sigma}, x \rangle$. Then h_{\flat} descends to a support function belonging to $\mathrm{SF}_{\mathbb{N}_{\flat}}(\Sigma_{\flat}, \mathfrak{K})$. Thus h_{\flat} is strictly convex on $(\Sigma_{\flat})_{\lambda}$ for any $\lambda \in \Lambda$.

1.16. Lemma Let h be a Σ -linear support function.

- (1) D_h is f-pseudo-effective if and only if $\Box_h(\phi^{-1}\mathbf{0}) \neq \emptyset$.
- (2) Suppose that D_h is f-pseudo-effective. Then

$$\sigma_{\Gamma_v}(\mathsf{D}_h;\mathsf{X}/\mathsf{S}) = h_{\mathbf{\Sigma}/\mathbf{\Lambda}}^{\dagger}(v) - h(v)$$

for $v \in \operatorname{Ver}(\Sigma)$. In particular, D_h is f-movable if and only if $h_{\Sigma/\Lambda}^{\dagger}(v) = h(v)$ for any $v \in \operatorname{Ver}(\Sigma)$.

PROOF. By taking a finite subdivision of Σ , we may assume from the first that X is non-singular and there is a function $a \in SF_N(\Sigma, \mathbb{Z})$ with $A = D_a$ being f-ample.

(1) For $\lambda \in \Lambda$, let us denote $S_{\lambda} = T_{L}(\lambda)$ and $X_{\lambda} = T_{N}(\Sigma_{\lambda}) = f^{-1}S_{\lambda}$. If $m \in \Box_{h}(\phi^{-1}\lambda)$, then div $(e(m)) + D_{h} \ge 0$ over X_{λ} . Hence if $\Box_{h}(\phi^{-1}\mathbf{0}) \ne \emptyset$, then D_{h} restricted to X_{λ} is \mathbb{R} -linearly equivalent to an effective \mathbb{R} -divisor for any $\lambda \in \Lambda$. Thus one implication follows. Next, suppose that $\Box_{h}(\phi^{-1}\mathbf{0}) = \emptyset$. This is equivalent to $\Delta_{h}(\phi^{-1}\mathbf{0}) \ge (0, 1)$, i.e.,

$$(0,1) = \sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma_0})} r_v(v,h(v))$$

for some $r_v \in \mathbb{R}_{\geq 0}$. If $m \in \mathsf{M} \cap \Box_{l(kh+a)}(\phi^{-1}\mathbf{0})$ for some $k, l \in \mathbb{N}$, then $\langle m, v \rangle \geq lkh(v) + la(v)$ for all $v \in \operatorname{Ver}(\Sigma_0)$. Thus

$$0 = \frac{1}{l} \sum r_v \langle m, v \rangle \ge \sum (kr_v h(v) + a(v)) = k + \sum a(v).$$

In particular, if $k \gg 0$, then no effective \mathbb{R} -divisor on $X_0 = f^{-1}T_L$ is linearly equivalent to $l(kD_h + A)$ for any $l \in \mathbb{N}$, by (IV-4). Thus the other implication follows.

(2) Let us fix a vertex $v \in Ver(\Sigma)$. For $\lambda \in \Lambda$ with $\phi(v) \in \lambda$, we have

$$\inf \{ \operatorname{mult}_{\mathbf{\Gamma}_{v}} \Delta \mid 0 \leq \Delta \sim_{\mathbb{R}} \mathsf{D}_{h}|_{\mathsf{X}_{\lambda}} \} = \inf \{ \langle m, v \rangle - h(v) \mid m \in \Box_{h}(\phi^{-1}\boldsymbol{\lambda}) \}$$
$$= h_{\boldsymbol{\Sigma}/\boldsymbol{\Lambda}}^{\dagger}(v) - h(v),$$

by (IV-4). Hence, if D_h is f-big, then $h_{\mathbf{\Sigma}/\mathbf{\Lambda}}^{\dagger}(v) - h(v) = \sigma_{\mathbf{\Gamma}_v}(\mathsf{D}_h;\mathsf{X}/\mathsf{S})$. In general, $\sigma_{\mathbf{\Gamma}_v}(\mathsf{D}_h;\mathsf{X}/\mathsf{S}) \leq h_{\mathbf{\Sigma}/\mathbf{\Lambda}}^{\dagger}(v) - h(v)$ holds. In order to show the equality in general case, we may assume $\sigma_{\mathbf{\Gamma}_v}(\mathsf{D}_h;\mathsf{X}/\mathsf{S}) = 0$, by replacing D_h with $\mathsf{D}_h - \sigma_{\mathbf{\Gamma}_v}(\mathsf{D}_h;\mathsf{X}/\mathsf{S})\mathbf{\Gamma}_v$. We shall derive a contradiction from the assumption: $h_{\mathbf{\Sigma}/\mathbf{\Lambda}}^{\dagger}(v) > h(v)$. Then there exist vertices $v_i \in \operatorname{Ver}(\mathbf{\Sigma}_{\mathbf{\lambda}})$ and real numbers $r_i > 0$ such that $v = \sum r_i v_i$ and $\sum r_i h(v_i) > h(v)$. However $(h + \varepsilon a)_{\mathbf{\Sigma}/\mathbf{\Lambda}}^{\dagger}(v) = (h + \varepsilon a)(v)$ for any $\varepsilon > 0$, since $\mathsf{D}_{h+\varepsilon a} = \mathsf{D}_h + \varepsilon \mathsf{A}$ is f-big. Hence

$$h(v) + \varepsilon a(v) \ge \sum r_i(h(v_i) + \varepsilon a(v_i)) = \sum r_i h(v_i) + \varepsilon \sum r_i a(v_i).$$

Taking $\varepsilon \to 0$, we have a contradiction.

1.17. Theorem (cf. [57]) Let $f: X = T_N(\Sigma) \to S = T_L(\Lambda)$ be the morphism induced from a proper morphism $\phi: (N, \Sigma) \to (L, \Lambda)$ of finite fans. Then any f-pseudo-effective \mathbb{R} -Cartier divisor of X admits a relative Zariski-decomposition over S.

PROOF. We may assume that X is non-singular and is projective over S. We have only to consider the \mathbb{R} -divisor D_h for $h \in \mathrm{SF}_N(\Sigma, \mathbb{R})$ with $\Box_h(\phi^{-1}\mathbf{0}) \neq \emptyset$. There is a finite subdivision Σ' of Σ with $h^{\dagger} = h_{\Sigma/\Lambda}^{\dagger} \in \mathrm{SF}_N(\Sigma', \mathbb{R})$. We may assume that $X' = \mathsf{T}_N(\Sigma')$ is non-singular and is projective over S. Let $\mu: X' \to X$ be the induced projective birational morphism. Then the effective \mathbb{R} -divisor $\mu^* D_h - D_{h^{\dagger}}$ is the negative part of the relative σ -decomposition of $\mu^* D_h$ over S by $\mathbf{1.16}$ -(2). This is a relative Zariski-decomposition over S since the positive part $D_{h^{\dagger}}$ is relatively nef by $\mathbf{1.13}$ -(3).

1.18. Theorem Let $f: X \to Y$ be a proper surjective morphism of normal complex analytic varieties. Suppose that, for any point $y \in Y$, there exist an open neighborhood \mathcal{Y} , a proper morphism $(\mathsf{N}, \Sigma) \to (\mathsf{L}, \Lambda)$ of finite fans, and a smooth morphism $\mathcal{Y} \to \mathbb{T}_{\mathsf{L}}(\Lambda)$ such that

$$f^{-1}\mathcal{Y}\simeq \mathbb{T}_{\mathsf{N}}(\mathbf{\Sigma})\times_{\mathbb{T}_{\mathsf{L}}(\mathbf{\Lambda})}\mathcal{Y}$$

over \mathcal{Y} . Then any f-pseudo-effective \mathbb{R} -Cartier divisor of X admits a relative Zariski-decomposition over Y.

PROOF. Let D be an f-pseudo-effective \mathbb{R} -Cartier divisor on X. For a point $y \in Y$, let $\mathcal{X} = f^{-1}\mathcal{Y}$ for the open neighborhood \mathcal{Y} above. We have the vanishing $\mathbb{R}^i f_* \mathcal{O}_X = 0$ for i > 0 and an isomorphism

$$\mathrm{R}^1 f_* \mathcal{O}_X^* \simeq \mathrm{R}^2 f_* \mathbb{Z}_X.$$

Hence we may assume that there exist an \mathbb{R} -Cartier divisor E of \mathcal{Y} and a support function $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$ such that $D|_{\mathcal{X}} \sim_{\mathbb{R}} f^*E + p_1^*D_h$ for the first projection $p_1: \mathcal{X} \to \mathbb{T}_{\mathsf{N}}(\Sigma)$. By **1.17**, there exists a bimeromorphic morphism $\mu: \mathcal{X}' \to \mathcal{X}$ such that the positive part P of the relative σ -decomposition of $\mu^*(D|_{\mathcal{X}})$ is relatively nef over \mathcal{Y} . By **1.15**, we may assume that the \mathbb{R} -divisor P is relatively ample over \mathcal{X} . Then μ and P are uniquely determined up to isomorphisms. Gluing \mathcal{X}' and Pfor such neighborhoods \mathcal{Y} , we obtain a bimeromorphic morphism $g: X' \to X$ such that the positive part of the relative σ -decomposition of g^*D is relatively nef over Y and is relatively ample over X.

§2. Toric bundles

§2.a. Definition of toric bundles. We shall give a relative version of the notion of toric variety (cf. [125]). Let M and N be the same free abelian groups as before.

2.1. Definition Let S be a complex analytic space and let

$$\mathcal{L}: \mathsf{M} \ni m \longmapsto \mathcal{L}^m \in \operatorname{Pic}(S)$$

be a group homomorphism. For a subset $\mathcal{S} \subset \mathsf{M}$, we set

$$\mathcal{L}[\mathcal{S}] := \bigoplus\nolimits_{m \in \mathcal{S}} \mathcal{L}^m$$

For a strictly convex rational polyhedral cone $\sigma \subset N_{\mathbb{R}}$, the *affine toric bundle* over S of type (N, σ, \mathcal{L}) is defined by

$$\mathbb{T}_{\mathsf{N}}(\boldsymbol{\sigma},\mathcal{L}) = \operatorname{Specan}_{S} \mathcal{L}[\boldsymbol{\sigma}^{\vee} \cap \mathsf{M}].$$

Similarly, for a fan Σ of N, the *toric bundle* $\mathbb{T}_{N}(\Sigma, \mathcal{L})$ of type (N, Σ, \mathcal{L}) is defined as the natural union of $\mathbb{T}_{N}(\sigma, \mathcal{L})$ for $\sigma \in \Sigma$.

Remark \mathcal{L} is regarded as an element of $\mathsf{N} \otimes \operatorname{Pic}(S) = \operatorname{H}^1(S, \mathsf{N} \otimes \mathcal{O}_S^*)$, in which $\mathsf{N} \otimes \mathcal{O}_S^*$ is regarded as the sheaf of germs of holomorphic mappings $S \to \mathbb{T}_{\mathsf{N}}$. By the action of \mathbb{T}_{N} on $\mathbb{T}_{\mathsf{N}}(\Sigma)$, $\mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L}) \to S$ is the fiber bundle obtained from $\mathbb{T}_{\mathsf{N}}(\Sigma) \times S \to S$ by the twist by \mathcal{L} . The cohomology class in $H^1(S, \mathsf{N} \otimes \mathcal{O}_S^*)$ attached to the principal fiber bundle $\mathbb{T}_{\mathsf{N}}(\mathbf{0}, \mathcal{L}) \to S$ is $-\mathcal{L}$.

There is a natural surjective \mathcal{O}_S -algebra homomorphism $\mathcal{L}[\sigma^{\vee} \cap \mathsf{M}] \twoheadrightarrow \mathcal{L}[\sigma^{\perp} \cap \mathsf{M}]$ such that the kernel is $\mathcal{L}[(\sigma^{\vee} \smallsetminus \sigma^{\perp}) \cap \mathsf{M}]$. This induces a closed immersion

$$\mathbb{T}_{\mathsf{N}({\boldsymbol{\sigma}})}({\boldsymbol{0}},\mathcal{L}) \hookrightarrow \mathbb{T}_{\mathsf{N}}({\boldsymbol{\sigma}},\mathcal{L})$$

The left hand side is fiberwise an orbit of \mathbb{T}_{N} and is denoted by $\mathbb{O}_{\sigma}(\mathcal{L})$. For a face $\tau \prec \sigma$, the closure of $\mathbb{O}_{\tau}(\mathcal{L})$ in $\mathbb{T}_{N}(\sigma, \mathcal{L})$ is isomorphic to $\mathbb{T}_{N(\tau)}(\sigma/\tau, \mathcal{L})$ by the natural surjective homomorphism

$$\mathcal{L}[\sigma^{\vee} \cap \mathsf{M}] \twoheadrightarrow \mathcal{L}[\sigma^{\vee} \cap \tau^{\perp} \cap \mathsf{M}]$$

The closure $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ of $\mathbb{O}_{\boldsymbol{\sigma}}(\mathcal{L})$ in $\mathbb{T}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ is isomorphic to $\mathbb{T}_{\mathsf{N}(\boldsymbol{\sigma})}(\boldsymbol{\Sigma}/\boldsymbol{\sigma}, \mathcal{L})$.

Suppose that S is a normal complex analytic variety. Let $p: Y \to S$ be the morphism $\mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L}) \to S$. An element $m \in \mathsf{M}$ defines a meromorphic section $\mathsf{e}(m)$ of $p^*\mathcal{L}^{-m}$ by the natural embedding

$$\mathcal{O}_S \simeq \mathcal{L}^{-m} \otimes \mathcal{L}^m \hookrightarrow \mathcal{L}^{-m} \otimes \mathcal{L}[\mathsf{M}].$$

For a vertex $v \in \operatorname{Ver}(\Sigma)$, let Γ_v be the prime divisor $\mathbb{V}(\mathbb{R}_{\geq 0}v, \mathcal{L})$. The divisor $\operatorname{div}(\mathbf{e}(m))$ associated with the meromorphic section $\mathbf{e}(m)$ of $p^*\mathcal{L}^{-m}$ is written by

$$\sum_{v \in \operatorname{Ver}(\mathbf{\Sigma})} \langle m, v \rangle \Gamma_v$$

as a Weil divisor. In particular,

$$\mathcal{O}_Y\left(\sum_{v\in\operatorname{Ver}(\mathbf{\Sigma})}\langle m,v\rangle\Gamma_v\right)\simeq p^*\mathcal{L}^{-m}.$$

Even for $m \in M_{\mathbb{R}}$, we can define $\operatorname{div}(\mathbf{e}(m))$ to be an \mathbb{R} -Cartier divisor by the linearity of $\operatorname{div} \circ \mathbf{e} \colon \mathsf{M} \to \operatorname{CDiv}(Y, \mathbb{R})$. Similarly, we denote by \mathcal{L}^m the image of m under $\mathcal{L} \otimes \mathbb{R} \colon \mathsf{M}_{\mathbb{R}} \to \operatorname{Pic}(S, \mathbb{R})$. Then $\operatorname{div}(\mathbf{e}(m)) \sim_{\mathbb{R}} f^* \mathcal{L}^{-m}$ for $m \in \mathsf{M}_{\mathbb{R}}$. For $h \in \operatorname{SFC}_{\mathsf{N}}(\Sigma, \mathbb{R})$, we define

$$D_h = \sum_{v \in \operatorname{Ver}(\mathbf{\Sigma})} (-h(v)) \Gamma_v.$$

If $h \in SF_{\mathsf{N}}(\Sigma, \mathbb{R})$, then D_h is \mathbb{R} -Cartier.

 ${\bf Remark}\,$ We can consider a kind of differential form:

$$\mathrm{d}\log \mathsf{e}(m) = \mathsf{e}(m)^{-1} \,\mathrm{d}\,\mathsf{e}(m)$$

for $m \in M$. It is not a well-defined meromorphic 1-form on $Y = \mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$. Suppose that Σ is a non-singular fan and S is non-singular. Let B be the normal crossing divisor $Y \setminus \mathbb{T}_{\mathsf{N}}(\mathbf{0}, \mathcal{L})$. Then $d \log \mathbf{e}(m)$ is regard as a global section of the sheaf $\Omega^{1}_{Y/S}(\log B)$ of germs of relative logarithmic 1-forms. Moreover, we have an isomorphism

$$\mathsf{M} \otimes \mathcal{O}_Y \simeq \Omega^1_{Y/S}(\log B).$$

In particular, $K_Y + B \sim p^* K_S$.

2.2. Proposition Let Y be a toric bundle $\mathbb{T}_{N}(\Sigma, \mathcal{L})$ over a complex analytic space S and let X be a toric bundle $\mathbb{T}_{N_{0}}(\Sigma_{0}, \mathcal{L}_{0})$ over Y. Let $p: Y \to S$ and $\pi: X \to Y$ be the structure morphisms. Assume that $\mathcal{L}_{0}: \mathsf{M}_{0} = \operatorname{Hom}(\mathsf{N}_{0}, \mathbb{Z}) \to \operatorname{Pic}(Y)$ is the composite of a homomorphism $\mathsf{M}_{0} \to \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z}) \oplus \operatorname{Pic}(S)$ and the natural homomorphism $\operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z}) \oplus \operatorname{Pic}(S) \ni (h, \mathcal{M}) \mapsto \mathcal{O}_{Y}(D_{h}) \otimes p^{*}\mathcal{M} \in \operatorname{Pic}(Y)$. Then X is isomorphic to a toric bundle $\mathbb{T}_{\mathsf{N}_{0} \oplus \mathsf{N}}(\widetilde{\Sigma}, \widetilde{\mathcal{L}})$ over S and π is induced from the second projection $\mathsf{N}_{0} \oplus \mathsf{N} \to \mathsf{N}$.

PROOF. The homomorphism $M_0 \to SF_N(\Sigma, \mathbb{Z}) \oplus Pic(S)$ is defined by an element $\mathbf{h} \in SF_N(\Sigma, \mathbb{Z}) \otimes N_0$ and by a homomorphism $\mathcal{L}_1: M_0 \to Pic(S)$. Here \mathbf{h} is regarded as a continuous function $|\Sigma| \to (N_0)_{\mathbb{R}} = N_0 \otimes \mathbb{R}$ such that the restriction $\mathbf{h}|_{\boldsymbol{\sigma}}$ to a cone $\boldsymbol{\sigma} \in \Sigma$ is linear and is induced from a homomorphism $N_{\boldsymbol{\sigma}} \to N_0$. For $m_0 \in M_0$, we write by $\langle m_0, \mathbf{h} \rangle$ the support function $x \mapsto \langle m_0, \mathbf{h}(x) \rangle$. Then

$$\mathcal{L}_0^{m_0} = \mathcal{O}_Y(D_{\langle m_0, \mathbf{h} \rangle}) \otimes p^* \mathcal{L}_1^{m_0}$$

For $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, we can take a homomorphism $\psi_{\boldsymbol{\sigma}} \colon \mathsf{M}_0 \to \mathsf{M}$ such that the composite $\mathsf{M}_0 \to \mathsf{M} \to \mathsf{M}_{\boldsymbol{\sigma}}$ is dual to the homomorphism $\mathsf{N}_{\boldsymbol{\sigma}} \to \mathsf{N}_0$ above defined by \mathbf{h} . Then $\langle m_0, \mathbf{h}(x) \rangle = \langle \psi_{\boldsymbol{\sigma}}(m_0), x \rangle$ for $x \in \boldsymbol{\sigma}$. In particular,

$$\Box_{(m_0,\mathbf{h})}(\boldsymbol{\sigma}) = \{ m \in \mathsf{M}_{\mathbb{R}} \mid \langle m, x \rangle \geq \langle m_0, \mathbf{h}(x) \rangle \text{ for } x \in \boldsymbol{\sigma} \} = \psi_{\boldsymbol{\sigma}}^{\vee}(m_0) + \boldsymbol{\sigma}^{\vee}.$$

For cones $\sigma_0 \in \Sigma_0$ and $\sigma \in \Sigma$, let $Y_{\sigma} \subset Y$ be the open subset $\mathbb{T}_{\mathsf{N}}(\sigma, \mathcal{L})$ and let $X_{\sigma_0,\sigma} \subset \pi^{-1}Y_{\sigma}$ be the open subset $\mathbb{T}_{\mathsf{N}_0}(\sigma_0, \mathcal{L}_0)$ over Y_{σ} . Then $Y_{\sigma} \simeq$ $\operatorname{Specan}_S \mathcal{L}[\sigma^{\vee} \cap \mathsf{M}]$ and the invertible sheaf $\mathcal{O}_{Y_{\sigma}}(D_h)$ for $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma)$ is associated with the $\mathcal{L}[\sigma^{\vee} \cap \mathsf{M}]$ -module $\mathcal{L}[\Box_h(\sigma) \cap \mathsf{M}]$. Similarly, $X_{\sigma_0,\sigma} \simeq \operatorname{Specan}_{Y_{\sigma}} \mathcal{L}_0[\sigma_0^{\vee} \cap \mathsf{M}_0]$. Therefore, $X_{\sigma_0,\sigma} \simeq \operatorname{Specan}_S \mathcal{A}_{\sigma_0,\sigma}$ for the subalgebra

$$\mathcal{A}_{\boldsymbol{\sigma}_{0},\boldsymbol{\sigma}} = \bigoplus_{m_{0} \in \mathsf{M}_{0} \cap \boldsymbol{\sigma}_{0}^{\vee}, m \in \Box_{\langle m_{0}, \mathbf{h} \rangle}(\boldsymbol{\sigma})} \mathcal{L}_{1}^{m_{0}} \otimes \mathcal{L}^{m} \subset \widetilde{\mathcal{L}}[\mathsf{M}_{0} \oplus \mathsf{M}],$$

where $\widetilde{\mathcal{L}} := \mathcal{L}_1 \oplus \mathcal{L} \in (\mathsf{N}_0 \oplus \mathsf{N}) \otimes \operatorname{Pic}(S)$. For the cone

$$C(\boldsymbol{\sigma}_0,\boldsymbol{\sigma};\mathbf{h}) := \{(x_0,x) \in (\mathsf{N}_0)_{\mathbb{R}} \oplus \mathsf{N}_{\mathbb{R}} \mid x_0 + \mathbf{h}(x) \in \boldsymbol{\sigma}_0, x \in \boldsymbol{\sigma}\},\$$

we have an isomorphism $X_{\sigma_0,\sigma} \simeq \mathbb{T}_{N_0 \oplus \mathbb{N}}(C(\sigma_0,\sigma;\mathbf{h}), \widetilde{\mathcal{L}})$ over S, since

$$\{(m_0,m)\in\mathsf{M}_0\oplus\mathsf{M}\mid m_0\in\boldsymbol{\sigma}_0^{\vee},\,m\in\Box_{\langle m_0,\mathbf{h}\rangle}(\boldsymbol{\sigma})\}=C(\boldsymbol{\sigma}_0,\boldsymbol{\sigma};\mathbf{h})^{\vee}\cap(\mathsf{M}_0\oplus\mathsf{M}).$$

The structure morphism $\pi: X_{\sigma_0,\sigma} \to Y_{\sigma}$ is interpreted as a morphism of toric bundles over S which is induced from the second projection $\mathsf{N}_0 \oplus \mathsf{N} \to \mathsf{N}$.

For faces $\tau_0 \prec \sigma_0$ and $\tau \prec \sigma$, the cone $C(\tau_0, \tau; \mathbf{h})$ is a face of $C(\sigma_0, \sigma; \mathbf{h})$ and the open immersion $X_{\tau_0,\tau} \subset X_{\sigma_0,\sigma}$ is induced from the open immersion as toric bundles over S. For other cones $\sigma'_0 \in \Sigma_0$ and $\sigma' \in \Sigma$, we have $C(\sigma_0, \sigma; \mathbf{h}) \cap$ $C(\sigma'_0, \sigma'; \mathbf{h}) = C(\sigma_0 \cap \sigma'_0, \sigma' \cap \sigma; \mathbf{h})$. Thus

$$\mathbf{\Sigma}_{\mathbf{h}} := \{ C(\boldsymbol{\sigma}_0, \boldsymbol{\sigma}; \mathbf{h}) \mid \boldsymbol{\sigma}_0 \in \mathbf{\Sigma}_0, \, \boldsymbol{\sigma} \in \mathbf{\Sigma} \}$$

is a fan of $\mathsf{N}_0 \oplus \mathsf{N}$ and $X \simeq \mathbb{T}_{\mathsf{N}_0 \oplus \mathsf{N}}(\boldsymbol{\Sigma}_{\mathbf{h}}, \widetilde{\mathcal{L}})$ over S.

§2.b. Pseudo-effective divisors on toric bundles. Suppose that Σ is a complete fan and that S is a normal complex analytic variety. Let $p: Y \to S$ be the structure morphism of the toric bundle $Y = \mathbb{T}_{N}(\Sigma, \mathcal{L})$.

2.3. Lemma (1) For a line bundle \mathcal{M} of Y, there exist a line bundle \mathcal{N} of S and a support function $h \in SF_{\mathsf{N}}(\Sigma, \mathbb{Z})$ such that $\mathcal{M} \simeq p^* \mathcal{N} \otimes \mathcal{O}_Y(D_h)$. In particular, there is an isomorphism

$$p_*\mathcal{M}\simeq\mathcal{N}\otimes\mathcal{L}[\Box_h\cap\mathsf{M}].$$

(2) For an \mathbb{R} -Cartier divisor D of Y, there exists a support function $h \in SF_{\mathsf{N}}(\Sigma, \mathbb{R})$ such that $D \sim_{\mathbb{R}} p^*\Xi + D_h$ for some $\Xi \in \operatorname{Pic}(S, \mathbb{R})$.

PROOF. From the vanishing $R^i p_* \mathcal{O}_Y = 0$ for i > 0, we have exact sequences

$$0 \to \operatorname{Pic}(S) \to \operatorname{Pic}(Y) \to \operatorname{H}^{0}(S, \mathbb{R}^{2} p_{*} \mathbb{Z}_{Y}),$$

$$0 \to \operatorname{Pic}(S, \mathbb{R}) \to \operatorname{Pic}(Y, \mathbb{R}) \to \operatorname{H}^{0}(S, \mathbb{R}^{2} p_{*} \mathbb{R}_{Y}).$$

On the toric variety $\mathbb{T}_{\mathsf{N}}(\Sigma)$, any line bundle is associated with the Cartier divisor D_h for some $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$, and any \mathbb{R} -Cartier divisor is \mathbb{R} -linearly equivalent to D_h for some $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$. Thus, in (1), $\mathcal{M} \otimes \mathcal{O}_Y(-D_h)$ restricted to a fiber of p is numerically trivial for some $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$, and hence $\mathcal{M} \simeq p^* \mathcal{N} \otimes \mathcal{O}_Y(D_h)$ for a line bundle \mathcal{N} of S. Similarly, in (2), $D - D_h$ is p-numerically trivial for some $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$. Hence $D - D_h \sim_{\mathbb{R}} p^* \Xi$ for some $\Xi \in \operatorname{Pic}(S, \mathbb{R})$. Note that there is an isomorphism $p_* \mathcal{O}_Y(D_h) \simeq \mathcal{L}[\Box_h \cap \mathsf{M}]$ by (IV-4), since p is proper. \Box

For $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$, we write $h^{\dagger} = h_{\mathsf{N}_{\mathbb{R}}}^{\dagger}$ for short. Let \mathcal{M} be an invertible sheaf of Y such that $\mathcal{M} \simeq f^* \mathcal{N} \otimes \mathcal{O}_Y(D_h)$ for some $\mathcal{N} \in \mathrm{Pic}(S)$ and $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$. Then the following conditions are mutually equivalent by **1.13**:

- (1) h is upper convex on $N_{\mathbb{R}}$; (2) $\Box_h \neq \emptyset$ and $h^{\dagger} = h$;
- (3) \mathcal{M} is *p*-free; (4) \mathcal{M} is *p*-nef.

Furthermore, \mathcal{M} is *p*-ample if and only if *h* is strictly upper convex with respect to Σ by **1.14**. Let *D* be an \mathbb{R} -Cartier divisor of *Y* such that $D \sim_{\mathbb{R}} f^*E + D_h$ for some \mathbb{R} -Cartier divisor *E* of *S* and for $h \in SF_N(\Sigma, \mathbb{R})$. Then the following conditions are mutually equivalent by **1.16**:

(1) $\Box_h \neq \emptyset$ and $h = h^{\dagger}$; (2) h is upper convex; (3) D is p-nef.

If D is p-pseudo-effective, then $\sigma_{\Gamma_v}(D; Y/S) = h^{\dagger}(v) - h(v)$ for $v \in \text{Ver}(\Sigma)$ by **1.16**.

Suppose that S is a normal projective variety. We study the (absolute) σ decomposition for a pseudo-effective \mathbb{R} -Cartier divisor of $Y = \mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$. For an \mathbb{R} -Cartier divisor E of S and for a support function $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$, we define

$$\Box_{\rm PE}(E,h) := \{ m \in \Box_h \mid E + \mathcal{L}^m \text{ is pseudo-effective} \},\$$
$$\Box_{\rm Nef}(E,h) := \{ m \in \Box_h \mid E + \mathcal{L}^m \text{ is nef} \}.$$

These are compact convex subsets of $\mathsf{M}_{\mathbb{R}}.$

2.4. Proposition Suppose that S is a normal projective variety. Let $D = p^*E + D_h$ be an \mathbb{R} -Cartier divisor of $Y = \mathbb{T}_N(\Sigma, \mathcal{L})$ for $h \in SF_N(\Sigma, \mathbb{R})$.

- (1) D is pseudo-effective if and only if $\Box_{\text{PE}}(E,h) \neq \emptyset$.
- (2) The following conditions are equivalent to each other: $(2) = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}$
 - (a) D is nef;
 - (b) $l_{\sigma} \in \Box_{\operatorname{Nef}}(E,h)$ for any maximal cone $\sigma \in \Sigma$, where $l_{\sigma} \in M_{\mathbb{R}}$ is defined by $h(x) = \langle l_{\sigma}, x \rangle$ for $x \in \sigma$ (cf. 1.7);
 - (c) $\Box_{\operatorname{Nef}}(E,h) \neq \emptyset$ and, for any $x \in \mathsf{N}_{\mathbb{R}}$,

$$h(x) = \min\{\langle m, x \rangle \mid m \in \Box_{\operatorname{Nef}}(E, h)\}.$$

(3) Suppose that D is pseudo-effective. Then

$$\sigma_{p^{-1}\Theta}(D) = \min\{\sigma_{\Theta}(E + \mathcal{L}^m) \mid m \in \Box_{\mathrm{PE}}(E, h)\},\$$

$$\sigma_{\Gamma_v}(D) = \min\{\langle m, v \rangle \mid m \in \Box_{\mathrm{PE}}(E, h)\} - h(v),\$$

for any prime divisor $\Theta \subset S$ and for any $v \in \operatorname{Ver}(\Sigma)$.

- (4) Suppose that D is pseudo-effective. Then D is movable if and only if $\sigma_{p^{-1}\Theta}(D) = \sigma_{\Gamma_v}(D) = 0$ for any prime divisor $\Theta \subset S$ and for any $v \in \operatorname{Ver}(\Sigma)$.
- (5) Suppose that D is pseudo-effective. Then D is numerically movable if and only if
 - $\{m \in \Box_h \mid (E + \mathcal{L}^m)|_{\Theta} \text{ is pseudo-effective } \} \neq \emptyset, \text{ and} \\ \{m \in \Box_{\text{PE}}(E, h) \mid h(v) = \langle m, v \rangle \} \neq \emptyset,$

for any prime divisor $\Theta \subset S$ and for any $v \in \operatorname{Ver}(\Sigma)$.

PROOF. The image $c \in \mathbb{N} \otimes \mathbb{N}^1(S)$ of $\mathcal{L} \in \mathbb{N} \otimes \operatorname{Pic}(S)$ satisfies $\langle m, c \rangle = c_1(\mathcal{L}^m) \in \mathbb{N}^1(S)$ for $m \in M_{\mathbb{R}}$. Let us consider the set

 $\Omega := \{ (e, h, m) \in \mathrm{N}^{1}(S) \times \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R}) \times \mathsf{M}_{\mathbb{R}} \mid m \in \Box_{h}, e + \langle m, c \rangle \in \mathrm{PE}(S) \}.$

Then $\pi: \Omega \to \mathrm{N}^1(S) \times \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{R})$ is proper, since \Box_h is compact for $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma)$. In particular, $\pi(\Omega)$ is closed. Let us consider

$$\varphi \colon \mathrm{N}^1(S) \times \mathrm{SF}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathbb{R}) \ni (e, h) \mapsto p^* e + c_1(D_h) \in \mathrm{N}^1(Y).$$

Then (1) means that $\varphi^{-1}(\operatorname{PE}(Y)) = \pi(\Omega)$. We note the following \mathbb{R} -equivalence relation for $m \in M_{\mathbb{R}}$:

(IV-5)
$$D_h + p^*E \sim_{\mathbb{R}} \operatorname{div}(\mathbf{e}(m)) + D_h + p^*(E + \mathcal{L}^m).$$

Thus $\varphi^{-1}(\operatorname{PE}(Y)) \supset \pi(\Omega)$. In the proof, we may assume that S and Y are non-singular and Y is projective over S.

(1) It is enough to show $\varphi^{-1}(\operatorname{Big}(Y) \cap \operatorname{NS}(Y)_{\mathbb{Q}}) \subset \pi(\Omega)$. Thus we may assume that D is a big \mathbb{Q} -divisor. In particular, E is a \mathbb{Q} -divisor and h is rational. Then kD are kE is Cartier and $\operatorname{H}^{0}(Y, kD) \neq 0$ for some $k \in \mathbb{N}$. In particular, $\operatorname{H}^{0}(S, \mathcal{L}^{m} + kE) \neq 0$ for some $m \in \mathbb{M} \cap k \square_{h}$ by (IV-4). Hence $(c_{1}(E), h) \in \pi(\Omega)$.

(2) (a) \Rightarrow (b): Let $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ be a maximal cone. Then $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ is a section of $p: Y \to S$ and $h^{\boldsymbol{\sigma}}(x) = h(x) - \langle l_{\boldsymbol{\sigma}}, x \rangle \leq 0$ for any $x \in \mathsf{N}_{\mathbb{R}}$, since D_h is *p*-nef. Note that $D_{h^{\boldsymbol{\sigma}}} \cap \mathbb{V}(\boldsymbol{\sigma}, \mathcal{L}) = \emptyset$ and $D_{h^{\boldsymbol{\sigma}}} = D_h + \operatorname{div}(\mathsf{e}(l_{\boldsymbol{\sigma}}))$. Therefore, $D_h|_{\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})}$ is \mathbb{R} -linearly equivalent to $\mathcal{L}^{l_{\boldsymbol{\sigma}}}$. Thus $E + \mathcal{L}^{l_{\boldsymbol{\sigma}}}$ is nef and $l_{\boldsymbol{\sigma}} \in \Box_{\operatorname{Nef}}(E, h)$.

(b) \Rightarrow (c): For any $y \in \mathsf{N}_{\mathbb{R}}$, there is a maximal cone $\sigma \in \Sigma$ containing $y \in \sigma$. Then $h(y) = \langle l_{\sigma}, y \rangle = \min\{\langle m, y \rangle \mid m \in \Box_{\operatorname{Nef}}(E, h)\}.$

(c) \Rightarrow (b): *h* is upper-convex by the expression. For a vector $x_0 \in \boldsymbol{\sigma}$, there is an $m_0 \in \Box_{\operatorname{Nef}}(E,h)$ such that $h(x_0) = \langle l_{\boldsymbol{\sigma}}, x_0 \rangle = \langle m_0, x_0 \rangle$. Since $m_0 - l_{\boldsymbol{\sigma}} \in \boldsymbol{\sigma}^{\vee}$, we infer that $m_0 = l_{\boldsymbol{\sigma}} \in \Box_{\operatorname{Nef}}(E,h)$.

(b) \Rightarrow (a): Let W be the intersection of the supports of effective \mathbb{R} -Cartier divisors $D_h + \operatorname{div}(\mathbf{e}(m))$ for $m \in \Box_{\operatorname{Nef}}(E,h)$. Then W is written as the union of $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ for suitable cones $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. In particular, if $W \neq \emptyset$, then $W \supset \mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ for a maximal cone $\boldsymbol{\sigma}$. Thus $W = \emptyset$ and D is nef.

(3) If $f: \Omega \to \mathbb{R}$ is a lower semi-continuous function, then

 $\tilde{f}(e,h) := \inf\{f(e,h,m) \mid (e,h,m) \in \Omega\} = \min\{f(e,h,m) \mid (e,h,m) \in \Omega\},\$

which gives rise to a lower semi-continuous function on $\pi(\Omega)$. For a prime divisor $\Theta \subset S$, σ_{Θ} is lower semi-continuous on $\operatorname{PE}(S)$. For a vertex $v \in \operatorname{Ver}(\Sigma)$, $m \mapsto \langle m, v \rangle$ is linear. Hence

$$r(E, h, \Theta) := \min\{\sigma_{\Theta}(E + \mathcal{L}^m) \mid m \in \Box_{\text{PE}}(E, h)\},\$$

$$r(E, h, v) := \min\{\langle m, v \rangle \mid m \in \Box_{\text{PE}}(E, h)\} - h(v)$$

are well-defined, and $(E,h) \mapsto r(E,h,\Theta)$ and $(E,h) \mapsto r(E,h,v)$ are lower semicontinuous on $\pi(\Omega)$.

If $m \in \Box_{\rm PE}(E,h)$, then

$$\sigma_{p^{-1}\Theta}(D) \le \sigma_{p^{-1}\Theta}(p^*(E + \mathcal{L}^m)) = \sigma_{\Theta}(E + \mathcal{L}^m),$$

$$\sigma_{\Gamma_v}(D) \le \operatorname{mult}_{\Gamma_v}(\operatorname{div}(\mathbf{e}(m)) + D_h) = \langle m, v \rangle - h(v)$$

by (IV-5), since div($\mathbf{e}(m)$) + D_h is an effective \mathbb{R} -divisor containing no fiber of p. Thus $\sigma_{p^{-1}\Theta}(D) \leq r(E, h, \Theta)$ and $\sigma_{\Gamma_v}(D) \leq r(E, h, v)$. Suppose that D is a big \mathbb{Q} -divisor. Then E is a \mathbb{Q} -divisor and h is rational. By (IV-4) and (IV-5), we infer that any effective \mathbb{Q} -divisor \mathbb{Q} -linearly equivalent to D is written by div $(\mathbf{e}(m)) + D_h + p^*\Delta$ for some $m \in \Box_h \cap M_{\mathbb{Q}}$ and for some effective \mathbb{Q} -divisor $\Delta \sim_{\mathbb{Q}} E + \mathcal{L}^m$. Thus $\sigma_{p^{-1}\Theta}(D) = r(E, h, \Theta)$ and $\sigma_{\Gamma_v}(D) = r(E, h, v)$.

By the lower semi-continuity, the expected equalities also hold for any pseudoeffective \mathbb{R} -divisor $D = p^* E + D_h$.

(4) Let $\Gamma \subset Y$ be a prime divisor with $\sigma_{\Gamma}(D) > 0$. This is stable under the action of \mathbb{T}_{N} . Therefore, $\Gamma = p^{-1}\Theta$ for a prime divisor $\Theta \subset S$ or $\Gamma = \Gamma_v$ for a vertex $v \in \operatorname{Ver}(\Sigma)$. Thus we have the equivalence.

(5) If $D|_{\Gamma}$ is not pseudo-effective for a prime divisor $\Gamma \subset Y$, then $\Gamma = \Gamma_v$ for a vertex $v \in \operatorname{Ver}(\Sigma)$ or $\Gamma = p^{-1}\Theta$ for a prime divisor $\Theta \subset S$. In case $\Gamma = \Gamma_v$, we choose $l_v \in M_{\mathbb{R}}$ satisfying $h(v) = \langle l_v, v \rangle$ and let $h^v \in \operatorname{SF}_{\mathsf{N}(v)}(\Sigma/\mathbb{R}_{\geq 0}v, \mathbb{R})$ be the function defined by $h^v(x) = h(x) - \langle l_v, x \rangle$. Since $D_{h^v} \sim_{\mathbb{R}} D_h + p^* \mathcal{L}^{-l_v}$, the restriction $D|_{\Gamma_v}$ is pseudo-effective if and only if $\Box_{\operatorname{PE}}(E + \mathcal{L}^{l_v}, h_v) \cap v^{\perp} \neq \emptyset$ by (1). This is equivalent to the existence of $m \in \Box_{\operatorname{PE}}(E, h)$ with $h(v) = \langle m, v \rangle$. In case $\Gamma = p^{-1}\Theta$, we note that Γ is a toric bundle over Θ . By considering the normalization of Θ , we infer from (1) that $D|_{p^{-1}\Theta}$ is pseudo-effective if and only if $(E + \mathcal{L}^m)|_{\Theta}$ is pseudo-effective for some $m \in \Box_h$. Thus we are done. \Box

2.5. Theorem Let S be a non-singular projective variety such that

- (1) $\operatorname{PE}(S) \subset \operatorname{N}^1(S) = \operatorname{NS}(S) \otimes \mathbb{R}$ is a convex rational polyhedral cone with respect to $\operatorname{NS}(S)$, and
- (2) $\operatorname{Nef}(S) = \operatorname{PE}(S).$

Then any pseudo-effective \mathbb{R} -Cartier divisor of a projective toric bundle $\mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$ over S admits a Zariski-decomposition.

PROOF. We may assume that $Y = \mathbb{T}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ is non-singular and projective. Then a pseudo-effective \mathbb{R} -divisor D of Y is \mathbb{R} -linearly equivalent to $p^*E + D_h$ for an \mathbb{R} -divisor E of S and for an $h \in \mathrm{SF}_{\mathsf{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ such that $\Box_{\mathrm{PE}}(E, h) \neq \emptyset$. By assumption,

$$\operatorname{PE}(S) = \{ \xi \in \operatorname{N}^1(S) \mid \xi \cdot \gamma_i \ge 0 \ (1 \le i \le k) \}$$

for some 1-cycles $\gamma_1, \gamma_2, \ldots, \gamma_k$ of S. Let $c: \mathsf{M} \to \mathsf{N}^1(S)$ be the homomorphism defined by $c(m) = c_1(\mathcal{L}^m)$ and let $c^{\vee} \colon \mathsf{N}_1(S) \to \mathsf{N}_{\mathbb{R}}$ be its dual. Both c and c^{\vee} are defined over \mathbb{Q} . Then the cone $\mathbb{R}_{\geq 0}(\Box_{\mathrm{PE}}(E, h) \times \{-1\})$ is the dual cone of

$$\triangle(E,h) = \triangle_h + \sum_{i=1}^k \mathbb{R}_{\geq 0}(c^{\vee}(\gamma_i), -E \cdot \gamma_i).$$

For $x \in N_{\mathbb{R}}$, let us define

$$h^{\ddagger}(x) = \min\{\langle m, x \rangle \mid m \in \Box_{\operatorname{PE}}(E, h)\}.$$

Then $h^{\ddagger}(x) \geq h(x)$ and $\Box_{\text{PE}}(E,h) = \Box_{\text{PE}}(E,h^{\ddagger})$. Moreover, $h^{\ddagger} \in \text{SFC}_{\mathsf{N}}(\Sigma,\mathbb{R})$, since the image of any face of $\triangle(E,h)$ under the first projection $\mathsf{N}_{\mathbb{R}} \times \mathbb{R} \to \mathsf{N}_{\mathbb{R}}$ is a *rational* polyhedral cone. Let Σ' be a finite subdivision of Σ such that $h^{\ddagger} \in$ $SF_{N}(\Sigma', \mathbb{R})$ and let $\mu: Y' = \mathbb{T}_{N}(\Sigma', \mathcal{L}) \to Y$ be the associated proper bimeromorphic morphism. Then

$$N_{\sigma}(\mu^*D) = \sum_{v \in \operatorname{Ver}(\mathbf{\Sigma}')} (h^{\ddagger}(v) - h(v)) \Gamma_v$$

by **2.4**-(3). Here $P_{\sigma}(\mu^* D) \sim_{\mathbb{R}} p^* E + D_{h^{\ddagger}}$, which is nef by **2.4**-(2).

§2.c. Examples of toric bundles. Let S be a non-singular projective variety and let L_1, L_2, \ldots, L_r be divisors of S. Let $p: \mathbb{P} = \mathbb{P}(\mathcal{E}) \to S$ be the projective bundle associated with $\mathcal{E} = \bigoplus_{i=1}^r \mathcal{O}_S(L_i)$. This is described as a toric bundle $\mathbb{T}_{\mathbb{N}}(\Sigma, \mathcal{L})$ as follows:

- (1) N is of rank r-1 with a basis $e_1, e_2, \ldots, e_{r-1}$;
- (2)

$$\mathcal{L} = \sum_{i=1}^{r-1} e_i \otimes \mathcal{O}_S(L_i - L_r) \in \mathsf{N} \otimes \operatorname{Pic}(S);$$

(3) We set $e_r = -\sum_{i=1}^{r-1} e_i \in \mathbb{N}$. The fan Σ consists of the faces of the (r-1)-dimensional cones

$$\boldsymbol{\sigma}_i := \sum_{1 \leq j \leq r, \, j \neq i} \mathbb{R}_{\geq 0} \, e_j \quad (1 \leq i \leq r).$$

Let $h\colon \mathsf{N}_{\mathbb{R}}\to \mathbb{R}$ be the function defined by

$$h\left(\sum_{j=1}^{r-1} x_j e_j\right) = \begin{cases} x_i, & \text{if } x \in \boldsymbol{\sigma}_i \text{ for } i < r; \\ 0, & \text{if } x \in \boldsymbol{\sigma}_r. \end{cases}$$

Then $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$. In fact, $h(x) = \min\{\langle l_i, x \rangle \mid 1 \leq i \leq r\}$ for the dual basis $(l_1, l_2, \ldots, l_{r-1})$ of M to $(e_1, e_2, \ldots, e_{r-1})$ and $l_r = 0$. Note that $h(e_i) = 0$ for i < r, and $h(e_r) = -1$, where $\operatorname{Ver}(\Sigma) = \{e_1, e_2, \ldots, e_r\}$. In particular, D_h is just the prime divisor Γ_{e_r} and hence $D_h \sim H - p^* L_r$ for the tautological divisor $H = H_{\mathcal{E}}$. We consider the standard convex polytope

$$\Box := \left\{ s = (s_1, s_2, \dots, s_r) \in [0, 1]^r \ \middle| \ \sum_{i=1}^r s_i = 1 \right\},$$

where $[0,1] = \{r \in \mathbb{R} \mid 0 \le r \le 1\}$. For $s \in \Box$, an \mathbb{R} -divisor Δ of S, and for a real number $b \ge 0$, we define

$$\Delta(\boldsymbol{s}) := \Delta + b\left(\sum_{i=1}^{r} s_i L_i\right),$$
$$\Box_{\rm PE}(\Delta, L_{\bullet}, b) := \{\boldsymbol{s} \in \Box \mid \Delta(\boldsymbol{s}) \text{ is pseudo-effective}\}$$

If we identify $M_{\mathbb{R}} \simeq \mathbb{R}^{r-1}$ by the dual basis to $(e_1, e_2, \ldots, e_{r-1})$, then

$$\Box_h = \Big\{ (m_1, m_2, \dots, m_{r-1}) \in \mathbb{R}_{\geq 0}^{r-1} \Big| \sum_{i=1}^{r-1} m_i \le 1 \Big\},\$$

and hence $\Box_{\text{PE}}(bL_r + \Delta, bh)$ is identified with the set of vectors $(m_1, m_2, \dots, m_{r-1}) \in \mathbb{R}_{\geq 0}^{r-1}$ such that $\sum_{i=1}^{r-1} m_i \leq b$ and

$$\Delta + \sum_{i=1}^{r-1} m_i L_i + \left(b - \sum_{i=1}^{r-1} m_i \right) L_r \in \text{PE}(S).$$

Thus, if b > 0, there is an identification $\Box_{\rm PE}(\Delta + bL_r, bh) \leftrightarrow \Box_{\rm PE}(\Delta, L_{\bullet}, b)$ by

$$s_i = m_i/b$$
 for $i < r$, and $s_r = 1 - \frac{1}{b} \sum_{i=1}^{r-1} m_i$

2.6. Lemma Let D be an \mathbb{R} -divisor of \mathbb{P} numerically equivalent to $p^*\Delta + bH$ for an \mathbb{R} -divisor Δ of S and $b \in \mathbb{R}$.

- (1) D is pseudo-effective if and only if $b \ge 0$ and $\Box_{\text{PE}}(\Delta, L_{\bullet}, b) \neq \emptyset$.
- (2) D is nef if and only if $b \ge 0$ and $\Delta + bL_i$ is nef for any $1 \le i \le r$.
- (3) D is movable if and only if $b \ge 0$ and the following two conditions are both satisfied:
 - (a) For any prime divisor $\Theta \subset S$, there is a vector $\mathbf{s} \in \Box_{\text{PE}}(\Delta, L_{\bullet}, b)$ such that $\sigma_{\Theta}(\Delta(\mathbf{s})) = 0$;
 - (b) For any $1 \leq j \leq r$, a vector $\mathbf{s} = (s_1, s_2, \dots, s_r)$ with $s_j = 0$ is contained in $\Box_{\text{PE}}(\Delta, L_{\bullet}, b)$.
- (4) D is numerically movable if and only if $b \ge 0$, and the condition (b) above and the following condition are satisfied: For any prime divisor $\Theta \subset S$, there is a vector $\mathbf{s} \in \Box$ such that $\Delta(\mathbf{s})|_{\Theta}$ is pseudo-effective.

PROOF. (1) D is numerically equivalent to $bD_h + p^*(bL_r + \Delta)$. This is p-pseudo-effective if and only if $b \ge 0$. Hence (1) follows from **2.4**-(1) and from the identification $\Box_{\text{PE}}(\Delta + bL_r, bh) \leftrightarrow \Box_{\text{PE}}(\Delta, L_{\bullet}, b)$.

(2) A maximal cone of Σ is one of σ_i for $1 \leq i \leq r$. For $l_1, l_2, \ldots, l_r \in M$ introduced above, we set $h^{(i)}(x) := h(x) - \langle l_i, x \rangle$. Then D is nef if and only if $\Delta + bL_r$ and $\Delta + bL_r + \mathcal{L}^{bl_i} = \Delta + bL_i$ for i < r are all nef, by 2.4-(2).

(3) follows from by
$$\mathbf{2.4}$$
-(3), since

$$\sigma_{\Gamma_{e_i}}(D) = \min\{bs_i \mid \mathbf{s} \in \Box_{\mathrm{PE}}(\Delta, L_{\bullet}, b)\} \quad \text{for} \quad 1 \le i \le r, \\ \sigma_{p^{-1}\Theta}(D) = \min\{\sigma_{\Theta}(\Delta(\mathbf{s})) \mid \mathbf{s} \in \Box_{\mathrm{PE}}(\Delta, L_{\bullet}, b)\}.$$

(4) follows from 2.4-(5).

We consider the special case:
$$r = 2$$
. We may assume $L_2 = 0$ and may write $L = L_1$. Then $\mathcal{E} = \mathcal{O}_S(L) \oplus \mathcal{O}_S$, $\mathbb{P} = \mathbb{T}_N(\Sigma, \mathcal{L})$ for $\mathbb{N} = \mathbb{Z}$, $\Sigma = \{\{0\}, [0, +\infty), (-\infty, 0]\}$,
and $\mathcal{L}^m = \mathcal{O}_S(mL)$ for $m \in \mathbb{Z}$. The support function $h \in \mathrm{SF}_N(\Sigma, \mathbb{R})$ is written by
 $h(x) = \min\{0, x\}, \Box_h = [0, 1] \subset \mathbb{R} = M_{\mathbb{R}}$, and $D_h \sim H$ for the tautological divisor
 $H = H_{\mathcal{E}}$ of \mathbb{P} . The prime divisors Γ_1 and Γ_{-1} corresponding to the vertices in
 $\operatorname{Ver}(\Sigma) = \{1, -1\}$ are sections of p . Here, $\Gamma_1 = \operatorname{div}(\mathbf{e}(1)) + D_h \sim -p^*L + H$ and
 $\Gamma_{-1} = D_h$. Let D be an \mathbb{R} -divisor of \mathbb{P} . Then $D \sim_{\mathbb{R}} p^*E + bH$ for some \mathbb{R} -divisor
 E of S and for some $b \in \mathbb{R}$. By 2.6-(1), D is pseudo-effective if and only if $b \ge 0$
and $E + mL$ is pseudo-effective for some $0 \le m \le b$. By 2.6-(2), in case $b \ge 0$,
 D is nef if and only if E and $E + bL$ are both nef. If $\operatorname{Nef}(S) = \operatorname{PE}(S)$, then any
numerically movable \mathbb{R} -divisor D is nef, since $D|_{\Gamma_1} \sim_{\mathbb{R}} E$ and $D|_{\Gamma_{-1}} \sim_{\mathbb{R}} E + bL$.
Therefore, we have proved the following:

2.7. Corollary In the situation of **2.6**, suppose that every effective divisor of S is nef and r = 2. Then $P_{\nu}(D)$ is nef for a pseudo-effective \mathbb{R} -divisor D of \mathbb{P} .

2. TORIC BUNDLES

2.8. Example In the situation above where r = 2, $L_1 = L$, $L_2 = 0$, suppose that there is an infinite sequence $\{E_n\}_{n=1}^{\infty}$ of \mathbb{R} -divisors of S such that

- (1) $c_1(E_n) \in \operatorname{PE}(S)$ for any n,
- (2) $\lim_{n \to \infty} c_1(E_n) = c_1(L),$
- (3) $E_n tL \notin PE(S)$ for any n and t > 0.

We fix a number $0 < \alpha < 1$ and consider pseudo-effective \mathbb{R} -divisors $D_n^{\alpha} = p^* E_n + \alpha \Gamma_1$. Then $D_n^{\alpha} \sim_{\mathbb{R}} p^*(E_n - \alpha L) + \alpha H$. Thus $D_n^{\alpha}|_{\Gamma_1} \sim_{\mathbb{R}} E_n - \alpha L$ is not pseudo-effective. If $(D_n^{\alpha} - r\Gamma_1)|_{\Gamma_1}$ is pseudo-effective, then $r \geq \alpha$. Hence

$$\nu_{\Gamma_1}(D_n^{\alpha}) = \sigma_{\Gamma_1}(D_n^{\alpha}) = \alpha.$$

We set $D_{\infty}^{\alpha} := p^*L + \alpha \Gamma_1$. Then $\sigma_{\Gamma_1}(D_{\infty}^{\alpha}) = 0$ by $D_{\infty}^{\alpha} \sim_{\mathbb{R}} p^*((1-\alpha)L) + \alpha \Gamma_{-1}$. Thus the function σ_{Γ_1} is not continuous on $\operatorname{PE}(\mathbb{P})$, since $c_1(D_{\infty}^{\alpha}) = \lim_{n \to \infty} c_1(D_n^{\alpha})$. If we choose S, L, and $P_n = c_1(E_n)$ as follows, then they satisfy the condition above: Let S be the product $E \times E$ for an elliptic curve E without complex multiplication and let L be a fiber of the first projection. Since $\operatorname{PE}(S) = \operatorname{Nef}(S)$ is a cone isometric to

$$\{(x, y, z) \in \mathbb{R}^3 \mid z^2 \ge x^2 + y^2, \ z \ge 0\},\$$

we can find a sequence $\{P_n\}$ of points of PE(S) such that $P_n - tc_1(L) \notin PE(S)$ for any t > 0 and $c_1(L) = \lim_{n \to \infty} P_n$.

2.9. Lemma In the situation of the \mathbb{P}^1 -bundle above, assume that dim S = 2, L is nef, and that E is a non-singular irreducible curve of S with $E^2 < 0$. Then the \mathbb{R} -divisor $D = p^*E + bH$ with $b \ge 0$ admits a Zariski-decomposition.

PROOF. By taking the σ -decomposition of D, we may assume that D is movable. Thus E is pseudo-effective and E + bL is nef by **2.6**-(3), since L is nef. Note that D is big. From the equivalence relations

$$D \sim_{\mathbb{R}} b\Gamma_{-1} + p^*E \sim_{\mathbb{R}} b\Gamma_1 + p^*(E+bL),$$

we infer that NBs(D) coincides with the non-singular complete intersection $V := \Gamma_1 \cap p^{-1}E$. Let $\psi: Z \to \mathbb{P}$ be the blowing-up along the ideal sheaf

$$\mathcal{J} := \mathcal{O}_{\mathbb{P}}(-m_1\Gamma_1) + \mathcal{O}_{\mathbb{P}}(-m_2p^*E),$$

where m_1 and m_2 are positive integers satisfying $m_2 E^2 = -m_1 (L \cdot E)$. Then the exceptional set $G_0 := \psi^{-1}(V)$ is isomorphic to the \mathbb{P}^1 -bundle

$$\mathbb{P}_V(\mathcal{O}_V(-m_1\Gamma_1) \oplus \mathcal{O}_V(-m_2p^*E)) \simeq \mathbb{P}_E(\mathcal{O}_E(m_1L) \oplus \mathcal{O}_E(-m_2E)).$$

Let $\nu: W \to Z$ be the normalization and let $\rho: W \to X$ be the composite. Then W has only quotient singularities and $G = \nu^{-1}G_0$ is isomorphic to G_0 by construction. The prime divisor G is \mathbb{Q} -Cartier and $\mathcal{O}_W(-kG) \simeq \rho^* \mathcal{J}/(\text{tor})$ for some $k \in \mathbb{N}$. Let r be the minimum positive number with $(\rho^*D - rG)|_G$ being pseudo-effective. Then $(\rho^*D - rG)|_G$ is nef but not big, since G is the \mathbb{P}^1 -bundle associated with a semistable vector bundle over the curve E. Thus $\rho^*D - rG$ is nef, since $\text{NBs}(\rho^*D) \subset G$. Let $\mu: Y \to W$ be a birational morphism from a non-singular projective variety. Then $(\mu^*\rho^*D - r\mu^*G)|_{\Gamma}$ is not big for any prime component Γ of μ^*G . Thus $P_{\sigma}(\mu^*\rho^*D) = \mu^*(\rho^*D - rG)$ by **III.3.7**. Next, we consider a special case of \mathbb{P}^2 -bundles in order to obtain a counterexample to the existence of Zariski-decomposition.

In the description of the projective bundle $\mathbb{P}(\mathcal{E}) = \mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$, we assume r = 3, $L_3 = 0$, i.e., $\mathcal{E} = \mathcal{O}_S(L_1) \oplus \mathcal{O}_S(L_2) \oplus \mathcal{O}_S$. For the support function $h \in \mathrm{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$, we know $D_h = \Gamma_{e_3} \sim H$ for the tautological divisor $H = H_{\mathcal{E}}$. For an \mathbb{R} -divisor Δ of S, $\Box_{\mathrm{PE}}(\Delta, h)$ is identified with

 $\Omega := \{ (x, y) \in \mathbb{R}^2_{>0} \mid x + y \le 1, \ \Delta + xL_1 + yL_2 \text{ is pseudo-effective} \}.$

We assume the following condition for S, L_1, L_2 , and Δ :

- (1) $\Box_{\text{PE}}(\Delta, h) = \Box_{\text{Nef}}(\Delta, h);$
- (2) $L_1, L_2, \Delta + L_1$, and $\Delta + L_2$ are ample;
- (3) $\alpha := \inf\{x + y \mid (x, y) \in \Omega\} > 0$ and there exists a unique point $P_0 = (x_0, y_0) \in \Omega$ with $x_0 + y_0 = \alpha$;
- (4) Ω is not locally polyhedral at P_0 ; In other words, if $(z, u) \in \mathbb{R}^2$ satisfies $zx_0 + uy_0 \leq zx + uy$ for any $(x, y) \in \Omega$, then $zx_0 + uy_0 < zx + uy$ for any $(x, y) \in \Omega \setminus \{P_0\}$.

Example Let S be an abelian surface of the Picard number $\rho(S) = 3$. For example, $S = E \times E$ for an elliptic curve E without complex multiplication. Then $PE(S) = Nef(S) \subset N^1(S)$ is a cone isometric to

$$\mathcal{C} = \{ (x, y, z) \in \mathbb{R}^3 \mid z^2 \ge x^2 + y^2, \ z \ge 0 \}$$

For points $\Delta = (-1, -1, 0) \notin \mathcal{C}$, $L_1 = (1, 0, a)$, $L_2 = (0, 1, a)$ for a > 1, the set $\{(x, y) \in \mathbb{R}^2 \mid \Delta + xL_1 + yL_2 \in \mathcal{C}\}$

$$\{(x,y)\in\mathbb{R}^2\mid\Delta+xL_1+yL_2\in\mathcal{C}\}$$

is written by

$$\{(x,y) \mid a^2(x+y)^2 \ge (x-1)^2 + (y-1)^2, \ x+y \ge 0\}.$$

Thus S, L_1, L_2 , and Δ satisfy the condition above.

2.10. Theorem If S, L_1 , L_2 , and Δ satisfy the condition above, then the \mathbb{R} -divisor $B = p^* \Delta + H$ on $\mathbb{P}(\mathcal{E})$ admits no Zariski-decompositions.

PROOF. We may assume that $\Omega^0 := \{(x,y) \in \Omega \mid y \geq y_0\}$ is not locally polyhedral at $P_0 = (x_0, y_0)$. In other words, if $z, u \in \mathbb{R}$ with $z \geq u \geq 0$ satisfies $zx + uy \geq zx_0 + uy_0$ for any $(x, y) \in \Omega$, then $zx + uy > zx_0 + uy_0$ for any $(x, y) \in \Omega^0 \setminus \{P_0\}$.

Let us consider the function on $N_{\mathbb{R}}$ defined by

 $h^{\ddagger}(\boldsymbol{x}) = \min\{\langle m, \boldsymbol{x} \rangle \mid m \in \Box_{\mathrm{Nef}}(\Delta, h)\}.$

Then $h^{\ddagger}(ze_1 + ue_2) = \min\{xz + yu \mid (x,y) \in \Omega\}$ for $(z,u) \in \mathbb{R}^2$. Here, note that $h^{\ddagger} \notin \operatorname{SFC}_{\mathsf{N}}(\Sigma, \mathbb{R})$, since Ω is not locally polyhedral at P_0 . We have $h^{\ddagger}(e_1) = h^{\ddagger}(e_2) = 0$, and $h^{\ddagger}(e_3) = -1$. Thus B is movable by **2.6**-(3). For the maximal cones $\boldsymbol{\sigma}_i = \sum_{j \neq i} \mathbb{R}_{\geq 0} e_j$, we have $h^{\ddagger}|_{\boldsymbol{\sigma}_1} = h|_{\boldsymbol{\sigma}_1}$ and $h^{\ddagger}|_{\boldsymbol{\sigma}_2} = h|_{\boldsymbol{\sigma}_2}$, but $h^{\ddagger}|_{\boldsymbol{\sigma}_3} \neq 0$; for example, $h^{\ddagger}(e_1 + e_2) = \alpha > 0$. Hence $\operatorname{NBs}(B)$ is just the section $\mathbb{V}(\boldsymbol{\sigma}_3, \mathcal{L}) = \Gamma_{e_1} \cap \Gamma_{e_2}$, since $\operatorname{NBs}(B)$ is stable under the action of \mathbb{T}_{N} . The blowing-up of \mathbb{P}

along $\mathbb{V}(\boldsymbol{\sigma}_3, \mathcal{L})$ corresponds to the subdivision $\boldsymbol{\Sigma}^{[1]}$ of $\boldsymbol{\Sigma}$ such that $\operatorname{Ver}(\boldsymbol{\Sigma}^{[1]}) = \{e_1, e_2, e_3, -e_3 = e_1 + e_2\}$. Let $\mu_1 \colon \mathbb{P}^{[1]} = \mathbb{T}_{\mathsf{N}}(\boldsymbol{\Sigma}^{[1]}, \mathcal{L}) \to \mathbb{P}$ be the blowing-up. We denote the structure morphism $\mathbb{P}^{[1]} \to S$ by the same p. For the exceptional divisor $\Gamma_{e_1+e_2} = \mathbb{V}(\mathbb{R}_{>0}(e_1+e_2), \mathcal{L}) \subset \mathbb{P}^{[1]}$, we have

$$\sigma_{\Gamma_{e_1+e_2}}(\mu_1^*B) = \sigma_{\Gamma_{e_1+e_2}}(p^*\Delta + D_h) = h^{\ddagger}(e_1 + e_2) = \alpha,$$

by 2.6-(3). Thus $P_{\sigma}(\mu_1^*B) = p^* \Delta + D_{h_1}$ for the support function $h_1 \in \operatorname{SF}_{\mathsf{N}}(\Sigma^{[1]}, \mathbb{R})$ such that $h_1(v) = h^{\ddagger}(v)$ for any $v \in \operatorname{Ver}(\Sigma^{[1]})$. Then $h^{\ddagger}(x) \ge h_1(x) \ge h(x)$ for any $x \in \mathbb{N}_{\mathbb{R}}$ and $\Box_{\operatorname{PE}}(\Delta, h_1) = \Box_{\operatorname{PE}}(\Delta, h)$. If $h^{\ddagger}(2e_1 + e_2) = h_1(2e_1 + e_2)$, then $h^{\ddagger}(x) = h_1(x)$ for any $x \in \mathbb{R}_{\ge 0}e_1 + \mathbb{R}_{\ge 0}(e_1 + e_2)$; it contradicts the assumption: Ω^0 is not locally polyhedral at P_0 . Thus $h^{\ddagger}(2e_1 + e_2) > h_1(2e_1 + e_2)$ and the section $\mathbb{V}(\mathbb{R}_{\ge 0}e_1 + \mathbb{R}_{\ge 0}(e_1 + e_2), \mathcal{L})$ of $\mathbb{P}^{[1]} \to S$ is a connected component of $\operatorname{NBs}(P_{\sigma}(\mu_1^*B))$. Let $\mathbb{P}^{[2]} \to \mathbb{P}^{[1]}$ be the blowing-up along the section, which corresponds to a subdivision $\Sigma^{[2]}$ of $\Sigma^{[1]}$ such that $\operatorname{Ver}(\Sigma^{[2]}) = \operatorname{Ver}(\Sigma^{[1]}) \cup \{2e_1 + e_2\}$. For the composite $\mu_2 : \mathbb{P}^{[2]} \to \mathbb{P}^{[2]}$ and for the projection $p: \mathbb{P}^{[2]} \to S$, we have $P_{\sigma}(\mu_2^*B) = p^*\Delta + D_{h_2}$ for $h_2 \in \operatorname{SF}_{\mathsf{N}}(\Sigma^{[2]}, \mathbb{R})$ defined by $h_2(v) = h^{\ddagger}(v)$ for any $v \in \operatorname{Ver}(\Sigma^{[2]})$. Here, $h^{\ddagger}(x) \ge h_2(x)$ for $x \in \mathbb{N}_{\mathbb{R}}$ and $h^{\ddagger}(3e_1 + 2e_2) > h_2(3e_1 + 2e_2)$ by the same reason above. In particular, the section $\mathbb{V}(\mathbb{R}_{\ge 0}(e_1 + e_2) + \mathbb{R}_{\ge 0}(2e_1 + e_2), \mathcal{L})$ of $p: \mathbb{P}^{[2]} \to S$ is a connected component of $\operatorname{NBs}(P_{\sigma}(\mu_2^*B))$. In this way, we can construct a non-singular subdivision $\Sigma^{[n]}$ of Σ such that

$$\operatorname{Ver}(\mathbf{\Sigma}^{[n]}) = \operatorname{Ver}(\mathbf{\Sigma}) \cup \{e_1 + e_2, 2e_1 + e_2, \dots, ne_1 + (n-1)e_2\}$$

for $n \geq 2$. Then, for the toric bundle $p: \mathbb{P}^{[n]} := \mathbb{T}_{\mathsf{N}}(\mathbf{\Sigma}^{[n]}, \mathcal{L}) \to S$, the induced birational morphism $\mathbb{P}^{[n+1]} \to \mathbb{P}^{[n]}$ is just the blowing up along the section

$$\mathbb{V}(\mathbb{R}_{>0}(e_1 + e_2) + \mathbb{R}_{>0}(ne_1 + (n-1)e_2), \mathcal{L})$$

of $p: \mathbb{P}^{[n]} \to S$, which is a connected component of $\operatorname{NBs}(P_{\sigma}(\mu_n^*B))$ for the birational morphism $\mu_n: \mathbb{P}^{[n]} \to \mathbb{P}$. Thus we are reduced to the following:

2.11. Lemma Let

$$\cdots \to X_n \xrightarrow{\mu_n} X_{n-1} \to \cdots \to X_1 \xrightarrow{\mu_1} X_0$$

be an infinite sequence of blowups in which centers $V_n \subset X_{n-1}$ are non-singular subvarieties of codimension two for any $n \ge 1$. Let E_n be the exceptional divisor $\mu_n^{-1}(V_n)$. Assume that there exist a sequence of pseudo-effective \mathbb{R} -divisors D_n on X_n satisfying the following conditions:

- (1) $\mu_n(V_{n+1}) = V_n;$
- (2) $\sigma_{V_n}(D_{n-1}) > 0;$
- (3) $D_n = \mu_n^* D_{n-1} \sigma_{V_n} (D_{n-1}) E_n.$

Then D_0 admits no Zariski-decompositions.

PROOF. Assume the contrary. Let $f: Y \to X_0$ be a birational morphism with $P_{\sigma}(f^*D_0)$ being nef. We may assume that f is a succession of blowups with nonsingular centers. Suppose that the image V'_1 of the composite $E_1 \subset X_1 \dots \to Y$ is not a divisor. Since $\operatorname{codim} V_1 = 2$, f is an isomorphism over a general point of V_1 . On the other hand, $V'_1 \subset \operatorname{Supp} N_{\sigma}(f^*D_0)$ and the divisor $N_{\sigma}(f^*D_0)$ is fexceptional, since $N_{\sigma}(D_0) = 0$. This is a contradiction. Therefore V'_1 is a prime divisor and is the proper transform of E_1 . Furthermore, there is a Zariski-closed subset $S_1 \subset X_0$ such that $V_1 \not\subset S_1$ and $Y \dots \to X_1$ is a morphism over $X_0 \smallsetminus S_1$. The birational mapping $Y \longrightarrow X_1$ is considered as a succession of blowups with non-singular centers over $X_0 \setminus S_1$. There is a birational morphism $\nu_1 \colon Y_1 \to Y$ from a non-singular projective variety such that $f_1: Y_1 \dots \to X_1$ is a morphism and ν_1 is an isomorphism over $X_0 \smallsetminus S_1$. Note that $P_{\sigma}(f_1^*D_1) = \nu_1^* P_{\sigma}(f^*D_0)$. Let V_2' be the image of the composite $E_2 \subset X_2 \cdots \to Y_1$. By the same argument as above, V'_2 is a divisor and is the proper transform of E_2 . Since ν_1 is isomorphic outside S_1, E_2 is not exceptional for the birational mapping $X_2 \dots \to Y$. Furthermore, there is a Zariski-closed subset $S_2 \subset X_1$ such that $\mu_1^{-1}(S_1) \subset S_2, V_2 \not\subset S_2$, and the birational mapping $Y_2 \longrightarrow X_2$ is a morphism over $X_1 \smallsetminus S_2$. There is also a birational morphism $\nu_2 \colon Y_2 \to Y_1$ from a non-singular projective variety such that $f_2: Y_2 \dots \to X_2$ is a morphism and ν_2 is an isomorphism over $X_1 \smallsetminus S_2$. By continuing the same arguments, we infer that the divisor E_n is not exceptional for the birational mapping $X_n \longrightarrow Y$ for any $n \ge 1$. This is a contradiction, since $f: Y \to X_0$ has only finitely many exceptional divisors.

§2.d. Explicit toric blowing-up. Let S be an n-dimensional complex analytic manifold and let B_1, B_2, \ldots, B_r for $r \leq n$ be non-singular prime divisors such that $B = \sum B_i$ is simple normal crossing. Let $p: \mathbb{V} = \mathbb{V}(\mathcal{E}) \to S$ be the geometric vector bundle associated with $\mathcal{E} = \bigoplus_{i=1}^r \mathcal{O}_S(B_i)$. This is also considered as a toric bundle as follows: let $\mathbb{N}^{\natural} = \sum_{i=1}^r \mathbb{Z}e_i$ be a free abelian group with a base $(e_1, e_2, \ldots, e_r), \sigma_{\natural} = \sum_{i=1}^r \mathbb{R}_{\geq 0}e_i$, and let

$$\mathcal{L}_{\natural} = \sum_{i=1}^{r} e_i \otimes \mathcal{O}_S(-B_i) \in \mathsf{N} \otimes \operatorname{Pic}(S).$$

Then $\mathbb{V} \simeq \mathbb{T}_{\mathsf{N}^{\natural}}(\boldsymbol{\sigma}_{\natural}, \mathcal{L}_{\natural})$. Let M^{\natural} be the dual $\mathsf{N}^{\natural^{\vee}}$. The prime divisor Γ_{e_i} corresponding to a vertex $e_i \in \operatorname{Ver}(\boldsymbol{\sigma}_{\natural})$ is the geometric vector bundle associated with the kernel of the projection $\mathcal{E} \to \mathcal{O}_S(B_i)$. Let us consider the section $T \subset \mathbb{V}$ of p determined by the surjective ring homomorphism

$$\operatorname{Sym}(\mathcal{E}^{\vee}) = \mathcal{L}[\boldsymbol{\sigma}_{\flat}^{\vee} \cap \mathsf{M}^{\flat}] \twoheadrightarrow \mathcal{O}_{S}$$

induced from the natural injections $\mathcal{O}_S(-B_i) \subset \mathcal{O}_S$ (cf. Chapter II, §1.b). By the identification $T \simeq S$, we have $B_i = \Gamma_{e_i}|_T$. If $U \subset S$ is an open subset over which $\mathcal{O}_S(B_i)$ are trivial line bundles, then the composite

$$U \simeq p^{-1}U \cap T \subset p^{-1}U \simeq \mathbb{C}^r \times U \to \mathbb{C}^r$$

is a smooth morphism and the pullback of the *i*-th coordinate hyperplane is $B_i \cap U$. Let Λ be a finite subdivision of σ_{\natural} . Then we have a bimeromorphic morphism $f: \mathbb{T}_{\mathsf{N}^{\natural}}(\Lambda, \mathcal{L}_{\natural}) \to \mathbb{V}$ of toric bundles over S. Let us consider $S_{\Lambda} := f^{-1}(T)$. Then S_{Λ} is a normal variety and the bimeromorphic morphism $f: S_{\Lambda} \to S$ satisfies the condition of **1.18**, since $f^{-1}U$ is smooth over the toric variety $\mathbb{T}_{\mathsf{N}^{\natural}}(\mathbf{\Lambda})$ for the open subset U above. Note that f is isomorphic over $S \smallsetminus B$.

2.12. Definition The bimeromorphic morphism $S_{\Lambda} \to S$ is called the *toric blowing-up* of S along the simple normal crossing divisor $B = \sum B_i$ with respect to the subdivision Λ .

Let Z be the intersection $B_1 \cap B_2 \cap \cdots \cap B_r$ which is smooth. If $Z \neq \emptyset$, then $T \cap p^{-1}Z = \mathbb{V}(\boldsymbol{\sigma}_{\natural}, \mathcal{L}_{\natural}) \cap p^{-1}Z$ and

$$S_{\mathbf{\Lambda}} \times_{S} Z = \bigcup_{\boldsymbol{\lambda} \in \mathbf{\Lambda}, \ \boldsymbol{\lambda} \cap \operatorname{Int} \boldsymbol{\sigma}_{\natural} \neq \emptyset} \mathbb{V}(\boldsymbol{\lambda}, \mathcal{L}_{\natural}|_{Z})$$

by 1.1. Here $\mathbb{V}(\lambda, \mathcal{L}_{\natural}|_{Z}) \simeq \mathbb{T}_{\mathsf{N}^{\natural}(\lambda)}(\Lambda/\lambda, \mathcal{L}_{\natural}|_{Z})$ and Λ/λ is a complete fan.

2.13. Proposition Let S be the toric bundle $\mathbb{T}_{N}(\Sigma, \mathcal{L})$ over non-singular variety Z for a non-singular fan Σ of a free abelian group N of rank l and for some $\mathcal{L} \in \mathsf{N}_{0} \otimes \operatorname{Pic}(Z)$. Let us fix mutually distinct vertices $v_{1}, v_{2}, \ldots, v_{r} \in \operatorname{Ver}(\Sigma)$ for $r \leq l$ and set $B_{i} = \Gamma_{v_{i}} = \mathbb{V}(\mathbb{R}_{\geq 0}v_{i}, \mathcal{L}) \subset S$. Let $f: S_{\Lambda} \to S$ be the toric blowing-up along the simple normal crossing divisor $B = \sum B_{i}$ with respect to a finite subdivision Λ of σ^{\natural} . Then S_{Λ} is isomorphic to the toric bundle $\mathbb{T}_{N}(\Sigma_{1}, \mathcal{L})$ over Z for a finite subdivision Σ_{1} of Σ and f is interpreted as the morphism of toric bundles over Z associated with the subdivision.

PROOF. By **2.2**, the toric bundle $\mathbb{T}_{\mathsf{N}^{\natural}}(\mathbf{\Lambda}, \mathcal{L}_{\natural})$ over S is isomorphic to the toric bundle $\mathbb{T}_{\mathsf{N}^{\natural}\oplus\mathsf{N}}(\mathbf{\Sigma}_{\mathbf{h}}, \widetilde{\mathcal{L}})$ over Z for $\widetilde{\mathcal{L}} = 0 \oplus \mathcal{L} \in (\mathsf{N}^{\natural} \oplus \mathsf{N}) \otimes \operatorname{Pic}(Z)$ and $\mathbf{h} \in \operatorname{SF}_{\mathsf{N}}(\mathbf{\Sigma}, \mathbb{Z}) \otimes \mathsf{N}^{\natural}$ defined as follows: As a function $|\mathbf{\Sigma}| \to (\mathsf{N}^{\natural})_{\mathbb{R}}$, \mathbf{h} is defined by

$$\mathbf{h}(v) = \begin{cases} e_i, & \text{if } v = v_i & \text{for } 1 \le i \le l, \\ 0, & \text{otherwise} \end{cases}$$

for $v \in Ver(\Sigma)$. Here $\Sigma_{\mathbf{h}} = \{C(\lambda, \sigma; \mathbf{h}) \mid \lambda \in \Lambda, \sigma \in \Sigma\}$ for

$$C(\boldsymbol{\lambda},\boldsymbol{\sigma};\mathbf{h}) = \{(x',x) \in (\mathsf{N}^{\natural})_{\mathbb{R}} \oplus \mathsf{N}_{\mathbb{R}} \mid x' + \mathbf{h}(x) \in \boldsymbol{\lambda}, \, x \in \boldsymbol{\sigma}\}.$$

Let $U_{\boldsymbol{\sigma}} \subset S$ be the open subset $\mathbb{T}_{\mathsf{N}}(\boldsymbol{\sigma}, \mathcal{L})$. Then $U_{\boldsymbol{\sigma}} \simeq \operatorname{Specan}_Z \mathcal{L}[\boldsymbol{\sigma}^{\vee} \cap \mathsf{M}]$. Let $V_{\boldsymbol{\lambda},\boldsymbol{\sigma}}$ be the toric bundle $\mathbb{T}_{\mathsf{N}^{\natural}}(\boldsymbol{\lambda}, \mathcal{L}_{\natural})$ over $U_{\boldsymbol{\sigma}}$ for a cone $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ or for $\boldsymbol{\lambda} = \boldsymbol{\sigma}_{\natural}$. Then $p^{-1}U_{\boldsymbol{\sigma}} \simeq V_{\boldsymbol{\sigma}_{\natural},\boldsymbol{\sigma}}$. We have an isomorphism $V_{\boldsymbol{\lambda},\boldsymbol{\sigma}} \simeq \operatorname{Specan} \mathcal{A}_{\boldsymbol{\lambda},\boldsymbol{\sigma}}$ for the subalgebra

$$\mathcal{A}_{\boldsymbol{\lambda},\boldsymbol{\sigma}} = \bigoplus_{m' \in \boldsymbol{\lambda}^{\vee} \cap \mathsf{M}^{\natural}, m \in \Box_{\langle m', \mathbf{h} \rangle}(\boldsymbol{\sigma})} \mathcal{L}^{m} \subset \widetilde{\mathcal{L}}[\mathsf{M}^{\natural} \oplus \mathsf{M}].$$

The section $T \cap p^{-1}U_{\sigma} \subset p^{-1}U_{\sigma}$ is determined by a surjective homomorphism $\mathcal{A}_{\sigma_{\mathfrak{h}},\sigma} \twoheadrightarrow \mathcal{L}[\sigma^{\vee} \cap \mathsf{M}]$ which is induced from the summation

$$igoplus_{m'\in oldsymbol{\lambda}^{ee}\cap \mathsf{M}^{\natural}}\mathcal{L}^m o \mathcal{L}^m.$$

Then the fiber product of $V_{\lambda,\sigma}$ and T over \mathbb{V} is isomorphic to $\operatorname{Specan}_Z \mathcal{B}_{\lambda,\sigma}$ for the \mathcal{O}_Z -algebra $\mathcal{B}_{\lambda,\sigma}$ defined as the image of a similar homomorphism $\mathcal{A}_{\lambda,\sigma} \to \mathcal{L}[\mathsf{M}]$.

For $m \in M$, there exists an $m' \in \lambda^{\vee} \cap M^{\natural}$ with $m \in \Box_{\langle m', \mathbf{h} \rangle}(\boldsymbol{\sigma})$ if and only if $m \in C_{\mathbf{h}}(\lambda, \boldsymbol{\sigma})^{\vee} \cap M$ for the cone

$$C_{\mathbf{h}}(\boldsymbol{\lambda},\boldsymbol{\sigma}) := \boldsymbol{\sigma} \cap \mathbf{h}^{-1}(\boldsymbol{\lambda}) = \{ x \in \boldsymbol{\sigma} \mid \mathbf{h}(x) \in \boldsymbol{\lambda} \}.$$

Hence, $\mathcal{B}_{\boldsymbol{\lambda},\boldsymbol{\sigma}} \simeq \mathcal{L}[C_{\mathbf{h}}(\boldsymbol{\lambda},\boldsymbol{\sigma})^{\vee} \cap \mathsf{M}]$. Therefore, $S_{\boldsymbol{\Lambda}} \simeq \mathbb{T}_{\mathsf{N}}(\boldsymbol{\Sigma}_{1},\mathcal{L})$ for the fan

 $\Sigma_1 = \{ C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma}) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \, \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \}.$

A function $h \in SF_{\mathsf{N}^{\natural}}(\mathbf{\Lambda}, \mathbb{R})$ defines an \mathbb{R} -Cartier divisor D_h on $\mathbb{T}_{\mathsf{N}^{\natural}}(\mathbf{\Lambda}, \mathcal{L}_{\natural})$. We denote its restriction to $S_{\mathbf{\Lambda}}$ by the same symbol D_h .

Remark For $h \in SF_{\mathsf{N}^{\natural}}(\mathbf{\Lambda}, \mathbb{Z})$, the invertible sheaf $\mathcal{O}_{\mathbb{V}}(D_h)$ is associated with the $\mathcal{L}[\boldsymbol{\sigma}_{\natural}^{\vee} \cap \mathsf{M}^{\natural}]$ -module $\mathcal{L}[\Box_h(\boldsymbol{\sigma}_{\natural}) \cap \mathsf{M}^{\natural}]$. Therefore, there is an isomorphism

$$f_*\mathcal{O}_{S_{\Lambda}}(D_h) \simeq \sum_{m \in \Box_h(\sigma_{\natural}) \cap \mathsf{M}^{\natural}} \mathcal{L}^m_{\natural} = \sum_{m \in \Box_h(\sigma_{\natural}) \cap \mathsf{M}^{\natural}} \mathcal{O}_S\Big(-\sum_{i=1}^r m_i B_i\Big) \subset j_*\mathcal{O}_{S \smallsetminus B}$$

for the open immersion $j: S \setminus B \hookrightarrow S$.

Suppose that S is projective and $Z = \bigcap_{i=1}^{r} B_i$ is non-empty and irreducible. For $h \in SF_{N^{\natural}}(\Lambda, \mathbb{R})$ and for an \mathbb{R} -divisor E of S, we define

$$\Box_{\operatorname{Nef}}(E|_Z,h) := \{ m \in \Box_h(\boldsymbol{\sigma}_{\natural}) \mid (E + \mathcal{L}^m_{\natural})|_Z \text{ is nef} \},\$$

Note that h is defined only on $|\mathbf{\Lambda}| = \boldsymbol{\sigma}_{\natural}$.

2.14. Lemma

- (1) The following conditions are equivalent to each other:
 - (a) The restriction $(D_h + f^*E)|_{f^{-1}Z}$ is nef;
 - (b) $l_{\lambda} \in \Box_{\operatorname{Nef}}(E|_{Z}, h)$ for any maximal cone $\lambda \in \Lambda$, where $l_{\lambda} \in \mathsf{M}_{\mathbb{R}}^{\natural}$ is defined by $h(x) = \langle l_{\lambda}, x \rangle$ for $x \in \lambda$;
 - (c) $\Box_{\operatorname{Nef}}(E|_Z,h) \neq \emptyset$ and, for any $x \in \sigma_{\natural}$,

 $h(x) = \inf\{\langle m, x \rangle \mid m \in \Box_{\operatorname{Nef}}(E|_Z, h)\}.$

(2) Assume that $E + \mathcal{L}^m_{\natural}$ is nef for any $m \in \boldsymbol{\sigma}^{\vee}_{\natural}$ with $(E + \mathcal{L}^m_{\natural})|_Z$ being nef. Then $D_h + f^*E$ is nef on $S_{\boldsymbol{\Lambda}}$ if the restriction $(D_h + f^*E)|_{f^{-1}Z}$ is nef.

PROOF. (1) The proof is similar to 2.4-(2).

(a) \Rightarrow (b): The restriction of $D_h + f^*E$ to $f^{-1}Z$ is nef if and only if its restriction to $\mathbb{T}_{\mathsf{N}^{\natural}(\lambda)}(\Lambda/\lambda, \mathcal{L}_{\natural}|_Z)$ is nef for any $\lambda \in \Lambda$ with $\lambda \cap \operatorname{Int} \sigma_{\natural} \neq \emptyset$. For such a cone λ , let us choose $l_{\lambda} \in \mathsf{M}_{\mathbb{R}}^{\natural}$ such that $h(x) = \langle l_{\lambda}, x \rangle$ for any $x \in \lambda$ and define $h^{\lambda}(y) := h(y) - \langle l_{\lambda}, y \rangle$ for $y \in \sigma_{\natural}$. Then $(E + \mathcal{L}^{l_{\lambda}})|_Z$ is nef if λ is a maximal cone. If λ_1 and λ_2 are maximal cones of Λ with dim $\lambda_1 \cap \lambda_2 = r - 1$, then $\lambda_1 \cap \lambda_2 \cap \operatorname{Int} \sigma_{\natural} \neq \emptyset$. By restricting $D_h + p^*E$ to $\mathsf{V}(\lambda_1 \cap \lambda_2, \mathcal{L})$ over S, we infer that $\langle l_{\lambda_1}, x \rangle \geq h(x)$ for $x \in \lambda_1 \cup \lambda_2$. Thus $l_{\lambda} \in \Box_h(\sigma_{\natural})$ for a maximal cone λ by the same argument as in the proof of 1.10-(5) $\Rightarrow 1.10$ -(2). Thus $l_{\lambda} \in \Box_{\operatorname{Nef}}(E|_Z, h)$. (b) \Leftrightarrow (c) is shown by the same argument as in 2.4-(2).

(b) \Rightarrow (a): Let W_Z be the intersection of the supports of effective \mathbb{R} -Cartier divisors $D_h + \operatorname{div}(\mathbf{e}(m))$ for all $m \in \Box_{\operatorname{Nef}}(E|_Z, h)$ in the toric bundle $\mathbb{T}_{\mathsf{N}^{\natural}}(\Lambda, \mathcal{L}_{\natural}|_Z)$

over Z. If $W_Z \neq \emptyset$, then $W_Z \supset \mathbb{V}(\lambda, \mathcal{L}_{\natural}|_Z)$ for a maximal cone; this contradicts $l_{\lambda} \in \Box_{\operatorname{Nef}}(E|_Z, h)$. Hence $W_Z = \emptyset$ and hence $(D_h + f^*E)|_{f^{-1}Z}$ is nef.

(2) By assumption, if $m \in \Box_{\operatorname{Nef}}(E|_Z,h)$, then $E + \mathcal{L}^m_{\natural}$ is nef. Let W be the intersection of the supports of effective \mathbb{R} -Cartier divisors $D_h + \operatorname{div}(\mathbf{e}(m))$ in $\mathbb{T}_{\mathsf{N}^{\natural}}(\mathbf{\Lambda}, \mathcal{L}_{\natural})$ for all $m \in \Box_{\operatorname{Nef}}(E|_Z, h)$. Suppose that $(D_h + f^*E)|_{f^{-1}Z}$ is nef. Then $W = \emptyset$ by the same argument above. Thus $D_h + f^*E$ is nef. \Box

2.15. Proposition Let S be a non-singular projective variety and let B_1, B_2, \ldots, B_r be non-singular prime divisors such that $B = \sum_{i=1}^r B_i$ is simple normal crossing, $r < \dim S$, and $Z = \bigcap_{i=1}^r B_i$ is non-empty and irreducible. Let E be an \mathbb{R} -divisor of S such that

$$\Box_{\operatorname{Nef}}(E) = \left\{ (m_i)_{i=1}^r \in \mathbb{R}^r \mid E - \sum_{i=1}^r m_i B_i \text{ is } nef \right\} \neq \emptyset.$$

Assume that $\Box_{\mathrm{Nef}}(E) \subset \mathrm{N}^1(S)$ is a rational polyhedral convex set and

$$\Box_{\operatorname{Nef}}(E) = \left\{ (m_i) \in \mathbb{R}_{\geq 0}^r \mid (E - \sum m_i B_i)|_Z \text{ is } nef \right\}.$$

Suppose either that $NBs(E) \subset Z$ or that E admits a Zariski-decomposition. Then there exist a toric blowing-up $f: S_{\Lambda} \to S$ along B associated with a finite nonsingular subdivision Λ of the first quadrant cone $\sigma_{\natural} \subset (N^{\natural})_{\mathbb{R}}$ for the free abelian group N^{\natural} of rank r related to B and a support function $h \in SF_{N^{\natural}}(\Lambda, \mathbb{R})$ such that $D_h + f^*E$ is nef and is the positive part of the σ -decomposition of f^*E .

PROOF. For the construction of the toric blowing-up, we consider the free abelian group N^{\natural} with the basis (e_1, e_2, \ldots, e_r) and the element $\mathcal{L}_{\natural} = \sum e_i \otimes \mathcal{O}_S(-B_i) \in N^{\natural} \otimes \operatorname{Pic}(S)$. Let $(\delta_1, \delta_2, \ldots, \delta_r)$ be the basis of $M^{\natural} = (N^{\natural})^{\vee}$ dual to (e_1, e_2, \ldots, e_r) . By the identification $(m_i) \leftrightarrow m = \sum m_i \delta_i$, we can regard $\Box_{\operatorname{Nef}}(E)$ as a subset of $M^{\natural}_{\mathbb{R}}$. We consider the following function on σ_{\natural} :

$$h^{\dagger}(x) := \min\{\langle m, x \rangle \mid m \in \Box_{\operatorname{Nef}}(E)\}.$$

Then $h^{\dagger} \in \operatorname{SFC}_{\mathsf{N}^{\natural}}(\boldsymbol{\sigma}_{\natural}, \mathbb{R})$. Note that h^{\dagger} is non-negative on $\boldsymbol{\sigma}_{\natural}$. Let $\boldsymbol{\Lambda}$ be a nonsingular finite subdivision of $\boldsymbol{\sigma}_{\natural}$ such that $h^{\dagger} \in \operatorname{SF}_{\mathsf{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$. Then $E^{\dagger} := D_{h^{\dagger}} + f^{*}E$ is nef by 2.14, since $\Box_{\operatorname{Nef}}(E) \subset \Box_{\operatorname{Nef}}(E|_{Z}, h^{\dagger})$.

The positive part $P_{\sigma}(f^*E)$ of the σ -decomposition is written by $D_h + f^*E$ for some $h \in SF_{N^{\natural}}(\Lambda, \mathbb{R})$, since Λ is non-singular. Here,

$$h(v) = \operatorname{mult}_{\Gamma_v} N_\sigma(f^*E) = \sigma_{\Gamma_v}(f^*E) \ge 0$$

for any $v \in \operatorname{Ver}(\mathbf{\Lambda})$. Note that $D_h + f^*E = P_{\sigma}(f^*E) \geq E^{\dagger}$, since E^{\dagger} is nef. In particular, $h(v) \leq h^{\dagger}(v)$ for any $v \in \operatorname{Ver}(\mathbf{\Lambda})$ and hence $h(x) \leq h^{\dagger}(x)$ for $x \in \boldsymbol{\sigma}_{\natural}$.

Let $v \in \operatorname{Ver}(\mathbf{\Lambda})$ be a vertex contained in $\operatorname{Int} \boldsymbol{\sigma}_{\natural}$. Then the corresponding prime divisor $\Gamma_v \subset S_{\mathbf{\Lambda}}$ is isomorphic to $\mathbb{V}(\mathbf{\Lambda}/\mathbb{R}_{\geq 0}v, \mathcal{L}_{\natural}|_Z)$ over Z. The restriction of $D_h + f^*E$ to Γ_v is pseudo-effective. Then, by **2.4**-(1), there is an $l_v \in \mathsf{M}_{\mathbb{R}}^{\natural}$ such that

- (1) $h(v) = \langle l_v, x \rangle$,
- (2) $\langle l_v, x \rangle \ge h(x)$ for any $x \in \bigcup_{v \in \mathbf{\lambda} \in \mathbf{\Lambda}} \mathbf{\lambda}$,
- (3) $E + \mathcal{L}_{\flat}^{l_v}$ is nef.

Since $l_v \in \Box_{\operatorname{Nef}}(E)$, we have $h(v) = \langle l_v, v \rangle \ge h^{\dagger}(v)$. Thus $h(v) = h^{\dagger}(v)$.

Suppose that NBs $(E) \subset Z$. If a vertex $v \in Ver(\Lambda)$ is not contained in Int σ_{\natural} , then $f(\Gamma_v) \not\subset Z$. Thus $\sigma_{\Gamma_v}(f^*E) = h(v) = 0$. Therefore $P_{\sigma}(f^*E) = E^{\dagger}$ and it gives the Zariski-decomposition.

Next suppose that there is a vertex $v \in \operatorname{Ver}(\Lambda)$ such that $h(v) < h^{\dagger}(v)$. Then $v \notin \operatorname{Int} \sigma_{\natural}$. There is a vertex $v' \in \operatorname{Ver}(\mathsf{N}, \Sigma)$ contained in $\operatorname{Int} \sigma_{\natural}$ such that $C(v, v') = \mathbb{R}_{\geq 0}v + \mathbb{R}_{\geq 0}v'$ is a two-dimensional cone contained in Λ . Here $h(v') = h^{\dagger}(v')$. The blowing-up $\nu: Y \to S_{\Lambda}$ along the intersection $\Gamma_v \cap \Gamma_{v'}$ corresponds to a finite subdivision Λ' of Λ in which the new vertex $w = v + v' \in \operatorname{Ver}(\Lambda')$ corresponds to the exceptional divisor Γ_w . We have

$$h^{\dagger}(w) = h^{\dagger}(v) + h^{\dagger}(v') = \sigma_{\Gamma_w}(\nu^* f^* E) = \operatorname{mult}_{\Gamma_w} N_{\sigma}(\nu^* f^* E),$$

$$h(w) = h(v) + h(v') = \operatorname{mult}_{\Gamma_w} \nu^* N_{\sigma}(f^* E),$$

$$\sigma_{\Gamma_w}(\nu^* P_{\sigma}(f^* E)) = h^{\dagger}(w) - h(w) = h^{\dagger}(v) - h(v) > 0.$$

Next, we consider the blowing-up of Y along $\Gamma_v \cap \Gamma_w$ whose exceptional divisor corresponds to w + v = 2v + v'. By continuing the process, we have a sequence $Y_k \to Y_{k-1} \to \cdots \to Y_1 = Y \to S_{\Lambda}$ of blowups such that the exceptional divisor of $\nu_k \colon Y_k \to Y_{k-1}$ corresponds to $w_k = kv + v'$. For the morphisms $f_i \colon Y_i \to Y \to S$, we have the following equalities:

$$h^{\dagger}(w_{k}) = kh^{\dagger}(v) + h^{\dagger}(v') = \sigma_{\Gamma_{w_{k}}}(f_{k}^{*}E),$$

$$\sigma_{\Gamma_{w_{k-1}}}(f_{k-1}^{*}E) + h(v) = \text{mult}_{\Gamma_{w_{k}}}\nu_{k}^{*}N_{\sigma}(f_{k-1}^{*}E),$$

$$\sigma_{\Gamma_{w_{k}}}(\nu_{k}^{*}P_{\sigma}(f_{k-1}^{*}E)) = h^{\dagger}(w_{k}) - \text{mult}_{\Gamma_{w_{k}}}\nu_{k}^{*}N_{\sigma}(f_{k-1}^{*}E)$$

$$= h^{\dagger}(v) - h(v) + h^{\dagger}(w_{k-1}) - \sigma_{\Gamma_{w_{k-1}}}(f_{k-1}^{*}E) > 0.$$

Thus the process does not terminate. Hence, E admits no Zariski-decompositions by **2.11**. Therefore, if E admits a Zariski-decomposition, then $h^{\dagger}(v) = h(v)$ for any $v \in \operatorname{Ver}(\Lambda)$ and hence $P_{\sigma}(f^*E)$ is equal to the nef \mathbb{R} -divisor E^{\dagger} .

§3. Vector bundles over a curve

§3.a. Filtration of vector bundles.

3.1. Lemma Let X be a complex analytic variety and let

$$0 \to \mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{E}_3 \to 0$$

be an exact sequence of vector bundles on X. Let $\pi_i \colon P_i \to X$ be the projective bundle $\mathbb{P}_X(\mathcal{E}_i)$ for i = 1, 2, 3. For the tautological line bundle $\mathcal{O}_{\mathcal{E}_1}(1)$, let \mathcal{F} be the vector bundle on P_1 determined by the commutative diagram

and let $q: P_{12} = \mathbb{P}_{P_1}(\mathcal{F}) \to P_1$ be the natural projection. Then, there is a morphism $\rho: P_{12} \to P_2$ over X such that ρ is isomorphic to the blowing-up along $P_3 \subset P_2$. Moreover, the divisor $E = \rho^{-1}P_3$ is isomorphic to $P_1 \times_Y P_3$ over P_3 , and $\rho^* \mathcal{O}_{\mathcal{E}_2}(1) \simeq q^* \mathcal{O}_{\mathcal{F}}(1) \otimes \mathcal{O}_{P_{12}}(-E)$.

PROOF. The diagram (IV-6) induces a surjective homomorphism $q^*\pi_1^*\mathcal{E}_2 \twoheadrightarrow \mathcal{O}_{\mathcal{F}}(1)$ defining ρ above. Let \mathcal{I} be the defining ideal sheaf of P_3 in P_2 . Then there is a surjective homomorphism

(IV-7)
$$\pi_2^* \mathcal{E}_1 \twoheadrightarrow \mathcal{IO}_{\mathcal{E}_2}(1)$$

inducing $\mathcal{E}_1 \simeq \pi_{2*}(\mathcal{IO}_{\mathcal{E}_2}(1))$. There is a commutative diagram

Thus $\rho^*(\mathcal{IO}_{\mathcal{E}_2}(1))/(\text{tor})$ is isomorphic to the line bundle $q^*\mathcal{O}_{\mathcal{E}_1}(1)$. Hence $\rho^*\mathcal{I}/(\text{tor})$ is the defining ideal of the Cartier divisor $E = \mathbb{P}_{P_1}(q^*\mathcal{E}_3) \simeq P_1 \times_Y P_3$ of P_{12} . Here $\mathcal{O}_{P_{12}}(-E) \otimes \rho^*\mathcal{O}_{\mathcal{E}_2}(1) \simeq q^*\mathcal{O}_{\mathcal{E}_1}(1)$ holds. Let $\mu: Q \to P_2$ be the blowing-up along P_3 . Then there is a morphism $\varphi: P_{12} \to Q$ such that $\rho = \mu \circ \varphi$. There is a morphism $Q \to P_1$ over X by the pullback μ^* of (IV-7). From (IV-6), we infer that there is a morphism $Q \to P_{12}$ over P_1 which is the inverse of φ .

Remark If rank $\mathcal{E}_1 = 1$, then $P_1 \simeq X$ and $P_{12} \simeq P_2$.

Let X be a complex analytic variety and let

$$\mathcal{E}_{\bullet} = [0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 \subset \cdots \subset \mathcal{E}_l = \mathcal{E}]$$

be a sequence of vector subbundles of \mathcal{E} on X such that $\operatorname{Gr}_i(\mathcal{E}_{\bullet}) = \mathcal{E}_i/\mathcal{E}_{i-1}$ is a non-zero vector bundle for $1 \leq i \leq l$. The number l is called the length of \mathcal{E}_{\bullet} and is denoted by $l(\mathcal{E}_{\bullet})$.

Let us consider the following functor F from the category of complex analytic spaces over X into the category of sets: for a morphism $f: Y \to X$, let $\varphi_i: f^* \mathcal{E}_i \twoheadrightarrow \mathcal{L}_i$ be surjective homomorphisms into line bundles \mathcal{L}_i of Y for $1 \leq i \leq l$ and let $u_i: \mathcal{L}_i \to \mathcal{L}_{i+1}$ be homomorphisms for $1 \leq i < l$ such that the diagrams

$$\begin{array}{cccc} f^* \mathcal{E}_i & \longrightarrow & f^* \mathcal{E}_{i+1} \\ \varphi_i & & & & \downarrow \varphi_{i+1} \\ \mathcal{L}_i & \stackrel{u_i}{\longrightarrow} & \mathcal{L}_{i+1} \end{array}$$

are all commutative. Let F(Y|X) be the set of the collections $(\varphi_i, u_i)_{i=1}^l$ above modulo isomorphisms.

3.2. Lemma-Definition The functor F above is representable by a projective smooth morphism over X. The representing morphism is denoted by

$$\pi = \pi_l \colon \mathbb{P}_X(\mathcal{E}_{\bullet}) = \mathbb{P}(\mathcal{E}_{\bullet}) = \mathbb{P}(\mathcal{E}_1 \subset \mathcal{E}_2 \subset \cdots \subset \mathcal{E}_l) \to X.$$

PROOF. We shall prove by induction on l. If l = 1, then F is representable by the projective bundle $\mathbb{P}_X(\mathcal{E}) = \mathbb{P}(\mathcal{E}_1)$. For the projective bundle $p_1 : \mathbb{P}(\mathcal{E}_1) \to X$, let \mathcal{K}_1 be the kernel of $p_1^* \mathcal{E}_1 \to \mathcal{O}_{\mathcal{E}_1}(1)$. Then \mathcal{K}_1 is a subbundle of $p_1^* \mathcal{E}_i$ for any i. Let \mathcal{E}'_i be the quotient vector bundle $p_1^* \mathcal{E}_i / \mathcal{K}_1$. Then we have a sequence of vector bundles

$$\mathcal{O}_{\mathcal{E}_1}(1) \subset \mathcal{E}'_2 \subset \mathcal{E}'_3 \subset \cdots \subset \mathcal{E}'_l.$$

By induction, the functor F with respect to the filtration above but starting from \mathcal{E}_2' is represented by

$$Q = \mathbb{P}_{\mathbb{P}(\mathcal{E}_1)}(\mathcal{E}'_2 \subset \cdots \subset \mathcal{E}'_l) \to \mathbb{P}(\mathcal{E}_1).$$

Let $((\varphi_i: f^*\mathcal{E}_i \to \mathcal{L}_i), u_i)$ be an element of F(Y/X) for a morphism $f: Y \to X$ from an analytic space. Then φ_1 induces a morphism $f_1: Y \to \mathbb{P}(\mathcal{E}_1)$ over X and φ_i induces a surjective homomorphism $f_1^*\mathcal{E}'_i \twoheadrightarrow \mathcal{L}_i$. Hence the element of F(Y/X)defines a morphism $Y \to Q$ over X. Conversely, from a morphism $h: Y \to Q$, we have a morphism $f_1: Y \to Q \to \mathbb{P}(\mathcal{E}_1)$, surjective homomorphisms $f_1^*\mathcal{E}'_i \twoheadrightarrow \mathcal{L}_i$ into line bundles for $2 \leq i \leq l$, and compatible homomorphisms $u_i: \mathcal{L}_i \to \mathcal{L}_{i+1}$ for $2 \leq i < l$. We define $\mathcal{L}_1 = f_1^*\mathcal{O}_{\mathcal{E}_1}(1), \varphi_1: f^*\mathcal{E}_1 \to \mathcal{L}_1$ to be the pullback of $p_1^*\mathcal{E}_1 \to \mathcal{O}_{\mathcal{E}_1}(1), \varphi_i$ to be the composite $f^*\mathcal{E}_i \to f_1^*\mathcal{E}'_i \to \mathcal{L}_i$ for $2 \leq i \leq l$, and $u_1: \mathcal{L}_1 \to \mathcal{L}_2$ to be the composite

$$\mathcal{L}_1 = f_1^* \mathcal{O}_{\mathcal{E}_1}(1) \to f_1^* \mathcal{E}_2' \to \mathcal{L}_2.$$

Then (φ_i, u_i) is an element of F(Y|X). In this way, we infer that $Q \to X$ represents F with respect to \mathcal{E}_{\bullet} .

For $1 \leq k \leq l$, we define the following filtrations:

$$\mathcal{E}_{\bullet \leq k} = [\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k], \quad \mathcal{E}_{\bullet \geq k} = [\mathcal{E}_k \subset \cdots \subset \mathcal{E}_l].$$

Let $((\varphi_i : \pi^* \mathcal{E}_i \to \mathcal{L}_i), u_i)$ be the universal element of $F(\mathbb{P}(\mathcal{E}_{\bullet})/X)$. Note that u_i are all injective. By considering (φ_i, u_i) for $i \leq k$ or $i \geq k$, we have natural morphisms $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \leq k})$ and $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \geq k})$. We have a Cartesian commutative diagram $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \geq k})$.

$$(\text{IV-8}) \xrightarrow{\mathbb{P}(\mathcal{E}_{\bullet})} \xrightarrow{\mathbb{P}(\mathcal{E}_{\bullet} \ge k)} \xrightarrow{\mathbb{P}(\mathcal{E}_{\bullet} \ge k)} \xrightarrow{\mathbb{P}(\mathcal{E}_{\bullet})} \xrightarrow{\mathbb{P}(\mathcal{E}_{k})} \xrightarrow{\mathbb{P}(\mathcal{E$$

for $1 \leq k \leq l$. Here vertical arrows are smooth projective morphisms by the proof of **3.2**. We infer that the horizontal arrows are bimeromorphic by **3.1**. The bimeromorphic morphism $\mathbb{P}(\mathcal{E}_1 \subset \mathcal{E}_2) \to \mathbb{P}(\mathcal{E}_2)$ is an isomorphism if and only if \mathcal{E}_1 is a line bundle. Thus $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \geq k})$ is an isomorphism for some k > 1 if and only if l = 2 and \mathcal{E}_1 is a line bundle.

3.3. Lemma

(1) The pullback of $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \subset \mathbb{P}(\mathcal{E}_{k+1})$ by the morphism $\mathbb{P}(\mathcal{E}_{\bullet \geq k+1}) \to \mathbb{P}(\mathcal{E}_{k+1})$ is isomorphic to

$$\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k \subset \cdots \subset \mathcal{E}_l/\mathcal{E}_k).$$

(2) Let E_k be the pullback of $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \subset \mathbb{P}(\mathcal{E}_{k+1})$ by the composite $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \geq k+1}) \to \mathbb{P}(\mathcal{E}_{k+1})$ for $1 \leq k \leq l-1$. Then E_k is a divisor isomorphic to

$$\mathbb{P}(\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k) \times_X \mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k \subset \cdots \subset \mathcal{E}_l/\mathcal{E}_k).$$

Here, E_k is not exceptional for the bimeromorphic morphism $\mathbb{P}(\mathcal{E}_{\bullet}) \rightarrow \mathbb{P}(\mathcal{E}_{\bullet \geq k+1})$ if and only if $k = \operatorname{rank} \mathcal{E}_1 = 1$.

(3) For indices $1 \leq a(1) < a(2) < \cdots < a(e) \leq l-1$, the intersection $\bigcap_{i=1}^{e} E_{a(j)}$ is isomorphic to the fiber product

$$\prod_{j=1}^{e+1} \mathbb{P}(\mathcal{E}_{a(j-1)+1}/\mathcal{E}_{a(j-1)} \subset \cdots \subset \mathcal{E}_{a(j)}/\mathcal{E}_{a(j-1)})$$

over X, where a(0) = 0 and a(e+1) = l.

(4) Let H_i be the pullback of the tautological divisor $H_{\mathcal{E}_i}$ by the composite $\mathbb{P}(\mathcal{E}_{\bullet}) \to \mathbb{P}(\mathcal{E}_{\bullet \leq i}) \to \mathbb{P}(\mathcal{E}_i)$. Then $H_{i+1} - H_i \sim E_i$ for $1 \leq i \leq l-1$.

PROOF. Let $f: Y \to X$ be an analytic space over X.

(1) Let F' be the similar functor to F with respect to the filtration $\mathcal{E}_{\bullet \geq k+1}$. Let (φ_i, u_i) be an element of F'(Y/X). Then it induces a morphism into $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \subset \mathbb{P}(\mathcal{E}_{k+1})$ if and only if the the composite $f^*\mathcal{E}_k \to f^*\mathcal{E}_{k+1} \to \mathcal{L}_{k+1}$ is zero. Thus we have the expected isomorphism.

(2) Let (φ_i, u_i) be an element of F(Y/X). Then it induces a morphism into $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \subset \mathbb{P}(\mathcal{E}_{k+1})$ if and only if $u_k \colon \mathcal{L}_k \to \mathcal{L}_{k+1}$ is zero. Thus E_k is expressed as above. This is a divisor since dim $E_k = \dim \mathbb{P}(\mathcal{E}_k) + \dim \mathbb{P}(\mathcal{E}/\mathcal{E}_k) - \dim X = \dim \mathbb{P}(\mathcal{E}) - 1$. This is not exceptional if and only if $\mathbb{P}(\mathcal{E}_{\bullet \leq k}) \to X$ is an isomorphism. It is equivalent to: $k = \operatorname{rank} \mathcal{E}_1 = 1$.

(3) Let (φ_i, u_i) be an element of F(Y/X). It induces a morphism into the intersections of $E_{a(j)}$ if and only if $u_{a(j)} = 0$ for any j. Thus the isomorphism exists.

(4) The pullback of $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \subset \mathbb{P}(\mathcal{E}_{k+1})$ by the morphism $\mathbb{P}(\mathcal{E}_k \subset \mathcal{E}_{k+1}) \to \mathbb{P}(\mathcal{E}_{k+1})$ is a divisor whose pullback is E_k . The linear equivalence follows from **3.1**.

3.4. Lemma The projective morphism $\mathbb{P}(\mathcal{E}_{\bullet}) \to X$ is also characterized by the following way inductively:

- $\langle 2 \rangle \mathbb{P}(\mathcal{E}_1 \subset \mathcal{E}_2)$ is the blown-up of $\mathbb{P}(\mathcal{E}_2)$ along $\mathbb{P}(\mathcal{E}_2/\mathcal{E}_1)$.
- $\langle 3 \rangle \mathbb{P}(\mathcal{E}_1 \subset \mathcal{E}_2 \subset \mathcal{E}_3) \text{ is the blown-up of } \mathbb{P}(\mathcal{E}_2 \subset \mathcal{E}_3) \text{ along } \mathbb{P}(\mathcal{E}_2/\mathcal{E}_1 \subset \mathcal{E}_3/\mathcal{E}_1).$
- $\langle l \rangle \mathbb{P}(\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l)$ is the blown-up of $\mathbb{P}(\mathcal{E}_2 \subset \cdots \subset \mathcal{E}_l)$ along $\mathbb{P}(\mathcal{E}_2/\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l/\mathcal{E}_1)$.

PROOF. By the Cartesian diagrams (IV-8) and by **3.1**, it is enough to show that the pullback of $\mathbb{P}(\mathcal{E}/\mathcal{E}_1) \subset \mathbb{P}(\mathcal{E})$ by $\mathbb{P}(\mathcal{E}_{\bullet \geq 2}) \to \mathbb{P}(\mathcal{E})$ is isomorphic to

$$\mathbb{P}(\mathcal{E}_2/\mathcal{E}_1 \subset \cdots \subset \mathcal{E}/\mathcal{E}_1).$$

This is done in 3.3-(1).

3.5. Lemma Let $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_{l+1}$ be invertible sheaf on X and set $\mathcal{E}_k = \bigoplus_{i=1}^k \mathcal{L}_i$ for $1 \leq k \leq l+1$. Then, for the filtration $\mathcal{E}_{\bullet} = [\mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_{l+1}]$, the variety $\mathbb{P}_X(\mathcal{E}_{\bullet})$ is isomorphic to the toric bundle $\mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$ over X for some fan Σ of a free abelian group N of rank l with a basis (e_1, e_2, \ldots, e_l) and for the element

$$\mathcal{L} = \sum_{i=1}^{l} e_i \otimes \left(\mathcal{L}_i \otimes \mathcal{L}_{l+1}^{-1} \right) \in \mathsf{N} \otimes \operatorname{Pic}(X).$$

PROOF. We may assume $l \geq 1$. If l = 1, then $\mathbb{P}(\mathcal{E}_{\bullet})$ is a \mathbb{P}^{1} -bundle associated with $\mathcal{E}_{2} = \mathcal{L}_{1} \oplus \mathcal{L}_{2}$. Thus it is enough to take the standard fan $\Sigma = \{\mathbb{R}_{\geq 0}e_{1}, \mathbb{R}_{\geq 0}(-e_{1}), \{0\}\}$. For $l \geq 2$, we shall construct the fan Σ of the abelian group N satisfying the required condition by induction on l. We consider a free abelian group N_{l+1} of rank l + 1 containing N such that N_{l+1} = N $\oplus \mathbb{Z}e_{l+1}$ for a new element $e_{l+1} \in \mathbb{N}_{l+1}$. For $1 \leq i \leq l$, we define $\mathbb{N}_{i} := \sum_{1 \leq j \leq i} \mathbb{Z}e_{j}$ and $v_{i+1} := -\sum_{1 \leq j \leq i} e_{i} \in \mathbb{N}_{i}$. Let $\pi_{i} \colon \mathbb{N}_{i+1} \to \mathbb{N}_{i}$ be the homomorphism given by $\pi_{i}(e_{j}) = e_{j}$ for $j \leq i$ and $\pi_{i}(e_{i+1}) = -v_{i+1}$. Let us consider the first quadrant cone $\sigma_{l+1} = \sum_{i=1}^{l} \mathbb{R}_{\geq 0}e_{i}$ and the following cones of $\mathbb{N}_{\mathbb{R}}$ for $1 \leq i \leq l$:

$$\boldsymbol{\sigma}_i = \sum_{1 \leq j \leq l, \ i \neq j} \mathbb{R}_{\geq 0} e_j + \mathbb{R}_{\geq 0} v_{l+1}, \quad \boldsymbol{\sigma}'_i = \sum_{1 \leq j \leq l, \ i \neq j} \mathbb{R}_{\geq 0} e_j + \mathbb{R}_{\geq 0} (-v_{l+1}).$$

Let Σ^{\flat} be the fan of N consisting of all the faces of the cones σ_i for $1 \leq i \leq l+1$. Then we have an isomorphism $\mathbb{T}_{\mathsf{N}}(\Sigma^{\flat}, \mathcal{L}) \simeq \mathbb{P}_X(\mathcal{E}_l)$. Similarly, let Σ^{\sharp} be the fan of N consisting of all the faces of σ_i and σ'_i for $1 \leq i \leq l$. Then Σ^{\sharp} is a finite subdivision of Σ^{\flat} and the associated morphism $\mathbb{T}_{\mathsf{N}}(\Sigma^{\sharp}, \mathcal{L}) \to \mathbb{T}_{\mathsf{N}}(\Sigma^{\flat}, \mathcal{L})$ is just the blowing up of $\mathbb{P}_X(\mathcal{E}_l)$ along the section $\mathbb{P}_X(\mathcal{E}_l/\mathcal{E}_{l-1})$. Thus $\mathbb{T}_{\mathsf{N}}(\Sigma^{\sharp}, \mathcal{L}) \simeq \mathbb{P}(\mathcal{E}_{l-1} \subset \mathcal{E}_l)$. Here, the \mathbb{P}^1 -bundle structure $\mathbb{T}_{\mathsf{N}}(\Sigma^{\sharp}) \to \mathbb{T}_{\mathsf{N}_{l-1}}(\Sigma^{\flat}_{l-1}) \simeq \mathbb{P}(\mathcal{E}_{l-1})$ is induced from $\pi_{l-1} \colon \mathsf{N} \to \mathsf{N}_{l-1}$. By induction, there exists a fan Σ_{l-1} of N_{l-1} such that $\mathbb{T}_{\mathsf{N}_{l-1}}(\Sigma_{l-1}, \mathcal{L}) \simeq \mathbb{P}_X(\mathcal{E}_{\bullet \leq l-1})$. The fiber product of $\mathbb{P}(\mathcal{E}_{l-1} \subset \mathcal{E}_l)$ and $\mathbb{P}(\mathcal{E}_{\bullet \leq l-1})$ over $\mathbb{P}(\mathcal{E}_{l-1})$ is isomorphic to $\mathbb{P}(\mathcal{E}_{\bullet})$. Thus the set

$$\mathbf{\Sigma}_l = \{ oldsymbol{\sigma} \cap \pi_{l-1}^{-1} oldsymbol{ au} \mid oldsymbol{\sigma} \in \mathbf{\Sigma}^{\sharp}, oldsymbol{ au} \in \mathbf{\Sigma}_{l-1} \}$$

is a fan giving an isomorphism $\mathbb{T}_{\mathsf{N}}(\Sigma_l, \mathcal{L}) \simeq \mathbb{P}_X(\mathcal{E}_{\bullet})$.

§3.b. Projective bundles over a curve. This subsection is devoted to proving the following:

3.6. Theorem Every pseudo-effective \mathbb{R} -divisor of a projective bundle $\mathbb{P}_C(\mathcal{E})$ defined over a non-singular projective curve C associated with a vector bundle \mathcal{E} admits a Zariski-decomposition.

We may assume $r = \operatorname{rank} \mathcal{E} > 1$. Let $p: \mathbb{P}(\mathcal{E}) = \mathbb{P}_C(\mathcal{E}) \to C$ be the structure morphism of the projective bundle, $H_{\mathcal{E}}$ a tautological divisor associated with \mathcal{E} ,

and $\mathcal{O}_{\mathcal{E}}(1)$ the tautological line bundle $\mathcal{O}_{\mathbb{P}}(H_{\mathcal{E}})$. Let F be a fiber of p. Then $N^1(\mathbb{P}(\mathcal{E})) = \mathbb{R}c_1(F) + \mathbb{R}c_1(H_{\mathcal{E}})$. The Harder-Narasimhan filtration:

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l = \mathcal{E}$$

is characterized by the following two conditions:

- (1) $\mathcal{E}_i/\mathcal{E}_{i-1}$ is a non-zero semi-stable vector bundle for any $1 \le i \le l$;
- (2) $\mu(\mathcal{E}_i/\mathcal{E}_{i-1}) > \mu(\mathcal{E}_{i+1}/\mathcal{E}_i)$ for $1 \le i \le l-1$, where $\mu(\mathcal{E}) := \deg(\mathcal{E})/\operatorname{rank}(\mathcal{E})$.

The number l is called the *length* of the Harder–Narasimhan filtration of \mathcal{E} and is denoted by $l(\mathcal{E})$. We define $\mu_{\max}(\mathcal{E}) := \mu(\mathcal{E}_1)$ and $\mu_{\min}(\mathcal{E}) := \mu(\mathcal{E}/\mathcal{E}_{l-1})$. We have only to study the Zariski-decomposition problem for the \mathbb{R} -divisor $D_t := H_{\mathcal{E}} - tF$ for $t \in \mathbb{R}$. We begin with the following:

3.7. Lemma Let \mathcal{F}^1 , \mathcal{F}^2 , ..., \mathcal{F}^n be vector bundles on a non-singular projective curve C and let Z be the fiber product

$$\mathbb{P}_C(\mathcal{F}^1) \times_C \mathbb{P}_C(\mathcal{F}^2) \times_C \cdots \times_C \mathbb{P}_C(\mathcal{F}^n).$$

For the projections $p_i: Z \to \mathbb{P}_C(\mathcal{F}^i)$, $\boldsymbol{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, $t \in \mathbb{R}$, and a fiber F of $p: Z \to C$, let $D(\boldsymbol{y}, t)$ be the \mathbb{R} -divisor

$$\sum_{i=1}^{n} y_i p_i^* H_{\mathcal{F}^i} - tF$$

(1) Suppose that

$$H^0(C, \operatorname{Sym}^{a_1}(\mathcal{F}^1) \otimes \operatorname{Sym}^{a_2}(\mathcal{F}^2) \otimes \cdots \otimes \operatorname{Sym}^{a_n}(\mathcal{F}^n)) \neq 0$$

for some $a_1, \ldots, a_n \in \mathbb{Z}_{\geq 0}$. Then

$$\sum_{i=1}^{n} a_i \mu_{\max}(\mathcal{F}^i) \ge 0.$$

(2) $D(\boldsymbol{y},t)$ is pseudo-effective if and only if $\boldsymbol{y} \in \mathbb{R}^n_{\geq 0}$ and

$$\sum_{i=1}^{n} y_i \mu_{\max}(\mathcal{F}^i) \ge t.$$

(3) $D(\boldsymbol{y},t)$ is nef if and only if $\boldsymbol{y} \in \mathbb{R}^n_{\geq 0}$ and

$$\sum_{i=1}^{n} y_i \mu_{\min}(\mathcal{F}^i) \ge t.$$

PROOF. (1) Let \mathcal{F}^i_{\bullet} be the Harder–Narasimhan filtration of \mathcal{F}^i . By considering successive quotients of symmetric tensors, we can find non-negative integers b^i_k for $1 \leq i \leq n$ and for $0 \leq k \leq l(\mathcal{F}^i)$ such that

$$\sum_{k=1}^{l(\mathcal{F}^i)} b_k^i = a_i$$

and the vector bundle

$$\mathcal{B} = \bigotimes_{i=1}^{n} \left(\bigotimes_{k=1}^{l(\mathcal{F}^{i})} \operatorname{Sym}^{b_{k}^{i}} \operatorname{Gr}_{k}(\mathcal{F}_{\bullet}^{i}) \right)$$

admits a non-zero global section. Here \mathcal{B} is semi-stable (cf. [82]) and hence

$$\mu(\mathcal{B}) = \sum_{i=1}^{n} \sum_{k=1}^{l(\mathcal{F}^{i})} b_{k}^{i} \mu(\operatorname{Gr}_{k}(\mathcal{F}^{i}))$$

is non-negative. Thus

$$\sum_{i=1}^{n} a_i \mu_{\max}(\mathcal{F}^i) \ge \mu(\mathcal{B}) \ge 0$$

(2) The \mathbb{R} -linear equivalence relation

$$D(\boldsymbol{y},t) \sim_{\mathbb{R}} \sum_{i=1}^{n} y_i (H_{\mathcal{F}^i} - \mu_{\max}(\mathcal{F}^i)F) + \left(\sum_{i=1}^{n} y_i \mu_{\max}(\mathcal{F}^i) - t\right)F$$

gives one implication. In order to show the other one, we have only to consider the case where $\boldsymbol{y} \in \mathbb{Z}^n$ and $t \in \mathbb{Z}$, since the set of the first Chern classes of big \mathbb{Q} -divisors is dense in the pseudo-effective cone. Then we have an isomorphism

$$p_*\mathcal{O}_Z(D(\boldsymbol{y},t)) \simeq \bigotimes_{i=1}^n \operatorname{Sym}^{y_i}(\mathcal{F}^i) \otimes \mathcal{O}_C(-tP)$$

where $P = p(F) \in C$. Hence, if $|D(\boldsymbol{y}, t)| \neq \emptyset$, then $\boldsymbol{y} \in \mathbb{Z}_{\geq 0}^n$ and $\sum_{i=1}^n y_i \mu_{\max}(\mathcal{F}^i) \geq t$ by (1). Thus we are done.

(3) The \mathbb{R} -linear equivalence relation

$$D(\boldsymbol{y},t) \sim_{\mathbb{R}} \sum_{i=1}^{n} y_i (H_{\mathcal{F}^i} - \mu_{\min}(\mathcal{F}^i)F) + \left(\sum_{i=1}^{n} y_i \mu_{\min}(\mathcal{F}^i) - t\right)F$$

gives one implication. If $D(\mathbf{y}, t)$ is nef, then the restriction to the subspace

$$\mathbb{P}(\mathcal{F}^1/\mathcal{F}^1_{l(\mathcal{F}^1)-1}) \times_C \cdots \times_C \mathbb{P}(\mathcal{F}^n/\mathcal{F}^n_{l(\mathcal{F}^n)-1})$$

is also nef. Hence $\boldsymbol{y} \in \mathbb{R}^n_{>0}$ and $\sum y_i \mu_{\min}(\mathcal{F}^i) \ge t$ by (2). Thus we are done. \Box

By applying **3.7** to the case $n = 1, \mathcal{E} = \mathcal{F}^1$, we have:

3.8. Corollary The \mathbb{R} -divisor D_t is pseudo-effective if and only if $t \leq \mu_{\max}(\mathcal{E})$. It is nef if and only if $t \leq \mu_{\min}(\mathcal{E})$.

3.9. Lemma $H_{\mathcal{E}} - \mu(\mathcal{E}_1)F$ admits a Zariski-decomposition.

PROOF. We may assume that \mathcal{E} is not semi-stable. Thus $l = l(\mathcal{E}) \geq 2$. Let $\rho: Y = \mathbb{P}(\mathcal{E}_1 \subset \mathcal{E}) \to \mathbb{P}(\mathcal{E})$ be the blowing-up along $\mathbb{P}(\mathcal{E}/\mathcal{E}_1)$. Then the exceptional divisor E is isomorphic to $\mathbb{P}(\mathcal{E}_1) \times_C \mathbb{P}(\mathcal{E}/\mathcal{E}_1)$ by **3.1**. Let $\pi: Y \to \mathbb{P}(\mathcal{E}_1)$ be the induced projective bundle structure. The restrictions of ρ and π to E are the first and the second projections, respectively. We shall calculate the ν -decomposition of $\rho^*(H_{\mathcal{E}} - \mu(\mathcal{E}_1)F)$. Since $\pi^*H_{\mathcal{E}_1} \sim \rho^*H_{\mathcal{E}} - E$, the conormal bundle $\mathcal{O}_E(-E)$ is isomorphic to $\pi^*\mathcal{O}_{\mathcal{E}_1}(1) \otimes \rho^*\mathcal{O}_{\mathcal{E}/\mathcal{E}_1}(-1)$. Therefore, by **3.7**, the restriction of $\rho^*(H_{\mathcal{E}} - \mu(\mathcal{E}_1)F) - \alpha E$ to E is pseudo-effective if and only if $0 \leq \alpha \leq 1$ and $\mu(\mathcal{E}_1) \leq \alpha \mu(\mathcal{E}_1) + (1 - \alpha)\mu(\mathcal{E}_2/\mathcal{E}_1)$. Since $\mu(\mathcal{E}_1) > \mu(\mathcal{E}_2/\mathcal{E}_1)$, these inequalities hold if and only if $\alpha = 1$. Therefore $P_{\nu}(\rho^*(H_{\mathcal{E}} - \mu(\mathcal{E}_1)F))$ is equal to the nef \mathbb{R} -divisor $\pi^*(H_{\mathcal{E}_1} - \mu(\mathcal{E}_1)F)$. Thus we have a Zariski-decomposition.

3.10. Proposition If $l(\mathcal{E}) = 2$, then every pseudo-effective \mathbb{R} -divisor of $\mathbb{P}(\mathcal{E})$ admits a Zariski-decomposition.

PROOF. D_t is pseudo-effective but not nef if and only if $\mu(\mathcal{E}/\mathcal{E}_1) < t \leq \mu(\mathcal{E}_1)$. Let $\rho: Y \to \mathbb{P}(\mathcal{E})$ and E be the same as in **3.9**. By the same argument, the \mathbb{R} -divisor $(\rho^*(D_t) - \alpha E)|_E$ is pseudo-effective if and only if $t \leq \alpha \mu(\mathcal{E}_1) + (1-\alpha)\mu(\mathcal{E}/\mathcal{E}_1)$. Since $\mu(\mathcal{E}/\mathcal{E}_1) < t \leq \mu(\mathcal{E}_1)$, the minimum α_1 satisfying the inequality above attains the equality: $t = \alpha_1 \mu(\mathcal{E}_1) + (1-\alpha_1)\mu(\mathcal{E}/\mathcal{E}_1)$. Thus $P_{\nu}(\rho^* D_t)$ is nef by

$$P_{\nu}(\rho^* D_t) \sim_{\mathbb{R}} \alpha_1 \pi^* (H_{\mathcal{E}_1} - \mu(\mathcal{E}_1)F) + (1 - \alpha_1)\rho^* (H_{\mathcal{E}} - \mu(\mathcal{E}/\mathcal{E}_1)F).$$

We assume $l \geq 3$. Let $S = \mathbb{P}(\mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l) \to C$ be the projective smooth morphism defined in **3.2** for the Harder–Narasimhan filtration \mathcal{E}_{\bullet} . Let $\rho: S \to \mathbb{P}(\mathcal{E})$ be the induced birational morphism and let E_k for $1 \leq k \leq l-1$ and H_i for $1 \leq i \leq l$ be the divisors defined in **3.3**. Note that $E = \sum_{k=1}^{l-1} E_k$ is a simple normal crossing divisor. By **3.9**, we may assume $\mu(\mathcal{E}/\mathcal{E}_{l-1}) < t < \mu(\mathcal{E}_1)$, equivalently $D_t = H_{\mathcal{E}} - tF$ is not nef but big. Let us define $\mu_i = \mu(\mathcal{E}_i/\mathcal{E}_{i-1})$ for $1 \leq i \leq l = l(\mathcal{E})$ and

$$\alpha_k(t) := \max\left\{0, \frac{t - \mu_{k+1}}{\mu_1 - \mu_{k+1}}\right\}$$

for $1 \leq k \leq l-1$. Let α_t be the vector $(\alpha_1(t), \alpha_2(t), \cdots, \alpha_{l-1}(t))$. Note that $\alpha_k(t) = 0$ for $t \leq \mu_{k+1}$ and $\alpha_k(t) \geq \alpha_{k'}(t)$ for $k \leq k'$. We define an \mathbb{R} -divisor by

$$D_t(\mathbf{y}) = D_t(y_1, y_2, \dots, y_{l-1}) = \rho^* H_{\mathcal{E}} - tF - \sum_{i=1}^{l-1} y_i E_i$$

for $y = (y_1, y_2, \dots, y_{l-1}) \in \mathbb{R}^{l-1}$.

- **3.11. Lemma** (1) $N_{\sigma}(\rho^*D_t) = N_{\nu}(\rho^*D_t) = \sum_{k=1}^{l-1} \alpha_k(t)E_k$. Moreover, $\operatorname{NBs}(\rho^*D_t) = \{s \in S \mid \sigma_s(P_{\sigma}(\rho^*D_t)) > 0\} \subset E$.
- (2) $D_t(\mathbf{y})$ is nef if and only if its restriction to $Z = \bigcap_{k=1}^{l-1} E_k$ is nef. This is also equivalent to that \mathbf{y} is contained in the polytope

$$\Box(\mu_{\bullet},t) := \Big\{ \boldsymbol{y} \in \mathbb{R}^{l-1}_{\geq 0} \mid 0 \le y_1 \le y_2 \le \dots \le y_{l-1} \le 1, \sum_{k=1}^{l-1} (\mu_k - \mu_{k+1}) y_k \ge t - \mu_l \Big\}.$$

PROOF. (1) We denote the total transform of $H_{\mathcal{E}}$ by H and that of F by the same symbol F on a projective variety birational to $\mathbb{P}(\mathcal{E})$. Then $H = H_l$ on S.

We introduce the following non-negative numbers:

$$\beta_j(t) := \begin{cases} \alpha_1(t), & j = 1; \\ \alpha_j(t) - \alpha_{j-1}(t), & 2 \le j \le l-1; \\ 1 - \alpha_l(t), & j = l. \end{cases}$$

Then we can write

(IV-9)
$$D_{t}(\boldsymbol{\alpha}_{t}) \sim_{\mathbb{R}} \sum_{j=1}^{l} \beta_{j}(t)H_{j} - tF$$
$$\sim_{\mathbb{R}} \sum_{j=1}^{k} \beta_{j}(t)(H_{j} - \mu_{1}F) + \sum_{j=k+1}^{l} \beta_{j}(t)(H_{j} - \mu_{k+1}F)$$
$$+ (\alpha_{k}(t)\mu_{1} + (1 - \alpha_{k}(t))\mu_{k+1} - t)F$$

for $1 \leq k \leq l-1$. Here $H_i - \mu_1 F$ is the pullback of a pseudo-effective \mathbb{R} -divisor by $S \to \mathbb{P}(\mathcal{E}_i)$ for $i \leq k$. Since E_k dominates $\mathbb{P}(\mathcal{E}_i)$ for $i \leq k$, we have $\sigma_{E_k}(H_i - \mu_1 F) = 0$ for $i \leq k$. There is a linear equivalence relation

$$H_j - \mu_{k+1}F \sim E_{j-1} + \dots + E_{k+1} + (H_{k+1} - \mu_{k+1}F)$$

for j > k+1, where $H_{k+1} - \mu_{k+1}F$ is nef. Hence $\sigma_{E_k}(H_j - \mu_{k+1}F) = 0$ for $j \ge k+1$. Therefore, $D_t(\boldsymbol{\alpha}_t)$ is pseudo-effective and $\sigma_{E_k}(D_t(\boldsymbol{\alpha}_t)) = 0$ by (IV-9). Moreover, we infer $\operatorname{NBs}(\rho^*D_t) \subset E$ by (IV-9) for k = 1. Thus $D_t(\boldsymbol{\alpha}_t)$ is movable.

For an index $1 \le k \le l - 1$, we can write

(IV-10)
$$D_t(\boldsymbol{y}) \sim_{\mathbb{R}} \left(y_k(H_k - \mu_1 F) - \sum_{j=1}^{k-1} y_j E_j \right)$$

 $+ \left((1 - y_k)(H_l - \mu_{k+1} F) + \sum_{j=k+1}^{l-1} (y_k - y_j) E_j \right)$
 $+ \left(y_k \mu_1 + (1 - y_k) \mu_{k+1} - t \right) F.$

By **3.7**, $H_i - \mu_k F$ is pseudo-effective for $i \geq k$. Let $\rho_k : E_k \to \mathbb{P}(\mathcal{E}_k) \times_C \mathbb{P}(\mathcal{E}/\mathcal{E}_k)$ be the natural birational morphism. Suppose that $D_t(\mathbf{y})|_{E_k}$ is pseudo-effective. Then its push-forward by ρ_{k_*} is also pseudo-effective. Suppose first that $\mathcal{E}_{k+1}/\mathcal{E}_k$ is not a line bundle. Then $E_j|_{E_k}$ is ρ_k -exceptional for any $j \geq k + 1$. Hence $y_k \leq 1$ and $t \leq y_k \mu_1 + (1 - y_k) \mu_{k+1}$ by (IV-10) and **3.7**. Suppose next that $\mathcal{E}_{k+1}/\mathcal{E}_k$ is a line bundle. Then $E_j|_{E_k}$ is ρ_k -exceptional for any j > k + 1. Here $H_{k+1}|_{E_k}$ is the pullback of $H_{\mathcal{E}_{k+1}/\mathcal{E}_k}$ of $\mathbb{P}(\mathcal{E}_{k+1}/\mathcal{E}_k) \simeq C$, which is numerically equivalent to $\mu_{k+1}F$. Thus the inequalities $y_{k+1} \leq 1$ and $y_k \mu_1 + (1 - y_k) \mu_{k+1} \geq t$ follow from (IV-10), the \mathbb{R} -linear equivalence relation

$$E_{k+1} \sim_{\mathbb{R}} H_l - E_{l-1} - \dots - E_{k+2} - H_{k+1},$$

and from **3.7**.

Hence, if $D_t(\boldsymbol{y})|_{E_k}$ is pseudo-effective, then $\alpha_k(t) \leq y_k$. Since $D_t(\boldsymbol{\alpha}_t)|_{E_k}$ are all pseudo-effective, we infer that $\nu_{E_k}(D_t) = \alpha_k(t)$ for any k by **III.3.12**. Therefore $N_{\sigma}(\rho^* D_t) = N_{\nu}(\rho^* D_t) = \sum \alpha_k(t) E_k$.

(2) We can write

$$D_t(\boldsymbol{y}) \sim_{\mathbb{R}} y_1(H_1 - \mu_1 F) + \sum_{j=2}^{l-1} (y_j - y_{j-1})(H_j - \mu_j F) + (1 - y_{l-1})(H_l - \mu_l F) \\ + \left(y_1 \mu_1 + \sum_{j=2}^{l-1} (y_j - y_{j-1})\mu_j + (1 - y_{l-1})\mu_l - t\right) F.$$

If $\boldsymbol{y} \in \Box(\mu_{\bullet}, t)$, then $D_t(\boldsymbol{y})$ is nef, since $H_i - \mu_i F$ is nef for $1 \leq i \leq l$. Conversely suppose that $D_t(\boldsymbol{y})$ is nef. The intersection $Z = \bigcap_{k=1}^{l-1} E_k$ is isomorphic to

$$\mathbb{P}(\mathcal{E}_1) \times_C \mathbb{P}(\mathcal{E}_2/\mathcal{E}_1) \times_C \cdots \times_C \mathbb{P}(\mathcal{E}_l/\mathcal{E}_{l-1}).$$

Since $D_t(\boldsymbol{y})|_Z$ is nef, we have $\boldsymbol{y} \in \Box(\mu_{\bullet}, t)$ by **3.7**.

Let N^{\natural} be a free abelian group of rank l-1 with a basis $(e_1^{\natural}, e_2^{\natural}, \ldots, e_{l-1}^{\natural})$ and let $(\delta_1^{\natural}, \delta_2^{\natural}, \ldots, \delta_{l-1}^{\natural})$ be the dual basis of $M^{\natural} = (N^{\natural})^{\vee}$. We consider

$$\mathcal{L}_{\natural} = \sum_{k=1}^{l-1} e_i^{\natural} \otimes \mathcal{O}_S(-B_i) \in \mathsf{N}^{\natural} \otimes \operatorname{Pic}(S) \quad \text{and} \quad \boldsymbol{\sigma}_{\natural} = \sum_{k=1}^{l-1} \mathbb{R}_{\geq 0} e_i^{\natural} \in \mathsf{N}_{\mathbb{R}}^{\natural}$$

in order to have a toric blowing up of S along E. We note that the polytope $\Box(\mu_{\bullet}, t)$ is identified with the same subset

$$\Box_{\operatorname{Nef}}(H - tF) = \{ m \in \mathsf{M}^{\natural}_{\mathbb{R}} \mid H - tF + \mathcal{L}^{m}_{\natural} \text{ is nef} \}$$

as in **2.15** for the \mathbb{R} -divisor H - tF by $\boldsymbol{y} \leftrightarrow \sum y_i \delta_i^{\natural}$. Here, the subset satisfies the condition of **2.15** by **3.11**-(2). Let $h^{\dagger} \in \operatorname{SFC}_{N^{\natural}}(\boldsymbol{\sigma}_{\natural}, \mathbb{R})$ be the support function defined by

$$h^{\dagger}(x) = \min\{\langle m, x \rangle \mid m \in \Box_{\mathrm{Nef}}(H - tF)\}$$

and let Λ be a finite subdivision of σ_{\natural} with $h^{\dagger} \in SF_{\mathsf{N}^{\natural}}(\sigma_{\natural}, \mathbb{R})$. Then, for the toric blowing up $f: S_{\Lambda} \to S$ along E associated with Λ , we have a nef \mathbb{R} -Cartier divisor $P^{\dagger} := D_{h^{\dagger}} + H - tF$ on S_{Λ} . If H - tF admits a Zariski-decomposition, then P^{\dagger} is the positive part of a Zariski-decomposition by **2.15**.

3.12. Lemma Suppose that the Harder–Narasimhan filtration of \mathcal{E} is split:

$$\mathcal{E}_i = \bigoplus_{k=1}^i \mathcal{E}_k / \mathcal{E}_{k-1}.$$

Then H - tF admits a Zariski-decomposition. In particular, P^{\dagger} is the positive part of a Zariski-decomposition of H - tF.

PROOF. Let us consider

$$Z = \mathbb{P}(\mathcal{E}_1) \times_C \mathbb{P}(\mathcal{E}_2/\mathcal{E}_1) \times_C \cdots \times_C \mathbb{P}(\mathcal{E}_l/\mathcal{E}_{l-1}) \to C$$

and the pullback \overline{H}_i of the tautological divisor $H_{\mathcal{E}_i/\mathcal{E}_{i-1}}$ to Z for any *i*. Then there is a birational morphism

$$M = \mathbb{P}_Z(\mathcal{O}_Z(\overline{H}_1) \oplus \cdots \mathcal{O}_Z(\overline{H}_l)) \to \mathbb{P}_C(\mathcal{E}),$$

since \mathcal{E}_{\bullet} is split. We know $\operatorname{Nef}(Z) = \operatorname{PE}(Z)$ and $\operatorname{Nef}(Z) \subset \operatorname{N}^{1}(Z)$ is a rational polyhedral cone. Therefore, every pseudo-effective \mathbb{R} -divisor on the toric bundle M over Z admits a Zariski-decomposition by **2.5**.

The following proof is more explicit than above and it does not use 2.15:

ANOTHER PROOF OF **3.12**. The projective bundle M in the proof above is written as a toric bundle $\mathbb{T}_{\mathsf{N}}(\Sigma, \mathcal{L})$ over Z, where N is a free abelian group of rank l-1 with a basis $(e_1, e_2, \ldots, e_{l-1}), \mathcal{L} = \sum e_i \otimes \mathcal{O}_Z(\overline{H}_i - \overline{H}_l)$, and Σ is a complete fan of N defined as in §2.c. Here $\operatorname{Ver}(\Sigma) = \{e_1, e_2, \ldots, e_{l-1}, e_l\}$ for $e_l = -\sum_{i=1}^{l-1} e_i$. We have the support function $h \in \operatorname{SF}_{\mathsf{N}}(\Sigma, \mathbb{Z})$ defined by $h(x) = \min(\{\langle \delta_i, x \rangle \mid 1 \leq i \leq l-1\} \cup \{0\})$, where $(\delta_1, \ldots, \delta_{l-1})$ is the dual basis to (e_1, e_2, \ldots, e_l) . Then $D_h = \Gamma_{e_l} \sim \lambda^* H_{\mathcal{E}} - q^* \overline{H}_l$ for the structure morphism $q: M \to Z$. We define

$$\mathcal{H}_i = \mathcal{O}_Z(\overline{H}_1) \oplus \mathcal{O}_Z(\overline{H}_2) \oplus \cdots \oplus \mathcal{O}_Z(\overline{H}_i)$$

for $1 \leq i \leq l$. Then we have a filtration $\mathcal{H}_{\bullet} = [\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_l]$ of subbundles of \mathcal{H}_l . We can show that there is a birational morphism $\mathbb{P}_Z(\mathcal{H}_{\bullet}) \to S = \mathbb{P}_C(\mathcal{E}_{\bullet})$ which is an isomorphism over an open neighborhood of $E \subset S$ and that the total transform of $E_i \subset S$ in $\mathbb{P}_Z(\mathcal{H}_{\bullet})$ is just the same E_i with respect to the filtration \mathcal{H}_{\bullet} . By **3.5**, we can write $\mathbb{P}_Z(\mathcal{H}_{\bullet})$ as a toric bundle $\mathbb{T}_N(\Sigma_l, \mathcal{L})$ over Z, where $\operatorname{Ver}(\Sigma_l) = \{e_1, e_2, \ldots, e_l, w_1, w_2, \ldots, w_{l-1}\}$, for $w_i := \sum_{j=1}^i e_j$. Note that $w_1 = e_1$ and $w_{l-1} = -e_l$. Then $E_i = \Gamma_{w_i} = \mathbb{V}(\mathbb{R}_{\geq 0}w_i, \mathcal{L}) \subset \mathbb{T}_N(\Sigma_l, \mathcal{L})$. The pullback of H - tF in $\mathbb{P}_C(\mathcal{E})$ to $\mathbb{P}_Z(\mathcal{H}_{\bullet})$ is written by $D_h + q^*(\overline{H}_l - tF)$ for the structure morphism $q: \mathbb{P}_Z(\mathcal{H}_{\bullet}) \to Z$. We can apply the method of **2.5** to constructing the Zariski-decomposition of $D_h + q^*(\overline{H}_l - tF)$, since $\operatorname{PE}(Z) = \operatorname{Nef}(Z)$ is a polyhedral cone. Then, by **3.7**,

$$\Box_{\text{Nef}}(\overline{H}_{l} - tF, h) = \left\{ m \in \Box_{h} \mid \sum_{i=1}^{l-1} m_{i} \overline{H}_{i} + \left(1 - \sum_{i=1}^{l-1} m_{i}\right) \overline{H}_{l} - tF \text{ is nef} \right\}$$
$$= \left\{ m \in \mathbb{R}_{\geq 0}^{l-1} \mid \sum_{i=1}^{l-1} m_{i} \leq 1, \sum_{i=1}^{l-1} m_{i} \mu_{i} + \left(1 - \sum_{i=1}^{l-1} m_{i}\right) \mu_{l} \geq t \right\}.$$

Therefore, the dual cone \triangle of $\mathbb{R}_{\geq 0}(\Box_{\mathrm{Nef}}(\overline{H}_l - tF, h) \times \{-1\})$ is written by

$$\Delta = \sum_{i=1}^{l-1} \mathbb{R}_{\geq 0}(e_i, 0) + \mathbb{R}_{\geq 0}(e_l, -1) + \mathbb{R}_{\geq 0}\left(\sum_{i=1}^{l-1} (\mu_i - \mu_l)e_i, -t\right).$$

We set $h^{\ddagger}(x) = \max\{r \in \mathbb{R} \mid (x, r) \in \Delta\}$. We shall construct a finite subdivision Σ^{\ddagger} of Σ as follows: The maximal cones of Σ^{\ddagger} are

$$\sigma_{i} = \sum_{1 \leq j \leq l, i \neq j} \mathbb{R}_{\geq 0} e_{j},$$

$$\sigma_{i}' = \sum_{1 \leq j \leq l-1, i \neq j} \mathbb{R}_{\geq 0} e_{j} + \mathbb{R}_{\geq 0} \left(\sum_{i=1}^{l-1} (\mu_{i} - \mu_{l}) e_{i} \right),$$

for $1 \leq i \leq l-1$. Then $h^{\ddagger} \in SF_{\mathsf{N}}(\boldsymbol{\Sigma}^{\sharp}, \mathbb{R})$ and hence $D_{h^{\ddagger}} + q^{*}(\overline{H}_{l} - tF)$ on $\mathbb{T}_{\mathsf{N}}(\boldsymbol{\Sigma}^{\sharp}, \mathcal{L})$ is the positive part of the Zariski-decomposition.

On the other hand, let us consider the toric blowup $X \to \mathbb{P}(\mathcal{H}_{\bullet})$ along $E = \sum E_i$ associated with a finite subdivision Λ of σ_{\natural} . Then, by **2.13**, X is isomorphic to the toric bundle $\mathbb{T}_{\mathsf{N}}(\Sigma', \mathcal{L})$ over Z for a fan Σ' defined as follows: Let us define $\mathbf{h} \in \mathrm{SF}_{\mathsf{N}}(\Sigma_l, \mathbb{Z}) \otimes \mathbb{N}^{\natural}$ by

$$\mathbf{h}(v) = \begin{cases} e_i^{\natural}, & \text{if } v = w_i \quad \text{for} \quad 1 \le i \le l-1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\Sigma' = \{C_{\mathbf{h}}(\lambda, \sigma) \mid \lambda \in \Lambda, \sigma \in \Sigma_l\}$, where $C_{\mathbf{h}}(\lambda, \sigma) = \sigma \cap \mathbf{h}^{-1}(\lambda)$. We can identify $\Box_{\mathrm{Nef}}(H - tF)$ with $\Box_{\mathrm{Nef}}(\overline{H}_l - tF, h)$ by

$$\boldsymbol{y} \mapsto m = y_1 \delta_1 + \sum_{i=2}^{l-1} (y_i - y_{i-1}) \delta_i.$$

The dual $N_{\mathbb{R}} \to N_{\mathbb{R}}^{\natural}$ of the linear transformation coincides with **h** over the cone $\sigma_{\flat} := \sum_{i=1}^{l} \mathbb{R}_{>0} w_{i}$. Thus

$$h^{\dagger}(\mathbf{h}(x)) = h^{\ddagger}(x)$$

for $x \in \boldsymbol{\sigma}_{\flat}$. Note that h^{\ddagger} is linear on $\boldsymbol{\sigma}'_i \in \boldsymbol{\Sigma}^{\ddagger}$. The set $\{\boldsymbol{\sigma}_{\flat} \cap \boldsymbol{\sigma}'_i \mid 1 \leq i \leq l-1\}$ of cones generates a finite subdivision of $\boldsymbol{\sigma}_{\flat}$. We take $\boldsymbol{\Lambda}$ to be the corresponding subdivision of $\boldsymbol{\sigma}_{\natural}$ by \boldsymbol{h} . Then $h^{\dagger} \in \mathrm{SF}_{\mathsf{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$. Let $\boldsymbol{\Sigma}'$ be the finite subdivision of $\boldsymbol{\Sigma}_l$ corresponding to $\boldsymbol{\Lambda}$. Then $\boldsymbol{\Sigma}'$ is a finite subdivision of $\boldsymbol{\Sigma}^{\ddagger}$. Here, $P^{\dagger} = D_{h^{\dagger}} + H - tF$ on X is equal to $D_{h^{\ddagger}} + q^*(\overline{H}_l - tF)$. Thus P^{\dagger} is the positive part of the Zariski-decomposition.

Now we are ready to prove the main result 3.6 of §3.b.

PROOF OF 3.6. There is a connected analytic space Θ and a sequence of vector subbundles

$$0 = \widetilde{\mathcal{E}}_0 \subset \widetilde{\mathcal{E}}_1 \subset \widetilde{\mathcal{E}}_2 \subset \cdots \subset \widetilde{\mathcal{E}}_l$$

on $C \times \Theta$ satisfying the following conditions: let $(\mathcal{E}_i)_{\theta}$ be the restriction of $\widetilde{\mathcal{E}}$ to $C \times \{\theta\}$.

(1) $\widetilde{\mathcal{E}}_i/\widetilde{\mathcal{E}}_{i-1} \simeq p_1^*(\mathcal{E}_i/\mathcal{E}_{i-1})$ for any $1 \le i \le l$ for the first projection p_1 ;

(2) There is a point $0 \in \Theta$ such that the sequence $(\mathcal{E}_i)_0$ is split, i.e.,

$$(\mathcal{E}_i)_0 \simeq \bigoplus_{k=1}^i \mathcal{E}_k / \mathcal{E}_{k-1};$$

(3) There is a point $\theta \in \Theta$ such that $(\mathcal{E}_i)_{\theta} = \mathcal{E}_i$ for any *i*.

Let $\widetilde{S} \to C \times \Theta$ be the projective smooth morphism defined by

$$\widetilde{S} = \mathbb{P}_{C \times \Theta}(\widetilde{\mathcal{E}}_1 \subset \cdots \subset \widetilde{\mathcal{E}}_l).$$

Then we have similar effective divisors \widetilde{E}_k for $1 \leq k \leq l-1$. We also have the toric blowing-up $\widetilde{f}: \widetilde{S}_{\Lambda} \to \widetilde{S}$ associated with the subdivision Λ and $\widetilde{P}^{\dagger} = D_{h^{\dagger}} + \widetilde{f}^*(H - tF)$ that is relatively nef over Θ . Let $\widetilde{\Gamma}_v$ be the prime divisor of \widetilde{S}_{Λ} associated with $v \in \operatorname{Ver}(\Lambda)$. Here the restrictions of \widetilde{P}^{\dagger} and $\widetilde{\Gamma}_v$ to the fiber over $\theta \in \Theta$ coincide with P^{\dagger} and Γ_v , respectively. The restriction of \widetilde{P}^{\dagger} to the fiber over 0 is the positive part of a Zariski-decomposition by **3.12**. In particular, P^{\dagger} is nef and big and the restriction of P^{\dagger} to Γ_v is not big for any $v \in \operatorname{Ver}(\Lambda)$, by **III.3.7**. Again by **III.3.7**, we infer that P^{\dagger} is the positive part of the Zariski-decomposition of H - tF. \Box

§4. Normalized tautological divisors

§4.a. Projectively flatness and semi-stability. We shall prove the following theorem which may be well-known. It is derived from the study of stable vector bundles and Einstein–Hermitian metrics by Narasimhan and Seshadri [107], Mehta and Ramanathan [78], [79], Donaldson [12], Uhlenbeck and Yau [142], and Bando and Siu [3].

4.1. Theorem Let \mathcal{E} be a reflexive sheaf of rank r on a non-singular complex projective variety X of dimension d. Then the following three conditions are equivalent:

(1) \mathcal{E} is locally free and the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is nef;

(2) \mathcal{E} is A-semi-stable and

$$\left(c_2(\mathcal{E}) - \frac{r-1}{2r}c_1^2(\mathcal{E})\right) \cdot A^{d-2} = 0$$

for an ample divisor A;

(3) \mathcal{E} is locally free and there is a filtration of vector subbundles

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l = \mathcal{E}$$

such that $\mathcal{E}_i/\mathcal{E}_{i-1}$ are projectively flat and the averaged first Chern classes $\mu(\mathcal{E}_i/\mathcal{E}_{i-1})$ are numerically equivalent to $\mu(\mathcal{E})$ for any *i*.

Here, a vector bundle \mathcal{E} is called *projectively flat* if it admits a projectively flat Hermitian metric h, namely, the curvature tensor Θ_h is written by

$$\Theta_h = \omega \cdot \mathrm{id}_{\mathcal{E}}$$

for a 2-form ω , as an $\mathcal{E}nd(\mathcal{E})$ -valued C^{∞} -2-form. We need some preparations for the proof.

Let U(r) be the unitary group of degree r and let PU(r) be the quotient group U(r)/U(1) by the center $U(1) \simeq S^1$. Let $\mathcal{O}_X^* \times U(r)$ be the direct product of the sheaf \mathcal{O}_X^* of germs of holomorphic unit functions and the constant sheaf U(r). Let $GL(r, \mathcal{O}_X)$ be the sheaf of germs of holomorphic $r \times r$ regular matrices and let $\mathcal{O}_X^* U(r)$ be the image of the natural homomorphism

$$\mathcal{O}_X^{\star} \times \mathrm{U}(r) \to \mathrm{GL}(r, \mathcal{O}_X).$$

Then we have an exact sequence:

$$1 \to \mathrm{S}^1 \to \mathcal{O}_X^\star \times \mathrm{U}(r) \to \mathcal{O}_X^\star \mathrm{U}(r) \to 1,$$

in which the homomorphism from S^1 is given by $s \mapsto (s^{-1}, s)$.

4.2. Lemma The image of the homomorphism

 $\mathrm{H}^{1}(X, \mathcal{O}_{X}^{\star}\mathrm{U}(r)) \to \mathrm{H}^{1}(X, \mathrm{GL}(r, \mathcal{O}_{X}))$

is regarded as the set of all the isomorphism classes of vector bundles \mathcal{E} of X of rank r admitting projectively flat Hermitian metrics.

PROOF. Let (\mathcal{E}, h) be a projectively flat Hermitian vector bundle of rank r. Then there are an open covering $\{U_{\lambda}\}$ of X and positive-valued C^{∞} -functions a_{λ} on U_{λ} such that $a_{\lambda}^{-1}h$ is a flat metric on U_{λ} . Thus we may assume that there exist holomorphic sections

$$e_1^{\lambda}, e_2^{\lambda}, \dots, e_r^{\lambda} \in \mathrm{H}^0(U_{\lambda}, \mathcal{E}),$$

such that, for any $1 \leq i, j \leq r$,

$$h(e_i^{\lambda}, e_j^{\lambda}) = a_{\lambda} \delta_{i,j},$$

where $\delta_{i,j}$ denotes Kronecker's δ . Let $T_{\lambda,\mu}$ be the transition matrix of \mathcal{E} with respect to the frame $\{(U_{\lambda}, e_i^{\lambda})\}$:

$$(e_1^{\lambda}, e_2^{\lambda}, \dots, e_r^{\lambda}) \cdot T_{\lambda,\mu} = (e_1^{\mu}, e_2^{\mu}, \dots, e_r^{\mu}).$$

Then $T_{\lambda,\mu}$ are holomorphic $r \times r$ regular matrices and satisfy

$${}^{\mathrm{t}}T_{\lambda,\mu}\overline{T_{\lambda,\mu}} = a_{\mu}a_{\lambda}^{-1} \cdot \mathrm{id}.$$

Locally on $U_{\lambda} \cap U_{\mu}$, there is a holomorphic function u such that $a_{\mu}a_{\lambda}^{-1} = |u|^2$. Thus $u^{-1}T_{\lambda,\mu}$ is unitary. Hence $T_{\lambda,\mu} \in \mathrm{H}^0(U_{\lambda} \cap U_{\mu}, \mathcal{O}_X^{\star} \mathrm{U}(r))$. Therefore $\mathcal{E} \in \mathrm{H}^1(X, \mathrm{GL}(r, \mathcal{O}_X))$ comes from $\mathrm{H}^1(X, \mathcal{O}_X^{\star} \mathrm{U}(r))$.

Next suppose that \mathcal{E} is contained in the image of $\mathrm{H}^1(X, \mathcal{O}_X^* \mathrm{U}(r))$. Then, for a suitable frame $\{(U_\lambda, e_i^\lambda)\}$, the corresponding transition matrix $T_{\lambda,\mu}$ is contained in $\mathrm{H}^0(U_\lambda \cap U_\mu, \mathcal{O}_X^* \mathrm{U}(r))$. Thus

$${}^{\mathrm{t}}T_{\lambda,\mu}\overline{T_{\lambda,\mu}} = v_{\lambda,\mu} \cdot \mathrm{id},$$

for a positive-valued C^{∞} -function $v_{\lambda,\mu}$ on $U_{\lambda} \cap U_{\mu}$. By replacing the open covering $\{U_{\lambda}\}$ by a finer one, we may assume that there is a positive-valued C^{∞} -function a_{λ} on U_{λ} such that $v_{\lambda,\mu} = a_{\mu}a_{\lambda}^{-1}$. Let h_{λ} be the Hermitian metric of $\mathcal{E}|_{U_{\lambda}}$ defined by

$$h_{\lambda}(e_i^{\lambda}, e_i^{\lambda}) = a_{\lambda}\delta_{i,j}$$

Then $h_{\lambda} = h_{\mu}$ on $U_{\lambda} \cap U_{\mu}$. Hence we have a projectively flat metric on \mathcal{E} .

4.3. Corollary A vector bundle \mathcal{E} of rank r is projectively flat if and only if the associated \mathbb{P}^{r-1} -bundle $\pi \colon \mathbb{P}_X(\mathcal{E}) \to X$ is induced from a projective unitary representation $\pi_1(X) \to \mathrm{PU}(r)$.

PROOF. There is a commutative diagram of exact sequences:

Here note that \mathcal{O}_X^{\star} is the center of both $\mathcal{O}_X^{\star} \operatorname{U}(r)$ and $\operatorname{GL}(r, \mathcal{O}_X)$. Let \mathcal{E} be an element of $\operatorname{H}^1(X, \operatorname{GL}(r, \mathcal{O}_X))$ whose image in $\operatorname{H}^1(X, \operatorname{PGL}(r, \mathcal{O}_X))$ is contained in the image of $\operatorname{H}^1(X, \operatorname{PU}(r))$. Then we can check \mathcal{E} comes from $\operatorname{H}^1(X, \mathcal{O}_X^{\star} \operatorname{U}(r))$ by a diagram chasing.

4.4. Lemma Let $Y \subset X$ be a non-singular ample divisor of a non-singular projective variety X of dimension $d \geq 3$. Let \mathcal{E}_Y be a vector bundle of Y and let \mathcal{L} be a line bundle of X such that \mathcal{E}_Y is projectively flat and det $\mathcal{E}_Y \simeq \mathcal{L} \otimes \mathcal{O}_Y$. Then there is a projectively flat vector bundle \mathcal{E} of X satisfying det $\mathcal{E} \simeq \mathcal{L}$ and $\mathcal{E} \otimes \mathcal{O}_Y \simeq \mathcal{E}_Y$.

PROOF. We shall consider the following two homomorphisms:

det:
$$\mathcal{O}_X^{\star} \operatorname{U}(r) \to \mathcal{O}_X^{\star}$$
, and $p: \mathcal{O}_X^{\star} \operatorname{U}(r) \to \operatorname{PU}(r)$

Let $\mu_r \subset \mathbb{C}^\star$ be the group of r-th roots of unity. Then we have an exact sequence

$$1 \to \boldsymbol{\mu}_r \to \mathcal{O}_X^{\star} \operatorname{U}(r) \xrightarrow{(\det, p)} \mathcal{O}_X^{\star} \times \operatorname{PU}(r) \to 1,$$

which induces an exact sequence

$$\mathrm{H}^{1}(X,\boldsymbol{\mu}_{r}) \to \mathrm{H}^{1}(X,\mathcal{O}_{X}^{\star} \mathrm{U}(r)) \to \mathrm{H}^{1}(X,\mathcal{O}_{X}^{\star}) \times \mathrm{H}^{1}(X,\mathrm{PU}(r)) \to \mathrm{H}^{2}(X,\boldsymbol{\mu}_{r}).$$

By the weak Lefschetz theorem, we have isomorphisms

$$\mathrm{H}^{1}(X, \boldsymbol{\mu}_{r}) \simeq \mathrm{H}^{1}(Y, \boldsymbol{\mu}_{r}), \quad \mathrm{H}^{1}(X, \mathrm{PU}(r)) \simeq \mathrm{H}^{1}(Y, \mathrm{PU}(r))$$

and injective homomorphisms

$$\mathrm{H}^{1}(X, \mathcal{O}_{X}^{\star}) \hookrightarrow \mathrm{H}^{1}(Y, \mathcal{O}_{Y}^{\star}), \quad \mathrm{H}^{2}(X, \boldsymbol{\mu}_{r}) \hookrightarrow \mathrm{H}^{2}(Y, \boldsymbol{\mu}_{r}).$$

Thus we can find \mathcal{E} by a diagram chasing.

4.5. Lemma Let \mathcal{E} be an A-stable reflexive sheaf with $\Delta_2(\mathcal{E}) \cdot A^{d-2} = 0$ for an ample divisor A. Then \mathcal{E} is a projectively flat vector bundle.

This is proved in [3, Corollary 3] in the Kähler situation. But here, we give another proof by using the argument of [79, 5.1] which is valid only in the projective situation.

PROOF. If \mathcal{E} is locally free, then it follows from works of Donaldson [12], Mehta–Ramanathan [78], [79] as well as Uhlenbeck–Yau [142]. Thus we have only to prove that \mathcal{E} is locally free in the case $d \geq 3$. Let S be the complete intersection of smooth divisors $A_1, A_2, \ldots, A_{d-2}$ contained in the linear system |mA|for a sufficiently large $m \in \mathbb{N}$. Then $\mathcal{E}|_S = \mathcal{E} \otimes \mathcal{O}_S$ is a locally free sheaf and it is A-stable by [79]. Hence $\mathcal{E}|_S$ is a projectively flat vector bundle. By 4.4, there is a projectively flat vector bundle \mathcal{E}' such that

$$\det \mathcal{E}' \simeq \det \mathcal{E}, \quad \mathcal{E}' \otimes \mathcal{O}_S \simeq \mathcal{E} \otimes \mathcal{O}_S.$$

By the argument of [79, 5.1], we have an isomorphism $\mathcal{E} \simeq \mathcal{E}'$.

4.6. Proposition Let \mathcal{E} be an A-semi-stable reflexive sheaf with $\Delta_2(\mathcal{E}) \cdot A^{d-2} = 0$ for an ample divisor A. Then \mathcal{E} is locally free.

PROOF. We shall prove by induction on rank \mathcal{E} . We may assume \mathcal{E} is not A-stable by 4.5. Then there is an exact sequence

$$0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{G} \to 0,$$

where \mathcal{F} and \mathcal{G} are non-zero torsion-free sheaves satisfying $\mu_A(\mathcal{F}) = \mu_A(\mathcal{E}) = \mu_A(\mathcal{G})$. Thus \mathcal{F} and the double-dual $\mathcal{G}^{\wedge} = \mathcal{G}^{\vee\vee}$ of \mathcal{G} are also A-semi-stable sheaves. In particular, Bogomolov's inequalities

$$\Delta_2(\mathcal{F}) \cdot A^{d-2} \ge 0, \quad \Delta_2(\mathcal{G}^{\wedge}) \cdot A^{d-2} \ge 0$$

156

hold. Note that $\Delta_2(\mathcal{G}) - \Delta_2(\mathcal{G}^{\wedge})$ is represented by an effective algebraic cycle of codimension two supported in Supp $\mathcal{G}^{\wedge}/\mathcal{G}$. By the formula (II-9), we infer that

$$\Delta_2(\mathcal{G}) = \Delta_2(\mathcal{G}^{\wedge}), \quad \Delta_2(\mathcal{F}) \cdot A^{d-2} = \Delta_2(\mathcal{G}^{\wedge}) \cdot A^{d-2} = 0,$$

and $\mu(\mathcal{F}) = \mu(\mathcal{G}) = \mu(\mathcal{E})$. By the induction, \mathcal{F} and \mathcal{G}^{\wedge} are locally free. Suppose that $\mathcal{G} \neq \mathcal{G}^{\wedge}$. Then \mathcal{E} defines a non-zero element of $\mathrm{H}^{0}(X, \mathcal{E}xt^{1}(\mathcal{G}, \mathcal{F}))$. On the other hand, we have $\mathcal{E}xt^{2}(\mathcal{G}^{\wedge}/\mathcal{G}, \mathcal{F}) = 0$, since codim $\mathrm{Supp}\,\mathcal{G}^{\wedge}/\mathcal{G} \geq 3$. It implies $\mathcal{E}xt^{1}(\mathcal{G}, \mathcal{F}) = 0$, a contradiction. Hence $\mathcal{G} = \mathcal{G}^{\wedge}$ and \mathcal{E} is also locally free. \Box

PROOF OF 4.1. (1) \Rightarrow (2): Let $C \subset X$ be a smooth projective curve. Then the normalized tautological divisor of the restriction $\mathcal{E}|_C$ is also nef. Thus $\mathcal{E}|_C$ is semi-stable. Hence \mathcal{E} is A-semi-stable and Bogomolov's inequality $\Delta_2(\mathcal{E}) \cdot A^{d-2} \ge 0$ holds for any ample divisor A. On the other hand,

$$0 \le \Lambda_{\mathcal{E}}^{r+1} \cdot \pi^* A^{d-2} = -\Delta_2(\mathcal{E}) \cdot A^{d-2}.$$

Thus $\Delta_2(\mathcal{E}) = 0$ in $N^2(X)$.

 $(2) \Rightarrow (3)$: If \mathcal{E} is A-stable, then \mathcal{E} is a projectively flat vector bundle by **4.5**. Otherwise, there is an exact sequence: $0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{G} \to 0$ such that \mathcal{F} and \mathcal{G} are non-zero torsion-free sheaf and $\mu_A(\mathcal{E}) = \mu_A(\mathcal{F}) = \mu_A(\mathcal{G})$. By the same argument as in the proof of **4.6**, we infer that \mathcal{F} and \mathcal{G} are also A-semi-stable vector bundles with $\Delta_2(\mathcal{F}) \cdot A^{d-2} = \Delta_2(\mathcal{G}) \cdot A^{d-2} = 0$. Thus we have a filtration satisfying the condition (3).

 $(3) \Rightarrow (1)$: If \mathcal{E} is projectively flat, then $f^*\mathcal{E}$ is semi-stable for any morphism $f: C \to X$ from a non-singular projective curve. Thus if \mathcal{E} has a filtration satisfying the condition (3), then $f^*\mathcal{E}$ is also semi-stable and $\Lambda_{\mathcal{E}}$ is nef. \Box

Concerning with the invariant ν for nef \mathbb{R} -divisors defined in Chapter V, §2.a, we have the following:

4.7. Corollary If $\Lambda_{\mathcal{E}}$ is nef, then $\nu(\Lambda_{\mathcal{E}}) = r - 1$.

§4.b. The case of vector bundles of rank two. We next consider a weaker condition: $\Lambda_{\mathcal{E}}$ is pseudo-effective. We have the following result when rank $\mathcal{E} = 2$.

4.8. Theorem Let \mathcal{E} be an A-semi-stable vector bundle of rank two on a nonsingular complex projective variety X of dimension $d \ge 2$ for an ample divisor A. Suppose that the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is pseudo-effective. Then $\Lambda_{\mathcal{E}}$ is nef except for the following three cases:

(A) There exist divisors M_1, M_2 such that

 $M_1 \cdot A^{d-1} = M_2 \cdot A^{d-1}$ and $\mathcal{E} \simeq \mathcal{O}_X(M_1) \oplus \mathcal{O}_X(M_2);$

(B) There exist an unramified double-covering $\tau: Y \to X$ and a divisor M of Y such that

$$\mathcal{E} \simeq \tau_* \mathcal{O}_Y(M);$$

(C) There is an exact sequence

$$0 \to \mathcal{O}_X(L_1) \to \mathcal{E} \to \mathcal{I}\mathcal{O}_X(L_2) \to 0,$$

where \mathcal{I} is an ideal sheaf with codim Supp $\mathcal{O}_X/\mathcal{I} = 2$ and the divisor L_1 is numerically equivalent to L_2 .

Remark Here $\Lambda = \Lambda_{\mathcal{E}}$ is pseudo-effective in these exceptional cases. Further, Λ is nef if and only if $M_1 \approx M_2$ in the case (A), and $M \approx \sigma^* M$ for the non-trivial involution $\sigma: Y \to Y$ over X in the case (B); Λ is not nef in the case (C).

4.9. Corollary If \mathcal{E} is an A-stable vector bundle of rank two for an ample divisor A such that the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is pseudo-effective. Then $\Lambda_{\mathcal{E}}$ is nef except for the case (B) in **4.8**.

The idea of our proof of **4.8** is to consider the σ -decomposition of Λ . We shall prove **4.8** after discussing exceptional cases.

Let X be a non-singular projective variety of dimension d and let A be an ample divisor.

4.10. Lemma Let M_1, M_2 be divisors of X with $M_1 \cdot A^{d-1} = M_2 \cdot A^{d-1}$. Then the vector bundle $\mathcal{E} = \mathcal{O}_X(M_1) \oplus \mathcal{O}_X(M_2)$ is A-semi-stable and $|2\Lambda_{\mathcal{E}}| \neq \emptyset$. The \mathbb{Q} -divisor $\Lambda_{\mathcal{E}}$ is nef if and only if $M_1 \approx M_2$.

PROOF. If $\mathcal{L} \subset \mathcal{E}$ is an invertible subsheaf, then it is a subsheaf of $\mathcal{O}_X(M_1)$ or $\mathcal{O}_X(M_2)$. Thus $\mathcal{L} \cdot A^{d-1} \leq (1/2)c_1(\mathcal{E}) \cdot A^{d-1}$. The symmetric tensor product $\operatorname{Sym}^2 \mathcal{E}$ contains $\mathcal{O}_X(M_1 + M_2) \simeq \det \mathcal{E}$ as a direct summand. Hence $|2\Lambda_{\mathcal{E}}| \neq \emptyset$. If $M_1 \approx M_2$, then $\Lambda_{\mathcal{E}}$ is nef. Conversely if $\Lambda_{\mathcal{E}}$ is nef, then $M_1 - M_2 \approx 0$ by 4.1, since

$$\Delta_2(\mathcal{E}) = -\frac{1}{4}(M_1 - M_2)^2 = 0.$$

4.11. Lemma Let $\tau: Y \to X$ be an unramified double-covering from a nonsingular variety and let M be a divisor of Y. Then, for the vector bundle $\mathcal{E} = \tau_* \mathcal{O}_Y(M)$, there is an isomorphism

$$\tau^* \mathcal{E} \simeq \mathcal{O}_Y(M) \oplus \mathcal{O}_Y(\sigma^* M).$$

where $\sigma: Y \to Y$ is the non-trivial involution over X. In particular, \mathcal{E} is semistable with respect to any ample divisor of X and $\Lambda_{\mathcal{E}}$ is pseudo-effective. Further, $\Lambda_{\mathcal{E}}$ is nef if and only if $M \approx \sigma^* M$.

PROOF. Let us consider the natural homomorphism $\phi: \tau^*\tau_*\mathcal{O}_Y \to \mathcal{O}_Y$. Then $\phi + \sigma^*\phi$ gives an isomorphism

$$\tau^*\tau_*\mathcal{O}_Y\simeq\mathcal{O}_Y\oplus\mathcal{O}_Y$$

Similarly from the natural homomorphism $\varphi \colon \tau^* \tau_* \mathcal{O}_Y(M) \to \mathcal{O}_Y(M)$, we have the homomorphism

$$\varphi + \sigma^* \varphi \colon \tau^* \mathcal{E} = \tau^* \tau_* \mathcal{O}_Y(M) \to \mathcal{O}_Y(M) \oplus \mathcal{O}_Y(\sigma^* M).$$

Since $\mathcal{O}_Y(M)$ is an invertible sheaf, we infer that the homomorphism also is an isomorphism by considering it locally over X.

4.12. Lemma Let Z be a closed subspace locally of complete intersection of Xwith $\operatorname{codim} Z = 2$ and let \mathcal{L} be an invertible sheaf of X. If there exists a locally free sheaf \mathcal{E} with an exact sequence

(IV-11)
$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{I}_Z \mathcal{L} \to 0,$$

for the defining ideal sheaf \mathcal{I}_Z of Z, then

(IV-12)
$$\mathcal{E}xt^2(\mathcal{O}_Z, \mathcal{L}^{-1}) \simeq \mathcal{O}_Z.$$

Conversely, if the isomorphism (IV-12) exists, then there is a naturally defined cohomology class $\delta(Z, \mathcal{L}) \in \mathrm{H}^2(X, \mathcal{L}^{-1})$ such that $\delta(Z, \mathcal{L}) = 0$ if and only if there is a locally free sheaf \mathcal{E} with the exact sequence (IV-11).

PROOF. Suppose that the locally free sheaf \mathcal{E} exists. Then (IV-11) induces a long exact sequence

$$0 \to \mathcal{H}om(\mathcal{I}_Z \mathcal{L}, \mathcal{O}_X) \to \mathcal{H}om(\mathcal{E}, \mathcal{O}_X) \to \mathcal{H}om(\mathcal{O}_X, \mathcal{O}_X) \to \mathcal{E}xt^1(\mathcal{I}_Z \mathcal{L}, \mathcal{O}_X) \to 0.$$

Therefore

Therefore

$$\mathcal{O}_Z \simeq \mathcal{E}xt^1(\mathcal{I}_Z\mathcal{L},\mathcal{O}_X) \simeq \mathcal{E}xt^2(\mathcal{O}_Z,\mathcal{L}^{-1}).$$

Next suppose the isomorphism (IV-12) exists. The spectral sequence

$$E_2^{p,q} = \mathrm{H}^p(X, \mathcal{E}xt^q(\mathcal{I}_Z\mathcal{L}, \mathcal{O}_X)) \Longrightarrow E^{p+q} = \mathrm{Ext}^{p+q}(\mathcal{I}_Z\mathcal{L}, \mathcal{O}_X)$$

induces an exact sequence

$$0 \to \mathrm{H}^{1}(X, \mathcal{L}^{-1}) \to \mathrm{Ext}^{1}(\mathcal{I}_{Z}\mathcal{L}, \mathcal{O}_{X}) \to \mathrm{H}^{0}(Z, \mathcal{O}_{Z}) \to \mathrm{H}^{2}(X, \mathcal{L}^{-1}).$$

Let $\delta = \delta(Z, L)$ be the image of $1 \in \mathrm{H}^0(Z, \mathcal{O}_Z)$ under the right homomorphism. Then $\delta = 0$ if and only if there is an extension of sheaves

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{I}_Z \mathcal{L} \to 0$$

such that $\mathcal{E}xt^1(\mathcal{E},\mathcal{O}_X)=0$. It remains to show that \mathcal{E} is locally free. We may replace X by an open neighborhood of an arbitrary point. Thus we may assume that there is an exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X^{\oplus 2} \to \mathcal{I}_Z \mathcal{L} \to 0,$$

since Z is locally a complete intersection. Pulling back the sequence by $\mathcal{E} \to \mathcal{I}_Z \mathcal{L}$, we have an exact sequence

$$0 \to \mathcal{O}_X \to \widetilde{\mathcal{E}} \to \mathcal{E} \to 0,$$

which is locally split. By the snake lemma, we infer that $\widetilde{\mathcal{E}}$ is locally free. Hence \mathcal{E} is locally free.

Example Let X be a non-singular projective surface and let x be a point. Suppose that the geometric genus $p_q(X) = \dim H^2(X, \mathcal{O}_X) = 0$. Then there is a locally free sheaf \mathcal{E} with an exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathfrak{m}_x \to 0$$

for the maximal ideal \mathfrak{m}_x at x.

Let $\tau: Y \to X$ be a generically finite proper surjective morphism from a variety Y with only Gorenstein singularities and let $\nu: V \to Y$ be the normalization. By duality, there are trace maps $\nu_*\omega_V \to \omega_Y$ and $\tau_*\omega_Y \to \omega_X$. The first trace map induces an effective divisor C of V, which is called the *conductor* of Y, such that $K_V = \nu^* K_Y - C$. If C = 0, then ν is an isomorphism. The pullback of differential forms induces a homomorphism $\nu^* \tau^* \omega_X \to \omega_V$, which gives rise to a splitting of the composite of trace maps above. Thus there exist an effective divisor $R_{V/X}$ of V and an effective Cartier divisor $R_{Y/X}$ of Y such that

$$K_V = \nu^* \tau^* K_X + R_{V/X}, \quad K_Y = \tau^* K_X + R_{Y/X}, \quad R_{V/X} = \tau^* R_{Y/X} - C.$$

The divisors $R_{Y/X}$ and $R_{V/X}$ are called the ramification divisors of $Y \to X$ and $V \to X$, respectively.

4.13. Lemma If $R_{Y/X} = 0$, then τ is a finite étale morphism.

PROOF. Since the ramification divisor $R_{V/X}$ is effective, the conductor C is zero. Hence Y is normal. Let $Y \to W \to X$ be the Stein factorization of τ , where we write $\mu: Y \to W$ and $p: W \to X$. Then the dualizing sheaf ω_W is the double-dual of $\mu_*\omega_Y$. Since $R_{Y/X} = 0$, we have isomorphisms $\omega_W \simeq p^*\omega_X$ and $\omega_Y \simeq \mu^*\omega_W$. Thus $W \to X$ is étale, since p is a finite morphism. In particular, Wis non-singular. Consequently, the birational morphism $Y \to W$ is isomorphic. \Box

PROOF OF 4.8. Bogomolov's inequality $\Delta_2(\mathcal{E}) \cdot A^{d-2} \ge 0$ attains the equality if and only if $\Lambda = \Lambda_{\mathcal{E}}$ is nef by 4.1. We have only to show the equality $\Delta_2(\mathcal{E}) \cdot A^{d-2} = 0$ except for the three exceptional cases. Let $\Lambda = P + N$ be the σ -decomposition of the pseudo-effective divisor Λ (cf. Chapter III, §1). Then there exist an \mathbb{R} -divisor D of X and a real number b such that

$$N \approx b\Lambda + \pi^* D$$
 and $P \approx (1-b)\Lambda - \pi^* D$.

We have $P \cdot F \ge 0$ and $N \cdot F \ge 0$ for a fiber F of the \mathbb{P}^1 -bundle $\pi \colon \mathbb{P} = \mathbb{P}_X(\mathcal{E}) \to X$. Thus $0 \le b \le 1$. Let $A_1, A_2, \ldots, A_{d-1}$ be general members of the linear system |mA| for a sufficiently large $m \in \mathbb{N}$. Then $\mathcal{E}|_C$ is semi-stable for the non-singular curve $C = A_1 \cap A_2 \cap \cdots \cap A_{d-1}$ by [78]. In particular, if $(\Lambda + \pi^* E)|_{\pi^{-1}(C)}$ is pseudo-effective for an \mathbb{R} -divisor E of X, then $E \cdot A^{d-1} \ge 0$. Note that $N|_{\pi^{-1}(C)}$ and $P|_{\pi^{-1}(C)}$ are pseudo-effective. Thus $D \cdot A^{d-1} \ge 0$ in the case b > 0, and $D \cdot A^{d-1} \le 0$ in the case b < 1.

First suppose that b < 1. Since P is movable, P^2 is regarded as a pseudoeffective \mathbb{R} -cycle of codimension two. Therefore

$$\pi_*(P^2) = -2(1-b)D$$

is a pseudo-effective \mathbb{R} -divisor. Thus -D is pseudo-effective. If b > 0 in addition, then $D \approx 0$ since $D \cdot A^{d-1} = 0$. Hence $N \approx b\Lambda$ and $P \approx (1-b)\Lambda$. This is a contradiction. Therefore b = 0. Thus $-N \approx -\pi^* D$ is pseudo-effective. Hence N = 0 and Λ is movable. Since $\Lambda^2 = -\pi^* \Delta_2(\mathcal{E})$, we have

$$-\Delta_2(\mathcal{E}) = \pi_*(H \cdot \Lambda^2) = \pi_*((H + m\pi^*A) \cdot \Lambda^2)$$

for any integer m. If m > 0 is large, then $H + m\pi^* A$ is ample and thus $(H + m\pi^* A) \cdot \Lambda^2$ is pseudo-effective. Hence $-\Delta_2(\mathcal{E})$ is pseudo-effective. By Bogomolov's inequality, we have $\Delta_2(\mathcal{E}) \cdot A^{d-2} = 0$.

Next suppose that b = 1. Since $P \approx -\pi^* D$ is movable, so is -D. On the other hand, b > 0 implies $D \cdot A^{d-1} \ge 0$. Hence $D \approx 0$ and $P \approx 0$. Let

$$N = \sum \sigma_i \Gamma_i$$

be the prime decomposition. For each i, there are non-negative integers b_i and \mathbb{Q} -divisors D_i such that

$$\Gamma_i \sim_{\mathbb{Q}} b_i \Lambda + \pi^* D_i.$$

Since $\Lambda - \sigma_i \pi^* D_i$ is pseudo-effective and since $\mathcal{E}|_C$ is semi-stable, we have $D_i \cdot A^{d-1} \leq 0$. Hence $b_i > 0$. Moreover, $D_i \cdot A^{d-1} = 0$, since $D \sim_{\mathbb{Q}} \sum \sigma_i D_i \approx 0$. We consider the following three cases:

(I) $b_i \geq 2$ for some i;

- (II) N has at least two irreducible components and $b_i = 1$ for any Γ_i ;
- (III) N has only one irreducible component Γ_1 and $b_1 = 1$.

Let Y be an irreducible component Γ_1 . Then $\pi: Y \to X$ is a generically finite surjective morphism of degree b_1 . By adjunction, we have

$$K_Y = \pi^* K_X + ((b_1 - 2)\Lambda + \pi^* D_1)|_Y.$$

Therefore $R_{Y/X} \sim ((b_1 - 2)\Lambda + \pi^* D_1)|_Y$. Since $R_{Y/X}$ is effective,

$$\pi_*(((b_1 - 2)\Lambda + \pi^*D_1)|_Y) = \pi_*(((b_1 - 2)\Lambda + \pi^*D_1) \cdot (b_1\Lambda + \pi^*D_1)) = 2(b_1 - 1)D_1$$

is an effective divisor of X

We consider the case (I). We may assume that $b_1 \geq 2$. Then $D_1 \sim_{\mathbb{Q}} 0$, since $D_1 \cdot A^{d-1} = 0$. Hence $Y \sim_{\mathbb{Q}} b_1 \Lambda$. By the definition of σ -decomposition, we have

$$\sigma_i = \sigma_{\Gamma_i}(\Lambda) = \frac{1}{b_1} \sigma_{\Gamma_i}(Y).$$

Thus N has only one irreducible component Y and $N = (1/b_1)Y$. Furthermore, $(b_1 - 2)\Lambda|_Y \sim_{\mathbb{Q}} R_{Y/X} \ge 0$. Let us choose a positive integer m such that $H + m\pi^*A$ is ample. Then

$$\pi_*((H + m\pi^*A) \cdot ((b_1 - 2)\Lambda) \cdot Y) = b_1(b_1 - 2)\pi_*(H \cdot \Lambda^2) = -b_1(b_1 - 2)\Delta_2(\mathcal{E})$$

is also a pseudo-effective cycle. Hence by Bogomolov's inequality, if $b_1 \geq 3$, then $\Delta_2(\mathcal{E}) = 0$ and hence Λ is nef by **4.1**. This is a contradiction to: $P \approx 0$. Therefore, $b_1 = 2$ and thus $R_{Y/X} = 0$. Hence $\pi: Y \to X$ is an étale double-covering by **4.13**. From the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}}(H - Y) \to \mathcal{O}_{\mathbb{P}}(H) \to \mathcal{O}_Y(H) \to 0,$$

we infer that $\mathcal{E} \simeq \pi_* \mathcal{O}_Y(H)$. Thus \mathcal{E} is of type (B).

Next we consider the case (II). Let Γ_1 , Γ_2 be two irreducible components of N. Then $\pi_*(\Gamma_1 \cdot \Gamma_2) = D_1 + D_2$, since $b_1 = b_2 = 1$. Thus $D_1 + D_2$ is effective with $(D_1 + D_2) \cdot A^{d-1} = 0$. Therefore, $D_1 + D_2 \sim 0$ and $\Gamma_1 + \Gamma_2 \sim 2\Lambda$. Hence N has only two components and $\sigma_1 = \sigma_2 = 1/2$. We infer that every component of $\Gamma_1 \cap \Gamma_2$ is contracted by π from the vanishing $\pi_*(\Gamma_1 \cdot \Gamma_2) = 0$. Therefore

$$_*(H \cdot \Gamma_1 \cdot \Gamma_2) = -\Delta_2(\mathcal{E}) + D_1 \cdot D_2 = -\Delta_2(\mathcal{E}) - D_1^2$$

is an effective cycle. On the other hand,

$$R_{\Gamma_1/X} \sim (-\Lambda + \pi^* D_1)|_{\Gamma_1}.$$

Thus we have also an effective cycle

$$\pi_*(H \cdot R_{\Gamma_1/X}) = \pi_*(H \cdot (-\Lambda + \pi^* D_1) \cdot (\Lambda + \pi^* D_1)) = D_1^2 + \Delta_2(\mathcal{E}).$$

Hence $-\Delta_2(\mathcal{E}) = D_1^2$ in $N^2(X)$ and $\Gamma_1 \cap \Gamma_2 = \emptyset$. In particular, Γ_1 and Γ_2 are mutually disjoint sections of the \mathbb{P}^1 -bundle. Therefore

$$\mathcal{E} \simeq \pi_* \mathcal{O}_{\Gamma_1}(H) \oplus \pi_* \mathcal{O}_{\Gamma_2}(H).$$

Thus this is of type (A).

Finally, we treat the case (III). For the unique component $Y = \Gamma_1$, there is a divisor L_1 such that $Y \sim H - \pi^* L_1$. Since $N = \sigma_1 Y \approx \Lambda$, we have $\sigma_1 = 1$ and det $\mathcal{E} \approx 2L_1$. Note that

$$R = R_{Y/X} \sim (-H + \pi^* (-L_1 + \det \mathcal{E}))|_Y.$$

By applying π_* to the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}}(H - Y) \to \mathcal{O}_{\mathbb{P}}(H) \to \mathcal{O}_{Y}(H) \to 0,$$

we have another exact sequence

$$0 \to \mathcal{O}_X(L_1) \to \mathcal{E} \to \mathcal{I}\mathcal{O}_X(L_2) \to 0,$$

where L_2 is a divisor linearly equivalent to det $\mathcal{E}-L_1$ and $\mathcal{I} = \pi_* \mathcal{O}_Y(-R)$. Therefore \mathcal{E} is of type (C). This completes the proof. \Box

Concerning with the invariant κ_{σ} for pseudo-effective \mathbb{R} -divisors defined in Chapter **V**, §2.**b**, we have the following:

4.14. Corollary If \mathcal{E} is an A-semi-stable vector bundle of rank two, then

$$\kappa_{\sigma}(\Lambda_{\mathcal{E}}) \leq 1.$$

PROOF. We may assume that $\Lambda = \Lambda_{\mathcal{E}}$ is pseudo-effective. By **4.7**, we may assume further that Λ is not nef. By the proof of **4.8**, the positive part P of the σ -decomposition of Λ is numerically trivial and hence $\Lambda \approx N$. Thus $\kappa_{\sigma}(\Lambda) = 0$. \Box

4.15. Theorem The tautological divisor of the tangent bundle of a K3 surface is not pseudo-effective.

PROOF. For the tangent bundle $\mathcal{E} = T_X$ of a K3 surface X, det $(\mathcal{E}) = \mathcal{O}_X$ and $c_2(\mathcal{E}) = 24$. By [150], \mathcal{E} is A-stable for any ample divisor A. Since X is simply connected, $\Lambda_{\mathcal{E}} = H_{\mathcal{E}}$ is not pseudo-effective by 4.9.

Remark Kobayashi proved $\kappa(\Lambda) = -\infty$ in [**66**, Theorem C]. On the other hand, the tangent bundle is *generically semi-positive* in the sense of Miyaoka [**81**].

Problem For a K3 surface X, are there infinitely many prime divisors $\Gamma \subset \mathbb{P}_X(T_X)$ such that $H|_{\Gamma}$ are not pseudo-effective?

Actually, for some K3 surface X, there is a nef divisor L of $\mathbb{P}_X(T_X)$ with $H \cdot L^2 < 0$ (cf. [112]). For example, if X is a smooth quadric surface, then $L = H + 2\pi^*A$ is free for a hyperplane section A. In this case, $H \cdot L^2 = -8 < 0$. A general member $\Gamma \in |L|$ is a non-singular surface birational to X, with $K_{\Gamma}^2 = -40$. Here $H|_{\Gamma}$ is not pseudo-effective. In particular, the pullback of T_X in Γ is not A'-semi-stable for an ample divisor A' of Γ .

Problem Let \mathcal{E} be a vector bundle of rank two on a non-singular projective surface X. Suppose that for any generically finite morphism $f: Y \to X$ from any non-singular projective surface Y and for any ample divisor A of Y, $f^*\mathcal{E}$ is A-semi-stable. Then is $\Lambda_{\mathcal{E}}$ nef?

If $\Lambda_{\mathcal{E}}$ is not nef, then it is not pseudo-effective by **4.8** and is a negative example to **III.3.4**.

4.16. Proposition If \mathcal{E} is a vector bundle of rank two on a non-singular projective surface whose normalized tautological divisor is not pseudo-effective, then \mathcal{E} is A-semi-stable for some ample divisor A.

PROOF. Assume the contrary. Then there is an exact sequence

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{I}_Z \mathcal{M} \to 0$$

such that \mathcal{I}_Z is the ideal sheaf of a subspace Z of dim $Z \leq 0$ and $(\mathcal{L} - \mathcal{M}) \cdot A > 0$ for any ample divisor A. Therefore $\mathcal{L} - \mathcal{M}$ is pseudo-effective. By the formula,

$$\Lambda_{\mathcal{E}} = H_{\mathcal{E}} - \frac{1}{2}\pi^*(\mathcal{L} + \mathcal{M}) = H_{\mathcal{E}} - \pi^*\mathcal{L} + \frac{1}{2}\pi^*(\mathcal{L} - \mathcal{M}),$$

we infer that $\Lambda_{\mathcal{E}}$ is pseudo-effective.

4.17. Corollary Let \mathcal{E} be a vector bundle of rank two of a non-singular projective surface X. If D is a pseudo-effective \mathbb{R} -divisor of X with $3D^2 \geq \Delta_2(\mathcal{E})$, then $\Lambda_{\mathcal{E}} + \pi^*D$ is pseudo-effective.

PROOF. We may assume that $\Lambda = \Lambda_{\mathcal{E}}$ is not pseudo-effective. By **4.16**, \mathcal{E} is A-semi-stable for an ample divisor A. Thus Bogomolov's inequality $\Delta_2(\mathcal{E}) \geq 0$ holds. Let D be a \mathbb{Q} -divisor with $3D^2 > \Delta_2(\mathcal{E})$. It is enough to show that $\Lambda + \pi^*D$ is big. Let m be a positive integer such that $m\Lambda$ and mD are \mathbb{Z} -divisors. Then D is big by the Hodge index theorem and

$$\pi_*\mathcal{O}_{\mathbb{P}}(m(\Lambda + \pi^*D)) \simeq \pi_*\mathcal{O}_{\mathbb{P}}(m\Lambda) \otimes \mathcal{O}_X(mD),$$

in which $\pi_* \mathcal{O}_{\mathbb{P}}(m\Lambda)$ is an A-semi-stable vector bundle with trivial first Chern class. Therefore,

$$\mathrm{H}^{2}(X, \pi_{*}\mathcal{O}_{\mathbb{P}}(m(\Lambda + \pi^{*}D)))^{\vee} \simeq \mathrm{H}^{0}(X, \pi_{*}\mathcal{O}_{\mathbb{P}}(m\Lambda)^{\vee} \otimes \mathcal{O}_{X}(K_{X} - mD)) = 0$$

for $m \gg 0$. Note that

$$\mathrm{H}^{p}(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(m(\Lambda + \pi^{*}D))) \simeq \mathrm{H}^{p}(X, \pi_{*}\mathcal{O}_{\mathbb{P}}(m(\Lambda + \pi^{*}D)))$$

for any $p \ge 0$. Since $(\Lambda + \pi^* D)^3 = -\Delta_2(\mathcal{E}) + 3D^2 > 0$, we have
$$\begin{split} & \prod_{m \to \infty} (D^{-1} - \Delta_2(\mathcal{C}) + 3D^2 > 0, \text{ we h} \\ & \prod_{m \to \infty} m^{-3} \chi(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(m(\Lambda + \pi^* D))) > 0. \end{split}$$
Therefore $\Lambda + \pi^* D$ is big.

 $\mathbf{Problem}\ \mathrm{Let}\ \mathcal{E}$ be a vector bundle of rank two on a non-singular projective variety X. Suppose that the normalized tautological divisor $\Lambda = \Lambda_{\mathcal{E}}$ is not pseudoeffective. Describe the set

$$V(X, \mathcal{E}) := \{ D \in \mathbb{N}^1(X) \mid \Lambda + \pi^* D \text{ is pseudo-effective} \}$$

For example, if $X = \mathbb{P}^2$ and $\mathcal{E} = T_X$, then $V(X, \mathcal{E}) = \{a\ell \mid a \ge 1/2\}$, where $\ell \subset \mathbb{P}^2$ is a line.

164