CHAPTER IV

Divisors on bundles

We calculate σ-decompositions of pseudo-effective divisors defined over varieties given by toric construction or defined over varieties admitting projective bundle structure. In $\S 1$, we recall some basics on toric varieties, extracting from the book [110], and we prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R} divisors on toric varieties. The notion of toric bundles is introduced in $\S \mathbf{2}$; a toric bundle is a fiber bundle of a toric variety whose transition group is the open torus. We give a counterexample to the Zariski-decomposition conjecture by constructing a divisor on such a toric bundle. We also consider projective bundles over curves in $\S 3$. We prove the existence of Zariski-decomposition for pseudo-effective \mathbb{R}-divisors on the bundles. The content of the preprint [106] is written in $\S 4$, where we study the relation between the stability of a vector bundle \mathcal{E} and the pseudo-effectivity of the normalized tautological divisor $\Lambda_{\mathcal{E}}$. For example, the vector bundles with $\Lambda_{\mathcal{E}}$ being nef are characterized by semi-stability, Bogomolov's inequality, and projectively flat metrics. We shall classify and list the A-semi-stable vector bundles of rank two for an ample divisor A such that $\Lambda_{\mathcal{E}}$ is not nef but pseudo-effective. In particular, we can show that $\Lambda_{\mathcal{E}}$ for the tangent bundle \mathcal{E} of any K3 surface is not pseudo-effective.

§1. Toric varieties

§1.a. Fans. We begin with recalling the notion of toric varieties. Let N be a free abelian group of finite rank and let M be the dual $N^{\vee}=\operatorname{Hom}(N, \mathbb{Z})$. We denote the natural pairing $\mathrm{M} \times \mathrm{N} \rightarrow \mathbb{Z}$ by $\langle, \quad\rangle$. For subsets \mathcal{S} and \mathcal{S}^{\prime} of $\mathrm{N}_{\mathbb{R}}=\mathrm{N} \otimes \mathbb{R}$ and for a subset $R \subset \mathbb{R}$, we set

$$
\begin{gathered}
\mathcal{S}+\mathcal{S}^{\prime}=\left\{n+n^{\prime} \mid n \in \mathcal{S}, n^{\prime} \in \mathcal{S}^{\prime}\right\}, \quad R \mathcal{S}=\{r n \mid n \in \mathcal{S}, r \in R\} \\
\mathcal{S}^{\vee}=\left\{m \in \mathrm{M}_{\mathbb{R}} \mid\langle m, n\rangle \geq 0 \text { for } n \in \mathcal{S}\right\}, \quad \mathcal{S}^{\perp}=\left\{m \in \mathrm{M}_{\mathbb{R}} \mid\langle m, n\rangle=0 \text { for } n \in \mathcal{S}\right\} .
\end{gathered}
$$

A subset $\boldsymbol{\sigma} \subset \mathrm{N}_{\mathbb{R}}$ is called a convex cone if $\mathbb{R}_{\geq 0} \boldsymbol{\sigma}=\boldsymbol{\sigma}$ and $\boldsymbol{\sigma}+\boldsymbol{\sigma}=\boldsymbol{\sigma}$. If $\sigma=\sum_{x \in \mathcal{S}} \mathbb{R}_{\geq 0} x$ for a subset $\mathcal{S} \subset \mathrm{N}_{\mathbb{R}}$, then we say that \mathcal{S} generates the convex cone $\boldsymbol{\sigma}$. The set $\boldsymbol{\sigma}^{\vee}$ for a convex cone $\boldsymbol{\sigma}$ is a closed convex cone of $\mathrm{M}_{\mathbb{R}}=\mathrm{M} \otimes \mathbb{R}$, which is called the dual cone of $\boldsymbol{\sigma}$. It is well-known that $\boldsymbol{\sigma}=\left(\boldsymbol{\sigma}^{\vee}\right)^{\vee}$ for a closed convex cone $\boldsymbol{\sigma}$. The dimension of a convex cone $\boldsymbol{\sigma}$ is defined as that of the vector subspace $\mathrm{N}_{\mathbb{R}, \boldsymbol{\sigma}}=\boldsymbol{\sigma}+(-\boldsymbol{\sigma})$. The quotient vector space $\mathrm{N}_{\mathbb{R}}(\boldsymbol{\sigma})=\mathrm{N}_{\mathbb{R}} / \mathrm{N}_{\mathbb{R}, \boldsymbol{\sigma}}$ is dual to the vector space $\boldsymbol{\sigma}^{\perp}$. The vector subspace $\left(\boldsymbol{\sigma}^{\vee}\right)^{\perp} \subset \mathrm{N}_{\mathbb{R}}$ is the maximum vector subspace contained in $\boldsymbol{\sigma}$. If $\left(\boldsymbol{\sigma}^{\vee}\right)^{\perp}=0$, then $\boldsymbol{\sigma}$ is called strictly convex. A face
$\boldsymbol{\tau} \prec \boldsymbol{\sigma}$ is a subset of the form $m^{\perp} \cap \boldsymbol{\sigma}$ for some element $m \in \boldsymbol{\sigma}^{\vee}$. The relative interior of $\boldsymbol{\sigma}$ is denoted by Int $\boldsymbol{\sigma}$, which is just the complement of the union of proper faces of $\boldsymbol{\sigma}$. A real-valued function $h: \boldsymbol{\sigma} \rightarrow \mathbb{R}$ is called upper convex if $h(x+y) \geq h(x)+h(y)$ and $h(r x)=r h(x)$ hold for any $x, y \in \boldsymbol{\sigma}, r \in \mathbb{R}_{\geq 0}$. A real-valued function h on $\boldsymbol{\sigma}$ is called lower convex if $-h$ is upper convex.

A convex cone $\boldsymbol{\sigma}$ generated by a finite subset of $\mathrm{N}_{\mathbb{R}}$ is called a convex polyhedral cone. The dual cone of a convex polyhedral cone is also convex polyhedral. A convex cone $\boldsymbol{\sigma}$ generated by a finite subset of N is called a convex rational polyhedral cone (with respect to N).

Let $\boldsymbol{\sigma}$ be a convex rational polyhedral cone. We define $\mathrm{N}_{\boldsymbol{\sigma}}$ to be the submodule $(\boldsymbol{\sigma}+(-\boldsymbol{\sigma})) \cap \mathrm{N}$ and $\mathrm{N}(\boldsymbol{\sigma})$ to be the quotient $\mathrm{N} / \mathrm{N}_{\boldsymbol{\sigma}}$. Then $\mathrm{N}_{\boldsymbol{\sigma}, \mathbb{R}}=\mathrm{N}_{\boldsymbol{\sigma}} \otimes \mathbb{R}=$ $\mathrm{N}_{\mathbb{R}, \boldsymbol{\sigma}}, \mathrm{N}(\boldsymbol{\sigma})_{\mathbb{R}}=\mathrm{N}(\boldsymbol{\sigma}) \otimes \mathbb{R}=\mathrm{N}_{\mathbb{R}}(\boldsymbol{\sigma})$, and $\boldsymbol{\sigma}^{\perp} \simeq \operatorname{Hom}(\mathrm{N}(\boldsymbol{\sigma}), \mathbb{R})$. The submodule $\mathrm{M}(\boldsymbol{\sigma}):=\boldsymbol{\sigma}^{\perp} \cap \mathrm{M}$ is isomorphic to $\operatorname{Hom}(\mathrm{N}(\boldsymbol{\sigma}), \mathbb{Z})$. The intersection $\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}$ is a finitely generated semi-group, which is known as Gordan's lemma. If $\boldsymbol{\sigma}$ is strictly convex, then $\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}$ generates the abelian group M .

A fan $\boldsymbol{\Sigma}$ of N is a set of strictly convex rational polyhedral cones of $\mathrm{N}_{\mathbb{R}}$ with respect to N satisfying the following conditions:
(1) If $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, then $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$;
(2) If $\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2} \in \boldsymbol{\Sigma}$, then $\boldsymbol{\sigma}_{1} \cap \boldsymbol{\sigma}_{2} \prec \boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{1} \cap \boldsymbol{\sigma}_{2} \prec \boldsymbol{\sigma}_{2}$.

A fan always contains the zero cone $\mathbf{0}=\{0\}$. For a strictly convex rational polyhedral cone $\boldsymbol{\sigma}$, the set of its faces is a fan, which is denoted by the same symbol $\boldsymbol{\sigma}$. Let $\boldsymbol{\Sigma}$ be a fan of N . The union $\bigcup \boldsymbol{\sigma}$ of all $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ is called the support of $\boldsymbol{\Sigma}$ and is denoted by $|\boldsymbol{\Sigma}|$. The intersection of N and the vector subspace of $\mathrm{N}_{\mathbb{R}}$ generated by $|\boldsymbol{\Sigma}|$ is denoted by $\mathrm{N}_{\boldsymbol{\Sigma}}$. The quotient $\mathrm{N} / \mathrm{N}_{\boldsymbol{\Sigma}}$ is denoted by $\mathrm{N}(\boldsymbol{\Sigma})$. If $\boldsymbol{\Sigma}$ is a finite set, then $\boldsymbol{\Sigma}$ is called finite. A finite fan with $|\boldsymbol{\Sigma}|=\mathrm{N}_{\mathbb{R}}$ is called complete. Let N^{\prime} be another free abelian group of finite rank and let $\boldsymbol{\Sigma}^{\prime}$ be a fan of N^{\prime}. A homomorphism $\phi: \mathrm{N} \rightarrow \mathrm{N}^{\prime}$ of abelian groups is called compatible with $\boldsymbol{\Sigma}$ and $\boldsymbol{\Sigma}^{\prime}$, and is regarded as a morphism $(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow\left(\mathrm{N}^{\prime}, \boldsymbol{\Sigma}^{\prime}\right)$ of fans if the following condition is satisfied: For any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, there is a cone $\boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}^{\prime}$ such that $\phi(\boldsymbol{\sigma}) \subset \boldsymbol{\sigma}^{\prime}$. If the following condition is satisfied in addition, then $\boldsymbol{\Sigma}$ is called proper over $\boldsymbol{\Sigma}^{\prime}$ and ϕ is called proper: For any $\boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}^{\prime}$,

$$
\boldsymbol{\Sigma}_{\boldsymbol{\sigma}^{\prime}}:=\left\{\boldsymbol{\sigma} \in \boldsymbol{\Sigma} \mid \phi(\boldsymbol{\sigma}) \subset \boldsymbol{\sigma}^{\prime}\right\}
$$

is a finite fan with $\left|\boldsymbol{\Sigma}_{\boldsymbol{\sigma}^{\prime}}\right|=\phi^{-1}\left(\boldsymbol{\sigma}^{\prime}\right)$. If $\mathrm{N}^{\prime}=\mathrm{N}, \phi$ is the identity, and $\left|\boldsymbol{\Sigma}^{\prime}\right|=|\boldsymbol{\Sigma}|$, then $\boldsymbol{\Sigma}^{\prime}$ is called a subdivision of $\boldsymbol{\Sigma}$. If $\boldsymbol{\Sigma}^{\prime}$ is proper over $\boldsymbol{\Sigma}$, then it is called a proper subdivision or a locally finite subdivision of $\boldsymbol{\Sigma}$.

Let $\sigma \subset \mathrm{N}_{\mathbb{R}}$ be a strictly convex rational polyhedral cone. The affine toric variety $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ is defined as the affine scheme over \mathbb{C} associated with the semi-group ring $\mathbb{C}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$. The associated analytic space $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})^{\text {an }}=$ Specan $\mathbb{C}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$ is denoted by $\mathbb{T}_{N}(\boldsymbol{\sigma})$. For a face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, an open immersion $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\tau}) \subset \mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ is defined by the inclusion $\boldsymbol{\sigma}^{\vee} \cap \mathrm{M} \subset \boldsymbol{\tau}^{\vee} \cap \mathrm{M}$. We set $\mathrm{T}_{\mathrm{N}}=\mathrm{T}_{\mathrm{N}}(\mathbf{0})$ for the zero cone $\mathbf{0}$, which is an algebraic torus. The associated analytic space $\mathbb{T}_{N}:=\mathrm{T}_{\mathrm{N}}^{\text {an }}$ is isomorphic to $\mathrm{N} \otimes \mathbb{C}^{\star}$. The toric variety $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ associated with a fan $\boldsymbol{\Sigma}$ is defined as the natural
union of $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ for $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. This is a separated scheme locally of finite type over Spec \mathbb{C}. The associated analytic space is denoted by $\mathbb{T}_{N}(\boldsymbol{\Sigma})$. There are an action of T_{N} on $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ and an equivariant open immersion $\mathrm{T}_{\mathrm{N}} \subset \mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$. Toric varieties are normal.

For a strictly convex rational polyhedral cone $\sigma \subset \mathrm{N}_{\mathbb{R}}$, there is a natural surjective \mathbb{C}-algebra homomorphism $\mathbb{C}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right] \rightarrow \mathbb{C}\left[\boldsymbol{\sigma}^{\perp} \cap \mathrm{M}\right]$ given by

$$
\boldsymbol{\sigma}^{\vee} \cap \mathrm{M} \ni m \mapsto \begin{cases}m, & \text { if } m \in \boldsymbol{\sigma}^{\perp} \\ 0, & \text { otherwise }\end{cases}
$$

This induces a closed immersion

$$
\mathrm{T}_{\mathrm{N}(\boldsymbol{\sigma})} \hookrightarrow \mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma}) .
$$

The left hand side is an orbit of T_{N} and is denoted by $\mathrm{O}_{\boldsymbol{\sigma}}$. In fact, for the composite $\pi_{\boldsymbol{\sigma}}: \mathrm{T}_{\mathrm{N}} \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\sigma})} \hookrightarrow \mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$, we have

$$
\pi_{\boldsymbol{\sigma}}(t)=t \cdot \pi_{\boldsymbol{\sigma}}(\mathbf{1})=\pi_{\boldsymbol{\sigma}}(\mathbf{1}) \cdot t
$$

for $t \in \mathrm{~T}_{\mathrm{N}}$ and for the unit $\mathbf{1}$ of T_{N}, where \cdot indicates the left and right actions of T_{N} on $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$. For a face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, let $\boldsymbol{\sigma} / \boldsymbol{\tau}$ be the image of $\boldsymbol{\sigma}$ under $\mathrm{N}_{\mathbb{R}} \rightarrow \mathrm{N}(\boldsymbol{\tau})_{\mathbb{R}}$, which is also a strictly convex rational polyhedral cone with respect to $\mathrm{N}(\boldsymbol{\tau})$. Then $(\boldsymbol{\sigma} / \boldsymbol{\tau})^{\vee} \cap \mathrm{M}(\boldsymbol{\tau})$ is identified with $\boldsymbol{\sigma}^{\vee} \cap \boldsymbol{\tau}^{\perp} \cap \mathrm{M}$. The Zariski-closure of $\mathrm{O}_{\boldsymbol{\tau}}$ in $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ is isomorphic to $\mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}(\boldsymbol{\sigma} / \boldsymbol{\tau})$ by a natural surjective homomorphism $\mathbb{C}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right] \rightarrow$ $\mathbb{C}\left[\boldsymbol{\sigma}^{\vee} \cap \boldsymbol{\tau}^{\perp} \cap \mathrm{M}\right]$ given by

$$
\boldsymbol{\sigma}^{\vee} \cap \mathrm{M} \ni m \mapsto \begin{cases}m, & \text { if } m \in \boldsymbol{\tau}^{\perp} \\ 0, & \text { otherwise }\end{cases}
$$

For a fan $\boldsymbol{\Sigma}$ of N and for a cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, the set

$$
\boldsymbol{\Sigma} / \boldsymbol{\sigma}:=\left\{\boldsymbol{\sigma}^{\prime} / \boldsymbol{\sigma} \mid \boldsymbol{\sigma} \prec \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}\right\}
$$

is a fan of $\mathrm{N}(\boldsymbol{\sigma})$. Then the Zariski-closure $\mathrm{V}(\boldsymbol{\sigma})$ of $\mathrm{O}_{\boldsymbol{\sigma}}$ in $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ is isomorphic to $\mathrm{T}_{\mathrm{N}(\boldsymbol{\sigma})}(\boldsymbol{\Sigma} / \boldsymbol{\sigma})$. If $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ is not a proper face of another cone in $\boldsymbol{\Sigma}$, then it is called a maximal cone. In this case, $\mathrm{O}_{\boldsymbol{\sigma}}=\mathrm{V}(\boldsymbol{\sigma})$.

An element $m \in \mathrm{M}$ is regarded as a nowhere-vanishing regular function on T_{N}, which is denoted by e (m). It is also a rational function on the toric variety $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ associated with a fan $\boldsymbol{\Sigma}$ of N . An integral primitive vector $v \in \mathrm{~N}$ is called a vertex of $\boldsymbol{\Sigma}$ if $\mathbb{R}_{\geq 0} v \in \boldsymbol{\Sigma}$. The set of vertices of $\boldsymbol{\Sigma}$ is denoted by $\operatorname{Ver}(\boldsymbol{\Sigma})$ or $\operatorname{Ver}(\mathbf{N}, \boldsymbol{\Sigma})$. For $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$, let $\boldsymbol{\Gamma}_{v}$ be the prime divisor $\mathrm{V}\left(\mathbb{R}_{\geq 0} v\right)$. Then the principal divisor $\operatorname{div}(\mathrm{e}(m))$ is written by

$$
\sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})}\langle m, v\rangle \boldsymbol{\Gamma}_{v}
$$

as a Weil divisor. Since div oe is a group homomorphism $\mathrm{M} \rightarrow \operatorname{Div}\left(\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})\right)$, the principal \mathbb{R}-divisor $\operatorname{div}\left(\mathrm{e}\left(m^{\prime}\right)\right)$ is also defined for $m^{\prime} \in \mathrm{M}_{\mathbb{R}}$; if $m^{\prime}=\sum r_{i} m_{i}$, then

$$
\operatorname{div}\left(\mathrm{e}\left(m^{\prime}\right)\right)=\sum r_{i} \operatorname{div}\left(\mathrm{e}\left(m_{i}\right)\right)
$$

where $r_{i} \in \mathbb{R}, m_{i} \in \mathrm{M}$.

Remark (1) $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ is non-singular if and only if the set $\operatorname{Ver}(\mathrm{N}, \boldsymbol{\sigma})$ is a basis of the free abelian group $\mathrm{N}_{\boldsymbol{\sigma}}$. Similarly, $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ has only quotient singularities if and only if $\operatorname{Ver}(\mathbf{N}, \boldsymbol{\sigma})$ is a basis of the \mathbb{Q}-vector space $\mathrm{N}_{\boldsymbol{\sigma}} \otimes \mathbb{Q}$. A fan $\boldsymbol{\Sigma}$ is called non-singular if $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ is non-singular.
(2) Let $\phi:(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow\left(\mathrm{N}^{\prime}, \boldsymbol{\Sigma}^{\prime}\right)$ be a morphism into another free abelian group N^{\prime} of finite rank with a fan $\boldsymbol{\Sigma}^{\prime}$. Then it induces a morphism $\phi_{*}: \mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \rightarrow$ $\mathrm{T}_{\mathrm{N}^{\prime}}\left(\boldsymbol{\Sigma}^{\prime}\right)$ which is equivariant under the homomorphism $\mathrm{T}_{\mathrm{N}} \rightarrow \mathrm{T}_{\mathrm{N}^{\prime}}$. If ϕ is proper, then ϕ_{*} is proper.
(3) There is a proper subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ such that $\boldsymbol{\Sigma}^{\prime}$ is non-singular. In particular, $\mathrm{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}\right) \rightarrow \mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ is a proper birational morphism from a nonsingular variety.
(4) If $\boldsymbol{\Sigma}$ is a finite fan such that $|\boldsymbol{\Sigma}|$ is a convex cone, then the toric variety $\mathrm{X}=$ $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ is proper over an affine toric variety. The vanishing $\mathrm{H}^{p}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right)=0$ for $p>0$ holds, which is shown in a general form in [62, Chapter I, §3] and $[\mathbf{9}, \S 7]$ (cf. [110, §2.2]). In particular, toric varieties have only rational singularities.
1.1. Lemma Let $\phi:(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow(\mathrm{L}, \boldsymbol{\Lambda})$ be a morphism of fans and let $\mathrm{f}=$ $\phi_{*}: \mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \rightarrow \mathrm{T}_{\mathrm{L}}(\boldsymbol{\Lambda})$ be the associated morphism of toric varieties. Then

$$
\mathrm{f}^{-1} \mathrm{~T}_{\mathrm{L}}(\boldsymbol{\lambda}) \simeq \mathrm{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}\right)
$$

for $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$. Moreover,

$$
\mathrm{f}^{-1} \mathrm{O}_{\boldsymbol{\lambda}}=\bigsqcup_{\phi(\boldsymbol{\sigma}) \subset \boldsymbol{\lambda}, \phi(\boldsymbol{\sigma}) \cap \operatorname{Int} \boldsymbol{\lambda} \neq \emptyset} \mathrm{O}_{\boldsymbol{\sigma}}
$$

If f is proper, then $\mathrm{f}^{-1}(\mathrm{~V}(\boldsymbol{\lambda}))$ is set-theoretically the union

$$
\bigcup_{\phi(\boldsymbol{\sigma}) \subset \boldsymbol{\lambda}, \phi(\boldsymbol{\sigma}) \cap \operatorname{Int} \boldsymbol{\lambda} \neq \emptyset} \mathrm{V}(\boldsymbol{\sigma})
$$

Proof. The first isomorphism is derived from the definition of f, which is given by the gluing of natural morphisms $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma}) \rightarrow \mathrm{T}_{\mathrm{L}}(\boldsymbol{\lambda})$ for $\boldsymbol{\sigma} \subset \phi^{-1}(\boldsymbol{\lambda})$.

For a cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, let $\boldsymbol{\lambda}_{1} \in \boldsymbol{\Lambda}$ be the minimum cone containing $\phi(\boldsymbol{\sigma})$. Then $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}$ if and only if $\phi(\boldsymbol{\sigma}) \subset \boldsymbol{\lambda}$ and $\phi(\boldsymbol{\sigma}) \cap \operatorname{Int} \boldsymbol{\lambda} \neq \emptyset$. The transpose $\phi^{\vee}: \mathrm{L}^{\vee} \rightarrow$ $\mathrm{N}^{\vee}=\mathrm{M}$ induces $\boldsymbol{\lambda}_{1}^{\perp} \cap \mathrm{L}^{\vee} \rightarrow \boldsymbol{\sigma}^{\perp} \cap \mathrm{M}$. Hence $\mathrm{f}\left(\mathrm{O}_{\boldsymbol{\sigma}}\right) \subset \mathrm{O}_{\boldsymbol{\lambda}_{1}}$. By considering the orbit decomposition of $f^{-1} O_{\boldsymbol{\lambda}}$, we have the equality for $f^{-1} O_{\boldsymbol{\lambda}}$. In the proper case, taking the closure, we have the equality for $f^{-1}(V(\boldsymbol{\lambda}))$, since f is a closed map.

An element $0 \neq a \in \mathrm{~N}$ defines a 1-parameter subgroup $\mathrm{T}_{\mathbb{Z} a} \subset \mathrm{~T}_{\mathrm{N}}$. If $a \in|\boldsymbol{\Sigma}|$, then we have a morphism $\phi_{a}:\left(\mathbb{Z}, \mathbb{R}_{>0}\right) \rightarrow(\mathrm{N}, \boldsymbol{\Sigma})$ of fans by $\phi_{a}(1)=a$. The induced morphism $f_{a}=\phi_{a_{*}}: \mathrm{T}_{\mathbb{Z}}\left(\mathbb{R}_{\geq 0}\right) \simeq \mathbb{A}^{\overline{1}} \rightarrow \mathrm{~T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ of toric varieties is an extension of $\mathrm{T}_{\mathbb{Z} a} \subset \mathrm{~T}_{\mathrm{N}}$. Let $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ be the minimum cone containing a. Then $\mathrm{f}_{a}(0)=\pi_{\boldsymbol{\sigma}}(\mathbf{1}) \in \mathrm{O}_{\boldsymbol{\sigma}}$ for the origin $0 \in \mathbb{A}^{1}$, where $\pi_{\boldsymbol{\sigma}}$ is the composite $\mathrm{T}_{\mathrm{N}} \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\sigma})} \hookrightarrow \mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$. Thus $\lim _{t \rightarrow 0} \mathrm{f}_{a}(t) \cdot P=\pi_{\boldsymbol{\sigma}}(P)$ for any point $P \in \mathrm{~T}_{\mathrm{N}}$. If $P \in \mathrm{O}_{\boldsymbol{\tau}}$ for some face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, then $\lim _{t \rightarrow 0} \mathrm{f}_{a}(t) \cdot P=\pi_{\boldsymbol{\sigma} / \boldsymbol{\tau}}(P)$, where $\pi_{\boldsymbol{\sigma} / \boldsymbol{\tau}}$ is the composite $\mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})} \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\sigma})} \simeq$ $\mathrm{O}_{\boldsymbol{\sigma}} \subset \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}(\boldsymbol{\sigma} / \boldsymbol{\tau})$. Suppose that $P \in \mathrm{O}_{\boldsymbol{\tau}}$ for $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$ with $\boldsymbol{\tau} \not \subset \boldsymbol{\sigma}$ and that $a^{\prime}:=a$
$\bmod \mathrm{N}_{\boldsymbol{\tau}} \in \mathrm{N}(\boldsymbol{\tau})$ is contained in $|\boldsymbol{\Sigma} / \boldsymbol{\tau}|$. Let $\boldsymbol{\sigma}^{\prime} / \boldsymbol{\tau} \in \boldsymbol{\Sigma} / \boldsymbol{\tau}$ be the minimum cone containing a^{\prime}. Then $\lim _{t \rightarrow 0} \mathrm{f}_{a}(t) \cdot P=\pi_{\boldsymbol{\sigma}^{\prime} / \boldsymbol{\tau}}(P)$.
1.2. Lemma A complete subvariety of $\mathrm{X}=\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ of dimension $k<\operatorname{dim} \mathbf{N}_{\boldsymbol{\Sigma}}$ is rationally equivalent to a complete effective algebraic k-cycle supported on the union of $\mathrm{V}(\boldsymbol{\tau})$ with $\operatorname{dim}|\boldsymbol{\Sigma} / \boldsymbol{\tau}|=k$.

Proof. Let V be such a complete subvariety of X . Then V is contracted to a point by $\mathrm{X} \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\Sigma})}$. Thus we may assume that $|\boldsymbol{\Sigma}|$ generates $\mathrm{N}_{\mathbb{R}}$. We consider the action of the 1-parameter subgroup $\mathrm{T}_{\mathbb{Z} a}$ for $0 \neq a \in \mathrm{~N} \cap|\boldsymbol{\Sigma}|$. Let $\mathrm{f}_{a}: \mathbb{A}^{1} \rightarrow \mathrm{X}$ be the morphism defined above. The action of $\mathrm{T}_{\mathbb{Z} a}$ on X extends to a rational map $\psi: \mathbb{A}^{1} \times \mathbf{X} \cdots \rightarrow$. It is a morphism over $\mathbb{A}^{1} \times \mathrm{T}_{\mathrm{N}}$, where $\psi(t, P)=\mathrm{f}_{a}(t) \cdot P$. We have a toric variety Y and a proper birational morphism $\mu: \mathrm{Y} \rightarrow \mathbb{A}^{1} \times \mathrm{X}$ of toric varieties such that $\varphi=\psi \circ \mu: \mathrm{Y} \rightarrow \mathrm{X}$ is a morphism. Let \mathcal{V} be the proper transform of $\mathbb{A}^{1} \times \mathrm{V}$ in Y . Then the projection $p: \mathcal{V} \rightarrow \mathbb{A}^{1}$ is a proper flat morphism. In particular, the image of $(p, \varphi): \mathcal{V} \rightarrow \mathbb{A}^{1} \times \mathrm{X}$ is also proper and flat over \mathbb{A}^{1}. For the fiber $\mathcal{V}_{t}=p^{-1}(t)$, the image $\varphi\left(\mathcal{V}_{t}\right)$ is just V multiplied by $\mathrm{f}_{a}(t)$ for $t \neq 0$. The push-forward $\varphi_{*} \mathcal{V}_{0}$ is a complete effective algebraic k-cycle rationally equivalent to V. Here, any prime component of $\varphi_{*} \mathcal{V}_{0}$ is preserved by the action of $\mathrm{T}_{\mathbb{Z} a}$. We set $a_{1}=a$ and choose elements $a_{2}, \ldots a_{l} \in \mathrm{~N} \cap|\boldsymbol{\Sigma}|$ such that $\sum_{i=1}^{l} \mathbb{Z} a_{i} \subset \mathrm{~N}$ is a finite index subgroup, where $l=\operatorname{rank} \mathrm{N}$. Applying the same limit argument for a_{2} to prime components of $\varphi_{*} \mathcal{V}_{0}$, we have a new complete effective algebraic k-cycle which is preserved by the actions of $\mathrm{T}_{\mathbb{Z} a_{1}}$ and $\mathrm{T}_{\mathbb{Z} a_{2}}$. Applying the same argument successively, we finally have a complete effective algebraic k-cycle V_{*} such that V_{*} is rationally equivalent to V and that $\operatorname{Supp} \mathrm{V}_{*}$ is preserved by the action of T_{N}. Hence $\operatorname{Supp} \bigvee_{*}$ is written as the union of some orbits $\mathrm{O}_{\boldsymbol{\tau}}$, where $\operatorname{dim} \mathrm{O}_{\boldsymbol{\tau}} \leq k<l$. Thus we are done.

Remark Let $\boldsymbol{\tau}$ be a cone in $\boldsymbol{\Sigma}$. In our notation, $\mathrm{N}(\boldsymbol{\tau})_{\boldsymbol{\Sigma} / \boldsymbol{\tau}}$ is the intersection of $N(\boldsymbol{\tau})$ and the vector subspace of $N(\boldsymbol{\tau})_{\mathbb{R}}$ generated by $|\boldsymbol{\Sigma} / \boldsymbol{\tau}|$, and $N(\boldsymbol{\tau})(\boldsymbol{\Sigma} / \boldsymbol{\tau})$ is the quotient $\mathrm{N}(\boldsymbol{\tau}) / \mathrm{N}(\boldsymbol{\tau})_{\boldsymbol{\Sigma} / \boldsymbol{\tau}}$. We have an isomorphism

$$
\mathrm{V}(\boldsymbol{\tau})=\mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}(\boldsymbol{\Sigma} / \boldsymbol{\tau}) \simeq \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})_{\Sigma / \boldsymbol{\tau}}}(\boldsymbol{\Sigma} / \boldsymbol{\tau}) \times \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})(\boldsymbol{\Sigma} / \boldsymbol{\tau})}
$$

Thus any complete subvariety of $\mathrm{V}(\boldsymbol{\tau})$ of dimension equal to $\operatorname{dim}|\boldsymbol{\Sigma} / \boldsymbol{\tau}|$ is a fiber of the projection $\mathrm{V}(\boldsymbol{\tau}) \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})(\boldsymbol{\Sigma} / \boldsymbol{\tau})}$.
§1.b. Support functions. Let $\boldsymbol{\Sigma}$ be a finite fan of N . A $\boldsymbol{\Sigma}$-linear support function h is a continuous function $h:|\boldsymbol{\Sigma}| \rightarrow \mathbb{R}$ that is linear on every $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. For a subset $\mathfrak{K} \subset \mathbb{R}$, let $\operatorname{SF}_{N}(\boldsymbol{\Sigma}, \mathfrak{K})$ be the set of $\boldsymbol{\Sigma}$-linear support functions h with $h(\mathbb{N} \cap|\boldsymbol{\Sigma}|) \subset \mathfrak{K}$. Then $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \otimes \mathbb{Q} \simeq \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Q})$ and $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Q}) \otimes \mathbb{R} \simeq$ $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. In fact, in the vector space $\operatorname{Map}(\operatorname{Ver}(\mathrm{N}, \boldsymbol{\Sigma}), \mathbb{R})=\prod_{v \in \operatorname{Ver}(\mathbf{N}, \boldsymbol{\Sigma})} \mathbb{R}$, the subspace $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ is determined by a finite number of relations defined over \mathbb{Q}.

A $\boldsymbol{\Sigma}$-convex support function h is a continuous function $h:|\boldsymbol{\Sigma}| \rightarrow \mathbb{R}$ satisfying the following conditions:
(1) The restriction $\left.h\right|_{\boldsymbol{\sigma}}$ to $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ is upper convex for any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$;
(2) For any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, there is a finite fan $\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}$ of N with $\left|\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}\right|=\boldsymbol{\sigma}$ such that $\left.h\right|_{\boldsymbol{\sigma}}$ is $\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}$-linear.
For a subset $\mathfrak{K} \subset \mathbb{R}$, the set of $\boldsymbol{\Sigma}$-convex support functions h with $h(|\boldsymbol{\Sigma}| \cap \mathbf{N}) \subset \mathfrak{K}$ is denoted by $\operatorname{SFC}_{N}(\boldsymbol{\Sigma}, \mathfrak{K})$. Functions contained in $\operatorname{SFC}_{N}(\boldsymbol{\Sigma}, \mathbb{Z})$ and $\operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Q})$ are called integral and rational, respectively.

For $h \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ and for a closed convex cone $C \subset|\boldsymbol{\Sigma}|$, we define

$$
\begin{aligned}
& \square_{h}(C):=\left\{m \in \mathrm{M}_{\mathbb{R}} \mid\langle m, x\rangle \geq h(x) \text { for any } x \in C\right\} \\
& \triangle_{h}(C):=\sum_{x \in C} \mathbb{R}_{\geq 0}(x, h(x))+\mathbb{R}_{\geq 0}(0,-1) \subset \mathrm{N}_{\mathbb{R}} \times \mathbb{R}
\end{aligned}
$$

Then $\square_{h}(C)$ is a convex set and $\triangle_{h}(C)$ is a closed convex cone, since $\boldsymbol{\Sigma}$ is finite and h is $\boldsymbol{\Sigma}$-convex. If C is a convex polyhedral cone, then $\triangle_{h}(C)$ is so. The dual cone of $\triangle_{h}(C)$ is written by

$$
C^{\vee} \times\{0\} \cup \mathbb{R}_{\geq 0}\left(\square_{h}(C) \times\{-1\}\right)
$$

In particular, $\square_{h}(C)=\emptyset$ if and only if $\triangle_{h}(C) \ni(0,1)$. When $\square_{h}(C) \neq \emptyset$, we define a function by

$$
\begin{equation*}
h_{C}^{\dagger}(x):=\inf \left\{\langle m, x\rangle \mid m \in \square_{h}(C)\right\} . \tag{IV-1}
\end{equation*}
$$

Then $h_{C}^{\dagger}(x) \geq h(x)$ for $x \in C$. Since $\triangle_{h}(C)=\left(\triangle_{h}(C)^{\vee}\right)^{\vee}$,

$$
\begin{equation*}
h_{C}^{\dagger}(x)=\max \left\{r \in \mathbb{R} \mid(x, r) \in \triangle_{h}(C)\right\} \tag{IV-2}
\end{equation*}
$$

for $x \in C$.
1.3. Lemma The following conditions are equivalent:
(1) h is upper convex on C;
(2) $\triangle_{h}(C)=\{(x, r) \in C \times \mathbb{R} \mid h(x) \geq r\}$;
(3) $\square_{h}(C) \neq \emptyset$ and $h_{C}^{\dagger}(x)=h(x)$ for $x \in C$.

Proof. (1) $\Rightarrow(2)$: The right hand side is a convex cone contained in the left. On the other hand, $(x, h(x))$ is contained in the right for $x \in C$. Thus the equality holds.
$(2) \Rightarrow(3):$ We infer $(0,1) \notin \triangle_{h}(C)$, which implies $\square_{h}(C) \neq \emptyset$. The equality $h_{C}^{\dagger}=h$ on C follows directly from the equality (IV-2).
$(3) \Rightarrow(1)$: By the definition (IV-1), we infer that h_{C}^{\dagger} is upper convex on C. Thus we are done.
1.4. Lemma (1) If C^{\prime} is a face of C, then

$$
\triangle_{h}\left(C^{\prime}\right)=\triangle_{h}(C) \cap\left(C^{\prime} \times \mathbb{R}\right)
$$

In particular, $h_{C^{\prime}}^{\dagger}(x)=h_{C}^{\dagger}(x)$ for $x \in C^{\prime}$ provided that $\square_{h}(C) \neq \emptyset$.
(2) $\square_{h}(C) \neq \emptyset$ if and only if $\square_{h}\left(\left(C^{\vee}\right)^{\perp}\right) \neq \emptyset$.

Proof. (1) Let (x, t) be an element of the right hand side. Then $x=\sum r_{i} x_{i}$ and $t \leq \sum r_{i} h\left(x_{i}\right)$ for finitely many vectors $x_{i} \in C$ and for real numbers $r_{i}>0$. The face C^{\prime} is written as $l^{\perp} \cap C$ for some $l \in C^{\vee}$. Then $\langle l, x\rangle=0$ implies that $x_{i} \in C^{\prime}$ for any i. In particular, $(x, t) \in \triangle_{h}\left(C^{\prime}\right)$. Thus we have the equality.
(2) follows from (1) and from that $\square_{h}(C)=\emptyset$ if and only if $(0,1) \in \triangle_{h}(C)$.
1.5. Lemma Suppose that $h \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ for $\mathfrak{K}=\mathbb{Q}$ or \mathbb{R}. Then there is a finite subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ such that $h \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathfrak{K}\right)$.

Proof. For a cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, let $\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}$ be a fan with $\left|\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}\right|=\boldsymbol{\sigma}$ such that $\left.h\right|_{\boldsymbol{\sigma}} \in$ $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathfrak{K})$. Any one-dimensional face of the convex polyhedral cone $\triangle_{h}(\boldsymbol{\sigma})$ except $\mathbb{R}_{\geq 0}(0,-1)$ is written by $\mathbb{R}_{\geq 0}(v, h(v))$ for some $v \in \operatorname{Ver}\left(\boldsymbol{\Lambda}_{\boldsymbol{\sigma}}\right)$. Therefore, the image $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$ of a face $\boldsymbol{\lambda}$ of $\triangle_{h}(\boldsymbol{\sigma})$ under the first projection $\mathrm{N}_{\mathbb{R}} \times \mathbb{R} \rightarrow \mathrm{N}_{\mathbb{R}}$ is a convex rational polyhedral cone with respect to N . The function h is linear on $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$. There is a finite subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ such that $\boldsymbol{\sigma}_{\boldsymbol{\lambda}}$ is a union of cones belonging to $\boldsymbol{\Sigma}^{\prime}$ for any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $\boldsymbol{\lambda} \prec \triangle_{h}(\boldsymbol{\sigma})$. Here, $h \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathfrak{K}\right)$.

Remark Among the finite subdivisions of 1.5, we can find the maximum: There exists a finite subdivision $\boldsymbol{\Sigma}^{\sharp}$ of $\boldsymbol{\Sigma}$ satisfying $h \in \operatorname{SF}_{\mathcal{N}}\left(\boldsymbol{\Sigma}^{\sharp}, \mathfrak{K}\right)$ such that $\boldsymbol{\Sigma}^{\prime} \precsim \boldsymbol{\Sigma}^{\sharp}$ for any finite subdivision $\boldsymbol{\Sigma}^{\prime}$ satisfying $h \in \mathrm{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathfrak{K}\right)$. This is shown by 1.15 below, for example.
1.6. Lemma Let $g: \operatorname{Ver}(\boldsymbol{\Sigma}) \rightarrow \mathfrak{K}$ is a map for $\mathfrak{K}=\mathbb{Z}, \mathbb{Q}$ or \mathbb{R}. Then there exists a unique function $h \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ satisfying the following conditions:
(1) $g(v)=h(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$;
(2) If $h^{\prime} \in \operatorname{SFC}_{\boldsymbol{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ satisfies $h^{\prime}(v) \geq g(v)$ for any $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$, then $h^{\prime}(x) \geq$ $h(x)$ for any $x \in|\boldsymbol{\Sigma}|$.
The function h is called the convex interpolation of g in [62, Chapter I, §2].
Proof. First, we consider the case $\mathfrak{K} \supset \mathbb{Q}$. For $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $x \in \boldsymbol{\sigma}$, we set

$$
\begin{aligned}
\triangle(\boldsymbol{\sigma}) & :=\sum_{v \in \operatorname{Ver}(\boldsymbol{\sigma})} \mathbb{R}_{\geq 0}(v, g(v))+\mathbb{R}_{\geq 0}(0,-1), \quad \text { and } \\
h_{\boldsymbol{\sigma}}^{0}(x) & :=\max \{r \in \mathbb{R} \mid(x, r) \in \triangle(\boldsymbol{\sigma})\}
\end{aligned}
$$

Then $h_{\boldsymbol{\sigma}}^{0} \in \mathrm{SFC}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathfrak{K})$. If $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, then $\triangle(\boldsymbol{\tau})=\triangle(\boldsymbol{\sigma}) \cap(\boldsymbol{\tau} \times \mathbb{R})$ by the same argument as in 1.4. Thus $h_{\boldsymbol{\tau}}^{0}(x)=h_{\boldsymbol{\sigma}}^{0}(x)$ for any $x \in \boldsymbol{\tau}$. In particular, we have a function $h^{0} \in \operatorname{SFC}_{\boldsymbol{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ such that $\left.h^{0}\right|_{\boldsymbol{\sigma}}=h_{\boldsymbol{\sigma}}^{0}$ for any $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ and $h^{0}(v)=g(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. The function h^{0} satisfies the second required condition for h by $\mathbf{1 . 3}$.

Next, we consider the case $\mathfrak{K}=\mathbb{Z}$. If $\boldsymbol{\Sigma}$ is non-singular, then $h^{0} \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{Q})$ is integral. Otherwise, let us consider a non-singular finite subdivision $\boldsymbol{\Sigma}^{\sharp}$ of $\boldsymbol{\Sigma}$. We set $g^{\sharp}: \operatorname{Ver}\left(\boldsymbol{\Sigma}^{\sharp}\right) \rightarrow \mathbb{Z}$ by $\left.g^{\sharp}(v)={ }^{\sharp} h^{0}(v)\right\urcorner$. Let h be the function in $\operatorname{SFC}_{\mathbf{N}}\left(\boldsymbol{\Sigma}^{\sharp}, \mathbb{Q}\right)$ satisfying the required condition for g^{\sharp}. Then h is integral. Thus h is the convex interpolation of g.

Let X be the toric variety $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$ associated with the fan $\boldsymbol{\Sigma}$ and let $j: \mathrm{T}_{\mathrm{N}} \hookrightarrow \mathrm{X}$ be the open immersion.

For $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$, we define a coherent \mathcal{O}_{X}-submodule \mathcal{F}_{h} of $j_{*} \mathcal{O}_{\mathrm{T}_{\mathrm{N}}}$ by

$$
\mathrm{H}^{0}\left(\mathrm{~T}_{\mathrm{N}}(\boldsymbol{\sigma}), \mathcal{F}_{h}\right)=\bigoplus_{m \in \square_{h}(\boldsymbol{\sigma}) \cap \mathrm{M}} \mathrm{e}(m) \subset \mathbb{C}[\mathrm{M}]
$$

for $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. The subsheaf is invariant under the action of T_{N}. Conversely, any T_{N}-invariant coherent \mathcal{O}_{X}-submodule of $j_{*} \mathcal{O}_{\mathrm{T}_{\mathrm{N}}}$, which is complete, is written as \mathcal{F}_{h} for some $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ (cf. [62, Chapter I, §2]). Here, $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ if and only if \mathcal{F}_{h} is invertible. If $h^{\prime} \in \operatorname{SFC}_{\boldsymbol{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ is the convex interpolation of the map $\operatorname{Ver}(\boldsymbol{\Sigma}) \ni v \mapsto h(v) \in \mathbb{Z}$, then $\mathcal{F}_{h^{\prime}}$ is the double-dual of \mathcal{F}_{h}.

For $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, we define an \mathbb{R}-divisor of X by

$$
\mathrm{D}_{h}:=\sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})}(-h(v)) \boldsymbol{\Gamma}_{v}
$$

The associated \mathbb{R}-divisor $D_{h}^{\text {an }}$ on the analytic variety $\mathbb{T}_{\mathcal{N}}(\boldsymbol{\Sigma})$ is denoted by D_{h}. For $\mathfrak{K}=\mathbb{Z}, \mathbb{Q}$, or \mathbb{R}, any \mathfrak{K}-divisor of X supported in $X \backslash T_{N}$ is expressed as D_{h} for some $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ by 1.6. Moreover, any \mathfrak{K}-divisor D of X is \mathfrak{K}-linearly equivalent to D_{h} for some $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$, since $\left.\mathbb{D}\right|_{\mathrm{T}_{\mathrm{N}}}$ is a principal \mathfrak{K}-divisor. If $h^{\prime} \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ is the convex interpolation of the map $\operatorname{Ver}(\boldsymbol{\Sigma}) \ni v \mapsto\ulcorner h(v)\urcorner \in \mathbb{Z}$, then $\mathrm{D}_{h_{\lrcorner}}=\mathrm{D}_{h^{\prime}}$ and $\mathcal{F}_{h^{\prime}}=\mathcal{O}_{\times}\left(\mathrm{D}_{h^{\prime}}\right)$.
1.7. Remark Suppose that $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ for $\mathfrak{K}=\mathbb{Z}, \mathbb{Q}$ or \mathbb{R}. Then D_{h} is \mathfrak{K}-Cartier. In fact, the restriction of D_{h} to $\mathrm{T}_{\mathrm{N}}(\boldsymbol{\sigma})$ for $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ coincides with the principal \mathfrak{K}-divisor $-\operatorname{div}\left(\mathrm{e}\left(l_{\boldsymbol{\sigma}}\right)\right)$ for $l_{\boldsymbol{\sigma}} \in \mathrm{M}_{\mathfrak{K}}$ such that $h(x)=\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle$ for $x \in \boldsymbol{\sigma}$. The choice of $l_{\boldsymbol{\sigma}}$ is unique up to $\boldsymbol{\sigma}^{\perp} \cap \mathrm{M}_{\mathfrak{K}}$. Let $h^{\boldsymbol{\sigma}}(x)=h(x)-\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle$. If $\operatorname{dim} \boldsymbol{\sigma}=\operatorname{dim}|\boldsymbol{\Sigma}|$, then $h^{\boldsymbol{\sigma}}$ is a function defined on $|\boldsymbol{\Sigma}|$ which is independent of the choice of $l_{\boldsymbol{\sigma}}$. Even if $\operatorname{dim} \boldsymbol{\sigma}<\operatorname{dim}|\boldsymbol{\Sigma}|, h^{\boldsymbol{\sigma}}$ is regarded as a function defined on $|\boldsymbol{\Sigma} / \boldsymbol{\sigma}|$ which belongs to $\mathrm{SF}_{\mathrm{N}(\boldsymbol{\sigma})}(\boldsymbol{\Sigma} / \boldsymbol{\sigma}, \mathfrak{K})$. Here, the restriction of D_{h} to $\mathrm{V}(\boldsymbol{\sigma})$ is \mathfrak{K}-linearly equivalent to $\mathrm{D}_{h^{\sigma}}$.
1.8. Remark If $\boldsymbol{\tau}=\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ for two maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$ such that $\operatorname{dim} \boldsymbol{\tau}=\operatorname{dim}|\boldsymbol{\Sigma}|-1$, then there is an isomorphism $\mathrm{V}(\boldsymbol{\tau}) \simeq \mathrm{P}^{1} \times \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$, in which $\mathrm{V}(\boldsymbol{\sigma} / \boldsymbol{\tau}) \simeq\{0\} \times \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$ and $\mathrm{V}\left(\boldsymbol{\sigma}^{\prime} / \boldsymbol{\tau}\right) \simeq\{\infty\} \times \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$. Here,

$$
\left.\mathrm{D}_{h^{\boldsymbol{\sigma}}}\right|_{\mathrm{V}(\boldsymbol{\tau})}=-h^{\boldsymbol{\sigma}}\left(v^{\prime}\right)\left(\{\infty\} \times \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}\right)
$$

for the primitive element $v^{\prime} \in \mathrm{N}(\boldsymbol{\tau})$ generating the ray $\boldsymbol{\sigma}^{\prime} / \boldsymbol{\tau}$. In particular, for a fiber $F \simeq \mathrm{P}^{1}$ of $\mathrm{V}(\boldsymbol{\tau}) \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$, we have

$$
\mathrm{D}_{h} \cdot F=-h^{\boldsymbol{\sigma}}(y)=\left\langle l_{\boldsymbol{\sigma}}, y\right\rangle-\left\langle l_{\boldsymbol{\sigma}^{\prime}}, y\right\rangle
$$

for $y \in \boldsymbol{\sigma}^{\prime} \cap \mathrm{N} \backslash \boldsymbol{\sigma}$ with $y \bmod \mathrm{~N}_{\boldsymbol{\tau}}=v^{\prime}$.
Suppose that $|\boldsymbol{\Sigma}|$ is a convex cone. For $h \in \operatorname{SFC}_{\boldsymbol{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, we write $\square_{h}=\square_{h}(|\boldsymbol{\Sigma}|)$ and $\triangle_{h}=\triangle_{h}(|\boldsymbol{\Sigma}|)$ for short. If $|\boldsymbol{\Sigma}|=\mathbf{N}_{\mathbb{R}}$, then \square_{h} is compact, since $-h\left(-e_{i}\right) \geq$ $\left\langle m, e_{i}\right\rangle \geq h\left(e_{i}\right)$ for a basis $\left\{e_{i}\right\}$ of $\mathbf{N}_{\mathbb{R}}$ and for $m \in \square_{h}$. If $h \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ and \mathcal{F}_{h} is reflexive, then $\square_{h} \subset \mathrm{M}_{\mathbb{R}}$ is the set of $m \in \mathrm{M}_{\mathbb{R}}$ satisfying $\operatorname{div}(\mathrm{e}(m))+\mathrm{D}_{h} \geq 0$.

The vector space $\mathrm{H}^{0}\left(\mathrm{X}, \mathcal{F}_{h}\right)$ admits an action of T_{N}. Since this is a subspace of $\mathrm{H}^{0}\left(\mathrm{~T}_{\mathrm{N}}, \mathcal{O}_{\mathrm{T}_{\mathrm{N}}}\right) \simeq \mathbb{C}[\mathrm{M}]$, we have an isomorphism

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathrm{X}, \mathcal{F}_{h}\right) \simeq \bigoplus_{m \in \square_{h} \cap \mathrm{M}} \mathbb{C e}(m) . \tag{IV-3}
\end{equation*}
$$

Suppose that $h \in \operatorname{SFC}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ is the convex interpolation of $\operatorname{Ver}(\boldsymbol{\Sigma}) \ni v \mapsto h(v) \in \mathbb{R}$ in the sense of $\mathbf{1 . 6}$ for $\mathfrak{K}=\mathbb{R}$. Then

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{D}_{h\lrcorner}\right) \simeq \bigoplus_{m \in \square_{h} \cap \mathrm{M}} \mathbb{C e}(m) \tag{IV-4}
\end{equation*}
$$

by (IV-3). Furthermore, $\square_{h} \neq \emptyset$ if and only if there is an effective \mathbb{R}-divisor \mathbb{R} linearly equivalent to D_{h} (cf. 1.16-(1) below).
1.9. Lemma Suppose that $|\boldsymbol{\Sigma}|$ is convex. Let $\boldsymbol{\sigma}$ be a maximal cone of $\boldsymbol{\Sigma}$ and let $\mathfrak{K}=\mathbb{Z}, \mathbb{Q}$, or \mathbb{R}. For a function $h \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$, let $l_{\boldsymbol{\sigma}}$ and $h^{\boldsymbol{\sigma}}$ be the same as in 1.7. Then the following three conditions are equivalent:
(1) $h^{\boldsymbol{\sigma}}(x) \leq 0$ for any $x \in|\boldsymbol{\Sigma}|$;
(2) $\square_{h} \neq \emptyset$ and $h_{|\boldsymbol{\Sigma}|}^{\dagger}(x)=h(x)$ for any $x \in \boldsymbol{\sigma}$;
(3) There is a T_{N}-invariant effective \mathfrak{K}-divisor Δ on X such that $\Delta \cap \mathrm{V}(\boldsymbol{\sigma})=\emptyset$ and $\Delta \sim_{\mathfrak{K}} \mathrm{D}_{h}$ on X .

Proof. (1) \Leftrightarrow (2): (1) is equivalent to: $l_{\boldsymbol{\sigma}} \in \square_{h}$, which implies (2). For $y \in$ $|\boldsymbol{\Sigma}| \backslash \boldsymbol{\sigma}$, let us choose $x \in \operatorname{Int} \boldsymbol{\sigma}$ and a number $0<t<1$ such that $(1-t) x+t y \in \boldsymbol{\sigma}$. Since $h_{|\Sigma|}^{\dagger}$ is upper convex, we have

$$
\left\langle l_{\boldsymbol{\sigma}}, y\right\rangle=\frac{1}{t}\left(h_{|\boldsymbol{\Sigma}|}^{\dagger}((1-t) x+t y)-(1-t) h_{|\boldsymbol{\Sigma}|}^{\dagger}(x)\right) \geq h_{|\boldsymbol{\Sigma}|}^{\dagger}(y) \geq h(y)
$$

under the condition of (2).
(1) \Rightarrow (3): The \mathfrak{K}-Cartier divisor $\mathrm{D}_{h^{\boldsymbol{\sigma}}}=\operatorname{div}\left(\mathrm{e}\left(l_{\boldsymbol{\sigma}}\right)\right)+\mathrm{D}_{h}$ is effective on X and is away from $\mathrm{V}(\boldsymbol{\sigma})$.
$(3) \Rightarrow(1): \Delta$ is written by $\mathrm{D}_{h}+\operatorname{div}(\mathrm{e}(m))$ for some $m \in \mathrm{M}_{\mathfrak{K}}$. Then $\langle m, v\rangle=h(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\sigma})$. In particular, $m=l_{\boldsymbol{\sigma}} \in \square_{h}$.
1.10. Corollary If $|\boldsymbol{\Sigma}|$ is a convex cone, then the following conditions are equivalent for $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$:
(1) h is upper convex on $|\boldsymbol{\Sigma}|$;
(2) $l_{\boldsymbol{\sigma}} \in \square_{h}$ for any maximal cone $\boldsymbol{\sigma}$;
(3) For any point $p \in \mathrm{X}$, there is an effective divisor Δ of X such that $\Delta \sim_{\mathfrak{K}} \mathrm{D}_{h}$ and $p \notin \Delta$;
(4) For any two maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$ with $\boldsymbol{\tau}=\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ being of codimension one, the intersection number $\mathrm{D}_{h} \cdot F$ is non-negative for a fiber F of $\mathrm{V}(\boldsymbol{\tau}) \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})} ;$
(5) For any two maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$ with $\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ being of codimension one, $h^{\boldsymbol{\sigma}}(y) \leq 0$ for any $y \in \boldsymbol{\sigma}^{\prime}$.

Proof. (1) $\Leftrightarrow(2)$ is shown in 1.9. (3) \Rightarrow (4) is trivial. (4) $\Leftrightarrow(5)$ is shown in 1.8.
(2) $\Rightarrow(3):$ Let $Z \subset X$ be the set of points p such that $p \in \Delta$ for any effective divisor $\Delta \sim_{\mathfrak{K}} \mathrm{D}_{h}$. Then Z is a Zariski-closed subset invariant under the action of T. If $Z \neq \emptyset$, then $V(\boldsymbol{\sigma}) \subset Z$ for a maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. By $\mathbf{1 . 9}-(3)$, we have $Z=\emptyset$.
(5) \Rightarrow (2): Let us fix $y \in|\boldsymbol{\Sigma}| \backslash \boldsymbol{\sigma}$. We take $x \in \operatorname{Int} \boldsymbol{\sigma}$ and consider a line segment $\{x(t)=(1-t) x+t y \mid t \in[0,1]\}$. If x is in a general position, then there exist a sequence of maximal cones $\boldsymbol{\sigma}_{i}$ and numbers $t_{i} \in[0,1)$ for $0 \leq i \leq k$ such that

- $\boldsymbol{\sigma}_{0}=\boldsymbol{\sigma}, t_{0}=0, y \in \boldsymbol{\sigma}_{k}$,
- $\boldsymbol{\sigma}_{i} \cap \boldsymbol{\sigma}_{i+1}$ is of codimension one for any $i<k$,
- $\left\{t \in[0,1] \mid x(t) \in \boldsymbol{\sigma}_{i}\right\}=\left[t_{i}, t_{i+1}\right]$ for $i<k$ and $x(t) \in \boldsymbol{\sigma}_{k}$ for $t \geq t_{k}$.

The function $h^{\boldsymbol{\sigma}}(x(t))$ is linear on each $\left[t_{i}, t_{i+1}\right]$ for $i<k$ and on $\left[t_{k}, 1\right]$. Thus (5) implies that $h(x(t))$ is upper convex on $[0,1]$. Hence $h^{\boldsymbol{\sigma}}(y) \leq 0$ and $l_{\boldsymbol{\sigma}} \in \square_{h}$.

Suppose still that $|\boldsymbol{\Sigma}|$ is convex. A support function $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ is called strictly upper convex with respect to $\boldsymbol{\Sigma}$ if it is upper convex on $|\boldsymbol{\Sigma}|$ and the set

$$
\{x \in|\boldsymbol{\Sigma}| ;\langle m, x\rangle=h(x)\}
$$

is a cone belonging to $\boldsymbol{\Sigma}$ for any $m \in \square_{h}$.
1.11. Lemma Suppose that $|\boldsymbol{\Sigma}|$ is a convex cone and let $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. For a maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, let $l_{\boldsymbol{\sigma}}$ be the same as in 1.7. Then the following conditions are equivalent:
(1) h is strictly convex with respect to $\boldsymbol{\Sigma}$;
(2) $l_{\boldsymbol{\sigma}} \in \square_{h}$ and

$$
\left\{x \in|\boldsymbol{\Sigma}| ; h(x)=\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle\right\}=\boldsymbol{\sigma}
$$

for any maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$;
(3) For maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$ with $\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ being of codimension one, $h(y)<\left\langle l_{\boldsymbol{\sigma}}, y\right\rangle$ for any $y \in \boldsymbol{\sigma}^{\prime} \backslash \boldsymbol{\sigma}$;
(4) For maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$ with $\boldsymbol{\tau}=\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ being of codimension one, the intersection number $\mathrm{D}_{h} \cdot F$ is positive for a fiber F of $\mathrm{V}(\boldsymbol{\tau}) \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$.
Proof. (1) $\Rightarrow(2)$ and (2) $\Rightarrow(3)$ are trivial. (3) \Leftrightarrow (4) is shown in 1.8 .
(3) \Rightarrow (2): Let $\boldsymbol{\sigma}$ be a maximal cone of $\boldsymbol{\Sigma}$. We fix $y \in|\boldsymbol{\Sigma}| \backslash \boldsymbol{\sigma}$, take $x \in \operatorname{Int} \boldsymbol{\sigma}$, and consider the line segment $\{x(t)=(1-t) x+t y \mid t \in[0,1]\}$. By choosing x in a general position, we may assume that there exist maximal cones $\boldsymbol{\sigma}_{i}$ and numbers $t_{i} \in[0,1)$ satisfying the same condition as in the proof of 1.10. Then $h^{\boldsymbol{\sigma}}(y)<0$ by (3). Thus (2) follows.
(2) \Rightarrow (1): For $m \in \square_{h}$, the set

$$
C_{m}=\{x \in|\boldsymbol{\Sigma}| ; h(x)=\langle m, x\rangle\}
$$

is a convex polyhedral cone. For a point $y \in \operatorname{Int} C_{m}$, let $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ be a maximal cone containing y. Then

$$
C_{m} \cap \boldsymbol{\sigma}=\left(l_{\boldsymbol{\sigma}}-m\right)^{\perp} \cap \boldsymbol{\sigma}
$$

is a face of $\boldsymbol{\sigma}$, since $m-l_{\boldsymbol{\sigma}} \in \boldsymbol{\sigma}^{\vee}$. By (2), $l_{\boldsymbol{\sigma}}-m \in C_{m}^{\vee}$ and $C_{m} \cap \boldsymbol{\sigma}=\left(l_{\boldsymbol{\sigma}}-m\right)^{\perp} \cap C_{m}$ is also a face of C_{m}. Thus $C_{m}=C_{m} \cap \boldsymbol{\sigma} \prec \boldsymbol{\sigma}$ by $y \in \operatorname{Int} C_{m}$. In particular, $C_{m} \in \boldsymbol{\Sigma}$.
§1.c. Relative toric situations. Let L be another free abelian group and let $\boldsymbol{\Lambda}$ be a finite fan of L. Let $\phi:(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow(\mathrm{L}, \boldsymbol{\Lambda})$ be a proper morphism of fans and let $\mathrm{f}: \mathrm{X}=\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \rightarrow \mathrm{S}=\mathrm{T}_{\mathrm{L}}(\boldsymbol{\Lambda})$ be the induced morphism. We shall consider the relative σ-decomposition over S of the \mathbb{R}-Cartier divisor D_{h} for a function $h \in$ $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. By $\mathbf{1 . 4}$, we have

$$
\triangle_{h}\left(\phi^{-1} \boldsymbol{\nu}\right)=\triangle_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right) \cap\left(\phi^{-1} \boldsymbol{\nu} \times \mathbb{R}\right)
$$

for $\boldsymbol{\nu} \prec \boldsymbol{\lambda}$. Moreover, for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, the condition $\square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right) \neq \emptyset$ is equivalent to $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$ for the zero cone $\mathbf{0} \in \boldsymbol{\Lambda}$. If $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$, then we can define a function over $|\boldsymbol{\Sigma}|$ by

$$
h^{\dagger}(x):=h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(x):=h_{\phi^{-1} \boldsymbol{\lambda}}^{\dagger}(x)
$$

for $x \in \phi^{-1} \boldsymbol{\lambda}$, which is independent of the choice of $\boldsymbol{\lambda}$ for x.
1.12. Lemma $h_{\Sigma / \Lambda}^{\dagger} \in \operatorname{SFC}_{N}(\Sigma, \mathbb{R})$.

Proof. For any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, we have

$$
\square_{h^{\dagger}}\left(\phi^{-1} \boldsymbol{\lambda}\right)=\square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right), \quad \text { and } \quad \triangle_{h^{\dagger}}\left(\phi^{-1} \boldsymbol{\lambda}\right)=\triangle_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right) .
$$

By the same argument as in $\mathbf{1 . 5}$, there is a finite subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ such that the image of any face of $\triangle_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right)$ under the first projection $N_{\mathbb{R}} \times \mathbb{R} \rightarrow \mathrm{N}_{\mathbb{R}}$ is a union of some cones belonging to $\boldsymbol{\Sigma}^{\prime}$. Thus $h^{\dagger} \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathbb{R}\right)$.

Remark $h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}$ is not necessarily integral for $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$.
1.13. Lemma (1) $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \cap M \neq \emptyset$ if and only if $f_{*} \mathcal{O}_{\times}\left(\left\llcorner_{h\lrcorner}\right) \neq 0\right.$.
(2) If $\mathrm{f}_{*} \mathcal{O}_{\times}\left(\mathrm{D}_{h\lrcorner}\right) \neq 0$, then $\mathrm{D}_{h}-\mathrm{D}_{h^{\dagger}}$ is identical to the f -fixed part of $\left|\mathrm{D}_{h}\right|$.
(3) The following conditions are equivalent to each other:
(a) h is upper-convex on $\phi^{-1}(\boldsymbol{\lambda})$ for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$;
(b) $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$ and $h^{\dagger}=h$;
(c) For any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ and for any maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}_{\boldsymbol{\lambda}}, h^{\boldsymbol{\sigma}}(x) \leq 0$ for $x \in \boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$, where $h^{\boldsymbol{\sigma}}$ is as in $\mathbf{1 . 7}$;
(d) D_{h} is f -nef.

If $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$, then these are also equivalent to:
(e) D_{h} is f -free.

Proof. (1) follows from the isomorphism (IV-4). (2) follows from (IV-4) and 1.10. The assertion (3) is proved as follows: (a) \Leftrightarrow (b) follows from 1.3 . (e) \Rightarrow (d) is well-known. (d) $\Rightarrow(\mathrm{b}),(\mathrm{b}) \Leftrightarrow(\mathrm{c})$, and $(\mathrm{b}) \Leftrightarrow(\mathrm{e})$ are shown in 1.10. (c) \Rightarrow (d) is derived from 1.10-(3).
1.14. Lemma For a support function $h \in \operatorname{SF}_{N}(\boldsymbol{\Sigma}, \mathbb{R})$, the following conditions are equivalent:
(1) D_{h} is f -ample;
(2) For any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, for any two maximal cones $\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$ with $\boldsymbol{\tau}=\boldsymbol{\sigma} \cap \boldsymbol{\sigma}^{\prime}$ being of codimension one, the intersection number $\mathrm{D}_{h} \cdot F$ is positive for a fiber F of $\mathrm{V}(\boldsymbol{\tau}) \rightarrow \mathrm{T}_{\mathrm{N}(\boldsymbol{\tau})}$;
(3) h is strictly convex on $\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$ for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$.

Proof. (1) $\Rightarrow(2)$ is trivial. (2) $\Leftrightarrow(3)$ is shown in 1.11 .
$(2) \Rightarrow(1):$ First, we consider the case $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Q})$. Then $k h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ for some $k>0$ and $k \mathrm{D}_{h}=\mathrm{D}_{k h}$ is f -free by $1.13-(3)$. Hence D_{h} is f -ample if and only if $\mathrm{D}_{h} \cdot \gamma>0$ for any irreducible curve γ contained in a fiber of f . By 1.2, we infer that D_{h} is f -ample if and only if the condition (2) is satisfied.

Next, we consider the general case. Note that $\operatorname{SF}_{N}(\boldsymbol{\Sigma}, \mathbb{R}) \simeq \operatorname{SF}_{N}(\boldsymbol{\Sigma}, \mathbb{Q}) \otimes \mathbb{R}$. Hence there is a support function $h_{1} \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Q})$ such that $\mathrm{D}_{h_{1}} \cdot F>0$ for any $\boldsymbol{\tau}$ in the condition (2). In particular, $D_{h_{1}}$ is an f-ample \mathbb{Q}-Cartier divisor. Since $\boldsymbol{\Lambda}$ is finite, we can find a positive number ε such that $\left(\mathrm{D}_{h}-\varepsilon \mathrm{D}_{h_{1}}\right) \cdot F \geq 0$ for any $\boldsymbol{\tau}$. Therefore, $D_{h}-\varepsilon D_{h_{1}}$ is f-nef and thus D_{h} is an f-ample \mathbb{R}-Cartier divisor.

Remark Since $\boldsymbol{\Sigma}$ is finite, there is a finite subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ such that $\boldsymbol{\Sigma}^{\prime}$ is non-singular and the composite $\mathrm{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}\right) \rightarrow \mathrm{X} \rightarrow \mathrm{S}$ is projective (cf.[9], [110]). This is a toric version of relative Chow's lemma.
1.15. Lemma Let h be a function in $\operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ for $\mathfrak{K}=\mathbb{Z}$, \mathbb{Q}, or \mathbb{R}. Suppose that h is upper convex on $\phi^{-1} \boldsymbol{\lambda}$ for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$. Then there exist a free abelian group N_{b}, homomorphisms $\mu: \mathrm{N} \rightarrow \mathrm{N}_{\mathrm{b}}, \nu: \mathrm{N}_{\mathrm{b}} \rightarrow \mathrm{L}$, a fan $\boldsymbol{\Sigma}_{b}$ of N_{b}, and a support function $h_{b} \in \operatorname{SF}_{\mathrm{N}_{b}}\left(\boldsymbol{\Sigma}_{b}, \mathfrak{K}\right)$ such that
(1) μ is surjective and $\nu \circ \mu=\phi$,
(2) $(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow\left(\mathrm{N}_{b}, \boldsymbol{\Sigma}_{b}\right)$ and $\left(\mathrm{N}_{\mathrm{b}}, \boldsymbol{\Sigma}_{b}\right) \rightarrow(\mathrm{L}, \boldsymbol{\Lambda})$ are morphisms of fans,
(3) the function $h(x)-h_{b}(\mu(x))$ is linear on $x \in|\boldsymbol{\Sigma}|$,
(4) h_{b} is strictly convex on $\left(\boldsymbol{\Sigma}_{b}\right)_{\boldsymbol{\lambda}}=\left\{\boldsymbol{\sigma}_{b} \in \boldsymbol{\Sigma}_{b} \mid \nu\left(\boldsymbol{\sigma}_{b}\right) \subset \boldsymbol{\lambda}\right\}$ for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$. In particular, D_{h} is \mathfrak{K}-linearly equivalent to the pullback of the relatively ample \mathfrak{K}-divisor $\mathrm{D}_{h_{b}}$ of $\mathrm{T}_{\mathrm{N}_{b}}\left(\boldsymbol{\Sigma}_{b}\right)$ over S .

Proof. We set

$$
\begin{aligned}
V_{h} & =\{x \in|\boldsymbol{\Sigma}| ; \phi(x)=0 \text { and } h(-x)=-h(x)\}, \\
C_{\boldsymbol{\lambda}, m} & =\left\{x \in\left|\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}\right| ;\langle m, x\rangle=h(x)\right\}
\end{aligned}
$$

for $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ and $m \in \square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right)$. Then $C_{\boldsymbol{\lambda}, m}$ is a convex cone, since

$$
h(x+y) \geq h(x)+h(y)=\langle m, x+y\rangle \geq h(x+y)
$$

for $x, y \in C_{\boldsymbol{\lambda}, m}$. If $x,-x \in C_{\boldsymbol{\lambda}, m}$, then $x \in V_{h}$, since $\boldsymbol{\lambda}$ is strictly convex. If $x \in V_{h}$, then $x \in C_{\boldsymbol{\lambda}, m}$ for any $\boldsymbol{\lambda}, m$ by $-h(-x) \geq\langle m, x\rangle \geq h(x)$. Therefore, for any $\boldsymbol{\lambda}$ and m, V_{h} is the maximum vector subspace of $\mathrm{N}_{\mathbb{R}}$ contained in the convex cone $C_{\boldsymbol{\lambda}, m}$.

Let N_{b} be the image of the natural homomorphism $\mu: \mathrm{N} \rightarrow \mathrm{N}_{\mathbb{R}} / V_{h}$. Then $\mu\left(C_{\boldsymbol{\lambda}, m}\right)$ is a strictly convex rational polyhedral cone and the set

$$
\boldsymbol{\Sigma}_{b}=\left\{\mu\left(C_{\boldsymbol{\lambda}, m}\right) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, m \in \square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right)\right\}
$$

is a fan of \boldsymbol{N}_{b}. Here, the support of $\left(\boldsymbol{\Sigma}_{b}\right)_{\boldsymbol{\lambda}}$ coincides with $\nu^{-1} \boldsymbol{\lambda}$ for the induced homomorphism $\nu: \mathrm{N}_{\mathrm{b}} \rightarrow \mathrm{L}$. We choose a maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}_{\boldsymbol{0}}$ and $l_{\boldsymbol{\sigma}} \in \square_{h}\left(\phi^{-1} \mathbf{0}\right) \cap \mathfrak{K}$ satisfying $h(x)=\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle$ for $x \in \boldsymbol{\sigma}$. We define $h_{b} \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathfrak{K})$ by $h_{b}(x):=$ $h(x)-\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle$. Then h_{b} descends to a support function belonging to $\mathrm{SF}_{\mathbf{N}_{\boldsymbol{b}}}\left(\boldsymbol{\Sigma}_{\boldsymbol{b}}, \mathfrak{K}\right)$. Thus h_{b} is strictly convex on $\left(\boldsymbol{\Sigma}_{b}\right)_{\boldsymbol{\lambda}}$ for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$.
1.16. Lemma Let h be a $\boldsymbol{\Sigma}$-linear support function.
(1) D_{h} is f -pseudo-effective if and only if $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$.
(2) Suppose that D_{h} is f -pseudo-effective. Then

$$
\sigma_{\boldsymbol{\Gamma}_{v}}\left(\mathrm{D}_{h} ; \mathrm{X} / \mathrm{S}\right)=h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)-h(v)
$$

for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. In particular, D_{h} is f -movable if and only if $h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)=$ $h(v)$ for any $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$.

Proof. By taking a finite subdivision of $\boldsymbol{\Sigma}$, we may assume from the first that X is non-singular and there is a function $a \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ with $\mathrm{A}=\mathrm{D}_{a}$ being f -ample.
(1) For $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, let us denote $\mathrm{S}_{\boldsymbol{\lambda}}=\mathrm{T}_{\mathrm{L}}(\boldsymbol{\lambda})$ and $\mathrm{X}_{\boldsymbol{\lambda}}=\mathrm{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}\right)=\mathrm{f}^{-1} \mathrm{~S}_{\boldsymbol{\lambda}}$. If $m \in \square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right)$, then $\operatorname{div}(\mathrm{e}(m))+\mathrm{D}_{h} \geq 0$ over $\boldsymbol{X}_{\boldsymbol{\lambda}}$. Hence if $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$, then D_{h} restricted to $\mathrm{X}_{\boldsymbol{\lambda}}$ is \mathbb{R}-linearly equivalent to an effective \mathbb{R}-divisor for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$. Thus one implication follows. Next, suppose that $\square_{h}\left(\phi^{-1} \mathbf{0}\right)=\emptyset$. This is equivalent to $\triangle_{h}\left(\phi^{-1} \mathbf{0}\right) \ni(0,1)$, i.e.,

$$
(0,1)=\sum_{v \in \operatorname{Ver}\left(\boldsymbol{\Sigma}_{\mathbf{o}}\right)} r_{v}(v, h(v))
$$

for some $r_{v} \in \mathbb{R}_{\geq 0}$. If $m \in \mathrm{M} \cap \square_{l(k h+a)}\left(\phi^{-1} \mathbf{0}\right)$ for some $k, l \in \mathbb{N}$, then $\langle m, v\rangle \geq$ $l k h(v)+l a(v)$ for all $v \in \operatorname{Ver}\left(\boldsymbol{\Sigma}_{\mathbf{0}}\right)$. Thus

$$
0=\frac{1}{l} \sum r_{v}\langle m, v\rangle \geq \sum\left(k r_{v} h(v)+a(v)\right)=k+\sum a(v)
$$

In particular, if $k \gg 0$, then no effective \mathbb{R}-divisor on $\mathrm{X}_{\mathbf{0}}=\mathrm{f}^{-1} \mathrm{~T}_{\mathrm{L}}$ is linearly equivalent to $l\left(k \mathrm{D}_{h}+\mathrm{A}\right)$ for any $l \in \mathbb{N}$, by (IV-4). Thus the other implication follows.
(2) Let us fix a vertex $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. For $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ with $\phi(v) \in \boldsymbol{\lambda}$, we have

$$
\begin{aligned}
\inf \left\{\operatorname{mult}_{\boldsymbol{\Gamma}_{v}} \Delta\left|0 \leq \Delta \sim_{\mathbb{R}} \mathrm{D}_{h}\right| \mathrm{x}_{\boldsymbol{\lambda}}\right\} & =\inf \left\{\langle m, v\rangle-h(v) \mid m \in \square_{h}\left(\phi^{-1} \boldsymbol{\lambda}\right)\right\} \\
& =h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)-h(v),
\end{aligned}
$$

by (IV-4). Hence, if D_{h} is f-big, then $h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)-h(v)=\sigma_{\boldsymbol{\Gamma}_{v}}\left(\mathrm{D}_{h} ; \mathrm{X} / \mathrm{S}\right)$. In general, $\sigma_{\boldsymbol{\Gamma}_{v}}\left(\mathrm{D}_{h} ; \mathrm{X} / \mathrm{S}\right) \leq h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)-h(v)$ holds. In order to show the equality in general case, we may assume $\sigma_{\boldsymbol{\Gamma}_{v}}\left(\mathrm{D}_{h} ; \mathrm{X} / \mathrm{S}\right)=0$, by replacing D_{h} with $\mathrm{D}_{h}-\sigma_{\boldsymbol{\Gamma}_{v}}\left(\mathrm{D}_{h} ; \mathrm{X} / \mathrm{S}\right) \boldsymbol{\Gamma}_{v}$. We shall derive a contradiction from the assumption: $h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger}(v)>h(v)$. Then there exist vertices $v_{i} \in \operatorname{Ver}\left(\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}\right)$ and real numbers $r_{i}>0$ such that $v=\sum r_{i} v_{i}$ and $\sum r_{i} h\left(v_{i}\right)>h(v)$. However $(h+\varepsilon a)_{\Sigma / \boldsymbol{\Lambda}}^{\dagger}(v)=(h+\varepsilon a)(v)$ for any $\varepsilon>0$, since
$\mathrm{D}_{h+\varepsilon a}=\mathrm{D}_{h}+\varepsilon \mathrm{A}$ is f -big. Hence

$$
h(v)+\varepsilon a(v) \geq \sum r_{i}\left(h\left(v_{i}\right)+\varepsilon a\left(v_{i}\right)\right)=\sum r_{i} h\left(v_{i}\right)+\varepsilon \sum r_{i} a\left(v_{i}\right)
$$

Taking $\varepsilon \rightarrow 0$, we have a contradiction.
1.17. Theorem (cf. [57]) Let $\mathrm{f}: \mathrm{X}=\mathrm{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \rightarrow \mathrm{S}=\mathrm{T}_{\mathrm{L}}(\boldsymbol{\Lambda})$ be the morphism induced from a proper morphism $\phi:(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow(\mathrm{L}, \boldsymbol{\Lambda})$ of finite fans. Then any $\mathrm{f}-$ pseudo-effective \mathbb{R}-Cartier divisor of X admits a relative Zariski-decomposition over S.

Proof. We may assume that X is non-singular and is projective over S. We have only to consider the \mathbb{R}-divisor D_{h} for $h \in \operatorname{SF}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ with $\square_{h}\left(\phi^{-1} \mathbf{0}\right) \neq \emptyset$. There is a finite subdivision $\boldsymbol{\Sigma}^{\prime}$ of $\boldsymbol{\Sigma}$ with $h^{\dagger}=h_{\boldsymbol{\Sigma} / \boldsymbol{\Lambda}}^{\dagger} \in \mathrm{SF}_{\mathbf{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathbb{R}\right)$. We may assume that $X^{\prime}=\mathrm{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}\right)$ is non-singular and is projective over S . Let $\mu: \mathrm{X}^{\prime} \rightarrow \mathrm{X}$ be the induced projective birational morphism. Then the effective \mathbb{R}-divisor $\mu^{*} \mathrm{D}_{h}-\mathrm{D}_{h^{\dagger}}$ is the negative part of the relative σ-decomposition of $\mu^{*} \mathrm{D}_{h}$ over S by $\mathbf{1 . 1 6}-(2)$. This is a relative Zariski-decomposition over S since the positive part $D_{h^{\dagger}}$ is relatively nef by $1.13-(3)$.
1.18. Theorem Let $f: X \rightarrow Y$ be a proper surjective morphism of normal complex analytic varieties. Suppose that, for any point $y \in Y$, there exist an open neighborhood \mathcal{Y}, a proper morphism $(\mathrm{N}, \boldsymbol{\Sigma}) \rightarrow(\mathrm{L}, \boldsymbol{\Lambda})$ of finite fans, and a smooth morphism $\mathcal{Y} \rightarrow \mathbb{T}_{\mathrm{L}}(\boldsymbol{\Lambda})$ such that

$$
f^{-1} \mathcal{Y} \simeq \mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \times_{\mathbb{T}_{\mathrm{L}}(\boldsymbol{\Lambda})} \mathcal{Y}
$$

over \mathcal{Y}. Then any f-pseudo-effective \mathbb{R}-Cartier divisor of X admits a relative Zariski-decomposition over Y.

Proof. Let D be an f-pseudo-effective \mathbb{R}-Cartier divisor on X. For a point $y \in Y$, let $\mathcal{X}=f^{-1} \mathcal{Y}$ for the open neighborhood \mathcal{Y} above. We have the vanishing $\mathrm{R}^{i} f_{*} \mathcal{O}_{X}=0$ for $i>0$ and an isomorphism

$$
\mathrm{R}^{1} f_{*} \mathcal{O}_{X}^{\star} \simeq \mathrm{R}^{2} f_{*} \mathbb{Z}_{X}
$$

Hence we may assume that there exist an \mathbb{R}-Cartier divisor E of \mathcal{Y} and a support function $h \in \operatorname{SF}_{\mathbb{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ such that $\left.D\right|_{\mathcal{X}} \sim_{\mathbb{R}} f^{*} E+p_{1}^{*} D_{h}$ for the first projection $p_{1}: \mathcal{X} \rightarrow \mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma})$. By $\mathbf{1 . 1 7}$, there exists a bimeromorphic morphism $\mu: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ such that the positive part P of the relative σ-decomposition of $\mu^{*}(D \mid \mathcal{X})$ is relatively nef over \mathcal{Y}. By $\mathbf{1 . 1 5}$, we may assume that the \mathbb{R}-divisor P is relatively ample over \mathcal{X}. Then μ and P are uniquely determined up to isomorphisms. Gluing \mathcal{X}^{\prime} and P for such neighborhoods \mathcal{Y}, we obtain a bimeromorphic morphism $g: X^{\prime} \rightarrow X$ such that the positive part of the relative σ-decomposition of $g^{*} D$ is relatively nef over Y and is relatively ample over X.

§2. Toric bundles

§2.a. Definition of toric bundles. We shall give a relative version of the notion of toric variety (cf. [125]). Let M and N be the same free abelian groups as before.
2.1. Definition Let S be a complex analytic space and let

$$
\mathcal{L}: \mathrm{M} \ni m \longmapsto \mathcal{L}^{m} \in \operatorname{Pic}(S)
$$

be a group homomorphism. For a subset $\mathcal{S} \subset \mathrm{M}$, we set

$$
\mathcal{L}[\mathcal{S}]:=\bigoplus_{m \in \mathcal{S}} \mathcal{L}^{m}
$$

For a strictly convex rational polyhedral cone $\boldsymbol{\sigma} \subset \mathrm{N}_{\mathbb{R}}$, the affine toric bundle over S of type (N, $\boldsymbol{\sigma}, \mathcal{L})$ is defined by

$$
\mathbb{T}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathcal{L})=\operatorname{Specan}_{S} \mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]
$$

Similarly, for a fan $\boldsymbol{\Sigma}$ of N , the toric bundle $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ of type $(\mathrm{N}, \boldsymbol{\Sigma}, \mathcal{L})$ is defined as the natural union of $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathcal{L})$ for $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$.

Remark \mathcal{L} is regarded as an element of $\mathrm{N} \otimes \operatorname{Pic}(S)=\mathrm{H}^{1}\left(S, \mathrm{~N} \otimes \mathcal{O}_{S}^{\star}\right)$, in which $\mathrm{N} \otimes \mathcal{O}_{S}^{\star}$ is regarded as the sheaf of germs of holomorphic mappings $S \rightarrow \mathbb{T}_{\mathrm{N}}$. By the action of \mathbb{T}_{N} on $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}), \mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L}) \rightarrow S$ is the fiber bundle obtained from $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}) \times S \rightarrow S$ by the twist by \mathcal{L}. The cohomology class in $H^{1}\left(S, \mathrm{~N} \otimes \mathcal{O}_{S}^{\star}\right)$ attached to the principal fiber bundle $\mathbb{T}_{\mathrm{N}}(\mathbf{0}, \mathcal{L}) \rightarrow S$ is $-\mathcal{L}$.

There is a natural surjective $\mathcal{O}_{S^{-}}$-algebra homomorphism $\mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right] \rightarrow \mathcal{L}\left[\boldsymbol{\sigma}^{\perp} \cap \mathrm{M}\right]$ such that the kernel is $\mathcal{L}\left[\left(\boldsymbol{\sigma}^{\vee} \backslash \boldsymbol{\sigma}^{\perp}\right) \cap \mathrm{M}\right]$. This induces a closed immersion

$$
\mathbb{T}_{\mathrm{N}(\boldsymbol{\sigma})}(\mathbf{0}, \mathcal{L}) \hookrightarrow \mathbb{T}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathcal{L})
$$

The left hand side is fiberwise an orbit of \mathbb{T}_{N} and is denoted by $\mathbb{O}_{\sigma}(\mathcal{L})$. For a face $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, the closure of $\mathbb{O}_{\boldsymbol{\tau}}(\mathcal{L})$ in $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathcal{L})$ is isomorphic to $\mathbb{T}_{\mathrm{N}(\boldsymbol{\tau})}(\boldsymbol{\sigma} / \boldsymbol{\tau}, \mathcal{L})$ by the natural surjective homomorphism

$$
\mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right] \rightarrow \mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \boldsymbol{\tau}^{\perp} \cap \mathrm{M}\right]
$$

The closure $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ of $\mathbb{O}_{\boldsymbol{\sigma}}(\mathcal{L})$ in $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ is isomorphic to $\mathbb{T}_{\mathrm{N}(\boldsymbol{\sigma})}(\boldsymbol{\Sigma} / \boldsymbol{\sigma}, \mathcal{L})$.
Suppose that S is a normal complex analytic variety. Let $p: Y \rightarrow S$ be the morphism $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L}) \rightarrow S$. An element $m \in \mathrm{M}$ defines a meromorphic section e(m) of $p^{*} \mathcal{L}^{-m}$ by the natural embedding

$$
\mathcal{O}_{S} \simeq \mathcal{L}^{-m} \otimes \mathcal{L}^{m} \hookrightarrow \mathcal{L}^{-m} \otimes \mathcal{L}[\mathrm{M}]
$$

For a vertex $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$, let Γ_{v} be the prime divisor $\mathbb{V}\left(\mathbb{R}_{\geq 0} v, \mathcal{L}\right)$. The divisor $\operatorname{div}(\mathrm{e}(m))$ associated with the meromorphic section $\mathrm{e}(m)$ of $p^{*} \mathcal{L}^{-m}$ is written by

$$
\sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})}\langle m, v\rangle \Gamma_{v}
$$

as a Weil divisor. In particular,

$$
\mathcal{O}_{Y}\left(\sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})}\langle m, v\rangle \Gamma_{v}\right) \simeq p^{*} \mathcal{L}^{-m}
$$

Even for $m \in \mathrm{M}_{\mathbb{R}}$, we can define $\operatorname{div}(\mathrm{e}(m))$ to be an \mathbb{R}-Cartier divisor by the linearity of div oe: $\mathrm{M} \rightarrow \operatorname{CDiv}(Y, \mathbb{R})$. Similarly, we denote by \mathcal{L}^{m} the image of m under $\mathcal{L} \otimes \mathbb{R}: \mathrm{M}_{\mathbb{R}} \rightarrow \operatorname{Pic}(S, \mathbb{R})$. Then $\operatorname{div}(\mathrm{e}(m)) \sim_{\mathbb{R}} f^{*} \mathcal{L}^{-m}$ for $m \in \mathrm{M}_{\mathbb{R}}$. For $h \in \operatorname{SFC}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, we define

$$
D_{h}=\sum_{v \in \operatorname{Ver}(\boldsymbol{\Sigma})}(-h(v)) \Gamma_{v}
$$

If $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, then D_{h} is \mathbb{R}-Cartier.
Remark We can consider a kind of differential form:

$$
\mathrm{d} \log \mathrm{e}(m)=\mathrm{e}(m)^{-1} \mathrm{~d} \mathrm{e}(m)
$$

for $m \in \mathrm{M}$. It is not a well-defined meromorphic 1-form on $Y=\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$. Suppose that $\boldsymbol{\Sigma}$ is a non-singular fan and S is non-singular. Let B be the normal crossing divisor $Y \backslash \mathbb{T}_{\mathrm{N}}(\mathbf{0}, \mathcal{L})$. Then $\mathrm{d} \log \mathrm{e}(m)$ is regard as a global section of the sheaf $\Omega_{Y / S}^{1}(\log B)$ of germs of relative logarithmic 1-forms. Moreover, we have an isomorphism

$$
\mathrm{M} \otimes \mathcal{O}_{Y} \simeq \Omega_{Y / S}^{1}(\log B)
$$

In particular, $K_{Y}+B \sim p^{*} K_{S}$.
2.2. Proposition Let Y be a toric bundle $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ over a complex analytic space S and let X be a toric bundle $\mathbb{T}_{\mathrm{N}_{0}}\left(\boldsymbol{\Sigma}_{0}, \mathcal{L}_{0}\right)$ over Y. Let $p: Y \rightarrow S$ and $\pi: X \rightarrow Y$ be the structure morphisms. Assume that $\mathcal{L}_{0}: \mathrm{M}_{0}=\operatorname{Hom}\left(\mathrm{N}_{0}, \mathbb{Z}\right) \rightarrow$ $\operatorname{Pic}(Y)$ is the composite of a homomorphism $\mathrm{M}_{0} \rightarrow \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \oplus \operatorname{Pic}(S)$ and the natural homomorphism $\operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \oplus \operatorname{Pic}(S) \ni(h, \mathcal{M}) \mapsto \mathcal{O}_{Y}\left(D_{h}\right) \otimes p^{*} \mathcal{M} \in \operatorname{Pic}(Y)$. Then X is isomorphic to a toric bundle $\mathbb{T}_{\mathrm{N}_{0} \oplus \mathrm{~N}}(\widetilde{\boldsymbol{\Sigma}}, \widetilde{\mathcal{L}})$ over S and π is induced from the second projection $\mathrm{N}_{0} \oplus \mathrm{~N} \rightarrow \mathrm{~N}$.

Proof. The homomorphism $\mathrm{M}_{0} \rightarrow \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \oplus \operatorname{Pic}(S)$ is defined by an element $\mathbf{h} \in \operatorname{SF}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \otimes \mathrm{N}_{0}$ and by a homomorphism $\mathcal{L}_{1}: \mathrm{M}_{0} \rightarrow \operatorname{Pic}(S)$. Here \mathbf{h} is regarded as a continuous function $|\boldsymbol{\Sigma}| \rightarrow\left(\mathrm{N}_{0}\right)_{\mathbb{R}}=\mathrm{N}_{0} \otimes \mathbb{R}$ such that the restriction $\left.\mathbf{h}\right|_{\boldsymbol{\sigma}}$ to a cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ is linear and is induced from a homomorphism $\mathrm{N}_{\boldsymbol{\sigma}} \rightarrow \mathrm{N}_{0}$. For $m_{0} \in \mathrm{M}_{0}$, we write by $\left\langle m_{0}, \mathbf{h}\right\rangle$ the support function $x \mapsto\left\langle m_{0}, \mathbf{h}(x)\right\rangle$. Then

$$
\mathcal{L}_{0}^{m_{0}}=\mathcal{O}_{Y}\left(D_{\left\langle m_{0}, \mathbf{h}\right\rangle}\right) \otimes p^{*} \mathcal{L}_{1}^{m_{0}}
$$

For $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, we can take a homomorphism $\psi_{\boldsymbol{\sigma}}: \mathrm{M}_{0} \rightarrow \mathrm{M}$ such that the composite $\mathrm{M}_{0} \rightarrow \mathrm{M} \rightarrow \mathrm{M}_{\boldsymbol{\sigma}}$ is dual to the homomorphism $\mathrm{N}_{\boldsymbol{\sigma}} \rightarrow \mathrm{N}_{0}$ above defined by \mathbf{h}. Then $\left\langle m_{0}, \mathbf{h}(x)\right\rangle=\left\langle\psi_{\boldsymbol{\sigma}}\left(m_{0}\right), x\right\rangle$ for $x \in \boldsymbol{\sigma}$. In particular, $\square_{\left\langle m_{0}, \mathbf{h}\right\rangle}(\boldsymbol{\sigma})=\left\{m \in \mathrm{M}_{\mathbb{R}} \mid\langle m, x\rangle \geq\left\langle m_{0}, \mathbf{h}(x)\right\rangle\right.$ for $\left.x \in \boldsymbol{\sigma}\right\}=\psi_{\boldsymbol{\sigma}}^{\vee}\left(m_{0}\right)+\boldsymbol{\sigma}^{\vee}$.
For cones $\boldsymbol{\sigma}_{0} \in \boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, let $Y_{\boldsymbol{\sigma}} \subset Y$ be the open subset $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\sigma}, \mathcal{L})$ and let $X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}} \subset \pi^{-1} Y_{\boldsymbol{\sigma}}$ be the open subset $\mathbb{T}_{\mathrm{N}_{0}}\left(\boldsymbol{\sigma}_{0}, \mathcal{L}_{0}\right)$ over $Y_{\boldsymbol{\sigma}}$. Then $Y_{\boldsymbol{\sigma}} \simeq$ Specan $_{S} \mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$ and the invertible sheaf $\mathcal{O}_{Y_{\boldsymbol{\sigma}}}\left(D_{h}\right)$ for $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma})$ is associated with the $\mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$-module $\mathcal{L}\left[\square_{h}(\boldsymbol{\sigma}) \cap \mathrm{M}\right]$. Similarly, $X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}} \simeq \operatorname{Specan}_{Y_{\boldsymbol{\sigma}}} \mathcal{L}_{0}\left[\boldsymbol{\sigma}_{0}^{\vee} \cap \mathrm{M}_{0}\right]$. Therefore, $X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}} \simeq \operatorname{Specan}_{S} \mathcal{A}_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}}$ for the subalgebra

$$
\mathcal{A}_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}}=\bigoplus_{m_{0} \in \mathrm{M}_{0} \cap \boldsymbol{\sigma}_{0}^{\vee}, m \in \square_{\left\langle m_{0}, \mathbf{h}\right\rangle}(\boldsymbol{\sigma})} \mathcal{L}_{1}^{m_{0}} \otimes \mathcal{L}^{m} \subset \widetilde{\mathcal{L}}\left[\mathrm{M}_{0} \oplus \mathrm{M}\right]
$$

where $\widetilde{\mathcal{L}}:=\mathcal{L}_{1} \oplus \mathcal{L} \in\left(\mathrm{~N}_{0} \oplus \mathrm{~N}\right) \otimes \operatorname{Pic}(S)$. For the cone

$$
C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right):=\left\{\left(x_{0}, x\right) \in\left(\mathrm{N}_{0}\right)_{\mathbb{R}} \oplus \mathbf{N}_{\mathbb{R}} \mid x_{0}+\mathbf{h}(x) \in \boldsymbol{\sigma}_{0}, x \in \boldsymbol{\sigma}\right\}
$$

we have an isomorphism $X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}} \simeq \mathbb{T}_{\mathrm{N}_{0} \oplus \mathrm{~N}}\left(C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right), \widetilde{\mathcal{L}}\right)$ over S, since

$$
\left\{\left(m_{0}, m\right) \in \mathrm{M}_{0} \oplus \mathrm{M} \mid m_{0} \in \boldsymbol{\sigma}_{0}^{\vee}, m \in \square_{\left\langle m_{0}, \mathbf{h}\right\rangle}(\boldsymbol{\sigma})\right\}=C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right)^{\vee} \cap\left(\mathrm{M}_{0} \oplus \mathrm{M}\right)
$$

The structure morphism $\pi: X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}} \rightarrow Y_{\boldsymbol{\sigma}}$ is interpreted as a morphism of toric bundles over S which is induced from the second projection $\mathrm{N}_{0} \oplus \mathrm{~N} \rightarrow \mathrm{~N}$.

For faces $\boldsymbol{\tau}_{0} \prec \boldsymbol{\sigma}_{0}$ and $\boldsymbol{\tau} \prec \boldsymbol{\sigma}$, the cone $C\left(\boldsymbol{\tau}_{0}, \boldsymbol{\tau} ; \mathbf{h}\right)$ is a face of $C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right)$ and the open immersion $X_{\boldsymbol{\tau}_{0}, \boldsymbol{\tau}} \subset X_{\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}}$ is induced from the open immersion as toric bundles over S. For other cones $\boldsymbol{\sigma}_{0}^{\prime} \in \boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\sigma}^{\prime} \in \boldsymbol{\Sigma}$, we have $C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right) \cap$ $C\left(\boldsymbol{\sigma}_{0}^{\prime}, \boldsymbol{\sigma}^{\prime} ; \mathbf{h}\right)=C\left(\boldsymbol{\sigma}_{0} \cap \boldsymbol{\sigma}_{0}^{\prime}, \boldsymbol{\sigma}^{\prime} \cap \boldsymbol{\sigma} ; \mathbf{h}\right)$. Thus

$$
\boldsymbol{\Sigma}_{\mathbf{h}}:=\left\{C\left(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma} ; \mathbf{h}\right) \mid \boldsymbol{\sigma}_{0} \in \boldsymbol{\Sigma}_{0}, \boldsymbol{\sigma} \in \boldsymbol{\Sigma}\right\}
$$

is a fan of $\mathrm{N}_{0} \oplus \mathrm{~N}$ and $X \simeq \mathbb{T}_{\mathrm{N}_{0} \oplus \mathrm{~N}}\left(\boldsymbol{\Sigma}_{\mathbf{h}}, \widetilde{\mathcal{L}}\right)$ over S.
§2.b. Pseudo-effective divisors on toric bundles. Suppose that $\boldsymbol{\Sigma}$ is a complete fan and that S is a normal complex analytic variety. Let $p: Y \rightarrow S$ be the structure morphism of the toric bundle $Y=\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$.
2.3. Lemma (1) For a line bundle \mathcal{M} of Y, there exist a line bundle \mathcal{N} of S and a support function $h \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ such that $\mathcal{M} \simeq p^{*} \mathcal{N} \otimes \mathcal{O}_{Y}\left(D_{h}\right)$. In particular, there is an isomorphism

$$
p_{*} \mathcal{M} \simeq \mathcal{N} \otimes \mathcal{L}\left[\square_{h} \cap \mathrm{M}\right] .
$$

(2) For an \mathbb{R}-Cartier divisor D of Y, there exists a support function $h \in$ $\mathrm{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ such that $D \sim_{\mathbb{R}} p^{*} \Xi+D_{h}$ for some $\Xi \in \operatorname{Pic}(S, \mathbb{R})$.

Proof. From the vanishing $\mathrm{R}^{i} p_{*} \mathcal{O}_{Y}=0$ for $i>0$, we have exact sequences

$$
\begin{aligned}
0 \rightarrow \operatorname{Pic}(S) & \rightarrow \operatorname{Pic}(Y) \rightarrow \mathrm{H}^{0}\left(S, \mathrm{R}^{2} p_{*} \mathbb{Z}_{Y}\right) \\
0 \rightarrow \operatorname{Pic}(S, \mathbb{R}) & \rightarrow \operatorname{Pic}(Y, \mathbb{R}) \rightarrow \mathrm{H}^{0}\left(S, \mathrm{R}^{2} p_{*} \mathbb{R}_{Y}\right)
\end{aligned}
$$

On the toric variety $\mathbb{T}_{N}(\boldsymbol{\Sigma})$, any line bundle is associated with the Cartier divisor D_{h} for some $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$, and any \mathbb{R}-Cartier divisor is \mathbb{R}-linearly equivalent to D_{h} for some $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. Thus, in (1), $\mathcal{M} \otimes \mathcal{O}_{Y}\left(-D_{h}\right)$ restricted to a fiber of p is numerically trivial for some $h \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$, and hence $\mathcal{M} \simeq p^{*} \mathcal{N} \otimes \mathcal{O}_{Y}\left(D_{h}\right)$ for a line bundle \mathcal{N} of S. Similarly, in (2), $D-D_{h}$ is p-numerically trivial for some $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. Hence $D-D_{h} \sim_{\mathbb{R}} p^{*} \Xi$ for some $\Xi \in \operatorname{Pic}(S, \mathbb{R})$. Note that there is an isomorphism $p_{*} \mathcal{O}_{Y}\left(D_{h}\right) \simeq \mathcal{L}\left[\square_{h} \cap \mathrm{M}\right]$ by (IV-4), since p is proper.

For $h \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, we write $h^{\dagger}=h_{N_{\mathbb{R}}}^{\dagger}$ for short. Let \mathcal{M} be an invertible sheaf of Y such that $\mathcal{M} \simeq f^{*} \mathcal{N} \otimes \mathcal{O}_{Y}\left(D_{h}\right)$ for some $\mathcal{N} \in \operatorname{Pic}(S)$ and $h \in \operatorname{SF}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$. Then the following conditions are mutually equivalent by $\mathbf{1 . 1 3}$;
(1) h is upper convex on $N_{\mathbb{R}}$;
(2) $\square_{h} \neq \emptyset$ and $h^{\dagger}=h$;
(3) \mathcal{M} is p-free;
(4) \mathcal{M} is p-nef.

Furthermore, \mathcal{M} is p-ample if and only if h is strictly upper convex with respect to $\boldsymbol{\Sigma}$ by 1.14. Let D be an \mathbb{R}-Cartier divisor of Y such that $D \sim_{\mathbb{R}} f^{*} E+D_{h}$ for some \mathbb{R}-Cartier divisor E of S and for $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$. Then the following conditions are mutually equivalent by $\mathbf{1 . 1 6}$:
(1) $\square_{h} \neq \emptyset$ and $h=h^{\dagger}$; (2) h is upper convex; (3) D is p-nef.

If D is p-pseudo-effective, then $\sigma_{\Gamma_{v}}(D ; Y / S)=h^{\dagger}(v)-h(v)$ for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$ by 1.16.
Suppose that S is a normal projective variety. We study the (absolute) σ decomposition for a pseudo-effective \mathbb{R}-Cartier divisor of $Y=\mathbb{T}_{\mathcal{N}}(\boldsymbol{\Sigma}, \mathcal{L})$. For an \mathbb{R}-Cartier divisor E of S and for a support function $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$, we define

$$
\begin{aligned}
& \square_{\mathrm{PE}}(E, h):=\left\{m \in \square_{h} \mid E+\mathcal{L}^{m} \text { is pseudo-effective }\right\} \\
& \square_{\mathrm{Nef}}(E, h):=\left\{m \in \square_{h} \mid E+\mathcal{L}^{m} \text { is nef }\right\}
\end{aligned}
$$

These are compact convex subsets of $\mathrm{M}_{\mathbb{R}}$.
2.4. Proposition Suppose that S is a normal projective variety. Let $D=$ $p^{*} E+D_{h}$ be an \mathbb{R}-Cartier divisor of $Y=\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ for $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$.
(1) D is pseudo-effective if and only if $\square_{\mathrm{PE}}(E, h) \neq \emptyset$.
(2) The following conditions are equivalent to each other:
(a) D is nef;
(b) $l_{\boldsymbol{\sigma}} \in \square_{\mathrm{Nef}}(E, h)$ for any maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$, where $l_{\boldsymbol{\sigma}} \in \mathrm{M}_{\mathbb{R}}$ is defined by $h(x)=\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle$ for $x \in \boldsymbol{\sigma}$ (cf. 1.7);
(c) $\square_{\mathrm{Nef}}(E, h) \neq \emptyset$ and, for any $x \in \mathrm{~N}_{\mathbb{R}}$,

$$
h(x)=\min \left\{\langle m, x\rangle \mid m \in \square_{\mathrm{Nef}}(E, h)\right\} .
$$

(3) Suppose that D is pseudo-effective. Then

$$
\begin{aligned}
\sigma_{p^{-1} \Theta}(D) & =\min \left\{\sigma_{\Theta}\left(E+\mathcal{L}^{m}\right) \mid m \in \square_{\mathrm{PE}}(E, h)\right\}, \\
\sigma_{\Gamma_{v}}(D) & =\min \left\{\langle m, v\rangle \mid m \in \square_{\mathrm{PE}}(E, h)\right\}-h(v),
\end{aligned}
$$

for any prime divisor $\Theta \subset S$ and for any $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$.
(4) Suppose that D is pseudo-effective. Then D is movable if and only if $\sigma_{p^{-1} \Theta}(D)=\sigma_{\Gamma_{v}}(D)=0$ for any prime divisor $\Theta \subset S$ and for any $v \in$ $\operatorname{Ver}(\boldsymbol{\Sigma})$.
(5) Suppose that D is pseudo-effective. Then D is numerically movable if and only if

$$
\begin{aligned}
& \left\{m \in \square_{h}\left|\left(E+\mathcal{L}^{m}\right)\right|_{\Theta} \text { is pseudo-effective }\right\} \neq \emptyset, \quad \text { and } \\
& \left\{m \in \square_{\mathrm{PE}}(E, h) \mid h(v)=\langle m, v\rangle\right\} \neq \emptyset
\end{aligned}
$$

for any prime divisor $\Theta \subset S$ and for any $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$.
Proof. The image $c \in \mathbf{N} \otimes \mathbf{N}^{1}(S)$ of $\mathcal{L} \in \mathbf{N} \otimes \operatorname{Pic}(S)$ satisfies $\langle m, c\rangle=c_{1}\left(\mathcal{L}^{m}\right) \in$ $\mathrm{N}^{1}(S)$ for $m \in \mathrm{M}_{\mathbb{R}}$. Let us consider the set

$$
\Omega:=\left\{(e, h, m) \in \mathrm{N}^{1}(S) \times \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R}) \times \mathrm{M}_{\mathbb{R}} \mid m \in \square_{h}, e+\langle m, c\rangle \in \operatorname{PE}(S)\right\}
$$

Then $\pi: \Omega \rightarrow \mathrm{N}^{1}(S) \times \mathrm{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ is proper, since \square_{h} is compact for $h \in \mathrm{SF}_{\mathrm{N}}(\boldsymbol{\Sigma})$. In particular, $\pi(\Omega)$ is closed. Let us consider

$$
\varphi: \mathrm{N}^{1}(S) \times \mathrm{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R}) \ni(e, h) \mapsto p^{*} e+c_{1}\left(D_{h}\right) \in \mathrm{N}^{1}(Y)
$$

Then (1) means that $\varphi^{-1}(\operatorname{PE}(Y))=\pi(\Omega)$. We note the following \mathbb{R}-equivalence relation for $m \in \mathrm{M}_{\mathbb{R}}$:

$$
\begin{equation*}
D_{h}+p^{*} E \sim_{\mathbb{R}} \operatorname{div}(\mathrm{e}(m))+D_{h}+p^{*}\left(E+\mathcal{L}^{m}\right) \tag{IV-5}
\end{equation*}
$$

Thus $\varphi^{-1}(\operatorname{PE}(Y)) \supset \pi(\Omega)$. In the proof, we may assume that S and Y are nonsingular and Y is projective over S.
(1) It is enough to show $\varphi^{-1}\left(\operatorname{Big}(Y) \cap \operatorname{NS}(Y)_{\mathbb{Q}}\right) \subset \pi(\Omega)$. Thus we may assume that D is a big \mathbb{Q}-divisor. In particular, E is a \mathbb{Q}-divisor and h is rational. Then $k D$ are $k E$ is Cartier and $\mathrm{H}^{0}(Y, k D) \neq 0$ for some $k \in \mathbb{N}$. In particular, $\mathrm{H}^{0}\left(S, \mathcal{L}^{m}+\right.$ $k E) \neq 0$ for some $m \in \mathrm{M} \cap k \square_{h}$ by (IV-4). Hence $\left(c_{1}(E), h\right) \in \pi(\Omega)$.
(2) (a) \Rightarrow (b): Let $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ be a maximal cone. Then $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ is a section of $p: Y \rightarrow S$ and $h^{\boldsymbol{\sigma}}(x)=h(x)-\left\langle l_{\boldsymbol{\sigma}}, x\right\rangle \leq 0$ for any $x \in \mathrm{~N}_{\mathbb{R}}$, since D_{h} is p-nef. Note that $D_{h^{\boldsymbol{\sigma}}} \cap \mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})=\emptyset$ and $D_{h^{\boldsymbol{\sigma}}}=D_{h}+\operatorname{div}\left(\mathrm{e}\left(l_{\boldsymbol{\sigma}}\right)\right)$. Therefore, $\left.D_{h}\right|_{\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})}$ is \mathbb{R}-linearly equivalent to $\mathcal{L}^{l_{\boldsymbol{\sigma}}}$. Thus $E+\mathcal{L}^{l_{\boldsymbol{\sigma}}}$ is nef and $l_{\boldsymbol{\sigma}} \in \square_{\mathrm{Nef}}(E, h)$.
(b) \Rightarrow (c): For any $y \in \mathbf{N}_{\mathbb{R}}$, there is a maximal cone $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$ containing $y \in \boldsymbol{\sigma}$. Then $h(y)=\left\langle l_{\boldsymbol{\sigma}}, y\right\rangle=\min \left\{\langle m, y\rangle \mid m \in \square_{\mathrm{Nef}}(E, h)\right\}$.
(c) $\Rightarrow(\mathrm{b}): h$ is upper-convex by the expression. For a vector $x_{0} \in \sigma$, there is an $m_{0} \in \square_{\mathrm{Nef}}(E, h)$ such that $h\left(x_{0}\right)=\left\langle l_{\boldsymbol{\sigma}}, x_{0}\right\rangle=\left\langle m_{0}, x_{0}\right\rangle$. Since $m_{0}-l_{\boldsymbol{\sigma}} \in \boldsymbol{\sigma}^{\vee}$, we infer that $m_{0}=l_{\boldsymbol{\sigma}} \in \square_{\mathrm{Nef}}(E, h)$.
(b) \Rightarrow (a): Let W be the intersection of the supports of effective \mathbb{R}-Cartier divisors $D_{h}+\operatorname{div}(\mathrm{e}(m))$ for $m \in \square_{\mathrm{Nef}}(E, h)$. Then W is written as the union of $\mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ for suitable cones $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$. In particular, if $W \neq \emptyset$, then $W \supset \mathbb{V}(\boldsymbol{\sigma}, \mathcal{L})$ for a maximal cone $\boldsymbol{\sigma}$. Thus $W=\emptyset$ and D is nef.
(3) If $f: \Omega \rightarrow \mathbb{R}$ is a lower semi-continuous function, then

$$
\tilde{f}(e, h):=\inf \{f(e, h, m) \mid(e, h, m) \in \Omega\}=\min \{f(e, h, m) \mid(e, h, m) \in \Omega\}
$$

which gives rise to a lower semi-continuous function on $\pi(\Omega)$. For a prime divisor $\Theta \subset S, \sigma_{\Theta}$ is lower semi-continuous on $\operatorname{PE}(S)$. For a vertex $v \in \operatorname{Ver}(\boldsymbol{\Sigma}), m \mapsto\langle m, v\rangle$ is linear. Hence

$$
\begin{aligned}
r(E, h, \Theta) & :=\min \left\{\sigma_{\Theta}\left(E+\mathcal{L}^{m}\right) \mid m \in \square_{\mathrm{PE}}(E, h)\right\}, \\
r(E, h, v) & :=\min \left\{\langle m, v\rangle \mid m \in \square_{\mathrm{PE}}(E, h)\right\}-h(v)
\end{aligned}
$$

are well-defined, and $(E, h) \mapsto r(E, h, \Theta)$ and $(E, h) \mapsto r(E, h, v)$ are lower semicontinuous on $\pi(\Omega)$.

If $m \in \square_{\mathrm{PE}}(E, h)$, then

$$
\begin{aligned}
\sigma_{p^{-1} \Theta}(D) & \leq \sigma_{p^{-1} \Theta}\left(p^{*}\left(E+\mathcal{L}^{m}\right)\right)=\sigma_{\Theta}\left(E+\mathcal{L}^{m}\right) \\
\sigma_{\Gamma_{v}}(D) & \leq \operatorname{mult}_{\Gamma_{v}}\left(\operatorname{div}(\mathrm{e}(m))+D_{h}\right)=\langle m, v\rangle-h(v),
\end{aligned}
$$

by (IV-5), since $\operatorname{div}(\mathrm{e}(m))+D_{h}$ is an effective \mathbb{R}-divisor containing no fiber of p. Thus $\sigma_{p^{-1} \Theta}(D) \leq r(E, h, \Theta)$ and $\sigma_{\Gamma_{v}}(D) \leq r(E, h, v)$.

Suppose that D is a big \mathbb{Q}-divisor. Then E is a \mathbb{Q}-divisor and h is rational. By (IV-4) and (IV-5), we infer that any effective \mathbb{Q}-divisor \mathbb{Q}-linearly equivalent to D is written by $\operatorname{div}(\mathrm{e}(m))+D_{h}+p^{*} \Delta$ for some $m \in \square_{h} \cap \mathrm{M}_{\mathbb{Q}}$ and for some effective \mathbb{Q}-divisor $\Delta \sim_{\mathbb{Q}} E+\mathcal{L}^{m}$. Thus $\sigma_{p^{-1} \Theta}(D)=r(E, h, \Theta)$ and $\sigma_{\Gamma_{v}}(D)=r(E, h, v)$.

By the lower semi-continuity, the expected equalities also hold for any pseudoeffective \mathbb{R}-divisor $D=p^{*} E+D_{h}$.
(4) Let $\Gamma \subset Y$ be a prime divisor with $\sigma_{\Gamma}(D)>0$. This is stable under the action of \mathbb{T}_{N}. Therefore, $\Gamma=p^{-1} \Theta$ for a prime divisor $\Theta \subset S$ or $\Gamma=\Gamma_{v}$ for a vertex $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. Thus we have the equivalence.
(5) If $\left.D\right|_{\Gamma}$ is not pseudo-effective for a prime divisor $\Gamma \subset Y$, then $\Gamma=\Gamma_{v}$ for a vertex $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$ or $\Gamma=p^{-1} \Theta$ for a prime divisor $\Theta \subset S$. In case $\Gamma=\Gamma_{v}$, we choose $l_{v} \in \mathrm{M}_{\mathbb{R}}$ satisfying $h(v)=\left\langle l_{v}, v\right\rangle$ and let $h^{v} \in \operatorname{SF}_{\mathrm{N}(v)}\left(\boldsymbol{\Sigma} / \mathbb{R}_{\geq 0} v, \mathbb{R}\right)$ be the function defined by $h^{v}(x)=h(x)-\left\langle l_{v}, x\right\rangle$. Since $D_{h^{v}} \sim_{\mathbb{R}} D_{h}+p^{*} \mathcal{L}^{-l_{v}}$, the restriction $\left.D\right|_{\Gamma_{v}}$ is pseudo-effective if and only if $\square_{\mathrm{PE}}\left(E+\mathcal{L}^{l_{v}}, h_{v}\right) \cap v^{\perp} \neq \emptyset$ by (1). This is equivalent to the existence of $m \in \square_{\mathrm{PE}}(E, h)$ with $h(v)=\langle m, v\rangle$. In case $\Gamma=p^{-1} \Theta$, we note that Γ is a toric bundle over Θ. By considering the normalization of Θ, we infer from (1) that $\left.D\right|_{p^{-1} \Theta}$ is pseudo-effective if and only if $\left.\left(E+\mathcal{L}^{m}\right)\right|_{\Theta}$ is pseudo-effective for some $m \in \square_{h}$. Thus we are done.
2.5. Theorem Let S be a non-singular projective variety such that
(1) $\mathrm{PE}(S) \subset \mathrm{N}^{1}(S)=\mathrm{NS}(S) \otimes \mathbb{R}$ is a convex rational polyhedral cone with respect to $\mathrm{NS}(S)$, and
(2) $\operatorname{Nef}(S)=\operatorname{PE}(S)$.

Then any pseudo-effective \mathbb{R}-Cartier divisor of a projective toric bundle $\mathbb{T}_{N}(\boldsymbol{\Sigma}, \mathcal{L})$ over S admits a Zariski-decomposition.

Proof. We may assume that $Y=\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ is non-singular and projective. Then a pseudo-effective \mathbb{R}-divisor D of Y is \mathbb{R}-linearly equivalent to $p^{*} E+D_{h}$ for an \mathbb{R}-divisor E of S and for an $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ such that $\square_{\mathrm{PE}}(E, h) \neq \emptyset$. By assumption,

$$
\operatorname{PE}(S)=\left\{\xi \in \mathrm{N}^{1}(S) \mid \xi \cdot \gamma_{i} \geq 0(1 \leq i \leq k)\right\}
$$

for some 1-cycles $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ of S. Let $c: \mathrm{M} \rightarrow \mathrm{N}^{1}(S)$ be the homomorphism defined by $c(m)=c_{1}\left(\mathcal{L}^{m}\right)$ and let $c^{\vee}: \mathrm{N}_{1}(S) \rightarrow \mathrm{N}_{\mathbb{R}}$ be its dual. Both c and c^{\vee} are defined over \mathbb{Q}. Then the cone $\mathbb{R}_{\geq 0}\left(\square_{\mathrm{PE}}(E, h) \times\{-1\}\right)$ is the dual cone of

$$
\triangle(E, h)=\triangle_{h}+\sum_{i=1}^{k} \mathbb{R}_{\geq 0}\left(c^{\vee}\left(\gamma_{i}\right),-E \cdot \gamma_{i}\right)
$$

For $x \in \mathbf{N}_{\mathbb{R}}$, let us define

$$
h^{\ddagger}(x)=\min \left\{\langle m, x\rangle \mid m \in \square_{\mathrm{PE}}(E, h)\right\} .
$$

Then $h^{\ddagger}(x) \geq h(x)$ and $\square_{\mathrm{PE}}(E, h)=\square_{\mathrm{PE}}\left(E, h^{\ddagger}\right)$. Moreover, $h^{\ddagger} \in \operatorname{SFC}(\boldsymbol{\Sigma}, \mathbb{R})$, since the image of any face of $\triangle(E, h)$ under the first projection $\mathrm{N}_{\mathbb{R}} \times \mathbb{R} \rightarrow \mathrm{N}_{\mathbb{R}}$ is a rational polyhedral cone. Let $\boldsymbol{\Sigma}^{\prime}$ be a finite subdivision of $\boldsymbol{\Sigma}$ such that $h^{\ddagger} \in$
$\mathrm{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathbb{R}\right)$ and let $\mu: Y^{\prime}=\mathbb{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\prime}, \mathcal{L}\right) \rightarrow Y$ be the associated proper bimeromorphic morphism. Then

$$
N_{\sigma}\left(\mu^{*} D\right)=\sum_{v \in \operatorname{Ver}\left(\boldsymbol{\Sigma}^{\prime}\right)}\left(h^{\ddagger}(v)-h(v)\right) \Gamma_{v}
$$

by $\operatorname{2.4}$ (3). Here $P_{\sigma}\left(\mu^{*} D\right) \sim_{\mathbb{R}} p^{*} E+D_{h^{\ddagger}}$, which is nef by $\mathbf{2 . 4}$-(2).
§2.c. Examples of toric bundles. Let S be a non-singular projective variety and let $L_{1}, L_{2}, \ldots, L_{r}$ be divisors of S. Let $p: \mathbb{P}=\mathbb{P}(\mathcal{E}) \rightarrow S$ be the projective bundle associated with $\mathcal{E}=\bigoplus_{i=1}^{r} \mathcal{O}_{S}\left(L_{i}\right)$. This is described as a toric bundle $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ as follows:
(1) N is of rank $r-1$ with a basis $e_{1}, e_{2}, \ldots, e_{r-1}$;
(2)

$$
\mathcal{L}=\sum_{i=1}^{r-1} e_{i} \otimes \mathcal{O}_{S}\left(L_{i}-L_{r}\right) \in \mathrm{N} \otimes \operatorname{Pic}(S) ;
$$

(3) We set $e_{r}=-\sum_{i=1}^{r-1} e_{i} \in \mathrm{~N}$. The fan $\boldsymbol{\Sigma}$ consists of the faces of the ($r-1$)-dimensional cones

$$
\boldsymbol{\sigma}_{i}:=\sum_{1 \leq j \leq r, j \neq i} \mathbb{R}_{\geq 0} e_{j} \quad(1 \leq i \leq r)
$$

Let $h: \mathbb{N}_{\mathbb{R}} \rightarrow \mathbb{R}$ be the function defined by

$$
h\left(\sum_{j=1}^{r-1} x_{j} e_{j}\right)= \begin{cases}x_{i}, & \text { if } x \in \boldsymbol{\sigma}_{i} \text { for } i<r \\ 0, & \text { if } x \in \boldsymbol{\sigma}_{r}\end{cases}
$$

Then $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$. In fact, $h(x)=\min \left\{\left\langle l_{i}, x\right\rangle \mid 1 \leq i \leq r\right\}$ for the dual basis $\left(l_{1}, l_{2}, \ldots, l_{r-1}\right)$ of M to $\left(e_{1}, e_{2}, \ldots, e_{r-1}\right)$ and $l_{r}=0$. Note that $h\left(e_{i}\right)=0$ for $i<r$, and $h\left(e_{r}\right)=-1$, where $\operatorname{Ver}(\boldsymbol{\Sigma})=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$. In particular, D_{h} is just the prime divisor $\Gamma_{e_{r}}$ and hence $D_{h} \sim H-p^{*} L_{r}$ for the tautological divisor $H=H_{\mathcal{E}}$. We consider the standard convex polytope

$$
\square:=\left\{s=\left(s_{1}, s_{2}, \ldots, s_{r}\right) \in[0,1]^{r} \mid \sum_{i=1}^{r} s_{i}=1\right\},
$$

where $[0,1]=\{r \in \mathbb{R} \mid 0 \leq r \leq 1\}$. For $s \in \square$, an \mathbb{R}-divisor Δ of S, and for a real number $b \geq 0$, we define

$$
\begin{aligned}
\Delta(s) & :=\Delta+b\left(\sum_{i=1}^{r} s_{i} L_{i}\right) \\
\square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right) & :=\{s \in \square \mid \Delta(s) \text { is pseudo-effective }\} .
\end{aligned}
$$

If we identify $\mathrm{M}_{\mathbb{R}} \simeq \mathbb{R}^{r-1}$ by the dual basis to $\left(e_{1}, e_{2}, \ldots, e_{r-1}\right)$, then

$$
\square_{h}=\left\{\left(m_{1}, m_{2}, \ldots, m_{r-1}\right) \in \mathbb{R}_{\geq 0}^{r-1} \mid \sum_{i=1}^{r-1} m_{i} \leq 1\right\}
$$

and hence $\square_{\mathrm{PE}}\left(b L_{r}+\Delta, b h\right)$ is identified with the set of vectors $\left(m_{1}, m_{2}, \ldots, m_{r-1}\right) \in$ $\mathbb{R}_{\geq 0}^{r-1}$ such that $\sum_{i=1}^{r-1} m_{i} \leq b$ and

$$
\Delta+\sum_{i=1}^{r-1} m_{i} L_{i}+\left(b-\sum_{i=1}^{r-1} m_{i}\right) L_{r} \in \mathrm{PE}(S)
$$

Thus, if $b>0$, there is an identification $\square_{\mathrm{PE}}\left(\Delta+b L_{r}, b h\right) \leftrightarrow \square_{\mathrm{PE}}(\Delta, L \bullet, b)$ by

$$
s_{i}=m_{i} / b \quad \text { for } \quad i<r, \quad \text { and } \quad s_{r}=1-\frac{1}{b} \sum_{i=1}^{r-1} m_{i} .
$$

2.6. Lemma Let D be an \mathbb{R}-divisor of \mathbb{P} numerically equivalent to $p^{*} \Delta+b H$ for an \mathbb{R}-divisor Δ of S and $b \in \mathbb{R}$.
(1) D is pseudo-effective if and only if $b \geq 0$ and $\square_{\mathrm{PE}}\left(\Delta, L_{\mathbf{\bullet}}, b\right) \neq \emptyset$.
(2) D is nef if and only if $b \geq 0$ and $\Delta+b L_{i}$ is nef for any $1 \leq i \leq r$.
(3) D is movable if and only if $b \geq 0$ and the following two conditions are both satisfied:
(a) For any prime divisor $\Theta \subset S$, there is a vector $s \in \square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right)$ such that $\sigma_{\Theta}(\Delta(s))=0$;
(b) For any $1 \leq j \leq r$, a vector $s=\left(s_{1}, s_{2}, \ldots, s_{r}\right)$ with $s_{j}=0$ is contained in $\square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right)$.
(4) D is numerically movable if and only if $b \geq 0$, and the condition (b) above and the following condition are satisfied: For any prime divisor $\Theta \subset S$, there is a vector $s \in \square$ such that $\left.\Delta(s)\right|_{\Theta}$ is pseudo-effective.

Proof. (1) D is numerically equivalent to $b D_{h}+p^{*}\left(b L_{r}+\Delta\right)$. This is p -pseudo-effective if and only if $b \geq 0$. Hence (1) follows from 2.4 -(1) and from the identification $\square_{\mathrm{PE}}\left(\Delta+b L_{r}, b h\right) \leftrightarrow \square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right)$.
(2) A maximal cone of $\boldsymbol{\Sigma}$ is one of $\boldsymbol{\sigma}_{i}$ for $1 \leq i \leq r$. For $l_{1}, l_{2}, \ldots, l_{r} \in \mathrm{M}$ introduced above, we set $h^{(i)}(x):=h(x)-\left\langle l_{i}, x\right\rangle$. Then D is nef if and only if $\Delta+b L_{r}$ and $\Delta+b L_{r}+\mathcal{L}^{b l_{i}}=\Delta+b L_{i}$ for $i<r$ are all nef, by 2.4-(2).
(3) follows from by $\mathbf{2 . 4}-(3)$, since

$$
\begin{aligned}
\sigma_{\Gamma_{e_{i}}}(D) & =\min \left\{b s_{i} \mid s \in \square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right)\right\} \quad \text { for } \quad 1 \leq i \leq r \\
\sigma_{p^{-1} \Theta}(D) & =\min \left\{\sigma_{\Theta}(\Delta(s)) \mid s \in \square_{\mathrm{PE}}\left(\Delta, L_{\bullet}, b\right)\right\} .
\end{aligned}
$$

(4) follows from 2.4-(5).

We consider the special case: $r=2$. We may assume $L_{2}=0$ and may write $L=$ L_{1}. Then $\mathcal{E}=\mathcal{O}_{S}(L) \oplus \mathcal{O}_{S}, \mathbb{P}=\mathbb{T}_{N}(\boldsymbol{\Sigma}, \mathcal{L})$ for $\mathrm{N}=\mathbb{Z}, \boldsymbol{\Sigma}=\{\{0\},[0,+\infty),(-\infty, 0]\}$, and $\mathcal{L}^{m}=\mathcal{O}_{S}(m L)$ for $m \in \mathbb{Z}$. The support function $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{R})$ is written by $h(x)=\min \{0, x\}, \square_{h}=[0,1] \subset \mathbb{R}=\mathrm{M}_{\mathbb{R}}$, and $D_{h} \sim H$ for the tautological divisor $H=H_{\mathcal{E}}$ of \mathbb{P}. The prime divisors Γ_{1} and Γ_{-1} corresponding to the vertices in $\operatorname{Ver}(\boldsymbol{\Sigma})=\{1,-1\}$ are sections of p. Here, $\Gamma_{1}=\operatorname{div}(\mathrm{e}(1))+D_{h} \sim-p^{*} L+H$ and $\Gamma_{-1}=D_{h}$. Let D be an \mathbb{R}-divisor of \mathbb{P}. Then $D \sim_{\mathbb{R}} p^{*} E+b H$ for some \mathbb{R}-divisor E of S and for some $b \in \mathbb{R}$. By $\mathbf{2 . 6}-(1), D$ is pseudo-effective if and only if $b \geq 0$ and $E+m L$ is pseudo-effective for some $0 \leq m \leq b$. By $\mathbf{2 . 6}-(2)$, in case $b \geq 0$, D is nef if and only if E and $E+b L$ are both nef. If $\operatorname{Nef}(S)=\operatorname{PE}(S)$, then any numerically movable \mathbb{R}-divisor D is nef, since $\left.D\right|_{\Gamma_{1}} \sim_{\mathbb{R}} E$ and $\left.D\right|_{\Gamma_{-1}} \sim_{\mathbb{R}} E+b L$. Therefore, we have proved the following:
2.7. Corollary In the situation of 2.6, suppose that every effective divisor of S is nef and $r=2$. Then $P_{\nu}(D)$ is nef for a pseudo-effective \mathbb{R}-divisor D of \mathbb{P}.
2.8. Example In the situation above where $r=2, L_{1}=L, L_{2}=0$, suppose that there is an infinite sequence $\left\{E_{n}\right\}_{n=1}^{\infty}$ of \mathbb{R}-divisors of S such that
(1) $c_{1}\left(E_{n}\right) \in \operatorname{PE}(S)$ for any n,
(2) $\lim _{n \rightarrow \infty} c_{1}\left(E_{n}\right)=c_{1}(L)$,
(3) $E_{n}-t L \notin \mathrm{PE}(S)$ for any n and $t>0$.

We fix a number $0<\alpha<1$ and consider pseudo-effective \mathbb{R}-divisors $D_{n}^{\alpha}=p^{*} E_{n}+$ $\alpha \Gamma_{1}$. Then $D_{n}^{\alpha} \sim_{\mathbb{R}} p^{*}\left(E_{n}-\alpha L\right)+\alpha H$. Thus $\left.D_{n}^{\alpha}\right|_{\Gamma_{1}} \sim_{\mathbb{R}} E_{n}-\alpha L$ is not pseudoeffective. If $\left.\left(D_{n}^{\alpha}-r \Gamma_{1}\right)\right|_{\Gamma_{1}}$ is pseudo-effective, then $r \geq \alpha$. Hence

$$
\nu_{\Gamma_{1}}\left(D_{n}^{\alpha}\right)=\sigma_{\Gamma_{1}}\left(D_{n}^{\alpha}\right)=\alpha .
$$

We set $D_{\infty}^{\alpha}:=p^{*} L+\alpha \Gamma_{1}$. Then $\sigma_{\Gamma_{1}}\left(D_{\infty}^{\alpha}\right)=0$ by $D_{\infty}^{\alpha} \sim_{\mathbb{R}} p^{*}((1-\alpha) L)+\alpha \Gamma_{-1}$. Thus the function $\sigma_{\Gamma_{1}}$ is not continuous on $\operatorname{PE}(\mathbb{P})$, since $c_{1}\left(D_{\infty}^{\alpha}\right)=\lim _{n \rightarrow \infty} c_{1}\left(D_{n}^{\alpha}\right)$. If we choose S, L, and $P_{n}=c_{1}\left(E_{n}\right)$ as follows, then they satisfy the condition above: Let S be the product $E \times E$ for an elliptic curve E without complex multiplication and let L be a fiber of the first projection. Since $\operatorname{PE}(S)=\operatorname{Nef}(S)$ is a cone isometric to

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2} \geq x^{2}+y^{2}, z \geq 0\right\}
$$

we can find a sequence $\left\{P_{n}\right\}$ of points of $\operatorname{PE}(S)$ such that $P_{n}-t c_{1}(L) \notin \operatorname{PE}(S)$ for any $t>0$ and $c_{1}(L)=\lim _{n \rightarrow \infty} P_{n}$.
2.9. Lemma In the situation of the \mathbb{P}^{1}-bundle above, assume that $\operatorname{dim} S=2$, L is nef, and that E is a non-singular irreducible curve of S with $E^{2}<0$. Then the \mathbb{R}-divisor $D=p^{*} E+b H$ with $b \geq 0$ admits a Zariski-decomposition.

Proof. By taking the σ-decomposition of D, we may assume that D is movable. Thus E is pseudo-effective and $E+b L$ is nef by $\mathbf{2 . 6}-(3)$, since L is nef. Note that D is big. From the equivalence relations

$$
D \sim_{\mathbb{R}} b \Gamma_{-1}+p^{*} E \sim_{\mathbb{R}} b \Gamma_{1}+p^{*}(E+b L),
$$

we infer that $\operatorname{NBs}(D)$ coincides with the non-singular complete intersection $V:=$ $\Gamma_{1} \cap p^{-1} E$. Let $\psi: Z \rightarrow \mathbb{P}$ be the blowing-up along the ideal sheaf

$$
\mathcal{J}:=\mathcal{O}_{\mathbb{P}}\left(-m_{1} \Gamma_{1}\right)+\mathcal{O}_{\mathbb{P}}\left(-m_{2} p^{*} E\right),
$$

where m_{1} and m_{2} are positive integers satisfying $m_{2} E^{2}=-m_{1}(L \cdot E)$. Then the exceptional set $G_{0}:=\psi^{-1}(V)$ is isomorphic to the \mathbb{P}^{1}-bundle

$$
\mathbb{P}_{V}\left(\mathcal{O}_{V}\left(-m_{1} \Gamma_{1}\right) \oplus \mathcal{O}_{V}\left(-m_{2} p^{*} E\right)\right) \simeq \mathbb{P}_{E}\left(\mathcal{O}_{E}\left(m_{1} L\right) \oplus \mathcal{O}_{E}\left(-m_{2} E\right)\right)
$$

Let $\nu: W \rightarrow Z$ be the normalization and let $\rho: W \rightarrow X$ be the composite. Then W has only quotient singularities and $G=\nu^{-1} G_{0}$ is isomorphic to G_{0} by construction. The prime divisor G is \mathbb{Q}-Cartier and $\mathcal{O}_{W}(-k G) \simeq \rho^{*} \mathcal{J} /($ tor $)$ for some $k \in \mathbb{N}$. Let r be the minimum positive number with $\left.\left(\rho^{*} D-r G\right)\right|_{G}$ being pseudo-effective. Then $\left.\left(\rho^{*} D-r G\right)\right|_{G}$ is nef but not big, since G is the \mathbb{P}^{1}-bundle associated with a semistable vector bundle over the curve E. Thus $\rho^{*} D-r G$ is nef, since $\operatorname{NBs}\left(\rho^{*} D\right) \subset G$. Let $\mu: Y \rightarrow W$ be a birational morphism from a non-singular projective variety. Then $\left.\left(\mu^{*} \rho^{*} D-r \mu^{*} G\right)\right|_{\Gamma}$ is not big for any prime component Γ of $\mu^{*} G$. Thus $P_{\sigma}\left(\mu^{*} \rho^{*} D\right)=\mu^{*}\left(\rho^{*} D-r G\right)$ by III, 3.7.

Next, we consider a special case of \mathbb{P}^{2}-bundles in order to obtain a counterexample to the existence of Zariski-decomposition.

In the description of the projective bundle $\mathbb{P}(\mathcal{E})=\mathbb{T}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathcal{L})$, we assume $r=3$, $L_{3}=0$, i.e., $\mathcal{E}=\mathcal{O}_{S}\left(L_{1}\right) \oplus \mathcal{O}_{S}\left(L_{2}\right) \oplus \mathcal{O}_{S}$. For the support function $h \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$, we know $D_{h}=\Gamma_{e_{3}} \sim H$ for the tautological divisor $H=H_{\mathcal{E}}$. For an \mathbb{R}-divisor Δ of $S, \square_{\mathrm{PE}}(\Delta, h)$ is identified with

$$
\Omega:=\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2} \mid x+y \leq 1, \Delta+x L_{1}+y L_{2} \text { is pseudo-effective }\right\}
$$

We assume the following condition for S, L_{1}, L_{2}, and Δ :
(1) $\square_{\mathrm{PE}}(\Delta, h)=\square_{\mathrm{Nef}}(\Delta, h)$;
(2) $L_{1}, L_{2}, \Delta+L_{1}$, and $\Delta+L_{2}$ are ample;
(3) $\alpha:=\inf \{x+y \mid(x, y) \in \Omega\}>0$ and there exists a unique point $P_{0}=$ $\left(x_{0}, y_{0}\right) \in \Omega$ with $x_{0}+y_{0}=\alpha$
(4) Ω is not locally polyhedral at P_{0}; In other words, if $(z, u) \in \mathbb{R}^{2}$ satisfies $z x_{0}+u y_{0} \leq z x+u y$ for any $(x, y) \in \Omega$, then $z x_{0}+u y_{0}<z x+u y$ for any $(x, y) \in \Omega \backslash\left\{P_{0}\right\}$.

Example Let S be an abelian surface of the Picard number $\rho(S)=3$. For example, $S=E \times E$ for an elliptic curve E without complex multiplication. Then $\operatorname{PE}(S)=\operatorname{Nef}(S) \subset \mathrm{N}^{1}(S)$ is a cone isometric to

$$
\mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2} \geq x^{2}+y^{2}, z \geq 0\right\}
$$

For points $\Delta=(-1,-1,0) \notin \mathcal{C}, L_{1}=(1,0, a), L_{2}=(0,1, a)$ for $a>1$, the set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid \Delta+x L_{1}+y L_{2} \in \mathcal{C}\right\}
$$

is written by

$$
\left\{(x, y) \mid a^{2}(x+y)^{2} \geq(x-1)^{2}+(y-1)^{2}, x+y \geq 0\right\}
$$

Thus S, L_{1}, L_{2}, and Δ satisfy the condition above.
2.10. Theorem If S, L_{1}, L_{2}, and Δ satisfy the condition above, then the \mathbb{R}-divisor $B=p^{*} \Delta+H$ on $\mathbb{P}(\mathcal{E})$ admits no Zariski-decompositions.

Proof. We may assume that $\Omega^{0}:=\left\{(x, y) \in \Omega \mid y \geq y_{0}\right\}$ is not locally polyhedral at $P_{0}=\left(x_{0}, y_{0}\right)$. In other words, if $z, u \in \mathbb{R}$ with $z \geq u \geq 0$ satisfies $z x+u y \geq z x_{0}+u y_{0}$ for any $(x, y) \in \Omega$, then $z x+u y>z x_{0}+u y_{0}$ for any $(x, y) \in \Omega^{0} \backslash\left\{P_{0}\right\}$.

Let us consider the function on $\mathrm{N}_{\mathbb{R}}$ defined by

$$
h^{\ddagger}(\boldsymbol{x})=\min \left\{\langle m, \boldsymbol{x}\rangle \mid m \in \square_{\mathrm{Nef}}(\Delta, h)\right\} .
$$

Then $h^{\ddagger}\left(z e_{1}+u e_{2}\right)=\min \{x z+y u \mid(x, y) \in \Omega\}$ for $(z, u) \in \mathbb{R}^{2}$. Here, note that $h^{\ddagger} \notin \operatorname{SFC}_{N}(\boldsymbol{\Sigma}, \mathbb{R})$, since Ω is not locally polyhedral at P_{0}. We have $h^{\ddagger}\left(e_{1}\right)=$ $h^{\ddagger}\left(e_{2}\right)=0$, and $h^{\ddagger}\left(e_{3}\right)=-1$. Thus B is movable by $\mathbf{2 . 6}(3)$. For the maximal cones $\boldsymbol{\sigma}_{i}=\sum_{j \neq i} \mathbb{R}_{\geq 0} e_{j}$, we have $\left.h^{\ddagger}\right|_{\boldsymbol{\sigma}_{1}}=\left.h\right|_{\boldsymbol{\sigma}_{1}}$ and $\left.h^{\ddagger}\right|_{\boldsymbol{\sigma}_{2}}=\left.h\right|_{\boldsymbol{\sigma}_{2}}$, but $\left.h^{\ddagger}\right|_{\boldsymbol{\sigma}_{3}} \neq 0$; for example, $h^{\ddagger}\left(e_{1}+e_{2}\right)=\alpha>0$. Hence $\operatorname{NBs}(B)$ is just the section $\mathbb{V}\left(\boldsymbol{\sigma}_{3}, \mathcal{L}\right)=$ $\Gamma_{e_{1}} \cap \Gamma_{e_{2}}$, since $\operatorname{NBs}(B)$ is stable under the action of \mathbb{T}_{N}. The blowing-up of \mathbb{P}
along $\mathbb{V}\left(\boldsymbol{\sigma}_{3}, \mathcal{L}\right)$ corresponds to the subdivision $\boldsymbol{\Sigma}^{[1]}$ of $\boldsymbol{\Sigma}$ such that $\operatorname{Ver}\left(\boldsymbol{\Sigma}^{[1]}\right)=$ $\left\{e_{1}, e_{2}, e_{3},-e_{3}=e_{1}+e_{2}\right\}$. Let $\mu_{1}: \mathbb{P}^{[1]}=\mathbb{T}_{\mathbb{N}}\left(\boldsymbol{\Sigma}^{[1]}, \mathcal{L}\right) \rightarrow \mathbb{P}$ be the blowing-up. We denote the structure morphism $\mathbb{P}^{[1]} \rightarrow S$ by the same p. For the exceptional divisor $\Gamma_{e_{1}+e_{2}}=\mathbb{V}\left(\mathbb{R}_{\geq 0}\left(e_{1}+e_{2}\right), \mathcal{L}\right) \subset \mathbb{P}^{[1]}$, we have

$$
\sigma_{\Gamma_{e_{1}+e_{2}}}\left(\mu_{1}^{*} B\right)=\sigma_{\Gamma_{e_{1}+e_{2}}}\left(p^{*} \Delta+D_{h}\right)=h^{\ddagger}\left(e_{1}+e_{2}\right)=\alpha,
$$

by $\mathbf{2 . 6}-(3)$. Thus $P_{\sigma}\left(\mu_{1}^{*} B\right)=p^{*} \Delta+D_{h_{1}}$ for the support function $h_{1} \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{[1]}, \mathbb{R}\right)$ such that $h_{1}(v)=h^{\ddagger}(v)$ for any $v \in \operatorname{Ver}\left(\boldsymbol{\Sigma}^{[1]}\right)$. Then $h^{\ddagger}(\boldsymbol{x}) \geq h_{1}(\boldsymbol{x}) \geq h(\boldsymbol{x})$ for any $\boldsymbol{x} \in \mathbf{N}_{\mathbb{R}}$ and $\square_{\mathrm{PE}}\left(\Delta, h_{1}\right)=\square_{\mathrm{PE}}(\Delta, h)$. If $h^{\ddagger}\left(2 e_{1}+e_{2}\right)=h_{1}\left(2 e_{1}+e_{2}\right)$, then $h^{\ddagger}(\boldsymbol{x})=$ $h_{1}(\boldsymbol{x})$ for any $\boldsymbol{x} \in \mathbb{R}_{\geq 0} e_{1}+\mathbb{R}_{\geq 0}\left(e_{1}+e_{2}\right)$; it contradicts the assumption: Ω^{0} is not locally polyhedral at P_{0}. Thus $h^{\ddagger}\left(2 e_{1}+e_{2}\right)>h_{1}\left(2 e_{1}+e_{2}\right)$ and the section $\mathbb{V}\left(\mathbb{R}_{\geq 0} e_{1}+\right.$ $\left.\mathbb{R}_{\geq 0}\left(e_{1}+e_{2}\right), \mathcal{L}\right)$ of $\mathbb{P}^{[1]} \rightarrow S$ is a connected component of $\operatorname{NBs}\left(P_{\sigma}\left(\mu_{1}^{*} B\right)\right)$. Let $\mathbb{P}^{[2]} \rightarrow$ $\mathbb{P}^{[1]}$ be the blowing-up along the section, which corresponds to a subdivision $\boldsymbol{\Sigma}^{[2]}$ of $\boldsymbol{\Sigma}^{[1]}$ such that $\operatorname{Ver}\left(\boldsymbol{\Sigma}^{[2]}\right)=\operatorname{Ver}\left(\boldsymbol{\Sigma}^{[1]}\right) \cup\left\{2 e_{1}+e_{2}\right\}$. For the composite $\mu_{2}: \mathbb{P}^{[2]} \rightarrow \mathbb{P}$ and for the projection $p: \mathbb{P}^{[2]} \rightarrow S$, we have $P_{\sigma}\left(\mu_{2}^{*} B\right)=p^{*} \Delta+D_{h_{2}}$ for $h_{2} \in$ $\mathrm{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{[2]}, \mathbb{R}\right)$ defined by $h_{2}(v)=h^{\ddagger}(v)$ for any $v \in \operatorname{Ver}\left(\boldsymbol{\Sigma}^{[2]}\right)$. Here, $h^{\ddagger}(\boldsymbol{x}) \geq h_{2}(\boldsymbol{x})$ for $\boldsymbol{x} \in \mathrm{N}_{\mathbb{R}}$ and $h^{\ddagger}\left(3 e_{1}+2 e_{2}\right)>h_{2}\left(3 e_{1}+2 e_{2}\right)$ by the same reason above. In particular, the section $\mathbb{V}\left(\mathbb{R}_{\geq 0}\left(e_{1}+e_{2}\right)+\mathbb{R}_{\geq 0}\left(2 e_{1}+e_{2}\right), \mathcal{L}\right)$ of $p: \mathbb{P}^{[2]} \rightarrow S$ is a connected component of $\operatorname{NBs}\left(P_{\sigma}\left(\mu_{2}^{*} B\right)\right)$. In this way, we can construct a nonsingular subdivision $\boldsymbol{\Sigma}^{[n]}$ of $\boldsymbol{\Sigma}$ such that

$$
\operatorname{Ver}\left(\boldsymbol{\Sigma}^{[n]}\right)=\operatorname{Ver}(\boldsymbol{\Sigma}) \cup\left\{e_{1}+e_{2}, 2 e_{1}+e_{2}, \ldots, n e_{1}+(n-1) e_{2}\right\}
$$

for $n \geq 2$. Then, for the toric bundle $p: \mathbb{P}^{[n]}:=\mathbb{T}_{\mathbb{N}}\left(\boldsymbol{\Sigma}^{[n]}, \mathcal{L}\right) \rightarrow S$, the induced birational morphism $\mathbb{P}^{[n+1]} \rightarrow \mathbb{P}^{[n]}$ is just the blowing up along the section

$$
\mathbb{V}\left(\mathbb{R}_{\geq 0}\left(e_{1}+e_{2}\right)+\mathbb{R}_{\geq 0}\left(n e_{1}+(n-1) e_{2}\right), \mathcal{L}\right)
$$

of $p: \mathbb{P}^{[n]} \rightarrow S$, which is a connected component of $\operatorname{NBs}\left(P_{\sigma}\left(\mu_{n}^{*} B\right)\right)$ for the birational morphism $\mu_{n}: \mathbb{P}^{[n]} \rightarrow \mathbb{P}$. Thus we are reduced to the following:

2.11. Lemma Let

$$
\cdots \rightarrow X_{n} \xrightarrow{\mu_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\mu_{1}} X_{0}
$$

be an infinite sequence of blowups in which centers $V_{n} \subset X_{n-1}$ are non-singular subvarieties of codimension two for any $n \geq 1$. Let E_{n} be the exceptional divisor $\mu_{n}^{-1}\left(V_{n}\right)$. Assume that there exist a sequence of pseudo-effective \mathbb{R}-divisors D_{n} on X_{n} satisfying the following conditions:
(1) $\mu_{n}\left(V_{n+1}\right)=V_{n}$;
(2) $\sigma_{V_{n}}\left(D_{n-1}\right)>0$;
(3) $D_{n}=\mu_{n}^{*} D_{n-1}-\sigma_{V_{n}}\left(D_{n-1}\right) E_{n}$.

Then D_{0} admits no Zariski-decompositions.
Proof. Assume the contrary. Let $f: Y \rightarrow X_{0}$ be a birational morphism with $P_{\sigma}\left(f^{*} D_{0}\right)$ being nef. We may assume that f is a succession of blowups with nonsingular centers. Suppose that the image V_{1}^{\prime} of the composite $E_{1} \subset X_{1} \cdots \rightarrow Y$
is not a divisor. Since codim $V_{1}=2, f$ is an isomorphism over a general point of V_{1}. On the other hand, $V_{1}^{\prime} \subset \operatorname{Supp} N_{\sigma}\left(f^{*} D_{0}\right)$ and the divisor $N_{\sigma}\left(f^{*} D_{0}\right)$ is f exceptional, since $N_{\sigma}\left(D_{0}\right)=0$. This is a contradiction. Therefore V_{1}^{\prime} is a prime divisor and is the proper transform of E_{1}. Furthermore, there is a Zariski-closed subset $S_{1} \subset X_{0}$ such that $V_{1} \not \subset S_{1}$ and $Y \xrightarrow{\rightarrow} X_{1}$ is a morphism over $X_{0} \backslash S_{1}$. The birational mapping $Y \xrightarrow{\cdots} \rightarrow X_{1}$ is considered as a succession of blowups with non-singular centers over $X_{0} \backslash S_{1}$. There is a birational morphism $\nu_{1}: Y_{1} \rightarrow Y$ from a non-singular projective variety such that $f_{1}: Y_{1} \rightarrow X_{1}$ is a morphism and ν_{1} is an isomorphism over $X_{0} \backslash S_{1}$. Note that $P_{\sigma}\left(f_{1}^{*} D_{1}\right)=\nu_{1}^{*} P_{\sigma}\left(f^{*} D_{0}\right)$. Let V_{2}^{\prime} be the image of the composite $E_{2} \subset X_{2} \cdots \rightarrow Y_{1}$. By the same argument as above, V_{2}^{\prime} is a divisor and is the proper transform of E_{2}. Since ν_{1} is isomorphic outside S_{1}, E_{2} is not exceptional for the birational mapping $X_{2} \cdots \rightarrow Y$. Furthermore, there is a Zariski-closed subset $S_{2} \subset X_{1}$ such that $\mu_{1}^{-1}\left(S_{1}\right) \subset S_{2}, V_{2} \not \subset S_{2}$, and the birational mapping $Y_{2} \cdots \rightarrow X_{2}$ is a morphism over $X_{1} \backslash S_{2}$. There is also a birational morphism $\nu_{2}: Y_{2} \rightarrow Y_{1}$ from a non-singular projective variety such that $f_{2}: Y_{2} \cdots \rightarrow X_{2}$ is a morphism and ν_{2} is an isomorphism over $X_{1} \backslash S_{2}$. By continuing the same arguments, we infer that the divisor E_{n} is not exceptional for the birational mapping $X_{n} \cdots \rightarrow Y$ for any $n \geq 1$. This is a contradiction, since $f: Y \rightarrow X_{0}$ has only finitely many exceptional divisors.
§2.d. Explicit toric blowing-up. Let S be an n-dimensional complex analytic manifold and let $B_{1}, B_{2}, \ldots, B_{r}$ for $r \leq n$ be non-singular prime divisors such that $B=\sum B_{i}$ is simple normal crossing. Let $p: \mathbb{V}=\mathbb{V}(\mathcal{E}) \rightarrow S$ be the geometric vector bundle associated with $\mathcal{E}=\oplus_{i=1}^{r} \mathcal{O}_{S}\left(B_{i}\right)$. This is also considered as a toric bundle as follows: let $\mathrm{N}^{\natural}=\sum_{i=1}^{r} \mathbb{Z} e_{i}$ be a free abelian group with a base $\left(e_{1}, e_{2}, \ldots, e_{r}\right), \boldsymbol{\sigma}_{\text {勺 }}=\sum_{i=1}^{r} \mathbb{R}_{\geq 0} e_{i}$, and let

$$
\mathcal{L}_{\mathfrak{\natural}}=\sum_{i=1}^{r} e_{i} \otimes \mathcal{O}_{S}\left(-B_{i}\right) \in \mathrm{N} \otimes \operatorname{Pic}(S) .
$$

Then $\mathbb{V} \simeq \mathbb{T}_{\mathbb{N}^{\natural}}\left(\boldsymbol{\sigma}_{\natural}, \mathcal{L}_{\natural}\right)$. Let M^{\natural} be the dual $N^{\natural^{\vee}}$. The prime divisor $\Gamma_{e_{i}}$ corresponding to a vertex $e_{i} \in \operatorname{Ver}\left(\boldsymbol{\sigma}_{\natural}\right)$ is the geometric vector bundle associated with the kernel of the projection $\mathcal{E} \rightarrow \mathcal{O}_{S}\left(B_{i}\right)$. Let us consider the section $T \subset \mathbb{V}$ of p determined by the surjective ring homomorphism

$$
\operatorname{Sym}\left(\mathcal{E}^{\vee}\right)=\mathcal{L}\left[\boldsymbol{\sigma}_{\natural}^{\vee} \cap \mathrm{M}^{\natural}\right] \rightarrow \mathcal{O}_{S}
$$

induced from the natural injections $\mathcal{O}_{S}\left(-B_{i}\right) \subset \mathcal{O}_{S}$ (cf. Chapter II, §1.b). By the identification $T \simeq S$, we have $B_{i}=\left.\Gamma_{e_{i}}\right|_{T}$. If $U \subset S$ is an open subset over which $\mathcal{O}_{S}\left(B_{i}\right)$ are trivial line bundles, then the composite

$$
U \simeq p^{-1} U \cap T \subset p^{-1} U \simeq \mathbb{C}^{r} \times U \rightarrow \mathbb{C}^{r}
$$

is a smooth morphism and the pullback of the i-th coordinate hyperplane is $B_{i} \cap U$. Let $\boldsymbol{\Lambda}$ be a finite subdivision of $\boldsymbol{\sigma}_{\natural}$. Then we have a bimeromorphic morphism $f: \mathbb{T}_{\mathbb{N}^{\natural}}\left(\boldsymbol{\Lambda}, \mathcal{L}_{\natural}\right) \rightarrow \mathbb{V}$ of toric bundles over S. Let us consider $S_{\boldsymbol{\Lambda}}:=f^{-1}(T)$. Then $S_{\boldsymbol{\Lambda}}$ is a normal variety and the bimeromorphic morphism $f: S_{\boldsymbol{\Lambda}} \rightarrow S$ satisfies the
condition of 1.18 , since $f^{-1} U$ is smooth over the toric variety $\mathbb{T}_{\mathrm{N}^{\natural}}(\boldsymbol{\Lambda})$ for the open subset U above. Note that f is isomorphic over $S \backslash B$.
2.12. Definition The bimeromorphic morphism $S_{\boldsymbol{\Lambda}} \rightarrow S$ is called the toric blowing-up of S along the simple normal crossing divisor $B=\sum B_{i}$ with respect to the subdivision $\boldsymbol{\Lambda}$.

Let Z be the intersection $B_{1} \cap B_{2} \cap \cdots \cap B_{r}$ which is smooth. If $Z \neq \emptyset$, then $T \cap p^{-1} Z=\mathbb{V}\left(\boldsymbol{\sigma}_{\natural}, \mathcal{L}_{\mathfrak{\natural}}\right) \cap p^{-1} Z$ and

$$
S_{\boldsymbol{\Lambda}} \times{ }_{S} Z=\bigcup_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \boldsymbol{\lambda} \cap \operatorname{Int} \boldsymbol{\sigma}_{\natural} \neq \emptyset} \mathbb{V}\left(\boldsymbol{\lambda},\left.\mathcal{L}_{\natural}\right|_{Z}\right)
$$

by 1.1. Here $\mathbb{V}\left(\boldsymbol{\lambda},\left.\mathcal{L}_{\natural}\right|_{Z}\right) \simeq \mathbb{T}_{\mathbb{N}^{\natural}(\boldsymbol{\lambda})}\left(\boldsymbol{\Lambda} / \boldsymbol{\lambda}, \mathcal{L}_{\natural} \mid Z\right)$ and $\boldsymbol{\Lambda} / \boldsymbol{\lambda}$ is a complete fan.
2.13. Proposition Let S be the toric bundle $\mathbb{T}_{N}(\boldsymbol{\Sigma}, \mathcal{L})$ over non-singular variety Z for a non-singular fan $\boldsymbol{\Sigma}$ of a free abelian group N of rank l and for some $\mathcal{L} \in \mathrm{N}_{0} \otimes \operatorname{Pic}(Z)$. Let us fix mutually distinct vertices $v_{1}, v_{2}, \ldots, v_{r} \in \operatorname{Ver}(\boldsymbol{\Sigma})$ for $r \leq l$ and set $B_{i}=\Gamma_{v_{i}}=\mathbb{V}\left(\mathbb{R}_{\geq 0} v_{i}, \mathcal{L}\right) \subset S$. Let $f: S_{\boldsymbol{\Lambda}} \rightarrow S$ be the toric blowing-up along the simple normal crossing divisor $B=\sum B_{i}$ with respect to a finite subdivision $\boldsymbol{\Lambda}$ of $\boldsymbol{\sigma}^{\natural}$. Then $S_{\boldsymbol{\Lambda}}$ is isomorphic to the toric bundle $\mathbb{T}_{\boldsymbol{N}}\left(\boldsymbol{\Sigma}_{1}, \mathcal{L}\right)$ over Z for a finite subdivision $\boldsymbol{\Sigma}_{1}$ of $\boldsymbol{\Sigma}$ and f is interpreted as the morphism of toric bundles over Z associated with the subdivision.

Proof. By $\mathbf{2 . 2}$, the toric bundle $\mathbb{T}_{\mathbb{N}^{\natural}}\left(\boldsymbol{\Lambda}, \mathcal{L}_{\natural}\right)$ over S is isomorphic to the toric bundle $\mathbb{T}_{\mathrm{N}^{\natural} \oplus \mathrm{N}}\left(\boldsymbol{\Sigma}_{\mathbf{h}}, \widetilde{\mathcal{L}}\right)$ over Z for $\widetilde{\mathcal{L}}=0 \oplus \mathcal{L} \in\left(\mathrm{~N}^{\natural} \oplus \mathrm{N}\right) \otimes \operatorname{Pic}(Z)$ and $\mathbf{h} \in \operatorname{SF}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathbb{Z}) \otimes$ N^{\natural} defined as follows: As a function $|\boldsymbol{\Sigma}| \rightarrow\left(\mathbf{N}^{\natural}\right)_{\mathbb{R}}, \mathbf{h}$ is defined by

$$
\mathbf{h}(v)= \begin{cases}e_{i}, & \text { if } v=v_{i} \quad \text { for } \quad 1 \leq i \leq l \\ 0, & \text { otherwise }\end{cases}
$$

for $v \in \operatorname{Ver}(\boldsymbol{\Sigma})$. Here $\boldsymbol{\Sigma}_{\mathbf{h}}=\{C(\boldsymbol{\lambda}, \boldsymbol{\sigma} ; \mathbf{h}) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \boldsymbol{\sigma} \in \boldsymbol{\Sigma}\}$ for

$$
C(\boldsymbol{\lambda}, \boldsymbol{\sigma} ; \mathbf{h})=\left\{\left(x^{\prime}, x\right) \in\left(\mathbf{N}^{\natural}\right)_{\mathbb{R}} \oplus \mathrm{N}_{\mathbb{R}} \mid x^{\prime}+\mathbf{h}(x) \in \boldsymbol{\lambda}, x \in \boldsymbol{\sigma}\right\} .
$$

Let $U_{\boldsymbol{\sigma}} \subset S$ be the open subset $\mathbb{T}_{\mathcal{N}}(\boldsymbol{\sigma}, \mathcal{L})$. Then $U_{\boldsymbol{\sigma}} \simeq \operatorname{Specan}_{Z} \mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$. Let $V_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}$ be the toric bundle $\mathbb{T}_{\mathrm{N}^{\natural}}\left(\boldsymbol{\lambda}, \mathcal{L}_{\natural}\right)$ over $U_{\boldsymbol{\sigma}}$ for a cone $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ or for $\boldsymbol{\lambda}=\boldsymbol{\sigma}_{\natural}$. Then $p^{-1} U_{\boldsymbol{\sigma}} \simeq V_{\boldsymbol{\sigma}_{\natural}, \boldsymbol{\sigma}}$. We have an isomorphism $V_{\boldsymbol{\lambda}, \boldsymbol{\sigma}} \simeq \operatorname{Specan} \mathcal{A}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}$ for the subalgebra

$$
\mathcal{A}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}=\bigoplus_{m^{\prime} \in \boldsymbol{\lambda}^{\vee} \cap \mathrm{M}^{\natural}, m \in \square_{\left\langle m^{\prime}, \mathbf{h}\right\rangle}(\boldsymbol{\sigma})} \mathcal{L}^{m} \subset \widetilde{\mathcal{L}}\left[\mathrm{M}^{\natural} \oplus \mathrm{M}\right] .
$$

The section $T \cap p^{-1} U_{\boldsymbol{\sigma}} \subset p^{-1} U_{\boldsymbol{\sigma}}$ is determined by a surjective homomorphism $\mathcal{A}_{\boldsymbol{\sigma}_{\natural}, \boldsymbol{\sigma}} \rightarrow \mathcal{L}\left[\boldsymbol{\sigma}^{\vee} \cap \mathrm{M}\right]$ which is induced from the summation

$$
\bigoplus_{m^{\prime} \in \boldsymbol{\lambda}^{\vee} \cap M^{\natural}} \mathcal{L}^{m} \rightarrow \mathcal{L}^{m} .
$$

Then the fiber product of $V_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}$ and T over \mathbb{V} is isomorphic to $\operatorname{Specan}_{Z} \mathcal{B}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}$ for the \mathcal{O}_{Z}-algebra $\mathcal{B}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}}$ defined as the image of a similar homomorphism $\mathcal{A}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}} \rightarrow \mathcal{L}[\mathrm{M}]$.

For $m \in \mathrm{M}$, there exists an $m^{\prime} \in \boldsymbol{\lambda}^{\vee} \cap \mathrm{M}^{\natural}$ with $m \in \square_{\left\langle m^{\prime}, \mathbf{h}\right\rangle}(\boldsymbol{\sigma})$ if and only if $m \in C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma})^{\vee} \cap \mathrm{M}$ for the cone

$$
C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma}):=\boldsymbol{\sigma} \cap \mathbf{h}^{-1}(\boldsymbol{\lambda})=\{x \in \boldsymbol{\sigma} \mid \mathbf{h}(x) \in \boldsymbol{\lambda}\} .
$$

Hence, $\mathcal{B}_{\boldsymbol{\lambda}, \boldsymbol{\sigma}} \simeq \mathcal{L}\left[C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma})^{\vee} \cap \mathrm{M}\right]$. Therefore, $S_{\boldsymbol{\Lambda}} \simeq \mathbb{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}_{1}, \mathcal{L}\right)$ for the fan

$$
\boldsymbol{\Sigma}_{1}=\left\{C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma}) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \boldsymbol{\sigma} \in \boldsymbol{\Sigma}\right\}
$$

A function $h \in \operatorname{SF}_{\mathbb{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$ defines an \mathbb{R}-Cartier divisor D_{h} on $\mathbb{T}_{\mathbb{N}^{\natural}}\left(\boldsymbol{\Lambda}, \mathcal{L}_{\natural}\right)$. We denote its restriction to $S_{\boldsymbol{\Lambda}}$ by the same symbol D_{h}.

Remark For $h \in \operatorname{SF}_{\mathbb{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{Z})$, the invertible sheaf $\mathcal{O}_{\mathbb{V}}\left(D_{h}\right)$ is associated with the $\mathcal{L}\left[\boldsymbol{\sigma}_{\natural}^{\vee} \cap \mathrm{M}^{\natural}\right]$-module $\mathcal{L}\left[\square_{h}\left(\boldsymbol{\sigma}_{\natural}\right) \cap \mathrm{M}^{\natural}\right]$. Therefore, there is an isomorphism

$$
f_{*} \mathcal{O}_{S_{\Lambda}}\left(D_{h}\right) \simeq \sum_{m \in \square_{h}\left(\boldsymbol{\sigma}_{\natural}\right) \cap M^{\natural}} \mathcal{L}_{\natural}^{m}=\sum_{m \in \square_{h}\left(\boldsymbol{\sigma}_{\natural}\right) \cap M^{\natural}} \mathcal{O}_{S}\left(-\sum_{i=1}^{r} m_{i} B_{i}\right) \subset j_{*} \mathcal{O}_{S \backslash B}
$$

for the open immersion $j: S \backslash B \hookrightarrow S$.
Suppose that S is projective and $Z=\bigcap_{i=1}^{r} B_{i}$ is non-empty and irreducible. For $h \in \operatorname{SF}_{N^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$ and for an \mathbb{R}-divisor E of S, we define

$$
\square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right):=\left\{m \in \square_{h}\left(\boldsymbol{\sigma}_{\natural}\right)\left|\left(E+\mathcal{L}_{\natural}^{m}\right)\right|_{Z} \text { is nef }\right\},
$$

Note that h is defined only on $|\boldsymbol{\Lambda}|=\boldsymbol{\sigma}_{\natural}$.

2.14. Lemma

(1) The following conditions are equivalent to each other:
(a) The restriction $\left.\left(D_{h}+f^{*} E\right)\right|_{f^{-1} Z}$ is nef;
(b) $l_{\boldsymbol{\lambda}} \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$ for any maximal cone $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, where $l_{\boldsymbol{\lambda}} \in \mathrm{M}_{\mathbb{R}}^{\natural}$ is defined by $h(x)=\left\langle l_{\boldsymbol{\lambda}}, x\right\rangle$ for $x \in \boldsymbol{\lambda}$;
(c) $\square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right) \neq \emptyset$ and, for any $x \in \boldsymbol{\sigma}_{\natural}$,

$$
h(x)=\inf \left\{\langle m, x\rangle \mid m \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)\right\}
$$

(2) Assume that $E+\mathcal{L}_{\natural}^{m}$ is nef for any $m \in \boldsymbol{\sigma}_{\natural}^{\vee}$ with $\left.\left(E+\mathcal{L}_{\natural}^{m}\right)\right|_{Z}$ being nef. Then $D_{h}+f^{*} E$ is nef on $S_{\boldsymbol{\Lambda}}$ if the restriction $\left.\left(D_{h}+f^{*} E\right)\right|_{f^{-1} Z}$ is nef.
Proof. (1) The proof is similar to $2.4-(2)$.
(a) \Rightarrow (b): The restriction of $D_{h}+f^{*} E$ to $f^{-1} Z$ is nef if and only if its restriction to $\mathbb{T}_{\mathrm{N}^{\natural}(\boldsymbol{\lambda})}\left(\boldsymbol{\Lambda} / \boldsymbol{\lambda},\left.\mathcal{L}_{\natural}\right|_{Z}\right)$ is nef for any $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ with $\boldsymbol{\lambda} \cap \operatorname{Int} \boldsymbol{\sigma}_{\natural} \neq \emptyset$. For such a cone $\boldsymbol{\lambda}$, let us choose $l_{\boldsymbol{\lambda}} \in \mathrm{M}_{\mathbb{R}}^{\natural}$ such that $h(x)=\left\langle l_{\boldsymbol{\lambda}}, x\right\rangle$ for any $x \in \boldsymbol{\lambda}$ and define $h^{\boldsymbol{\lambda}}(y):=h(y)-\left\langle l_{\boldsymbol{\lambda}}, y\right\rangle$ for $y \in \boldsymbol{\sigma}_{\natural}$. Then $\left.\left(E+\mathcal{L}^{l_{\boldsymbol{\lambda}}}\right)\right|_{Z}$ is nef if $\boldsymbol{\lambda}$ is a maximal cone. If $\boldsymbol{\lambda}_{1}$ and $\boldsymbol{\lambda}_{2}$ are maximal cones of $\boldsymbol{\Lambda}$ with $\operatorname{dim} \boldsymbol{\lambda}_{1} \cap \boldsymbol{\lambda}_{2}=r-1$, then $\boldsymbol{\lambda}_{1} \cap \boldsymbol{\lambda}_{2} \cap$ Int $\boldsymbol{\sigma}_{\natural} \neq \emptyset$. By restricting $D_{h}+p^{*} E$ to $\mathrm{V}\left(\boldsymbol{\lambda}_{1} \cap \boldsymbol{\lambda}_{2}, \mathcal{L}\right)$ over S, we infer that $\left\langle l_{\boldsymbol{\lambda}_{1}}, x\right\rangle \geq h(x)$ for $x \in \boldsymbol{\lambda}_{1} \cup \boldsymbol{\lambda}_{2}$. Thus $l_{\boldsymbol{\lambda}} \in \square_{h}\left(\boldsymbol{\sigma}_{\sharp}\right)$ for a maximal cone $\boldsymbol{\lambda}$ by the same argument as in the proof of $1.10-(5) \Rightarrow 1.10-(2)$. Thus $l_{\boldsymbol{\lambda}} \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$.
(b) $\Leftrightarrow(\mathrm{c})$ is shown by the same argument as in 2.4-(2).
(b) \Rightarrow (a): Let W_{Z} be the intersection of the supports of effective \mathbb{R}-Cartier divisors $D_{h}+\operatorname{div}(\mathrm{e}(m))$ for all $m \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$ in the toric bundle $\mathbb{T}_{\mathrm{N}}\left(\boldsymbol{\Lambda},\left.\mathcal{L}_{\mathrm{y}}\right|_{Z}\right)$
over Z. If $W_{Z} \neq \emptyset$, then $W_{Z} \supset \mathbb{V}\left(\boldsymbol{\lambda},\left.\mathcal{L}_{\natural}\right|_{Z}\right)$ for a maximal cone; this contradicts $l_{\boldsymbol{\lambda}} \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$. Hence $W_{Z}=\emptyset$ and hence $\left.\left(D_{h}+f^{*} E\right)\right|_{f^{-1} Z}$ is nef.
(2) By assumption, if $m \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$, then $E+\mathcal{L}_{\natural}^{m}$ is nef. Let W be the intersection of the supports of effective \mathbb{R}-Cartier divisors $D_{h}+\operatorname{div}(\mathrm{e}(m))$ in $\mathbb{T}_{\mathrm{N}^{\natural}}\left(\boldsymbol{\Lambda}, \mathcal{L}_{\mathfrak{\natural}}\right)$ for all $m \in \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h\right)$. Suppose that $\left.\left(D_{h}+f^{*} E\right)\right|_{f^{-1} Z}$ is nef. Then $W=\emptyset$ by the same argument above. Thus $D_{h}+f^{*} E$ is nef.
2.15. Proposition Let S be a non-singular projective variety and let B_{1}, B_{2}, \ldots, B_{r} be non-singular prime divisors such that $B=\sum_{i=1}^{r} B_{i}$ is simple normal crossing, $r<\operatorname{dim} S$, and $Z=\bigcap_{i=1}^{r} B_{i}$ is non-empty and irreducible. Let E be an \mathbb{R}-divisor of S such that

$$
\square_{\mathrm{Nef}}(E)=\left\{\left(m_{i}\right)_{i=1}^{r} \in \mathbb{R}^{r} \mid E-\sum_{i=1}^{r} m_{i} B_{i} \text { is } n e f\right\} \neq \emptyset
$$

Assume that $\square_{\mathrm{Nef}}(E) \subset \mathrm{N}^{1}(S)$ is a rational polyhedral convex set and

$$
\square_{\mathrm{Nef}}(E)=\left\{\left(m_{i}\right) \in \mathbb{R}_{\geq 0}^{r}\left|\left(E-\sum m_{i} B_{i}\right)\right|_{Z} \text { is } n e f\right\} .
$$

Suppose either that $\operatorname{NBs}(E) \subset Z$ or that E admits a Zariski-decomposition. Then there exist a toric blowing-up $f: S_{\boldsymbol{\Lambda}} \rightarrow S$ along B associated with a finite nonsingular subdivision $\boldsymbol{\Lambda}$ of the first quadrant cone $\boldsymbol{\sigma}_{\natural} \subset\left(\mathrm{N}^{\natural}\right)_{\mathbb{R}}$ for the free abelian group N^{\natural} of rank r related to B and a support function $h \in \mathrm{SF}_{\mathrm{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$ such that $D_{h}+f^{*} E$ is nef and is the positive part of the σ-decomposition of $f^{*} E$.

Proof. For the construction of the toric blowing-up, we consider the free abelian group N^{\natural} with the basis $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ and the element $\mathcal{L}_{\natural}=\sum e_{i} \otimes$ $\mathcal{O}_{S}\left(-B_{i}\right) \in \mathrm{N}^{\natural} \otimes \operatorname{Pic}(S)$. Let $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$ be the basis of $\mathrm{M}^{\natural}=\left(\mathrm{N}^{\natural}\right)^{\vee}$ dual to $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$. By the identification $\left(m_{i}\right) \leftrightarrow m=\sum m_{i} \delta_{i}$, we can regard $\square_{\mathrm{Nef}}(E)$ as a subset of $\mathrm{M}_{\mathbb{R}}^{\natural}$. We consider the following function on $\boldsymbol{\sigma}_{\natural}$:

$$
h^{\dagger}(x):=\min \left\{\langle m, x\rangle \mid m \in \square_{\mathrm{Nef}}(E)\right\} .
$$

Then $h^{\dagger} \in \operatorname{SFC}_{\mathrm{N}^{\natural}}\left(\boldsymbol{\sigma}_{\natural}, \mathbb{R}\right)$. Note that h^{\dagger} is non-negative on $\boldsymbol{\sigma}_{\natural}$. Let $\boldsymbol{\Lambda}$ be a nonsingular finite subdivision of $\boldsymbol{\sigma}_{\natural}$ such that $h^{\dagger} \in \mathrm{SF}_{\mathrm{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$. Then $E^{\dagger}:=D_{h^{\dagger}}+f^{*} E$ is nef by $\mathbf{2 . 1 4}$, since $\square_{\mathrm{Nef}}(E) \subset \square_{\mathrm{Nef}}\left(\left.E\right|_{Z}, h^{\dagger}\right)$.

The positive part $P_{\sigma}\left(f^{*} E\right)$ of the σ-decomposition is written by $D_{h}+f^{*} E$ for some $h \in \operatorname{SF}_{\mathrm{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$, since $\boldsymbol{\Lambda}$ is non-singular. Here,

$$
h(v)=\operatorname{mult}_{\Gamma_{v}} N_{\sigma}\left(f^{*} E\right)=\sigma_{\Gamma_{v}}\left(f^{*} E\right) \geq 0
$$

for any $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$. Note that $D_{h}+f^{*} E=P_{\sigma}\left(f^{*} E\right) \geq E^{\dagger}$, since E^{\dagger} is nef. In particular, $h(v) \leq h^{\dagger}(v)$ for any $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$ and hence $h(x) \leq h^{\dagger}(x)$ for $x \in \boldsymbol{\sigma}_{\mathfrak{y}}$.

Let $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$ be a vertex contained in $\operatorname{Int} \boldsymbol{\sigma}_{\natural}$. Then the corresponding prime divisor $\Gamma_{v} \subset S_{\boldsymbol{\Lambda}}$ is isomorphic to $\mathbb{V}\left(\boldsymbol{\Lambda} / \mathbb{R}_{\geq 0} v, \mathcal{L}_{\mathfrak{b}} \mid Z\right)$ over Z. The restriction of $D_{h}+f^{*} E$ to Γ_{v} is pseudo-effective. Then, by $\mathbf{2 . 4}-(1)$, there is an $l_{v} \in \mathrm{M}_{\mathbb{R}}^{\natural}$ such that
(1) $h(v)=\left\langle l_{v}, x\right\rangle$,
(2) $\left\langle l_{v}, x\right\rangle \geq h(x)$ for any $x \in \bigcup_{v \in \boldsymbol{\lambda} \in \boldsymbol{\Lambda}} \boldsymbol{\lambda}$,
(3) $E+\mathcal{L}_{\natural}^{l_{v}}$ is nef.

Since $l_{v} \in \square_{\mathrm{Nef}}(E)$, we have $h(v)=\left\langle l_{v}, v\right\rangle \geq h^{\dagger}(v)$. Thus $h(v)=h^{\dagger}(v)$.
Suppose that $\operatorname{NBs}(E) \subset Z$. If a vertex $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$ is not contained in Int $\boldsymbol{\sigma}_{\mathrm{t}}$, then $f\left(\Gamma_{v}\right) \not \subset Z$. Thus $\sigma_{\Gamma_{v}}\left(f^{*} E\right)=h(v)=0$. Therefore $P_{\sigma}\left(f^{*} E\right)=E^{\dagger}$ and it gives the Zariski-decomposition.

Next suppose that there is a vertex $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$ such that $h(v)<h^{\dagger}(v)$. Then $v \notin \operatorname{Int} \boldsymbol{\sigma}_{\text {}}$. There is a vertex $v^{\prime} \in \operatorname{Ver}(\mathrm{N}, \boldsymbol{\Sigma})$ contained in $\operatorname{Int} \boldsymbol{\sigma}_{\text {घ }}$ such that $C\left(v, v^{\prime}\right)=$ $\mathbb{R}_{\geq 0} v+\mathbb{R}_{\geq 0} v^{\prime}$ is a two-dimensional cone contained in $\boldsymbol{\Lambda}$. Here $h\left(v^{\prime}\right)=h^{\dagger}\left(v^{\prime}\right)$. The blowing-up $\nu: Y \rightarrow S_{\boldsymbol{\Lambda}}$ along the intersection $\Gamma_{v} \cap \Gamma_{v^{\prime}}$ corresponds to a finite subdivision $\boldsymbol{\Lambda}^{\prime}$ of $\boldsymbol{\Lambda}$ in which the new vertex $w=v+v^{\prime} \in \operatorname{Ver}\left(\boldsymbol{\Lambda}^{\prime}\right)$ corresponds to the exceptional divisor Γ_{w}. We have

$$
\begin{aligned}
h^{\dagger}(w) & =h^{\dagger}(v)+h^{\dagger}\left(v^{\prime}\right)=\sigma_{\Gamma_{w}}\left(\nu^{*} f^{*} E\right)=\operatorname{mult}_{\Gamma_{w}} N_{\sigma}\left(\nu^{*} f^{*} E\right), \\
h(w) & =h(v)+h\left(v^{\prime}\right)=\operatorname{mult}_{\Gamma_{w}} \nu^{*} N_{\sigma}\left(f^{*} E\right) \\
\sigma_{\Gamma_{w}}\left(\nu^{*} P_{\sigma}\left(f^{*} E\right)\right) & =h^{\dagger}(w)-h(w)=h^{\dagger}(v)-h(v)>0
\end{aligned}
$$

Next, we consider the blowing-up of Y along $\Gamma_{v} \cap \Gamma_{w}$ whose exceptional divisor corresponds to $w+v=2 v+v^{\prime}$. By continuing the process, we have a sequence $Y_{k} \rightarrow Y_{k-1} \rightarrow \cdots \rightarrow Y_{1}=Y \rightarrow S_{\boldsymbol{\Lambda}}$ of blowups such that the exceptional divisor of $\nu_{k}: Y_{k} \rightarrow Y_{k-1}$ corresponds to $w_{k}=k v+v^{\prime}$. For the morphisms $f_{i}: Y_{i} \rightarrow Y \rightarrow S$, we have the following equalities:

$$
\begin{aligned}
h^{\dagger}\left(w_{k}\right) & =k h^{\dagger}(v)+h^{\dagger}\left(v^{\prime}\right)=\sigma_{\Gamma_{w_{k}}}\left(f_{k}^{*} E\right) \\
\sigma_{\Gamma_{w_{k-1}}}\left(f_{k-1}^{*} E\right)+h(v) & =\operatorname{mult}_{\Gamma_{w_{k}}} \nu_{k}^{*} N_{\sigma}\left(f_{k-1}^{*} E\right) \\
\sigma_{\Gamma_{w_{k}}}\left(\nu_{k}^{*} P_{\sigma}\left(f_{k-1}^{*} E\right)\right) & =h^{\dagger}\left(w_{k}\right)-\operatorname{mult}_{\Gamma_{w_{k}}} \nu_{k}^{*} N_{\sigma}\left(f_{k-1}^{*} E\right) \\
& =h^{\dagger}(v)-h(v)+h^{\dagger}\left(w_{k-1}\right)-\sigma_{\Gamma_{w_{k-1}}}\left(f_{k-1}^{*} E\right)>0
\end{aligned}
$$

Thus the process does not terminate. Hence, E admits no Zariski-decompositions by 2.11. Therefore, if E admits a Zariski-decomposition, then $h^{\dagger}(v)=h(v)$ for any $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$ and hence $P_{\sigma}\left(f^{*} E\right)$ is equal to the nef \mathbb{R}-divisor E^{\dagger}.

§3. Vector bundles over a curve

§3.a. Filtration of vector bundles.

3.1. Lemma Let X be a complex analytic variety and let

$$
0 \rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E}_{2} \rightarrow \mathcal{E}_{3} \rightarrow 0
$$

be an exact sequence of vector bundles on X. Let $\pi_{i}: P_{i} \rightarrow X$ be the projective bundle $\mathbb{P}_{X}\left(\mathcal{E}_{i}\right)$ for $i=1,2$, 3. For the tautological line bundle $\mathcal{O}_{\mathcal{E}_{1}}(1)$, let \mathcal{F} be the vector bundle on P_{1} determined by the commutative diagram

and let $q: P_{12}=\mathbb{P}_{P_{1}}(\mathcal{F}) \rightarrow P_{1}$ be the natural projection. Then, there is a morphism $\rho: P_{12} \rightarrow P_{2}$ over X such that ρ is isomorphic to the blowing-up along $P_{3} \subset P_{2}$. Moreover, the divisor $E=\rho^{-1} P_{3}$ is isomorphic to $P_{1} \times{ }_{Y} P_{3}$ over P_{3}, and $\rho^{*} \mathcal{O}_{\mathcal{E}_{2}}(1) \simeq q^{*} \mathcal{O}_{\mathcal{F}}(1) \otimes \mathcal{O}_{P_{12}}(-E)$.

Proof. The diagram (IV-6) induces a surjective homomorphism $q^{*} \pi_{1}^{*} \mathcal{E}_{2} \rightarrow$ $\mathcal{O}_{\mathcal{F}}(1)$ defining ρ above. Let \mathcal{I} be the defining ideal sheaf of P_{3} in P_{2}. Then there is a surjective homomorphism

$$
\begin{equation*}
\pi_{2}^{*} \mathcal{E}_{1} \rightarrow \mathcal{I} \mathcal{O}_{\mathcal{E}_{2}}(1) \tag{IV-7}
\end{equation*}
$$

inducing $\mathcal{E}_{1} \simeq \pi_{2 *}\left(\mathcal{I} \mathcal{O}_{\mathcal{E}_{2}}(1)\right)$. There is a commutative diagram

Thus $\rho^{*}\left(\mathcal{I} \mathcal{O}_{\mathcal{E}_{2}}(1)\right) /($ tor $)$ is isomorphic to the line bundle $q^{*} \mathcal{O}_{\mathcal{E}_{1}}(1)$. Hence $\rho^{*} \mathcal{I} /$ (tor) is the defining ideal of the Cartier divisor $E=\mathbb{P}_{P_{1}}\left(q^{*} \mathcal{E}_{3}\right) \simeq P_{1} \times_{Y} P_{3}$ of P_{12}. Here $\mathcal{O}_{P_{12}}(-E) \otimes \rho^{*} \mathcal{O}_{\mathcal{E}_{2}}(1) \simeq q^{*} \mathcal{O}_{\mathcal{E}_{1}}(1)$ holds. Let $\mu: Q \rightarrow P_{2}$ be the blowing-up along P_{3}. Then there is a morphism $\varphi: P_{12} \rightarrow Q$ such that $\rho=\mu \circ \varphi$. There is a morphism $Q \rightarrow P_{1}$ over X by the pullback μ^{*} of (IV-7). From (IV-6), we infer that there is a morphism $Q \rightarrow P_{12}$ over P_{1} which is the inverse of φ.

Remark If $\operatorname{rank} \mathcal{E}_{1}=1$, then $P_{1} \simeq X$ and $P_{12} \simeq P_{2}$.
Let X be a complex analytic variety and let

$$
\mathcal{E}_{\bullet}=\left[0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \cdots \subset \mathcal{E}_{l}=\mathcal{E}\right]
$$

be a sequence of vector subbundles of \mathcal{E} on X such that $\operatorname{Gr}_{i}\left(\mathcal{E}_{\bullet}\right)=\mathcal{E}_{i} / \mathcal{E}_{i-1}$ is a non-zero vector bundle for $1 \leq i \leq l$. The number l is called the length of \mathcal{E}_{\bullet} and is denoted by $l\left(\mathcal{E}_{\bullet}\right)$.

Let us consider the following functor F from the category of complex analytic spaces over X into the category of sets: for a morphism $f: Y \rightarrow X$, let $\varphi_{i}: f^{*} \mathcal{E}_{i} \rightarrow$ \mathcal{L}_{i} be surjective homomorphisms into line bundles \mathcal{L}_{i} of Y for $1 \leq i \leq l$ and let $u_{i}: \mathcal{L}_{i} \rightarrow \mathcal{L}_{i+1}$ be homomorphisms for $1 \leq i<l$ such that the diagrams

are all commutative. Let $F(Y / X)$ be the set of the collections $\left(\varphi_{i}, u_{i}\right)_{i=1}^{l}$ above modulo isomorphisms.
3.2. Lemma-Definition The functor F above is representable by a projective smooth morphism over X. The representing morphism is denoted by

$$
\pi=\pi_{l}: \mathbb{P}_{X}\left(\mathcal{E}_{\bullet}\right)=\mathbb{P}\left(\mathcal{E}_{\bullet}\right)=\mathbb{P}\left(\mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \cdots \subset \mathcal{E}_{l}\right) \rightarrow X
$$

Proof. We shall prove by induction on l. If $l=1$, then F is representable by the projective bundle $\mathbb{P}_{X}(\mathcal{E})=\mathbb{P}\left(\mathcal{E}_{1}\right)$. For the projective bundle $p_{1}: \mathbb{P}\left(\mathcal{E}_{1}\right) \rightarrow X$, let \mathcal{K}_{1} be the kernel of $p_{1}^{*} \mathcal{E}_{1} \rightarrow \mathcal{O}_{\mathcal{E}_{1}}(1)$. Then \mathcal{K}_{1} is a subbundle of $p_{1}^{*} \mathcal{E}_{i}$ for any i. Let \mathcal{E}_{i}^{\prime} be the quotient vector bundle $p_{1}^{*} \mathcal{E}_{i} / \mathcal{K}_{1}$. Then we have a sequence of vector bundles

$$
\mathcal{O}_{\mathcal{E}_{1}}(1) \subset \mathcal{E}_{2}^{\prime} \subset \mathcal{E}_{3}^{\prime} \subset \cdots \subset \mathcal{E}_{l}^{\prime}
$$

By induction, the functor F with respect to the filtration above but starting from \mathcal{E}_{2}^{\prime} is represented by

$$
Q=\mathbb{P}_{\mathbb{P}\left(\mathcal{E}_{1}\right)}\left(\mathcal{E}_{2}^{\prime} \subset \cdots \subset \mathcal{E}_{l}^{\prime}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{1}\right)
$$

Let $\left(\left(\varphi_{i}: f^{*} \mathcal{E}_{i} \rightarrow \mathcal{L}_{i}\right), u_{i}\right)$ be an element of $F(Y / X)$ for a morphism $f: Y \rightarrow X$ from an analytic space. Then φ_{1} induces a morphism $f_{1}: Y \rightarrow \mathbb{P}\left(\mathcal{E}_{1}\right)$ over X and φ_{i} induces a surjective homomorphism $f_{1}^{*} \mathcal{E}_{i}^{\prime} \rightarrow \mathcal{L}_{i}$. Hence the element of $F(Y / X)$ defines a morphism $Y \rightarrow Q$ over X. Conversely, from a morphism $h: Y \rightarrow Q$, we have a morphism $f_{1}: Y \rightarrow Q \rightarrow \mathbb{P}\left(\mathcal{E}_{1}\right)$, surjective homomorphisms $f_{1}^{*} \mathcal{E}_{i}^{\prime} \rightarrow \mathcal{L}_{i}$ into line bundles for $2 \leq i \leq l$, and compatible homomorphisms $u_{i}: \mathcal{L}_{i} \rightarrow \mathcal{L}_{i+1}$ for $2 \leq i<l$. We define $\mathcal{L}_{1}=f_{1}^{*} \mathcal{O}_{\mathcal{E}_{1}}(1), \varphi_{1}: f^{*} \mathcal{E}_{1} \rightarrow \mathcal{L}_{1}$ to be the pullback of $p_{1}^{*} \mathcal{E}_{1} \rightarrow \mathcal{O}_{\mathcal{E}_{1}}(1), \varphi_{i}$ to be the composite $f^{*} \mathcal{E}_{i} \rightarrow f_{1}^{*} \mathcal{E}_{i}^{\prime} \rightarrow \mathcal{L}_{i}$ for $2 \leq i \leq l$, and $u_{1}: \mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ to be the composite

$$
\mathcal{L}_{1}=f_{1}^{*} \mathcal{O}_{\mathcal{E}_{1}}(1) \rightarrow f_{1}^{*} \mathcal{E}_{2}^{\prime} \rightarrow \mathcal{L}_{2}
$$

Then $\left(\varphi_{i}, u_{i}\right)$ is an element of $F(Y / X)$. In this way, we infer that $Q \rightarrow X$ represents F with respect to \mathcal{E}_{\bullet}.

For $1 \leq k \leq l$, we define the following filtrations:

$$
\mathcal{E}_{\bullet \leq k}=\left[\mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{k}\right], \quad \mathcal{E}_{\bullet} \geq k=\left[\mathcal{E}_{k} \subset \cdots \subset \mathcal{E}_{l}\right]
$$

Let $\left(\left(\varphi_{i}: \pi^{*} \mathcal{E}_{i} \rightarrow \mathcal{L}_{i}\right), u_{i}\right)$ be the universal element of $F\left(\mathbb{P}\left(\mathcal{E}_{\bullet}\right) / X\right)$. Note that u_{i} are all injective. By considering $\left(\varphi_{i}, u_{i}\right)$ for $i \leq k$ or $i \geq k$, we have natural morphisms $\mathbb{P}\left(\mathcal{E}_{\bullet}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{\bullet} \leq k\right)$ and $\mathbb{P}\left(\mathcal{E}_{\bullet}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{\bullet} \geq k\right)$. We have a Cartesian commutative diagram

for $1 \leq k \leq l$. Here vertical arrows are smooth projective morphisms by the proof of 3.2. We infer that the horizontal arrows are bimeromorphic by 3.1. The bimeromorphic morphism $\mathbb{P}\left(\mathcal{E}_{1} \subset \mathcal{E}_{2}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{2}\right)$ is an isomorphism if and only if \mathcal{E}_{1} is a line bundle. Thus $\mathbb{P}\left(\mathcal{E}_{\bullet}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{\bullet} \geq k\right)$ is an isomorphism for some $k>1$ if and only if $l=2$ and \mathcal{E}_{1} is a line bundle.

3.3. Lemma

(1) The pullback of $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \subset \mathbb{P}\left(\mathcal{E}_{k+1}\right)$ by the morphism $\mathbb{P}\left(\mathcal{E}_{\bullet \geq k+1}\right) \rightarrow$ $\mathbb{P}\left(\mathcal{E}_{k+1}\right)$ is isomorphic to

$$
\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k} \subset \cdots \subset \mathcal{E}_{l} / \mathcal{E}_{k}\right)
$$

(2) Let E_{k} be the pullback of $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \subset \mathbb{P}\left(\mathcal{E}_{k+1}\right)$ by the composite $\mathbb{P}\left(\mathcal{E}_{\bullet}\right) \rightarrow$ $\mathbb{P}\left(\mathcal{E}_{\bullet \geq k+1}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{k+1}\right)$ for $1 \leq k \leq l-1$. Then E_{k} is a divisor isomorphic to

$$
\mathbb{P}\left(\mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{k}\right) \times_{X} \mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k} \subset \cdots \subset \mathcal{E}_{l} / \mathcal{E}_{k}\right)
$$

Here, E_{k} is not exceptional for the bimeromorphic morphism $\mathbb{P}\left(\mathcal{E}_{\bullet}\right)$ $\rightarrow \mathbb{P}\left(\mathcal{E}_{\bullet} \geq k+1\right)$ if and only if $k=\operatorname{rank} \mathcal{E}_{1}=1$.
(3) For indices $1 \leq a(1)<a(2)<\cdots<a(e) \leq l-1$, the intersection $\bigcap_{j=1}^{e} E_{a(j)}$ is isomorphic to the fiber product

$$
\prod_{j=1}^{e+1} \mathbb{P}\left(\mathcal{E}_{a(j-1)+1} / \mathcal{E}_{a(j-1)} \subset \cdots \subset \mathcal{E}_{a(j)} / \mathcal{E}_{a(j-1)}\right)
$$

over X, where $a(0)=0$ and $a(e+1)=l$.
(4) Let H_{i} be the pullback of the tautological divisor $H_{\mathcal{E}_{i}}$ by the composite $\mathbb{P}\left(\mathcal{E}_{\bullet}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{\bullet} \leq i\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$. Then $H_{i+1}-H_{i} \sim E_{i}$ for $1 \leq i \leq l-1$.

Proof. Let $f: Y \rightarrow X$ be an analytic space over X.
(1) Let F^{\prime} be the similar functor to F with respect to the filtration $\mathcal{E}_{\bullet} \geq k+1$. Let $\left(\varphi_{i}, u_{i}\right)$ be an element of $F^{\prime}(Y / X)$. Then it induces a morphism into $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \subset$ $\mathbb{P}\left(\mathcal{E}_{k+1}\right)$ if and only if the the composite $f^{*} \mathcal{E}_{k} \rightarrow f^{*} \mathcal{E}_{k+1} \rightarrow \mathcal{L}_{k+1}$ is zero. Thus we have the expected isomorphism.
(2) Let $\left(\varphi_{i}, u_{i}\right)$ be an element of $F(Y / X)$. Then it induces a morphism into $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \subset \mathbb{P}\left(\mathcal{E}_{k+1}\right)$ if and only if $u_{k}: \mathcal{L}_{k} \rightarrow \mathcal{L}_{k+1}$ is zero. Thus E_{k} is expressed as above. This is a divisor since $\operatorname{dim} E_{k}=\operatorname{dim} \mathbb{P}\left(\mathcal{E}_{k}\right)+\operatorname{dim} \mathbb{P}\left(\mathcal{E} / \mathcal{E}_{k}\right)-\operatorname{dim} X=$ $\operatorname{dim} \mathbb{P}(\mathcal{E})-1$. This is not exceptional if and only if $\mathbb{P}\left(\mathcal{E}_{\bullet \leq k}\right) \rightarrow X$ is an isomorphism. It is equivalent to: $k=\operatorname{rank} \mathcal{E}_{1}=1$.
(3) Let $\left(\varphi_{i}, u_{i}\right)$ be an element of $F(Y / X)$. It induces a morphism into the intersections of $E_{a(j)}$ if and only if $u_{a(j)}=0$ for any j. Thus the isomorphism exists.
(4) The pullback of $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \subset \mathbb{P}\left(\mathcal{E}_{k+1}\right)$ by the morphism $\mathbb{P}\left(\mathcal{E}_{k} \subset \mathcal{E}_{k+1}\right) \rightarrow$ $\mathbb{P}\left(\mathcal{E}_{k+1}\right)$ is a divisor whose pullback is E_{k}. The linear equivalence follows from 3.1 .
3.4. Lemma The projective morphism $\mathbb{P}(\mathcal{E} \bullet) \rightarrow X$ is also characterized by the following way inductively:
$\langle 2\rangle \mathbb{P}\left(\mathcal{E}_{1} \subset \mathcal{E}_{2}\right)$ is the blown-up of $\mathbb{P}\left(\mathcal{E}_{2}\right)$ along $\mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1}\right)$.
$\langle 3\rangle \mathbb{P}\left(\mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \mathcal{E}_{3}\right)$ is the blown-up of $\mathbb{P}\left(\mathcal{E}_{2} \subset \mathcal{E}_{3}\right)$ along $\mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1} \subset \mathcal{E}_{3} / \mathcal{E}_{1}\right)$.
\vdots
$\langle l\rangle \mathbb{P}\left(\mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{l}\right)$ is the blown-up of $\mathbb{P}\left(\mathcal{E}_{2} \subset \cdots \subset \mathcal{E}_{l}\right)$ along $\mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1} \subset\right.$ $\left.\cdots \subset \mathcal{E}_{l} / \mathcal{E}_{1}\right)$.

Proof. By the Cartesian diagrams (IV-8) and by 3.1, it is enough to show that the pullback of $\mathbb{P}\left(\mathcal{E} / \mathcal{E}_{1}\right) \subset \mathbb{P}(\mathcal{E})$ by $\mathbb{P}\left(\mathcal{E}_{\bullet \geq 2}\right) \rightarrow \mathbb{P}(\mathcal{E})$ is isomorphic to

$$
\mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1} \subset \cdots \subset \mathcal{E} / \mathcal{E}_{1}\right)
$$

This is done in $3.3-(1)$.
3.5. Lemma Let $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{l+1}$ be invertible sheaf on X and set $\mathcal{E}_{k}=$ $\oplus_{i=1}^{k} \mathcal{L}_{i}$ for $1 \leq k \leq l+1$. Then, for the filtration $\mathcal{E}_{\bullet}=\left[\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{l+1}\right]$, the variety $\mathbb{P}_{X}\left(\mathcal{E}_{\bullet}\right)$ is isomorphic to the toric bundle $\mathbb{T}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ over X for some fan $\boldsymbol{\Sigma}$ of a free abelian group \mathbf{N} of rank l with a basis $\left(e_{1}, e_{2}, \ldots, e_{l}\right)$ and for the element

$$
\mathcal{L}=\sum_{i=1}^{l} e_{i} \otimes\left(\mathcal{L}_{i} \otimes \mathcal{L}_{l+1}^{-1}\right) \in \mathrm{N} \otimes \operatorname{Pic}(X)
$$

Proof. We may assume $l \geq 1$. If $l=1$, then $\mathbb{P}\left(\mathcal{E}_{\bullet}\right)$ is a \mathbb{P}^{1}-bundle associated with $\mathcal{E}_{2}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}$. Thus it is enough to take the standard fan $\boldsymbol{\Sigma}=$ $\left\{\mathbb{R}_{\geq 0} e_{1}, \mathbb{R}_{\geq 0}\left(-e_{1}\right),\{0\}\right\}$. For $l \geq 2$, we shall construct the fan $\boldsymbol{\Sigma}$ of the abelian group N satisfying the required condition by induction on l. We consider a free abelian group N_{l+1} of rank $l+1$ containing N such that $\mathrm{N}_{l+1}=\mathrm{N} \oplus \mathbb{Z} e_{l+1}$ for a new element $e_{l+1} \in \mathbf{N}_{l+1}$. For $1 \leq i \leq l$, we define $\mathbf{N}_{i}:=\sum_{1 \leq j \leq i} \mathbb{Z} e_{j}$ and $v_{i+1}:=-\sum_{1 \leq j \leq i} e_{i} \in \mathbf{N}_{i}$. Let $\pi_{i}: \mathbf{N}_{i+1} \rightarrow \mathbf{N}_{i}$ be the homomorphism given by $\pi_{i}\left(e_{j}\right)=e_{j}$ for $j \leq i$ and $\pi_{i}\left(e_{i+1}\right)=-v_{i+1}$. Let us consider the first quadrant cone $\sigma_{l+1}=\sum_{i=1}^{l} \mathbb{R}_{\geq 0} e_{i}$ and the following cones of $\mathbb{N}_{\mathbb{R}}$ for $1 \leq i \leq l$:

$$
\boldsymbol{\sigma}_{i}=\sum_{1 \leq j \leq l, i \neq j} \mathbb{R}_{\geq 0} e_{j}+\mathbb{R}_{\geq 0} v_{l+1}, \quad \sigma_{i}^{\prime}=\sum_{1 \leq j \leq l, i \neq j} \mathbb{R}_{\geq 0} e_{j}+\mathbb{R}_{\geq 0}\left(-v_{l+1}\right) .
$$

Let $\boldsymbol{\Sigma}^{b}$ be the fan of N consisting of all the faces of the cones $\boldsymbol{\sigma}_{i}$ for $1 \leq i \leq l+1$. Then we have an isomorphism $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{b}, \mathcal{L}\right) \simeq \mathbb{P}_{X}\left(\mathcal{E}_{l}\right)$. Similarly, let $\boldsymbol{\Sigma}^{\sharp}$ be the fan of N consisting of all the faces of $\boldsymbol{\sigma}_{i}$ and $\boldsymbol{\sigma}_{i}^{\prime}$ for $1 \leq i \leq l$. Then $\boldsymbol{\Sigma}^{\sharp}$ is a finite subdivision of $\boldsymbol{\Sigma}^{b}$ and the associated morphism $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{\sharp}, \mathcal{L}\right) \rightarrow \mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{b}, \mathcal{L}\right)$ is just the blowing up of $\mathbb{P}_{X}\left(\mathcal{E}_{l}\right)$ along the section $\mathbb{P}_{X}\left(\mathcal{E}_{l} / \mathcal{E}_{l-1}\right)$. Thus $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{\sharp}, \mathcal{L}\right) \simeq \mathbb{P}\left(\mathcal{E}_{l-1} \subset\right.$ $\left.\mathcal{E}_{l}\right)$. Here, the \mathbb{P}^{1}-bundle structure $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{\sharp}\right) \rightarrow \mathbb{T}_{\mathbf{N}_{l-1}}\left(\boldsymbol{\Sigma}_{l-1}^{b}\right) \simeq \mathbb{P}\left(\mathcal{E}_{l-1}\right)$ is induced from $\pi_{l-1}: N \rightarrow \mathrm{~N}_{l-1}$. By induction, there exists a fan Σ_{l-1} of N_{l-1} such that $\mathbb{T}_{\mathrm{N}_{l-1}}\left(\boldsymbol{\Sigma}_{l-1}, \mathcal{L}\right) \simeq \mathbb{P}_{X}\left(\mathcal{E}_{\bullet} \leq l-1\right)$. The fiber product of $\mathbb{P}\left(\mathcal{E}_{l-1} \subset \mathcal{E}_{l}\right)$ and $\mathbb{P}\left(\mathcal{E}_{\bullet} \leq l-1\right)$ over $\mathbb{P}\left(\mathcal{E}_{l-1}\right)$ is isomorphic to $\mathbb{P}\left(\mathcal{E}_{\bullet}\right)$. Thus the set

$$
\boldsymbol{\Sigma}_{l}=\left\{\boldsymbol{\sigma} \cap \pi_{l-1}^{-1} \boldsymbol{\tau} \mid \boldsymbol{\sigma} \in \boldsymbol{\Sigma}^{\sharp}, \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{l-1}\right\}
$$

is a fan giving an isomorphism $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}_{l}, \mathcal{L}\right) \simeq \mathbb{P}_{X}\left(\mathcal{E}_{\bullet}\right)$.
§3.b. Projective bundles over a curve. This subsection is devoted to proving the following:
3.6. Theorem Every pseudo-effective \mathbb{R}-divisor of a projective bundle $\mathbb{P}_{C}(\mathcal{E})$ defined over a non-singular projective curve C associated with a vector bundle \mathcal{E} admits a Zariski-decomposition.

We may assume $r=\operatorname{rank} \mathcal{E}>1$. Let $p: \mathbb{P}(\mathcal{E})=\mathbb{P}_{C}(\mathcal{E}) \rightarrow C$ be the structure morphism of the projective bundle, $H_{\mathcal{E}}$ a tautological divisor associated with \mathcal{E},
and $\mathcal{O}_{\mathcal{E}}(1)$ the tautological line bundle $\mathcal{O}_{\mathbb{P}}\left(H_{\mathcal{E}}\right)$. Let F be a fiber of p. Then $\mathrm{N}^{1}(\mathbb{P}(\mathcal{E}))=\mathbb{R} c_{1}(F)+\mathbb{R} c_{1}\left(H_{\mathcal{E}}\right)$. The Harder-Narasimhan filtration:

$$
0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{l}=\mathcal{E}
$$

is characterized by the following two conditions:
(1) $\mathcal{E}_{i} / \mathcal{E}_{i-1}$ is a non-zero semi-stable vector bundle for any $1 \leq i \leq l$;
(2) $\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)>\mu\left(\mathcal{E}_{i+1} / \mathcal{E}_{i}\right)$ for $1 \leq i \leq l-1$, where $\mu(\mathcal{E}):=\operatorname{deg}(\mathcal{E}) / \operatorname{rank}(\mathcal{E})$.

The number l is called the length of the Harder-Narasimhan filtration of \mathcal{E} and is denoted by $l(\mathcal{E})$. We define $\mu_{\max }(\mathcal{E}):=\mu\left(\mathcal{E}_{1}\right)$ and $\mu_{\min }(\mathcal{E}):=\mu\left(\mathcal{E} / \mathcal{E}_{l-1}\right)$. We have only to study the Zariski-decomposition problem for the \mathbb{R}-divisor $D_{t}:=H_{\mathcal{E}}-t F$ for $t \in \mathbb{R}$. We begin with the following:
3.7. Lemma Let $\mathcal{F}^{1}, \mathcal{F}^{2}, \ldots, \mathcal{F}^{n}$ be vector bundles on a non-singular projective curve C and let Z be the fiber product

$$
\mathbb{P}_{C}\left(\mathcal{F}^{1}\right) \times_{C} \mathbb{P}_{C}\left(\mathcal{F}^{2}\right) \times_{C} \cdots \times_{C} \mathbb{P}_{C}\left(\mathcal{F}^{n}\right)
$$

For the projections $p_{i}: Z \rightarrow \mathbb{P}_{C}\left(\mathcal{F}^{i}\right), \boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}, t \in \mathbb{R}$, and a fiber F of $p: Z \rightarrow C$, let $D(\boldsymbol{y}, t)$ be the \mathbb{R}-divisor

$$
\sum_{i=1}^{n} y_{i} p_{i}^{*} H_{\mathcal{F}^{i}}-t F .
$$

(1) Suppose that

$$
H^{0}\left(C, \operatorname{Sym}^{a_{1}}\left(\mathcal{F}^{1}\right) \otimes \operatorname{Sym}^{a_{2}}\left(\mathcal{F}^{2}\right) \otimes \cdots \otimes \operatorname{Sym}^{a_{n}}\left(\mathcal{F}^{n}\right)\right) \neq 0
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{Z}_{\geq 0}$. Then

$$
\sum_{i=1}^{n} a_{i} \mu_{\max }\left(\mathcal{F}^{i}\right) \geq 0
$$

(2) $D(\boldsymbol{y}, t)$ is pseudo-effective if and only if $\boldsymbol{y} \in \mathbb{R}_{\geq 0}^{n}$ and

$$
\sum_{i=1}^{n} y_{i} \mu_{\max }\left(\mathcal{F}^{i}\right) \geq t
$$

(3) $D(\boldsymbol{y}, t)$ is nef if and only if $\boldsymbol{y} \in \mathbb{R}_{\geq 0}^{n}$ and

$$
\sum_{i=1}^{n} y_{i} \mu_{\min }\left(\mathcal{F}^{i}\right) \geq t
$$

Proof. (1) Let $\mathcal{F}_{\bullet}^{i}$ be the Harder-Narasimhan filtration of \mathcal{F}^{i}. By considering successive quotients of symmetric tensors, we can find non-negative integers b_{k}^{i} for $1 \leq i \leq n$ and for $0 \leq k \leq l\left(\mathcal{F}^{i}\right)$ such that

$$
\sum_{k=1}^{l\left(\mathcal{F}^{i}\right)} b_{k}^{i}=a_{i}
$$

and the vector bundle

$$
\mathcal{B}=\bigotimes_{i=1}^{n}\left(\bigotimes_{k=1}^{l\left(\mathcal{F}^{i}\right)} \operatorname{Sym}^{b_{k}^{i}} \operatorname{Gr}_{k}\left(\mathcal{F}_{\bullet}^{i}\right)\right)
$$

admits a non-zero global section. Here \mathcal{B} is semi-stable (cf. [82]) and hence

$$
\mu(\mathcal{B})=\sum_{i=1}^{n} \sum_{k=1}^{l\left(\mathcal{F}^{i}\right)} b_{k}^{i} \mu\left(\operatorname{Gr}_{k}\left(\mathcal{F}^{i}\right)\right)
$$

is non-negative. Thus

$$
\sum_{i=1}^{n} a_{i} \mu_{\max }\left(\mathcal{F}^{i}\right) \geq \mu(\mathcal{B}) \geq 0
$$

(2) The \mathbb{R}-linear equivalence relation

$$
D(\boldsymbol{y}, t) \sim_{\mathbb{R}} \sum_{i=1}^{n} y_{i}\left(H_{\mathcal{F}^{i}}-\mu_{\max }\left(\mathcal{F}^{i}\right) F\right)+\left(\sum_{i=1}^{n} y_{i} \mu_{\max }\left(\mathcal{F}^{i}\right)-t\right) F
$$

gives one implication. In order to show the other one, we have only to consider the case where $\boldsymbol{y} \in \mathbb{Z}^{n}$ and $t \in \mathbb{Z}$, since the set of the first Chern classes of big \mathbb{Q}-divisors is dense in the pseudo-effective cone. Then we have an isomorphism

$$
p_{*} \mathcal{O}_{Z}(D(\boldsymbol{y}, t)) \simeq \bigotimes_{i=1}^{n} \operatorname{Sym}^{y_{i}}\left(\mathcal{F}^{i}\right) \otimes \mathcal{O}_{C}(-t P)
$$

where $P=p(F) \in C$. Hence, if $|D(\boldsymbol{y}, t)| \neq \emptyset$, then $\boldsymbol{y} \in \mathbb{Z}_{\geq 0}^{n}$ and $\sum_{i=1}^{n} y_{i} \mu_{\max }\left(\mathcal{F}^{i}\right) \geq$ t by (1). Thus we are done.
(3) The \mathbb{R}-linear equivalence relation

$$
D(\boldsymbol{y}, t) \sim_{\mathbb{R}} \sum_{i=1}^{n} y_{i}\left(H_{\mathcal{F}^{i}}-\mu_{\min }\left(\mathcal{F}^{i}\right) F\right)+\left(\sum_{i=1}^{n} y_{i} \mu_{\min }\left(\mathcal{F}^{i}\right)-t\right) F
$$

gives one implication. If $D(\boldsymbol{y}, t)$ is nef, then the restriction to the subspace

$$
\mathbb{P}\left(\mathcal{F}^{1} / \mathcal{F}_{l\left(\mathcal{F}^{1}\right)-1}^{1}\right) \times_{C} \cdots \times_{C} \mathbb{P}\left(\mathcal{F}^{n} / \mathcal{F}_{l\left(\mathcal{F}^{n}\right)-1}^{n}\right)
$$

is also nef. Hence $\boldsymbol{y} \in \mathbb{R}_{\geq 0}^{n}$ and $\sum y_{i} \mu_{\min }\left(\mathcal{F}^{i}\right) \geq t$ by (2). Thus we are done.
By applying $\mathbf{3 . 7}$ to the case $n=1, \mathcal{E}=\mathcal{F}^{1}$, we have:
3.8. Corollary The \mathbb{R}-divisor D_{t} is pseudo-effective if and only if $t \leq \mu_{\max }(\mathcal{E})$. It is nef if and only if $t \leq \mu_{\min }(\mathcal{E})$.
3.9. Lemma $H_{\mathcal{E}}-\mu\left(\mathcal{E}_{1}\right) F$ admits a Zariski-decomposition.

Proof. We may assume that \mathcal{E} is not semi-stable. Thus $l=l(\mathcal{E}) \geq 2$. Let $\rho: Y=\mathbb{P}\left(\mathcal{E}_{1} \subset \mathcal{E}\right) \rightarrow \mathbb{P}(\mathcal{E})$ be the blowing-up along $\mathbb{P}\left(\mathcal{E} / \mathcal{E}_{1}\right)$. Then the exceptional divisor E is isomorphic to $\mathbb{P}\left(\mathcal{E}_{1}\right) \times_{C} \mathbb{P}\left(\mathcal{E} / \mathcal{E}_{1}\right)$ by 3.1. Let $\pi: Y \rightarrow \mathbb{P}\left(\mathcal{E}_{1}\right)$ be the induced projective bundle structure. The restrictions of ρ and π to E are the first and the second projections, respectively. We shall calculate the ν-decomposition of $\rho^{*}\left(H_{\mathcal{E}}-\mu\left(\mathcal{E}_{1}\right) F\right)$. Since $\pi^{*} H_{\mathcal{E}_{1}} \sim \rho^{*} H_{\mathcal{E}}-E$, the conormal bundle $\mathcal{O}_{E}(-E)$ is isomorphic to $\pi^{*} \mathcal{O}_{\mathcal{E}_{1}}(1) \otimes \rho^{*} \mathcal{O}_{\mathcal{E} / \mathcal{E}_{1}}(-1)$. Therefore, by 3.7, the restriction of $\rho^{*}\left(H_{\mathcal{E}}-\mu\left(\mathcal{E}_{1}\right) F\right)-\alpha E$ to E is pseudo-effective if and only if $0 \leq \alpha \leq 1$ and $\mu\left(\mathcal{E}_{1}\right) \leq \alpha \mu\left(\mathcal{E}_{1}\right)+(1-\alpha) \mu\left(\mathcal{E}_{2} / \mathcal{E}_{1}\right)$. Since $\mu\left(\mathcal{E}_{1}\right)>\mu\left(\mathcal{E}_{2} / \mathcal{E}_{1}\right)$, these inequalities hold if and only if $\alpha=1$. Therefore $P_{\nu}\left(\rho^{*}\left(H_{\mathcal{E}}-\mu\left(\mathcal{E}_{1}\right) F\right)\right)$ is equal to the nef \mathbb{R}-divisor $\pi^{*}\left(H_{\mathcal{E}_{1}}-\mu\left(\mathcal{E}_{1}\right) F\right)$. Thus we have a Zariski-decomposition.
3.10. Proposition If $l(\mathcal{E})=2$, then every pseudo-effective \mathbb{R}-divisor of $\mathbb{P}(\mathcal{E})$ admits a Zariski-decomposition.

Proof. D_{t} is pseudo-effective but not nef if and only if $\mu\left(\mathcal{E} / \mathcal{E}_{1}\right)<t \leq \mu\left(\mathcal{E}_{1}\right)$. Let $\rho: Y \rightarrow \mathbb{P}(\mathcal{E})$ and E be the same as in 3.9. By the same argument, the \mathbb{R}-divisor $\left.\left(\rho^{*}\left(D_{t}\right)-\alpha E\right)\right|_{E}$ is pseudo-effective if and only if $t \leq \alpha \mu\left(\mathcal{E}_{1}\right)+(1-\alpha) \mu\left(\mathcal{E} / \mathcal{E}_{1}\right)$. Since $\mu\left(\mathcal{E} / \mathcal{E}_{1}\right)<t \leq \mu\left(\mathcal{E}_{1}\right)$, the minimum α_{1} satisfying the inequality above attains the equality: $t=\alpha_{1} \mu\left(\mathcal{E}_{1}\right)+\left(1-\alpha_{1}\right) \mu\left(\mathcal{E} / \mathcal{E}_{1}\right)$. Thus $P_{\nu}\left(\rho^{*} D_{t}\right)$ is nef by

$$
P_{\nu}\left(\rho^{*} D_{t}\right) \sim_{\mathbb{R}} \alpha_{1} \pi^{*}\left(H_{\mathcal{E}_{1}}-\mu\left(\mathcal{E}_{1}\right) F\right)+\left(1-\alpha_{1}\right) \rho^{*}\left(H_{\mathcal{E}}-\mu\left(\mathcal{E} / \mathcal{E}_{1}\right) F\right)
$$

We assume $l \geq 3$. Let $S=\mathbb{P}\left(\mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{l}\right) \rightarrow C$ be the projective smooth morphism defined in $\mathbf{3 . 2}$ for the Harder-Narasimhan filtration \mathcal{E}_{\bullet}. Let $\rho: S \rightarrow \mathbb{P}(\mathcal{E})$ be the induced birational morphism and let E_{k} for $1 \leq k \leq l-1$ and H_{i} for $1 \leq i \leq l$ be the divisors defined in 3.3. Note that $E=\sum_{k=1}^{l-1} E_{k}$ is a simple normal crossing divisor. By 3.9, we may assume $\mu\left(\mathcal{E} / \mathcal{E}_{l-1}\right)<t<\mu\left(\mathcal{E}_{1}\right)$, equivalently $D_{t}=H_{\mathcal{E}}-t F$ is not nef but big. Let us define $\mu_{i}=\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)$ for $1 \leq i \leq l=l(\mathcal{E})$ and

$$
\alpha_{k}(t):=\max \left\{0, \frac{t-\mu_{k+1}}{\mu_{1}-\mu_{k+1}}\right\} .
$$

for $1 \leq k \leq l-1$. Let $\boldsymbol{\alpha}_{t}$ be the vector $\left(\alpha_{1}(t), \alpha_{2}(t), \cdots, \alpha_{l-1}(t)\right)$. Note that $\alpha_{k}(t)=0$ for $t \leq \mu_{k+1}$ and $\alpha_{k}(t) \geq \alpha_{k^{\prime}}(t)$ for $k \leq k^{\prime}$. We define an \mathbb{R}-divisor by

$$
D_{t}(\boldsymbol{y})=D_{t}\left(y_{1}, y_{2}, \ldots, y_{l-1}\right)=\rho^{*} H_{\mathcal{E}}-t F-\sum_{i=1}^{l-1} y_{i} E_{i}
$$

for $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{l-1}\right) \in \mathbb{R}^{l-1}$.
3.11. Lemma (1) $N_{\sigma}\left(\rho^{*} D_{t}\right)=N_{\nu}\left(\rho^{*} D_{t}\right)=\sum_{k=1}^{l-1} \alpha_{k}(t) E_{k}$. Moreover, $\operatorname{NBs}\left(\rho^{*} D_{t}\right)=\left\{s \in S \mid \sigma_{s}\left(P_{\sigma}\left(\rho^{*} D_{t}\right)\right)>0\right\} \subset E$.
(2) $D_{t}(\boldsymbol{y})$ is nef if and only if its restriction to $Z=\bigcap_{k=1}^{l-1} E_{k}$ is nef. This is also equivalent to that \boldsymbol{y} is contained in the polytope

$$
\square\left(\mu_{\bullet}, t\right):=\left\{\boldsymbol{y} \in \mathbb{R}_{\geq 0}^{l-1} \mid 0 \leq y_{1} \leq y_{2} \leq \cdots \leq y_{l-1} \leq 1, \sum_{k=1}^{l-1}\left(\mu_{k}-\mu_{k+1}\right) y_{k} \geq t-\mu_{l}\right\}
$$

Proof. (1) We denote the total transform of $H_{\mathcal{E}}$ by H and that of F by the same symbol F on a projective variety birational to $\mathbb{P}(\mathcal{E})$. Then $H=H_{l}$ on S.

We introduce the following non-negative numbers:

$$
\beta_{j}(t):= \begin{cases}\alpha_{1}(t), & j=1 ; \\ \alpha_{j}(t)-\alpha_{j-1}(t), & 2 \leq j \leq l-1 ; \\ 1-\alpha_{l}(t), & j=l .\end{cases}
$$

Then we can write

$$
\begin{align*}
D_{t}\left(\boldsymbol{\alpha}_{t}\right) \sim_{\mathbb{R}} & \sum_{j=1}^{l} \beta_{j}(t) H_{j}-t F \\
\sim_{\mathbb{R}} & \sum_{j=1}^{k} \beta_{j}(t)\left(H_{j}-\mu_{1} F\right)+\sum_{j=k+1}^{l} \beta_{j}(t)\left(H_{j}-\mu_{k+1} F\right) \tag{IV-9}\\
& \quad+\left(\alpha_{k}(t) \mu_{1}+\left(1-\alpha_{k}(t)\right) \mu_{k+1}-t\right) F
\end{align*}
$$

for $1 \leq k \leq l-1$. Here $H_{i}-\mu_{1} F$ is the pullback of a pseudo-effective \mathbb{R}-divisor by $S \rightarrow \mathbb{P}\left(\mathcal{E}_{i}\right)$ for $i \leq k$. Since E_{k} dominates $\mathbb{P}\left(\mathcal{E}_{i}\right)$ for $i \leq k$, we have $\sigma_{E_{k}}\left(H_{i}-\mu_{1} F\right)=0$ for $i \leq k$. There is a linear equivalence relation

$$
H_{j}-\mu_{k+1} F \sim E_{j-1}+\cdots+E_{k+1}+\left(H_{k+1}-\mu_{k+1} F\right)
$$

for $j>k+1$, where $H_{k+1}-\mu_{k+1} F$ is nef. Hence $\sigma_{E_{k}}\left(H_{j}-\mu_{k+1} F\right)=0$ for $j \geq k+1$. Therefore, $D_{t}\left(\boldsymbol{\alpha}_{t}\right)$ is pseudo-effective and $\sigma_{E_{k}}\left(D_{t}\left(\boldsymbol{\alpha}_{t}\right)\right)=0$ by (IV-9). Moreover, we infer $\operatorname{NBs}\left(\rho^{*} D_{t}\right) \subset E$ by (IV-9) for $k=1$. Thus $D_{t}\left(\boldsymbol{\alpha}_{t}\right)$ is movable.

For an index $1 \leq k \leq l-1$, we can write

$$
\begin{align*}
& D_{t}(\boldsymbol{y}) \sim_{\mathbb{R}}\left(y_{k}\left(H_{k}-\mu_{1} F\right)-\sum_{j=1}^{k-1} y_{j} E_{j}\right) \tag{IV-10}\\
&+\left(\left(1-y_{k}\right)\left(H_{l}-\mu_{k+1} F\right)+\sum_{j=k+1}^{l-1}\left(y_{k}-y_{j}\right) E_{j}\right) \\
&+\left(y_{k} \mu_{1}+\left(1-y_{k}\right) \mu_{k+1}-t\right) F
\end{align*}
$$

By 3.7, $H_{i}-\mu_{k} F$ is pseudo-effective for $i \geq k$. Let $\rho_{k}: E_{k} \rightarrow \mathbb{P}\left(\mathcal{E}_{k}\right) \times_{C} \mathbb{P}\left(\mathcal{E} / \mathcal{E}_{k}\right)$ be the natural birational morphism. Suppose that $\left.D_{t}(\boldsymbol{y})\right|_{E_{k}}$ is pseudo-effective. Then its push-forward by $\rho_{k_{*}}$ is also pseudo-effective. Suppose first that $\mathcal{E}_{k+1} / \mathcal{E}_{k}$ is not a line bundle. Then $\left.E_{j}\right|_{E_{k}}$ is ρ_{k}-exceptional for any $j \geq k+1$. Hence $y_{k} \leq 1$ and $t \leq y_{k} \mu_{1}+\left(1-y_{k}\right) \mu_{k+1}$ by (IV-10) and 3.7. Suppose next that $\mathcal{E}_{k+1} / \mathcal{E}_{k}$ is a line bundle. Then $\left.E_{j}\right|_{E_{k}}$ is ρ_{k}-exceptional for any $j>k+1$. Here $\left.H_{k+1}\right|_{E_{k}}$ is the pullback of $H_{\mathcal{E}_{k+1} / \mathcal{E}_{k}}$ of $\mathbb{P}\left(\mathcal{E}_{k+1} / \mathcal{E}_{k}\right) \simeq C$, which is numerically equivalent to $\mu_{k+1} F$. Thus the inequalities $y_{k+1} \leq 1$ and $y_{k} \mu_{1}+\left(1-y_{k}\right) \mu_{k+1} \geq t$ follow from (IV-10), the \mathbb{R}-linear equivalence relation

$$
E_{k+1} \sim_{\mathbb{R}} H_{l}-E_{l-1}-\cdots-E_{k+2}-H_{k+1}
$$

and from 3.7.
Hence, if $\left.D_{t}(\boldsymbol{y})\right|_{E_{k}}$ is pseudo-effective, then $\alpha_{k}(t) \leq y_{k}$. Since $\left.D_{t}\left(\boldsymbol{\alpha}_{t}\right)\right|_{E_{k}}$ are all pseudo-effective, we infer that $\nu_{E_{k}}\left(D_{t}\right)=\alpha_{k}(t)$ for any k by III.3.12. Therefore $N_{\sigma}\left(\rho^{*} D_{t}\right)=N_{\nu}\left(\rho^{*} D_{t}\right)=\sum \alpha_{k}(t) E_{k}$.
(2) We can write

$$
\begin{aligned}
D_{t}(\boldsymbol{y}) \sim_{\mathbb{R}} y_{1}\left(H_{1}-\mu_{1} F\right) & +\sum_{j=2}^{l-1}\left(y_{j}-y_{j-1}\right)\left(H_{j}-\mu_{j} F\right)+\left(1-y_{l-1}\right)\left(H_{l}-\mu_{l} F\right) \\
& +\left(y_{1} \mu_{1}+\sum_{j=2}^{l-1}\left(y_{j}-y_{j-1}\right) \mu_{j}+\left(1-y_{l-1}\right) \mu_{l}-t\right) F
\end{aligned}
$$

If $\boldsymbol{y} \in \square\left(\mu_{\bullet}, t\right)$, then $D_{t}(\boldsymbol{y})$ is nef, since $H_{i}-\mu_{i} F$ is nef for $1 \leq i \leq l$. Conversely suppose that $D_{t}(\boldsymbol{y})$ is nef. The intersection $Z=\bigcap_{k=1}^{l-1} E_{k}$ is isomorphic to

$$
\mathbb{P}\left(\mathcal{E}_{1}\right) \times_{C} \mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1}\right) \times_{C} \cdots \times_{C} \mathbb{P}\left(\mathcal{E}_{l} / \mathcal{E}_{l-1}\right) .
$$

Since $\left.D_{t}(\boldsymbol{y})\right|_{Z}$ is nef, we have $\boldsymbol{y} \in \square\left(\mu_{\bullet}, t\right)$ by 3.7.

Let N^{\natural} be a free abelian group of rank $l-1$ with a basis $\left(e_{1}^{\natural}, e_{2}^{\natural}, \ldots, e_{l-1}^{\natural}\right)$ and let $\left(\delta_{1}^{\natural}, \delta_{2}^{\natural}, \ldots, \delta_{l-1}^{\natural}\right)$ be the dual basis of $\mathrm{M}^{\natural}=\left(\mathrm{N}^{\natural}\right)^{\vee}$. We consider

$$
\mathcal{L}_{\natural}=\sum_{k=1}^{l-1} e_{i}^{\natural} \otimes \mathcal{O}_{S}\left(-B_{i}\right) \in \mathbb{N}^{\natural} \otimes \operatorname{Pic}(S) \quad \text { and } \quad \boldsymbol{\sigma}_{\natural}=\sum_{k=1}^{l-1} \mathbb{R}_{\geq 0} e_{i}^{\natural} \in \mathrm{N}_{\mathbb{R}}^{\natural}
$$

in order to have a toric blowing up of S along E. We note that the polytope $\square\left(\mu_{\bullet}, t\right)$ is identified with the same subset

$$
\square_{\mathrm{Nef}}(H-t F)=\left\{m \in \mathrm{M}_{\mathbb{R}}^{\natural} \mid H-t F+\mathcal{L}_{\natural}^{m} \text { is nef }\right\}
$$

as in 2.15 for the \mathbb{R}-divisor $H-t F$ by $\boldsymbol{y} \leftrightarrow \sum y_{i} \delta_{i}^{\natural}$. Here, the subset satisfies the condition of $\mathbf{2 . 1 5}$ by $\mathbf{3 . 1 1}-(2)$. Let $h^{\dagger} \in \operatorname{SFC}_{N^{\natural}}\left(\boldsymbol{\sigma}_{\natural}, \mathbb{R}\right)$ be the support function defined by

$$
h^{\dagger}(x)=\min \left\{\langle m, x\rangle \mid m \in \square_{\mathrm{Nef}}(H-t F)\right\}
$$

and let $\boldsymbol{\Lambda}$ be a finite subdivision of $\boldsymbol{\sigma}_{\natural}$ with $h^{\dagger} \in \mathrm{SF}_{\boldsymbol{N}^{\natural}}\left(\boldsymbol{\sigma}_{\natural}, \mathbb{R}\right)$. Then, for the toric blowing up $f: S_{\boldsymbol{\Lambda}} \rightarrow S$ along E associated with $\boldsymbol{\Lambda}$, we have a nef \mathbb{R}-Cartier divisor $P^{\dagger}:=D_{h^{\dagger}}+H-t F$ on $S_{\boldsymbol{\Lambda}}$. If $H-t F$ admits a Zariski-decomposition, then P^{\dagger} is the positive part of a Zariski-decomposition by $\mathbf{2 . 1 5}$.
3.12. Lemma Suppose that the Harder-Narasimhan filtration of \mathcal{E} is split:

$$
\mathcal{E}_{i}=\bigoplus_{k=1}^{i} \mathcal{E}_{k} / \mathcal{E}_{k-1}
$$

Then $H-t F$ admits a Zariski-decomposition. In particular, P^{\dagger} is the positive part of a Zariski-decomposition of $H-t F$.

Proof. Let us consider

$$
Z=\mathbb{P}\left(\mathcal{E}_{1}\right) \times_{C} \mathbb{P}\left(\mathcal{E}_{2} / \mathcal{E}_{1}\right) \times_{C} \cdots \times_{C} \mathbb{P}\left(\mathcal{E}_{l} / \mathcal{E}_{l-1}\right) \rightarrow C
$$

and the pullback \bar{H}_{i} of the tautological divisor $H_{\mathcal{E}_{i} / \mathcal{E}_{i-1}}$ to Z for any i. Then there is a birational morphism

$$
M=\mathbb{P}_{Z}\left(\mathcal{O}_{Z}\left(\bar{H}_{1}\right) \oplus \cdots \mathcal{O}_{Z}\left(\bar{H}_{l}\right)\right) \rightarrow \mathbb{P}_{C}(\mathcal{E})
$$

since \mathcal{E}_{\bullet} is split. We know $\operatorname{Nef}(Z)=\operatorname{PE}(Z)$ and $\operatorname{Nef}(Z) \subset \mathrm{N}^{1}(Z)$ is a rational polyhedral cone. Therefore, every pseudo-effective \mathbb{R}-divisor on the toric bundle M over Z admits a Zariski-decomposition by $\mathbf{2 . 5}$.

The following proof is more explicit than above and it does not use $\mathbf{2 . 1 5}$:
Another proof of 3.12. The projective bundle M in the proof above is written as a toric bundle $\mathbb{T}_{\mathrm{N}}(\boldsymbol{\Sigma}, \mathcal{L})$ over Z, where N is a free abelian group of rank $l-1$ with a basis $\left(e_{1}, e_{2}, \ldots, e_{l-1}\right), \mathcal{L}=\sum e_{i} \otimes \mathcal{O}_{Z}\left(\bar{H}_{i}-\bar{H}_{l}\right)$, and $\boldsymbol{\Sigma}$ is a complete fan of \mathbf{N} defined as in \S 2.c. Here $\operatorname{Ver}(\boldsymbol{\Sigma})=\left\{e_{1}, e_{2}, \ldots, e_{l-1}, e_{l}\right\}$ for $e_{l}=-\sum_{i=1}^{l-1} e_{i}$. We have the support function $h \in \operatorname{SF}_{\mathbf{N}}(\boldsymbol{\Sigma}, \mathbb{Z})$ defined by $h(x)=\min \left(\left\{\left\langle\delta_{i}, x\right\rangle \mid 1 \leq\right.\right.$ $i \leq l-1\} \cup\{0\}$), where $\left(\delta_{1}, \ldots, \delta_{l-1}\right)$ is the dual basis to $\left(e_{1}, e_{2}, \ldots, e_{l}\right)$. Then $D_{h}=\Gamma_{e_{l}} \sim \lambda^{*} H_{\mathcal{E}}-q^{*} \bar{H}_{l}$ for the structure morphism $q: M \rightarrow Z$. We define

$$
\mathcal{H}_{i}=\mathcal{O}_{Z}\left(\bar{H}_{1}\right) \oplus \mathcal{O}_{Z}\left(\bar{H}_{2}\right) \oplus \cdots \oplus \mathcal{O}_{Z}\left(\bar{H}_{i}\right)
$$

for $1 \leq i \leq l$. Then we have a filtration $\mathcal{H}_{\bullet}=\left[\mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \cdots \subset \mathcal{H}_{l}\right]$ of subbundles of \mathcal{H}_{l}. We can show that there is a birational morphism $\mathbb{P}_{Z}\left(\mathcal{H}_{\bullet}\right) \rightarrow S=\mathbb{P}_{C}\left(\mathcal{E}_{\bullet}\right)$ which is an isomorphism over an open neighborhood of $E \subset S$ and that the total transform of $E_{i} \subset S$ in $\mathbb{P}_{Z}\left(\mathcal{H}_{\bullet}\right)$ is just the same E_{i} with respect to the filtration \mathcal{H}_{\bullet}. By 3.5, we can write $\mathbb{P}_{Z}\left(\mathcal{H}_{\bullet}\right)$ as a toric bundle $\mathbb{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}_{l}, \mathcal{L}\right)$ over Z, where $\operatorname{Ver}\left(\boldsymbol{\Sigma}_{l}\right)=\left\{e_{1}, e_{2}, \ldots, e_{l}, w_{1}, w_{2}, \ldots, w_{l-1}\right\}$, for $w_{i}:=\sum_{j=1}^{i} e_{j}$. Note that $w_{1}=e_{1}$ and $w_{l-1}=-e_{l}$. Then $E_{i}=\Gamma_{w_{i}}=\mathbb{V}\left(\mathbb{R}_{\geq 0} w_{i}, \mathcal{L}\right) \subset \mathbb{T}_{N}\left(\boldsymbol{\Sigma}_{l}, \mathcal{L}\right)$. The pullback of $H-t F$ in $\mathbb{P}_{C}(\mathcal{E})$ to $\mathbb{P}_{Z}\left(\mathcal{H}_{\bullet}\right)$ is written by $D_{h}+q^{*}\left(\bar{H}_{l}-t F\right)$ for the structure morphism $q: \mathbb{P}_{Z}\left(\mathcal{H}_{\bullet}\right) \rightarrow Z$. We can apply the method of 2.5 to constructing the Zariski-decomposition of $D_{h}+q^{*}\left(\bar{H}_{l}-t F\right)$, since $\operatorname{PE}(Z)=\operatorname{Nef}(Z)$ is a polyhedral cone. Then, by 3.7,

$$
\begin{gathered}
\square_{\mathrm{Nef}}\left(\bar{H}_{l}-t F, h\right)=\left\{m \in \square_{h} \mid \sum_{i=1}^{l-1} m_{i} \bar{H}_{i}+\left(1-\sum_{i=1}^{l-1} m_{i}\right) \bar{H}_{l}-t F \text { is nef }\right\} \\
=\left\{m \in \mathbb{R}_{\geq 0}^{l-1} \mid \sum_{i=1}^{l-1} m_{i} \leq 1, \sum_{i=1}^{l-1} m_{i} \mu_{i}+\left(1-\sum_{i=1}^{l-1} m_{i}\right) \mu_{l} \geq t\right\}
\end{gathered}
$$

Therefore, the dual cone \triangle of $\mathbb{R}_{\geq 0}\left(\square_{\text {Nef }}\left(\bar{H}_{l}-t F, h\right) \times\{-1\}\right)$ is written by

$$
\triangle=\sum_{i=1}^{l-1} \mathbb{R}_{\geq 0}\left(e_{i}, 0\right)+\mathbb{R}_{\geq 0}\left(e_{l},-1\right)+\mathbb{R}_{\geq 0}\left(\sum_{i=1}^{l-1}\left(\mu_{i}-\mu_{l}\right) e_{i},-t\right)
$$

We set $h^{\ddagger}(x)=\max \{r \in \mathbb{R} \mid(x, r) \in \triangle\}$. We shall construct a finite subdivision $\boldsymbol{\Sigma}^{\sharp}$ of $\boldsymbol{\Sigma}$ as follows: The maximal cones of $\boldsymbol{\Sigma}^{\sharp}$ are

$$
\begin{aligned}
\boldsymbol{\sigma}_{i} & =\sum_{1 \leq j \leq l, i \neq j} \mathbb{R}_{\geq 0} e_{j} \\
\boldsymbol{\sigma}_{i}^{\prime} & =\sum_{1 \leq j \leq l-1, i \neq j} \mathbb{R}_{\geq 0} e_{j}+\mathbb{R}_{\geq 0}\left(\sum_{i=1}^{l-1}\left(\mu_{i}-\mu_{l}\right) e_{i}\right),
\end{aligned}
$$

for $1 \leq i \leq l-1$. Then $h^{\ddagger} \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\sharp}, \mathbb{R}\right)$ and hence $D_{h^{\ddagger}}+q^{*}\left(\bar{H}_{l}-t F\right)$ on $\mathbb{T}_{\mathrm{N}}\left(\boldsymbol{\Sigma}^{\sharp}, \mathcal{L}\right)$ is the positive part of the Zariski-decomposition.

On the other hand, let us consider the toric blowup $X \rightarrow \mathbb{P}\left(\mathcal{H}_{\bullet}\right)$ along $E=$ $\sum E_{i}$ associated with a finite subdivision $\boldsymbol{\Lambda}$ of $\boldsymbol{\sigma}_{\natural}$. Then, by $\mathbf{2 . 1 3}, X$ is isomorphic to the toric bundle $\mathbb{T}_{N}\left(\boldsymbol{\Sigma}^{\prime}, \mathcal{L}\right)$ over Z for a fan $\boldsymbol{\Sigma}^{\prime}$ defined as follows: Let us define $\mathbf{h} \in \operatorname{SF}_{\mathrm{N}}\left(\boldsymbol{\Sigma}_{l}, \mathbb{Z}\right) \otimes \mathrm{N}^{\natural}$ by

$$
\mathbf{h}(v)= \begin{cases}e_{i}^{\natural}, & \text { if } v=w_{i} \quad \text { for } \quad 1 \leq i \leq l-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $\boldsymbol{\Sigma}^{\prime}=\left\{C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma}) \mid \boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \boldsymbol{\sigma} \in \boldsymbol{\Sigma}_{l}\right\}$, where $C_{\mathbf{h}}(\boldsymbol{\lambda}, \boldsymbol{\sigma})=\boldsymbol{\sigma} \cap \mathbf{h}^{-1}(\boldsymbol{\lambda})$.
We can identify $\square_{\mathrm{Nef}}(H-t F)$ with $\square_{\mathrm{Nef}}\left(\bar{H}_{l}-t F, h\right)$ by

$$
\boldsymbol{y} \mapsto m=y_{1} \delta_{1}+\sum_{i=2}^{l-1}\left(y_{i}-y_{i-1}\right) \delta_{i} .
$$

The dual $\mathrm{N}_{\mathbb{R}} \rightarrow \mathrm{N}_{\mathbb{R}}^{\natural}$ of the linear transformation coincides with \mathbf{h} over the cone $\boldsymbol{\sigma}_{b}:=\sum_{i=1}^{l} \mathbb{R}_{\geq 0} w_{i}$. Thus

$$
h^{\dagger}(\mathbf{h}(x))=h^{\ddagger}(x)
$$

for $x \in \boldsymbol{\sigma}_{b}$. Note that h^{\ddagger} is linear on $\boldsymbol{\sigma}_{i}^{\prime} \in \boldsymbol{\Sigma}^{\sharp}$. The set $\left\{\boldsymbol{\sigma}_{b} \cap \boldsymbol{\sigma}_{i}^{\prime} \mid 1 \leq i \leq l-1\right\}$ of cones generates a finite subdivision of $\boldsymbol{\sigma}_{b}$. We take $\boldsymbol{\Lambda}$ to be the corresponding subdivision of $\boldsymbol{\sigma}_{\natural}$ by \mathbf{h}. Then $h^{\dagger} \in \mathrm{SF}_{\boldsymbol{N}^{\natural}}(\boldsymbol{\Lambda}, \mathbb{R})$. Let $\boldsymbol{\Sigma}^{\prime}$ be the finite subdivision of $\boldsymbol{\Sigma}_{l}$ corresponding to $\boldsymbol{\Lambda}$. Then $\boldsymbol{\Sigma}^{\prime}$ is a finite subdivision of $\boldsymbol{\Sigma}^{\sharp}$. Here, $P^{\dagger}=D_{h^{\dagger}}+H-t F$ on X is equal to $D_{h^{\ddagger}}+q^{*}\left(\bar{H}_{l}-t F\right)$. Thus P^{\dagger} is the positive part of the Zariskidecomposition.

Now we are ready to prove the main result $\mathbf{3 . 6}$ of $\S \mathbf{3 . b}$.
Proof of 3.6. There is a connected analytic space Θ and a sequence of vector subbundles

$$
0=\widetilde{\mathcal{E}}_{0} \subset \widetilde{\mathcal{E}}_{1} \subset \widetilde{\mathcal{E}}_{2} \subset \cdots \subset \widetilde{\mathcal{E}}_{l}
$$

on $C \times \Theta$ satisfying the following conditions: let $\left(\mathcal{E}_{i}\right)_{\theta}$ be the restriction of $\widetilde{\mathcal{E}}$ to $C \times\{\theta\}$.
(1) $\widetilde{\mathcal{E}}_{i} / \widetilde{\mathcal{E}}_{i-1} \simeq p_{1}^{*}\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)$ for any $1 \leq i \leq l$ for the first projection p_{1};
(2) There is a point $0 \in \Theta$ such that the sequence $\left(\mathcal{E}_{i}\right)_{0}$ is split, i.e,

$$
\left(\mathcal{E}_{i}\right)_{0} \simeq \bigoplus_{k=1}^{i} \mathcal{E}_{k} / \mathcal{E}_{k-1}
$$

(3) There is a point $\theta \in \Theta$ such that $\left(\mathcal{E}_{i}\right)_{\theta}=\mathcal{E}_{i}$ for any i.

Let $\widetilde{S} \rightarrow C \times \Theta$ be the projective smooth morphism defined by

$$
\widetilde{S}=\mathbb{P}_{C \times \Theta}\left(\widetilde{\mathcal{E}}_{1} \subset \cdots \subset \widetilde{\mathcal{E}_{l}}\right)
$$

Then we have similar effective divisors \widetilde{E}_{k} for $1 \leq k \leq l-1$. We also have the toric blowing-up $\widetilde{f}: \widetilde{S}_{\boldsymbol{\Lambda}} \rightarrow \widetilde{S}$ associated with the subdivision $\boldsymbol{\Lambda}$ and $\widetilde{P}^{\dagger}=D_{h^{\dagger}}+\widetilde{f}^{*}(H-$ $t F)$ that is relatively nef over Θ. Let $\widetilde{\Gamma}_{v}$ be the prime divisor of $\widetilde{S}_{\boldsymbol{\Lambda}}$ associated with $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$. Here the restrictions of \widetilde{P}^{\dagger} and $\widetilde{\Gamma}_{v}$ to the fiber over $\theta \in \Theta$ coincide with P^{\dagger} and Γ_{v}, respectively. The restriction of \widetilde{P}^{\dagger} to the fiber over 0 is the positive part of a Zariski-decomposition by 3.12. In particular, P^{\dagger} is nef and big and the restriction of P^{\dagger} to Γ_{v} is not big for any $v \in \operatorname{Ver}(\boldsymbol{\Lambda})$, by III, 3.7. Again by III, 3.7, we infer that P^{\dagger} is the positive part of the Zariski-decomposition of $H-t F$.

§4. Normalized tautological divisors

§4.a. Projectively flatness and semi-stability. We shall prove the following theorem which may be well-known. It is derived from the study of stable vector bundles and Einstein-Hermitian metrics by Narasimhan and Seshadri [107], Mehta and Ramanathan [78], [79], Donaldson [12], Uhlenbeck and Yau [142], and Bando and Siu [3].
4.1. Theorem Let \mathcal{E} be a reflexive sheaf of rank r on a non-singular complex projective variety X of dimension d. Then the following three conditions are equivalent:
(1) \mathcal{E} is locally free and the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is nef;
(2) \mathcal{E} is A-semi-stable and

$$
\left(c_{2}(\mathcal{E})-\frac{r-1}{2 r} c_{1}^{2}(\mathcal{E})\right) \cdot A^{d-2}=0
$$

for an ample divisor A;
(3) \mathcal{E} is locally free and there is a filtration of vector subbundles

$$
0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{l}=\mathcal{E}
$$

such that $\mathcal{E}_{i} / \mathcal{E}_{i-1}$ are projectively flat and the averaged first Chern classes $\mu\left(\mathcal{E}_{i} / \mathcal{E}_{i-1}\right)$ are numerically equivalent to $\mu(\mathcal{E})$ for any i.
Here, a vector bundle \mathcal{E} is called projectively flat if it admits a projectively flat Hermitian metric h, namely, the curvature tensor Θ_{h} is written by

$$
\Theta_{h}=\omega \cdot \operatorname{id}_{\mathcal{E}}
$$

for a 2 -form ω, as an $\mathcal{E} n d(\mathcal{E})$-valued $C^{\infty}-2$-form. We need some preparations for the proof.

Let $\mathrm{U}(r)$ be the unitary group of degree r and let $\mathrm{PU}(r)$ be the quotient group $\mathrm{U}(r) / \mathrm{U}(1)$ by the center $\mathrm{U}(1) \simeq \mathrm{S}^{1}$. Let $\mathcal{O}_{X}^{\star} \times \mathrm{U}(r)$ be the direct product of the sheaf \mathcal{O}_{X}^{\star} of germs of holomorphic unit functions and the constant sheaf $\mathrm{U}(r)$. Let $\mathrm{GL}\left(r, \mathcal{O}_{X}\right)$ be the sheaf of germs of holomorphic $r \times r$ regular matrices and let $\mathcal{O}_{X}^{\star} \mathrm{U}(r)$ be the image of the natural homomorphism

$$
\mathcal{O}_{X}^{\star} \times \mathrm{U}(r) \rightarrow \mathrm{GL}\left(r, \mathcal{O}_{X}\right)
$$

Then we have an exact sequence:

$$
1 \rightarrow \mathrm{~S}^{1} \rightarrow \mathcal{O}_{X}^{\star} \times \mathrm{U}(r) \rightarrow \mathcal{O}_{X}^{\star} \mathrm{U}(r) \rightarrow 1
$$

in which the homomorphism from S^{1} is given by $s \mapsto\left(s^{-1}, s\right)$.
4.2. Lemma The image of the homomorphism

$$
\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right) \rightarrow \mathrm{H}^{1}\left(X, \operatorname{GL}\left(r, \mathcal{O}_{X}\right)\right)
$$

is regarded as the set of all the isomorphism classes of vector bundles \mathcal{E} of X of rank r admitting projectively flat Hermitian metrics.

Proof. Let (\mathcal{E}, h) be a projectively flat Hermitian vector bundle of rank r. Then there are an open covering $\left\{U_{\lambda}\right\}$ of X and positive-valued C^{∞}-functions a_{λ} on U_{λ} such that $a_{\lambda}^{-1} h$ is a flat metric on U_{λ}. Thus we may assume that there exist holomorphic sections

$$
e_{1}^{\lambda}, e_{2}^{\lambda}, \ldots, e_{r}^{\lambda} \in \mathrm{H}^{0}\left(U_{\lambda}, \mathcal{E}\right)
$$

such that, for any $1 \leq i, j \leq r$,

$$
h\left(e_{i}^{\lambda}, e_{j}^{\lambda}\right)=a_{\lambda} \delta_{i, j}
$$

where $\delta_{i, j}$ denotes Kronecker's δ. Let $T_{\lambda, \mu}$ be the transition matrix of \mathcal{E} with respect to the frame $\left\{\left(U_{\lambda}, e_{i}^{\lambda}\right)\right\}$:

$$
\left(e_{1}^{\lambda}, e_{2}^{\lambda}, \ldots, e_{r}^{\lambda}\right) \cdot T_{\lambda, \mu}=\left(e_{1}^{\mu}, e_{2}^{\mu}, \ldots, e_{r}^{\mu}\right)
$$

Then $T_{\lambda, \mu}$ are holomorphic $r \times r$ regular matrices and satisfy

$$
{ }^{\mathrm{t}} T_{\lambda, \mu} \overline{T_{\lambda, \mu}}=a_{\mu} a_{\lambda}^{-1} \cdot \mathrm{id} .
$$

Locally on $U_{\lambda} \cap U_{\mu}$, there is a holomorphic function u such that $a_{\mu} a_{\lambda}^{-1}=|u|^{2}$. Thus $u^{-1} T_{\lambda, \mu}$ is unitary. Hence $T_{\lambda, \mu} \in \mathrm{H}^{0}\left(U_{\lambda} \cap U_{\mu}, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right)$. Therefore $\mathcal{E} \in$ $\mathrm{H}^{1}\left(X, \mathrm{GL}\left(r, \mathcal{O}_{X}\right)\right)$ comes from $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right)$.

Next suppose that \mathcal{E} is contained in the image of $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right)$. Then, for a suitable frame $\left\{\left(U_{\lambda}, e_{i}^{\lambda}\right)\right\}$, the corresponding transition matrix $T_{\lambda, \mu}$ is contained in $\mathrm{H}^{0}\left(U_{\lambda} \cap U_{\mu}, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right)$. Thus

$$
{ }^{\mathrm{t}} T_{\lambda, \mu} \overline{T_{\lambda, \mu}}=v_{\lambda, \mu} \cdot \mathrm{id}
$$

for a positive-valued C^{∞}-function $v_{\lambda, \mu}$ on $U_{\lambda} \cap U_{\mu}$. By replacing the open covering $\left\{U_{\lambda}\right\}$ by a finer one, we may assume that there is a positive-valued C^{∞}-function a_{λ} on U_{λ} such that $v_{\lambda, \mu}=a_{\mu} a_{\lambda}^{-1}$. Let h_{λ} be the Hermitian metric of $\left.\mathcal{E}\right|_{U_{\lambda}}$ defined by

$$
h_{\lambda}\left(e_{i}^{\lambda}, e_{j}^{\lambda}\right)=a_{\lambda} \delta_{i, j} .
$$

Then $h_{\lambda}=h_{\mu}$ on $U_{\lambda} \cap U_{\mu}$. Hence we have a projectively flat metric on \mathcal{E}.
4.3. Corollary A vector bundle \mathcal{E} of rank r is projectively flat if and only if the associated \mathbb{P}^{r-1}-bundle $\pi: \mathbb{P}_{X}(\mathcal{E}) \rightarrow X$ is induced from a projective unitary representation $\pi_{1}(X) \rightarrow \mathrm{PU}(r)$.

Proof. There is a commutative diagram of exact sequences:

Here note that \mathcal{O}_{X}^{\star} is the center of both $\mathcal{O}_{X}^{\star} \mathrm{U}(r)$ and $\mathrm{GL}\left(r, \mathcal{O}_{X}\right)$. Let \mathcal{E} be an element of $\mathrm{H}^{1}\left(X, \operatorname{GL}\left(r, \mathcal{O}_{X}\right)\right)$ whose image in $\mathrm{H}^{1}\left(X, \operatorname{PGL}\left(r, \mathcal{O}_{X}\right)\right)$ is contained in the image of $\mathrm{H}^{1}(X, \mathrm{PU}(r))$. Then we can check \mathcal{E} comes from $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right)$ by a diagram chasing.
4.4. Lemma Let $Y \subset X$ be a non-singular ample divisor of a non-singular projective variety X of dimension $d \geq 3$. Let \mathcal{E}_{Y} be a vector bundle of Y and let \mathcal{L} be a line bundle of X such that \mathcal{E}_{Y} is projectively flat and $\operatorname{det} \mathcal{E}_{Y} \simeq \mathcal{L} \otimes \mathcal{O}_{Y}$. Then there is a projectively flat vector bundle \mathcal{E} of X satisfying $\operatorname{det} \mathcal{E} \simeq \mathcal{L}$ and $\mathcal{E} \otimes \mathcal{O}_{Y} \simeq \mathcal{E}_{Y}$.

Proof. We shall consider the following two homomorphisms:

$$
\operatorname{det}: \mathcal{O}_{X}^{\star} \mathrm{U}(r) \rightarrow \mathcal{O}_{X}^{\star}, \quad \text { and } \quad p: \mathcal{O}_{X}^{\star} \mathrm{U}(r) \rightarrow \mathrm{PU}(r)
$$

Let $\boldsymbol{\mu}_{r} \subset \mathbb{C}^{\star}$ be the group of r-th roots of unity. Then we have an exact sequence

$$
1 \rightarrow \boldsymbol{\mu}_{r} \rightarrow \mathcal{O}_{X}^{\star} \mathrm{U}(r) \xrightarrow{(\operatorname{det}, p)} \mathcal{O}_{X}^{\star} \times \mathrm{PU}(r) \rightarrow 1,
$$

which induces an exact sequence

$$
\mathrm{H}^{1}\left(X, \boldsymbol{\mu}_{r}\right) \rightarrow \mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star} \mathrm{U}(r)\right) \rightarrow \mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star}\right) \times \mathrm{H}^{1}(X, \mathrm{PU}(r)) \rightarrow \mathrm{H}^{2}\left(X, \boldsymbol{\mu}_{r}\right)
$$

By the weak Lefschetz theorem, we have isomorphisms

$$
\mathrm{H}^{1}\left(X, \boldsymbol{\mu}_{r}\right) \simeq \mathrm{H}^{1}\left(Y, \boldsymbol{\mu}_{r}\right), \quad \mathrm{H}^{1}(X, \mathrm{PU}(r)) \simeq \mathrm{H}^{1}(Y, \mathrm{PU}(r))
$$

and injective homomorphisms

$$
\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\star}\right) \hookrightarrow \mathrm{H}^{1}\left(Y, \mathcal{O}_{Y}^{\star}\right), \quad \mathrm{H}^{2}\left(X, \boldsymbol{\mu}_{r}\right) \hookrightarrow \mathrm{H}^{2}\left(Y, \boldsymbol{\mu}_{r}\right)
$$

Thus we can find \mathcal{E} by a diagram chasing.
4.5. Lemma Let \mathcal{E} be an A-stable reflexive sheaf with $\Delta_{2}(\mathcal{E}) \cdot A^{d-2}=0$ for an ample divisor A. Then \mathcal{E} is a projectively flat vector bundle.

This is proved in [3, Corollary 3] in the Kähler situation. But here, we give another proof by using the argument of $[\mathbf{7 9}, 5.1]$ which is valid only in the projective situation.

Proof. If \mathcal{E} is locally free, then it follows from works of Donaldson [12], Mehta-Ramanathan [78], [79] as well as Uhlenbeck-Yau [142]. Thus we have only to prove that \mathcal{E} is locally free in the case $d \geq 3$. Let S be the complete intersection of smooth divisors $A_{1}, A_{2}, \ldots, A_{d-2}$ contained in the linear system $|m A|$ for a sufficiently large $m \in \mathbb{N}$. Then $\left.\mathcal{E}\right|_{S}=\mathcal{E} \otimes \mathcal{O}_{S}$ is a locally free sheaf and it is A-stable by [79]. Hence $\left.\mathcal{E}\right|_{S}$ is a projectively flat vector bundle. By 4.4, there is a projectively flat vector bundle \mathcal{E}^{\prime} such that

$$
\operatorname{det} \mathcal{E}^{\prime} \simeq \operatorname{det} \mathcal{E}, \quad \mathcal{E}^{\prime} \otimes \mathcal{O}_{S} \simeq \mathcal{E} \otimes \mathcal{O}_{S}
$$

By the argument of $[\mathbf{7 9}, 5.1]$, we have an isomorphism $\mathcal{E} \simeq \mathcal{E}^{\prime}$.
4.6. Proposition Let \mathcal{E} be an A-semi-stable reflexive sheaf with $\Delta_{2}(\mathcal{E}) \cdot A^{d-2}=$ 0 for an ample divisor A. Then \mathcal{E} is locally free.

Proof. We shall prove by induction on $\operatorname{rank} \mathcal{E}$. We may assume \mathcal{E} is not A-stable by 4.5. Then there is an exact sequence

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 0
$$

where \mathcal{F} and \mathcal{G} are non-zero torsion-free sheaves satisfying $\mu_{A}(\mathcal{F})=\mu_{A}(\mathcal{E})=$ $\mu_{A}(\mathcal{G})$. Thus \mathcal{F} and the double-dual $\mathcal{G}^{\wedge}=\mathcal{G}^{\vee \vee}$ of \mathcal{G} are also A-semi-stable sheaves. In particular, Bogomolov's inequalities

$$
\Delta_{2}(\mathcal{F}) \cdot A^{d-2} \geq 0, \quad \Delta_{2}\left(\mathcal{G}^{\wedge}\right) \cdot A^{d-2} \geq 0
$$

hold. Note that $\Delta_{2}(\mathcal{G})-\Delta_{2}\left(\mathcal{G}^{\wedge}\right)$ is represented by an effective algebraic cycle of codimension two supported in $\operatorname{Supp} \mathcal{G}^{\wedge} / \mathcal{G}$. By the formula (II-9), we infer that

$$
\Delta_{2}(\mathcal{G})=\Delta_{2}\left(\mathcal{G}^{\wedge}\right), \quad \Delta_{2}(\mathcal{F}) \cdot A^{d-2}=\Delta_{2}\left(\mathcal{G}^{\wedge}\right) \cdot A^{d-2}=0
$$

and $\mu(\mathcal{F})=\mu(\mathcal{G})=\mu(\mathcal{E})$. By the induction, \mathcal{F} and \mathcal{G}^{\wedge} are locally free. Suppose that $\mathcal{G} \neq \mathcal{G}^{\wedge}$. Then \mathcal{E} defines a non-zero element of $\mathrm{H}^{0}\left(X, \mathcal{E} x t^{1}(\mathcal{G}, \mathcal{F})\right)$. On the other hand, we have $\mathcal{E} x t^{2}\left(\mathcal{G}^{\wedge} / \mathcal{G}, \mathcal{F}\right)=0$, since $\operatorname{codim} \operatorname{Supp} \mathcal{G}^{\wedge} / \mathcal{G} \geq 3$. It implies $\mathcal{E} x t^{1}(\mathcal{G}, \mathcal{F})=0$, a contradiction. Hence $\mathcal{G}=\mathcal{G}^{\wedge}$ and \mathcal{E} is also locally free.

Proof of 4.1. (1) $\Rightarrow(2)$: Let $C \subset X$ be a smooth projective curve. Then the normalized tautological divisor of the restriction $\left.\mathcal{E}\right|_{C}$ is also nef. Thus $\left.\mathcal{E}\right|_{C}$ is semi-stable. Hence \mathcal{E} is A-semi-stable and Bogomolov's inequality $\Delta_{2}(\mathcal{E}) \cdot A^{d-2} \geq 0$ holds for any ample divisor A. On the other hand,

$$
0 \leq \Lambda_{\mathcal{E}}^{r+1} \cdot \pi^{*} A^{d-2}=-\Delta_{2}(\mathcal{E}) \cdot A^{d-2}
$$

Thus $\Delta_{2}(\mathcal{E})=0$ in $\mathrm{N}^{2}(X)$.
(2) $\Rightarrow(3)$: If \mathcal{E} is A-stable, then \mathcal{E} is a projectively flat vector bundle by 4.5. Otherwise, there is an exact sequence: $0 \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 0$ such that \mathcal{F} and \mathcal{G} are non-zero torsion-free sheaf and $\mu_{A}(\mathcal{E})=\mu_{A}(\mathcal{F})=\mu_{A}(\mathcal{G})$. By the same argument as in the proof of 4.6, we infer that \mathcal{F} and \mathcal{G} are also A-semi-stable vector bundles with $\Delta_{2}(\mathcal{F}) \cdot A^{d-2}=\Delta_{2}(\mathcal{G}) \cdot A^{d-2}=0$. Thus we have a filtration satisfying the condition (3).
$(3) \Rightarrow(1)$: If \mathcal{E} is projectively flat, then $f^{*} \mathcal{E}$ is semi-stable for any morphism $f: C \rightarrow X$ from a non-singular projective curve. Thus if \mathcal{E} has a filtration satisfying the condition (3), then $f^{*} \mathcal{E}$ is also semi-stable and $\Lambda_{\mathcal{E}}$ is nef.

Concerning with the invariant ν for nef \mathbb{R}-divisors defined in Chapter V, $\S \mathbf{2 . a}$, we have the following:
4.7. Corollary If $\Lambda_{\mathcal{E}}$ is nef, then $\nu\left(\Lambda_{\mathcal{E}}\right)=r-1$.
§4.b. The case of vector bundles of rank two. We next consider a weaker condition: $\Lambda_{\mathcal{E}}$ is pseudo-effective. We have the following result when $\operatorname{rank} \mathcal{E}=2$.
4.8. Theorem Let \mathcal{E} be an A-semi-stable vector bundle of rank two on a nonsingular complex projective variety X of dimension $d \geq 2$ for an ample divisor A. Suppose that the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is pseudo-effective. Then $\Lambda_{\mathcal{E}}$ is nef except for the following three cases:
(A) There exist divisors M_{1}, M_{2} such that

$$
M_{1} \cdot A^{d-1}=M_{2} \cdot A^{d-1} \quad \text { and } \quad \mathcal{E} \simeq \mathcal{O}_{X}\left(M_{1}\right) \oplus \mathcal{O}_{X}\left(M_{2}\right)
$$

(B) There exist an unramified double-covering $\tau: Y \rightarrow X$ and a divisor M of Y such that

$$
\mathcal{E} \simeq \tau_{*} \mathcal{O}_{Y}(M)
$$

(C) There is an exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(L_{1}\right) \rightarrow \mathcal{E} \rightarrow \mathcal{I} \mathcal{O}_{X}\left(L_{2}\right) \rightarrow 0
$$

where \mathcal{I} is an ideal sheaf with $\operatorname{codim} \operatorname{Supp} \mathcal{O}_{X} / \mathcal{I}=2$ and the divisor L_{1} is numerically equivalent to L_{2}.

Remark Here $\Lambda=\Lambda_{\mathcal{E}}$ is pseudo-effective in these exceptional cases. Further, Λ is nef if and only if $M_{1} \approx M_{2}$ in the case (A), and $M \approx \sigma^{*} M$ for the non-trivial involution $\sigma: Y \rightarrow Y$ over X in the case (B); Λ is not nef in the case (C).
4.9. Corollary If \mathcal{E} is an A-stable vector bundle of rank two for an ample divisor A such that the normalized tautological divisor $\Lambda_{\mathcal{E}}$ is pseudo-effective. Then $\Lambda_{\mathcal{E}}$ is nef except for the case (B) in 4.8.

The idea of our proof of 4.8 is to consider the σ-decomposition of Λ. We shall prove 4.8 after discussing exceptional cases.

Let X be a non-singular projective variety of dimension d and let A be an ample divisor.
4.10. Lemma Let M_{1}, M_{2} be divisors of X with $M_{1} \cdot A^{d-1}=M_{2} \cdot A^{d-1}$. Then the vector bundle $\mathcal{E}=\mathcal{O}_{X}\left(M_{1}\right) \oplus \mathcal{O}_{X}\left(M_{2}\right)$ is A-semi-stable and $\left|2 \Lambda_{\mathcal{E}}\right| \neq \emptyset$. The \mathbb{Q}-divisor $\Lambda_{\mathcal{E}}$ is nef if and only if $M_{1} \approx M_{2}$.

Proof. If $\mathcal{L} \subset \mathcal{E}$ is an invertible subsheaf, then it is a subsheaf of $\mathcal{O}_{X}\left(M_{1}\right)$ or $\mathcal{O}_{X}\left(M_{2}\right)$. Thus $\mathcal{L} \cdot A^{d-1} \leq(1 / 2) c_{1}(\mathcal{E}) \cdot A^{d-1}$. The symmetric tensor product $\operatorname{Sym}^{2} \mathcal{E}$ contains $\mathcal{O}_{X}\left(M_{1}+M_{2}\right) \simeq \operatorname{det} \mathcal{E}$ as a direct summand. Hence $\left|2 \Lambda_{\mathcal{E}}\right| \neq \emptyset$. If $M_{1} \approx M_{2}$, then $\Lambda_{\mathcal{E}}$ is nef. Conversely if $\Lambda_{\mathcal{E}}$ is nef, then $M_{1}-M_{2} \approx 0$ by 4.1, since

$$
\Delta_{2}(\mathcal{E})=-\frac{1}{4}\left(M_{1}-M_{2}\right)^{2}=0
$$

4.11. Lemma Let $\tau: Y \rightarrow X$ be an unramified double-covering from a nonsingular variety and let M be a divisor of Y. Then, for the vector bundle $\mathcal{E}=$ $\tau_{*} \mathcal{O}_{Y}(M)$, there is an isomorphism

$$
\tau^{*} \mathcal{E} \simeq \mathcal{O}_{Y}(M) \oplus \mathcal{O}_{Y}\left(\sigma^{*} M\right)
$$

where $\sigma: Y \rightarrow Y$ is the non-trivial involution over X. In particular, \mathcal{E} is semistable with respect to any ample divisor of X and $\Lambda_{\mathcal{E}}$ is pseudo-effective. Further, $\Lambda_{\mathcal{E}}$ is nef if and only if $M \approx \sigma^{*} M$.

Proof. Let us consider the natural homomorphism $\phi: \tau^{*} \tau_{*} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}$. Then $\phi+\sigma^{*} \phi$ gives an isomorphism

$$
\tau^{*} \tau_{*} \mathcal{O}_{Y} \simeq \mathcal{O}_{Y} \oplus \mathcal{O}_{Y}
$$

Similarly from the natural homomorphism $\varphi: \tau^{*} \tau_{*} \mathcal{O}_{Y}(M) \rightarrow \mathcal{O}_{Y}(M)$, we have the homomorphism

$$
\varphi+\sigma^{*} \varphi: \tau^{*} \mathcal{E}=\tau^{*} \tau_{*} \mathcal{O}_{Y}(M) \rightarrow \mathcal{O}_{Y}(M) \oplus \mathcal{O}_{Y}\left(\sigma^{*} M\right)
$$

Since $\mathcal{O}_{Y}(M)$ is an invertible sheaf, we infer that the homomorphism also is an isomorphism by considering it locally over X.
4.12. Lemma Let Z be a closed subspace locally of complete intersection of X with $\operatorname{codim} Z=2$ and let \mathcal{L} be an invertible sheaf of X. If there exists a locally free sheaf \mathcal{E} with an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \mathcal{L} \rightarrow 0 \tag{IV-11}
\end{equation*}
$$

for the defining ideal sheaf \mathcal{I}_{Z} of Z, then

$$
\begin{equation*}
\mathcal{E} x t^{2}\left(\mathcal{O}_{Z}, \mathcal{L}^{-1}\right) \simeq \mathcal{O}_{Z} \tag{IV-12}
\end{equation*}
$$

Conversely, if the isomorphism (IV-12) exists, then there is a naturally defined cohomology class $\delta(Z, \mathcal{L}) \in \mathrm{H}^{2}\left(X, \mathcal{L}^{-1}\right)$ such that $\delta(Z, \mathcal{L})=0$ if and only if there is a locally free sheaf \mathcal{E} with the exact sequence (IV-11).

Proof. Suppose that the locally free sheaf \mathcal{E} exists. Then (IV-11) induces a long exact sequence

$$
0 \rightarrow \mathcal{H o m}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right) \rightarrow \mathcal{H o m}\left(\mathcal{E}, \mathcal{O}_{X}\right) \rightarrow \mathcal{H o m}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \rightarrow \mathcal{E} x t^{1}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right) \rightarrow 0
$$

Therefore

$$
\mathcal{O}_{Z} \simeq \mathcal{E} x t^{1}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right) \simeq \mathcal{E} x t^{2}\left(\mathcal{O}_{Z}, \mathcal{L}^{-1}\right)
$$

Next suppose the isomorphism (IV-12) exists. The spectral sequence

$$
E_{2}^{p, q}=\mathrm{H}^{p}\left(X, \mathcal{E} x t^{q}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right)\right) \Longrightarrow E^{p+q}=\operatorname{Ext}^{p+q}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right)
$$

induces an exact sequence

$$
0 \rightarrow \mathrm{H}^{1}\left(X, \mathcal{L}^{-1}\right) \rightarrow \operatorname{Ext}^{1}\left(\mathcal{I}_{Z} \mathcal{L}, \mathcal{O}_{X}\right) \rightarrow \mathrm{H}^{0}\left(Z, \mathcal{O}_{Z}\right) \rightarrow \mathrm{H}^{2}\left(X, \mathcal{L}^{-1}\right)
$$

Let $\delta=\delta(Z, L)$ be the image of $1 \in \mathrm{H}^{0}\left(Z, \mathcal{O}_{Z}\right)$ under the right homomorphism. Then $\delta=0$ if and only if there is an extension of sheaves

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \mathcal{L} \rightarrow 0
$$

such that $\mathcal{E} x t^{1}\left(\mathcal{E}, \mathcal{O}_{X}\right)=0$. It remains to show that \mathcal{E} is locally free. We may replace X by an open neighborhood of an arbitrary point. Thus we may assume that there is an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{\oplus 2} \rightarrow \mathcal{I}_{Z} \mathcal{L} \rightarrow 0
$$

since Z is locally a complete intersection. Pulling back the sequence by $\mathcal{E} \rightarrow \mathcal{I}_{Z} \mathcal{L}$, we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \widetilde{\mathcal{E}} \rightarrow \mathcal{E} \rightarrow 0
$$

which is locally split. By the snake lemma, we infer that $\widetilde{\mathcal{E}}$ is locally free. Hence \mathcal{E} is locally free.

Example Let X be a non-singular projective surface and let x be a point. Suppose that the geometric genus $p_{g}(X)=\operatorname{dim} \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right)=0$. Then there is a locally free sheaf \mathcal{E} with an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{E} \rightarrow \mathfrak{m}_{x} \rightarrow 0
$$

for the maximal ideal \mathfrak{m}_{x} at x.

Let $\tau: Y \rightarrow X$ be a generically finite proper surjective morphism from a variety Y with only Gorenstein singularities and let $\nu: V \rightarrow Y$ be the normalization. By duality, there are trace maps $\nu_{*} \omega_{V} \rightarrow \omega_{Y}$ and $\tau_{*} \omega_{Y} \rightarrow \omega_{X}$. The first trace map induces an effective divisor C of V, which is called the conductor of Y, such that $K_{V}=\nu^{*} K_{Y}-C$. If $C=0$, then ν is an isomorphism. The pullback of differential forms induces a homomorphism $\nu^{*} \tau^{*} \omega_{X} \rightarrow \omega_{V}$, which gives rise to a splitting of the composite of trace maps above. Thus there exist an effective divisor $R_{V / X}$ of V and an effective Cartier divisor $R_{Y / X}$ of Y such that

$$
K_{V}=\nu^{*} \tau^{*} K_{X}+R_{V / X}, \quad K_{Y}=\tau^{*} K_{X}+R_{Y / X}, \quad R_{V / X}=\tau^{*} R_{Y / X}-C .
$$

The divisors $R_{Y / X}$ and $R_{V / X}$ are called the ramification divisors of $Y \rightarrow X$ and $V \rightarrow X$, respectively.

4.13. Lemma If $R_{Y / X}=0$, then τ is a finite étale morphism.

Proof. Since the ramification divisor $R_{V / X}$ is effective, the conductor C is zero. Hence Y is normal. Let $Y \rightarrow W \rightarrow X$ be the Stein factorization of τ, where we write $\mu: Y \rightarrow W$ and $p: W \rightarrow X$. Then the dualizing sheaf ω_{W} is the double-dual of $\mu_{*} \omega_{Y}$. Since $R_{Y / X}=0$, we have isomorphisms $\omega_{W} \simeq p^{*} \omega_{X}$ and $\omega_{Y} \simeq \mu^{*} \omega_{W}$. Thus $W \rightarrow X$ is étale, since p is a finite morphism. In particular, W is non-singular. Consequently, the birational morphism $Y \rightarrow W$ is isomorphic.

Proof of 4.8. Bogomolov's inequality $\Delta_{2}(\mathcal{E}) \cdot A^{d-2} \geq 0$ attains the equality if and only if $\Lambda=\Lambda_{\mathcal{E}}$ is nef by 4.1. We have only to show the equality $\Delta_{2}(\mathcal{E}) \cdot A^{d-2}=0$ except for the three exceptional cases. Let $\Lambda=P+N$ be the σ-decomposition of the pseudo-effective divisor Λ (cf. Chapter III, $\S \mathbf{1}$). Then there exist an \mathbb{R}-divisor D of X and a real number b such that

$$
N \approx b \Lambda+\pi^{*} D \quad \text { and } \quad P \approx(1-b) \Lambda-\pi^{*} D
$$

We have $P \cdot F \geq 0$ and $N \cdot F \geq 0$ for a fiber F of the \mathbb{P}^{1}-bundle $\pi: \mathbb{P}=\mathbb{P}_{X}(\mathcal{E}) \rightarrow X$. Thus $0 \leq b \leq 1$. Let $A_{1}, A_{2}, \ldots, A_{d-1}$ be general members of the linear system $|m A|$ for a sufficiently large $m \in \mathbb{N}$. Then $\left.\mathcal{E}\right|_{C}$ is semi-stable for the non-singular curve $C=A_{1} \cap A_{2} \cap \cdots \cap A_{d-1}$ by [78]. In particular, if $\left.\left(\Lambda+\pi^{*} E\right)\right|_{\pi^{-1}(C)}$ is pseudo-effective for an \mathbb{R}-divisor E of X, then $E \cdot A^{d-1} \geq 0$. Note that $\left.N\right|_{\pi^{-1}(C)}$ and $\left.P\right|_{\pi^{-1}(C)}$ are pseudo-effective. Thus $D \cdot A^{d-1} \geq 0$ in the case $b>0$, and $D \cdot A^{d-1} \leq 0$ in the case $b<1$.

First suppose that $b<1$. Since P is movable, P^{2} is regarded as a pseudoeffective \mathbb{R}-cycle of codimension two. Therefore

$$
\pi_{*}\left(P^{2}\right)=-2(1-b) D
$$

is a pseudo-effective \mathbb{R}-divisor. Thus $-D$ is pseudo-effective. If $b>0$ in addition, then $D \approx 0$ since $D \cdot A^{d-1}=0$. Hence $N \approx b \Lambda$ and $P \approx(1-b) \Lambda$. This is a contradiction. Therefore $b=0$. Thus $-N \approx-\pi^{*} D$ is pseudo-effective. Hence $N=0$ and Λ is movable. Since $\Lambda^{2}=-\pi^{*} \Delta_{2}(\mathcal{E})$, we have

$$
-\Delta_{2}(\mathcal{E})=\pi_{*}\left(H \cdot \Lambda^{2}\right)=\pi_{*}\left(\left(H+m \pi^{*} A\right) \cdot \Lambda^{2}\right)
$$

for any integer m. If $m>0$ is large, then $H+m \pi^{*} A$ is ample and thus $(H+$ $\left.m \pi^{*} A\right) \cdot \Lambda^{2}$ is pseudo-effective. Hence $-\Delta_{2}(\mathcal{E})$ is pseudo-effective. By Bogomolov's inequality, we have $\Delta_{2}(\mathcal{E}) \cdot A^{d-2}=0$.

Next suppose that $b=1$. Since $P \approx-\pi^{*} D$ is movable, so is $-D$. On the other hand, $b>0$ implies $D \cdot A^{d-1} \geq 0$. Hence $D \approx 0$ and $P \approx 0$. Let

$$
N=\sum \sigma_{i} \Gamma_{i}
$$

be the prime decomposition. For each i, there are non-negative integers b_{i} and \mathbb{Q}-divisors D_{i} such that

$$
\Gamma_{i} \sim_{\mathbb{Q}} b_{i} \Lambda+\pi^{*} D_{i}
$$

Since $\Lambda-\sigma_{i} \pi^{*} D_{i}$ is pseudo-effective and since $\left.\mathcal{E}\right|_{C}$ is semi-stable, we have $D_{i} \cdot A^{d-1} \leq$ 0 . Hence $b_{i}>0$. Moreover, $D_{i} \cdot A^{d-1}=0$, since $D \sim_{\mathbb{Q}} \sum \sigma_{i} D_{i} \approx 0$. We consider the following three cases:
(I) $b_{i} \geq 2$ for some i;
(II) N has at least two irreducible components and $b_{i}=1$ for any Γ_{i};
(III) N has only one irreducible component Γ_{1} and $b_{1}=1$.

Let Y be an irreducible component Γ_{1}. Then $\pi: Y \rightarrow X$ is a generically finite surjective morphism of degree b_{1}. By adjunction, we have

$$
K_{Y}=\pi^{*} K_{X}+\left.\left(\left(b_{1}-2\right) \Lambda+\pi^{*} D_{1}\right)\right|_{Y}
$$

Therefore $\left.R_{Y / X} \sim\left(\left(b_{1}-2\right) \Lambda+\pi^{*} D_{1}\right)\right|_{Y}$. Since $R_{Y / X}$ is effective,

$$
\pi_{*}\left(\left.\left(\left(b_{1}-2\right) \Lambda+\pi^{*} D_{1}\right)\right|_{Y}\right)=\pi_{*}\left(\left(\left(b_{1}-2\right) \Lambda+\pi^{*} D_{1}\right) \cdot\left(b_{1} \Lambda+\pi^{*} D_{1}\right)\right)=2\left(b_{1}-1\right) D_{1}
$$

is an effective divisor of X.
We consider the case (I). We may assume that $b_{1} \geq 2$. Then $D_{1} \sim_{\mathbb{Q}} 0$, since $D_{1} \cdot A^{d-1}=0$. Hence $Y \sim_{\mathbb{Q}} b_{1} \Lambda$. By the definition of σ-decomposition, we have

$$
\sigma_{i}=\sigma_{\Gamma_{i}}(\Lambda)=\frac{1}{b_{1}} \sigma_{\Gamma_{i}}(Y)
$$

Thus N has only one irreducible component Y and $N=\left(1 / b_{1}\right) Y$. Furthermore, $\left.\left(b_{1}-2\right) \Lambda\right|_{Y} \sim_{\mathbb{Q}} R_{Y / X} \geq 0$. Let us choose a positive integer m such that $H+m \pi^{*} A$ is ample. Then

$$
\pi_{*}\left(\left(H+m \pi^{*} A\right) \cdot\left(\left(b_{1}-2\right) \Lambda\right) \cdot Y\right)=b_{1}\left(b_{1}-2\right) \pi_{*}\left(H \cdot \Lambda^{2}\right)=-b_{1}\left(b_{1}-2\right) \Delta_{2}(\mathcal{E})
$$

is also a pseudo-effective cycle. Hence by Bogomolov's inequality, if $b_{1} \geq 3$, then $\Delta_{2}(\mathcal{E})=0$ and hence Λ is nef by 4.1. This is a contradiction to: $P \approx 0$. Therefore, $b_{1}=2$ and thus $R_{Y / X}=0$. Hence $\pi: Y \rightarrow X$ is an étale double-covering by 4.13. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}}(H-Y) \rightarrow \mathcal{O}_{\mathbb{P}}(H) \rightarrow \mathcal{O}_{Y}(H) \rightarrow 0
$$

we infer that $\mathcal{E} \simeq \pi_{*} \mathcal{O}_{Y}(H)$. Thus \mathcal{E} is of type (B).
Next we consider the case (II). Let Γ_{1}, Γ_{2} be two irreducible components of N. Then $\pi_{*}\left(\Gamma_{1} \cdot \Gamma_{2}\right)=D_{1}+D_{2}$, since $b_{1}=b_{2}=1$. Thus $D_{1}+D_{2}$ is effective with $\left(D_{1}+D_{2}\right) \cdot A^{d-1}=0$. Therefore, $D_{1}+D_{2} \sim 0$ and $\Gamma_{1}+\Gamma_{2} \sim 2 \Lambda$. Hence N has only
two components and $\sigma_{1}=\sigma_{2}=1 / 2$. We infer that every component of $\Gamma_{1} \cap \Gamma_{2}$ is contracted by π from the vanishing $\pi_{*}\left(\Gamma_{1} \cdot \Gamma_{2}\right)=0$. Therefore

$$
\pi_{*}\left(H \cdot \Gamma_{1} \cdot \Gamma_{2}\right)=-\Delta_{2}(\mathcal{E})+D_{1} \cdot D_{2}=-\Delta_{2}(\mathcal{E})-D_{1}^{2}
$$

is an effective cycle. On the other hand,

$$
\left.R_{\Gamma_{1} / X} \sim\left(-\Lambda+\pi^{*} D_{1}\right)\right|_{\Gamma_{1}}
$$

Thus we have also an effective cycle

$$
\pi_{*}\left(H \cdot R_{\Gamma_{1} / X}\right)=\pi_{*}\left(H \cdot\left(-\Lambda+\pi^{*} D_{1}\right) \cdot\left(\Lambda+\pi^{*} D_{1}\right)\right)=D_{1}^{2}+\Delta_{2}(\mathcal{E}) .
$$

Hence $-\Delta_{2}(\mathcal{E})=D_{1}^{2}$ in $\mathrm{N}^{2}(X)$ and $\Gamma_{1} \cap \Gamma_{2}=\emptyset$. In particular, Γ_{1} and Γ_{2} are mutually disjoint sections of the \mathbb{P}^{1}-bundle. Therefore

$$
\mathcal{E} \simeq \pi_{*} \mathcal{O}_{\Gamma_{1}}(H) \oplus \pi_{*} \mathcal{O}_{\Gamma_{2}}(H) .
$$

Thus this is of type (A).
Finally, we treat the case (III). For the unique component $Y=\Gamma_{1}$, there is a divisor L_{1} such that $Y \sim H-\pi^{*} L_{1}$. Since $N=\sigma_{1} Y \approx \Lambda$, we have $\sigma_{1}=1$ and $\operatorname{det} \mathcal{E} \approx 2 L_{1}$. Note that

$$
R=\left.R_{Y / X} \sim\left(-H+\pi^{*}\left(-L_{1}+\operatorname{det} \mathcal{E}\right)\right)\right|_{Y} .
$$

By applying π_{*} to the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}}(H-Y) \rightarrow \mathcal{O}_{\mathbb{P}}(H) \rightarrow \mathcal{O}_{Y}(H) \rightarrow 0
$$

we have another exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(L_{1}\right) \rightarrow \mathcal{E} \rightarrow \mathcal{I} \mathcal{O}_{X}\left(L_{2}\right) \rightarrow 0
$$

where L_{2} is a divisor linearly equivalent to $\operatorname{det} \mathcal{E}-L_{1}$ and $\mathcal{I}=\pi_{*} \mathcal{O}_{Y}(-R)$. Therefore \mathcal{E} is of type (C). This completes the proof.

Concerning with the invariant κ_{σ} for pseudo-effective \mathbb{R}-divisors defined in Chapter V, §2.b, we have the following:
4.14. Corollary If \mathcal{E} is an A-semi-stable vector bundle of rank two, then

$$
\kappa_{\sigma}\left(\Lambda_{\mathcal{E}}\right) \leq 1
$$

Proof. We may assume that $\Lambda=\Lambda_{\mathcal{E}}$ is pseudo-effective. By 4.7, we may assume further that Λ is not nef. By the proof of 4.8, the positive part P of the σ-decomposition of Λ is numerically trivial and hence $\Lambda \approx N$. Thus $\kappa_{\sigma}(\Lambda)=0$.
4.15. Theorem The tautological divisor of the tangent bundle of a K3 surface is not pseudo-effective.

Proof. For the tangent bundle $\mathcal{E}=T_{X}$ of a K3 surface $X, \operatorname{det}(\mathcal{E})=\mathcal{O}_{X}$ and $c_{2}(\mathcal{E})=24$. By $[\mathbf{1 5 0}], \mathcal{E}$ is A-stable for any ample divisor A. Since X is simply connected, $\Lambda_{\mathcal{E}}=H_{\mathcal{E}}$ is not pseudo-effective by $\mathbf{4 . 9}$.

Remark Kobayashi proved $\kappa(\Lambda)=-\infty$ in [66, Theorem C]. On the other hand, the tangent bundle is generically semi-positive in the sense of Miyaoka [81].

Problem For a K3 surface X, are there infinitely many prime divisors $\Gamma \subset$ $\mathbb{P}_{X}\left(T_{X}\right)$ such that $\left.H\right|_{\Gamma}$ are not pseudo-effective?
Actually, for some K3 surface X, there is a nef divisor L of $\mathbb{P}_{X}\left(T_{X}\right)$ with $H \cdot L^{2}<0$ (cf. [112]). For example, if X is a smooth quadric surface, then $L=H+2 \pi^{*} A$ is free for a hyperplane section A. In this case, $H \cdot L^{2}=-8<0$. A general member $\Gamma \in|L|$ is a non-singular surface birational to X, with $K_{\Gamma}^{2}=-40$. Here $\left.H\right|_{\Gamma}$ is not pseudo-effective. In particular, the pullback of T_{X} in Γ is not A^{\prime}-semi-stable for an ample divisor A^{\prime} of Γ.

Problem Let \mathcal{E} be a vector bundle of rank two on a non-singular projective surface X. Suppose that for any generically finite morphism $f: Y \rightarrow X$ from any non-singular projective surface Y and for any ample divisor A of $Y, f^{*} \mathcal{E}$ is A-semi-stable. Then is $\Lambda_{\mathcal{E}}$ nef?

If $\Lambda_{\mathcal{E}}$ is not nef, then it is not pseudo-effective by 4.8 and is a negative example to III.3.4.
4.16. Proposition If \mathcal{E} is a vector bundle of rank two on a non-singular projective surface whose normalized tautological divisor is not pseudo-effective, then \mathcal{E} is A-semi-stable for some ample divisor A.

Proof. Assume the contrary. Then there is an exact sequence

$$
0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \mathcal{M} \rightarrow 0
$$

such that \mathcal{I}_{Z} is the ideal sheaf of a subspace Z of $\operatorname{dim} Z \leq 0$ and $(\mathcal{L}-\mathcal{M}) \cdot A>0$ for any ample divisor A. Therefore $\mathcal{L}-\mathcal{M}$ is pseudo-effective. By the formula,

$$
\Lambda_{\mathcal{E}}=H_{\mathcal{E}}-\frac{1}{2} \pi^{*}(\mathcal{L}+\mathcal{M})=H_{\mathcal{E}}-\pi^{*} \mathcal{L}+\frac{1}{2} \pi^{*}(\mathcal{L}-\mathcal{M})
$$

we infer that $\Lambda_{\mathcal{E}}$ is pseudo-effective.
4.17. Corollary Let \mathcal{E} be a vector bundle of rank two of a non-singular projective surface X. If D is a pseudo-effective \mathbb{R}-divisor of X with $3 D^{2} \geq \Delta_{2}(\mathcal{E})$, then $\Lambda_{\mathcal{E}}+\pi^{*} D$ is pseudo-effective.

Proof. We may assume that $\Lambda=\Lambda_{\mathcal{E}}$ is not pseudo-effective. By 4.16, \mathcal{E} is A-semi-stable for an ample divisor A. Thus Bogomolov's inequality $\Delta_{2}(\mathcal{E}) \geq 0$ holds. Let D be a \mathbb{Q}-divisor with $3 D^{2}>\Delta_{2}(\mathcal{E})$. It is enough to show that $\Lambda+\pi^{*} D$ is big. Let m be a positive integer such that $m \Lambda$ and $m D$ are \mathbb{Z}-divisors. Then D is big by the Hodge index theorem and

$$
\pi_{*} \mathcal{O}_{\mathbb{P}}\left(m\left(\Lambda+\pi^{*} D\right)\right) \simeq \pi_{*} \mathcal{O}_{\mathbb{P}}(m \Lambda) \otimes \mathcal{O}_{X}(m D)
$$

in which $\pi_{*} \mathcal{O}_{\mathbb{P}}(m \Lambda)$ is an A-semi-stable vector bundle with trivial first Chern class. Therefore,

$$
\mathrm{H}^{2}\left(X, \pi_{*} \mathcal{O}_{\mathbb{P}}\left(m\left(\Lambda+\pi^{*} D\right)\right)\right)^{\vee} \simeq \mathrm{H}^{0}\left(X, \pi_{*} \mathcal{O}_{\mathbb{P}}(m \Lambda)^{\vee} \otimes \mathcal{O}_{X}\left(K_{X}-m D\right)\right)=0
$$

for $m \gg 0$. Note that

$$
\mathrm{H}^{p}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}\left(m\left(\Lambda+\pi^{*} D\right)\right)\right) \simeq \mathrm{H}^{p}\left(X, \pi_{*} \mathcal{O}_{\mathbb{P}}\left(m\left(\Lambda+\pi^{*} D\right)\right)\right)
$$

for any $p \geq 0$. Since $\left(\Lambda+\pi^{*} D\right)^{3}=-\Delta_{2}(\mathcal{E})+3 D^{2}>0$, we have

$$
\varlimsup_{m \rightarrow \infty} m^{-3} \chi\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}\left(m\left(\Lambda+\pi^{*} D\right)\right)\right)>0
$$

Therefore $\Lambda+\pi^{*} D$ is big.
Problem Let \mathcal{E} be a vector bundle of rank two on a non-singular projective variety X. Suppose that the normalized tautological divisor $\Lambda=\Lambda_{\mathcal{E}}$ is not pseudoeffective. Describe the set

$$
V(X, \mathcal{E}):=\left\{D \in \mathrm{~N}^{1}(X) \mid \Lambda+\pi^{*} D \text { is pseudo-effective }\right\} .
$$

For example, if $X=\mathbb{P}^{2}$ and $\mathcal{E}=T_{X}$, then $V(X, \mathcal{E})=\{a \ell \mid a \geq 1 / 2\}$, where $\ell \subset \mathbb{P}^{2}$ is a line.

