CHAPTER III

Zariski-decomposition Problem

We introduce the notion of σ-decomposition in $\S \mathbb{1}$ and that of ν-decomposition in $\S 3$ for pseudo-effective \mathbb{R}-divisors on non-singular projective varieties. We consider the Zariski-decomposition problem for pseudo-effective \mathbb{R}-divisors by studying properties on σ - and ν-decompositions. The invariant σ along subvarieties is studied in $\S \mathbf{2}$. In $\S 4$, we extend the study of these decompositions to the case of relatively pseudo-effective \mathbb{R}-divisors on varieties projective over a fixed base space. In $\S \mathbf{5}$, we consider the pullback of pseudo-effective \mathbb{R}-divisors by a projective surjective morphism and compare the σ-decomposition of the pullback with the original σ decomposition.

§1. σ-decomposition

§1.a. Invariants σ_{Γ} and τ_{Γ}. Let X be a non-singular projective variety of dimension n and let B be a big \mathbb{R}-divisor of X. The linear system $|B|$ is the set of effective \mathbb{R}-divisors linearly equivalent to B. Similarly, we define $|B|_{\mathbb{Q}}$ and $|B|_{\text {num }}$ to be the sets of effective \mathbb{R}-divisors Δ satisfying $\Delta \sim_{\mathbb{Q}} B$ and $\Delta \approx B$, respectively. By definition, we may write $|B|=\mid\left\llcorner B_{\lrcorner} \mid+\langle B\rangle\right.$ and

$$
|B|_{\mathbb{Q}}=\bigcup_{m \in \mathbb{N}} \frac{1}{m}|m B| .
$$

There is a positive integer m_{0} such that $|m B| \neq \emptyset$ for $m \geq m_{0}$, by II. 3.17.
1.1. Definition For a prime divisor Γ, we define:

$$
\begin{aligned}
\sigma_{\Gamma}(B)_{\mathbb{Z}} & := \begin{cases}\inf \left\{\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B \mid\right\}, & \text { if }|B| \neq \emptyset \\
+\infty, & \text { if }|B|=\emptyset\end{cases} \\
\sigma_{\Gamma}(B)_{\mathbb{Q}} & :=\inf \left\{\left.\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B\right|_{\mathbb{Q}}\right\} ; \\
\sigma_{\Gamma}(B) & :=\inf \left\{\left.\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B\right|_{\text {num }}\right\} .
\end{aligned}
$$

Then these three functions $\sigma_{\Gamma}(\cdot)_{*}(*=\mathbb{Z}, \mathbb{Q}$, and $\emptyset)$ satisfy the triangle inequality:

$$
\sigma_{\Gamma}\left(B_{1}+B_{2}\right)_{*} \leq \sigma_{\Gamma}\left(B_{1}\right)_{*}+\sigma_{\Gamma}\left(B_{2}\right)_{*}
$$

1.2. Definition Similarly to the above, we define:

$$
\begin{aligned}
\tau_{\Gamma}(B)_{\mathbb{Z}} & := \begin{cases}\sup \left\{\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B \mid\right\}, & \text { if }|B| \neq \emptyset \\
-\infty, & \text { if }|B|=\emptyset\end{cases} \\
\tau_{\Gamma}(B)_{\mathbb{Q}} & :=\sup \left\{\left.\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B\right|_{\mathbb{Q}}\right\} ; \\
\tau_{\Gamma}(B) & :=\sup \left\{\left.\operatorname{mult}_{\Gamma} \Delta|\Delta \in| B\right|_{\text {num }}\right\} .
\end{aligned}
$$

Then these three functions $\tau_{\Gamma}(\cdot)_{*}$ satisfy the triangle inequality:

$$
\tau_{\Gamma}\left(B_{1}+B_{2}\right)_{*} \geq \tau_{\Gamma}\left(B_{1}\right)_{*}+\tau_{\Gamma}\left(B_{2}\right)_{*}
$$

The function $\tau_{\Gamma}(\cdot)$ is expressed also by

$$
\tau_{\Gamma}(B)=\max \left\{t \in \mathbb{R}_{\geq 0} \mid B-t \Gamma \in \mathrm{PE}(X)\right\}
$$

In particular, $B-\tau_{\Gamma}(B) \Gamma$ is pseudo-effective but not big. For $t<\tau_{\Gamma}(B)$, we have $\tau_{\Gamma}(B-t \Gamma)=\tau_{\Gamma}(B)-t$. The inequality $\left(B-\tau_{\Gamma}(B) \Gamma\right) \cdot A^{n-1} \geq 0$ holds for any ample divisor A. In particular,

$$
\begin{equation*}
\tau_{\Gamma}(B) \leq \frac{B \cdot A^{n-1}}{\Gamma \cdot A^{n-1}}<+\infty \tag{III-1}
\end{equation*}
$$

The following equalities and inequalities hold for the functions $\sigma_{\Gamma}(\cdot)_{*}$ and $\tau_{\Gamma}(\cdot)_{*}$:

$$
\begin{array}{cc}
\sigma_{\Gamma}(B) \leq \sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \frac{1}{m} \sigma_{\Gamma}(m B)_{\mathbb{Z}}, & \tau_{\Gamma}(B) \geq \tau_{\Gamma}(B)_{\mathbb{Q}} \geq \frac{1}{m} \tau_{\Gamma}(m B)_{\mathbb{Z}} \\
\sigma_{\Gamma}(q B)_{\mathbb{Q}}=q \sigma_{\Gamma}(B)_{\mathbb{Q}}, & \tau_{\Gamma}(q B)_{\mathbb{Q}}=q \tau_{\Gamma}(B)_{\mathbb{Q}} \\
\sigma_{\Gamma}(t B)=t \sigma_{\Gamma}(B), & \tau_{\Gamma}(t B)=t \tau_{\Gamma}(B),
\end{array}
$$

for $m \in \mathbb{N}, q \in \mathbb{Q}_{>0}$, and $t \in \mathbb{R}_{>0}$. Moreover, we have the following equalities by 1.3 below:

$$
\begin{align*}
\sigma_{\Gamma}(B)_{\mathbb{Q}} & =\varliminf_{\mathbb{N} \ni m \rightarrow \infty} \frac{1}{m} \sigma_{\Gamma}(m B)_{\mathbb{Z}} \tag{III-2}
\end{align*}=\lim _{\mathbb{N} \ni m \rightarrow \infty} \frac{1}{m} \sigma_{\Gamma}(m B)_{\mathbb{Z}}, ~ 子{ }_{\mathbb{N} \ni m \rightarrow \infty} \frac{1}{m} \tau_{\Gamma}(m B)_{\mathbb{Z}}=\lim _{\mathbb{N} \ni m \rightarrow \infty} \frac{1}{m} \tau_{\Gamma}(m B)_{\mathbb{Z}} .
$$

1.3. Lemma Let d be a positive integer and let f be a function $\mathbb{N}_{\geq d} \rightarrow \mathbb{R}$ such that

$$
f\left(k_{1}+k_{2}\right) \leq f\left(k_{1}\right)+f\left(k_{2}\right)
$$

for any $k_{1}, k_{2} \geq d$. Furthermore, suppose that the sequence $\{f(k) / k\}$ for $k \geq d$ is bounded below. Then the limit $\lim _{k \rightarrow \infty} f(k) / k$ exists.

Proof. For integers $k \geq 1$ and $l \geq d$, we have $f(k l) \leq k f(l)$. Thus $f(k l) /(k l) \leq$ $f(l) / l$. In particular, the limit

$$
f_{l}:=\lim _{k \rightarrow \infty} l^{-k} f\left(l^{k}\right)
$$

exists for any $l>1$ by the assumption of boundedness. Let a and b be mutually coprime integers greater than d. Then there is an integer $e=e(a, b)>d$ such that
any integer $m \geq e$ is written as $m=k_{1} a+k_{2} b$ for some integers $k_{1}, k_{2} \geq 0$. Then $f(m) \leq k_{1} f(a)+k_{2} f(b)$. Thus

$$
\frac{f(m)}{m} \leq \frac{k_{1} f(a)+k_{2} f(b)}{k_{1} a+k_{2} b} \leq \max \left\{\frac{f(a)}{a}, \frac{f(b)}{b}\right\}
$$

In particular, $f_{l} \leq \max \left\{f_{a}, f_{b}\right\}$ for any $l>1$. Hence $f_{\infty}=f_{l}$ is independent of the choice of l. Thus $f_{\infty}=\lim _{k \rightarrow \infty} f(k) / k$.

The following simpler proof is due to S . Mori:
AnOther proof of 1.3. Let us fix an integer $l>d$. An integer $m>l$ has an expression $m=q l+r$ for $0 \leq q \in \mathbb{Z}$ and $l \leq r \leq 2 l-1$. Thus $f(m) \leq q f(l)+f(r)$. Hence

$$
\frac{f(m)}{m} \leq \frac{q f(l)+f(r)}{q l+r}=\left(\frac{q l}{q l+r}\right) \frac{f(l)}{l}+\left(\frac{r}{q l+r}\right) \frac{f(r)}{r} .
$$

By taking $m \rightarrow \infty$, we have:

$$
\varlimsup_{m \rightarrow \infty} \frac{f(m)}{m} \leq \frac{f(l)}{l}
$$

Thus the limit exists.
1.4. Lemma Let B be a big \mathbb{R}-divisor and Γ a prime divisor.
(1) $\sigma_{\Gamma}(A)_{\mathbb{Q}}=0$ for any ample \mathbb{R}-divisor A.
(2) $\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(B+\varepsilon A)=\sigma_{\Gamma}(B)$ and $\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(B+\varepsilon A)=\tau_{\Gamma}(B)$ for any ample \mathbb{R}-divisor A.
(3) $\sigma_{\Gamma}(B)_{\mathbb{Q}}=\sigma_{\Gamma}(B)$ and $\tau_{\Gamma}(B)_{\mathbb{Q}}=\tau_{\Gamma}(B)$.
(4) The \mathbb{R}-divisor $B^{\circ}:=B-\sigma_{\Gamma}(B) \Gamma$ satisfies $\sigma_{\Gamma}\left(B^{\circ}\right)=0$ and $\sigma_{\Gamma^{\prime}}\left(B^{\circ}\right)=$ $\sigma_{\Gamma^{\prime}}(B)$ for any other prime divisor Γ^{\prime}. Furthermore, B° is also big.
(5) Let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ be mutually distinct prime divisors with $\sigma_{\Gamma_{i}}(B)=0$ for all i. Then, for any $\varepsilon>0$, there is an effective \mathbb{R}-divisor $\Delta \in|B|_{\mathbb{Q}}$ such that mult $_{\Gamma_{i}} \Delta<\varepsilon$ for any i.

Proof. (1) By II.5.2, it suffices to show $\sigma_{\Gamma}(t A)_{\mathbb{Q}}=0$ for any $t \in \mathbb{R}_{>0}$ and for a very ample effective divisor A. The equality holds for $t \in \mathbb{Q}$. Hence even for $t \notin \mathbb{Q}$, we have

$$
\sigma_{\Gamma}(t A)_{\mathbb{Q}} \leq \lim _{\mathbb{Q} \ni q \uparrow t}(t-q) \operatorname{mult}_{\Gamma} A=0
$$

(2) $\tau_{\Gamma}(B+\varepsilon A) \geq \tau_{\Gamma}(B)$ and $\sigma_{\Gamma}(B+\varepsilon A) \leq \sigma_{\Gamma}(B)$ for any $\varepsilon \in \mathbb{R}_{>0}$, since $\sigma_{\Gamma}(\varepsilon A)=0$. There exist a number $\delta \in \mathbb{R}_{>0}$ and an effective \mathbb{R}-divisor Δ satisfying $B \sim_{\mathbb{Q}} \delta A+\Delta$ by II, 3.16. The inequalities

$$
\begin{aligned}
(1+\varepsilon) \sigma_{\Gamma}(B) & \leq \sigma_{\Gamma}(B+\varepsilon \delta A)+\varepsilon \operatorname{mult}_{\Gamma} \Delta \\
(1+\varepsilon) \tau_{\Gamma}(B) & \geq \tau_{\Gamma}(B+\varepsilon \delta A)+\varepsilon \operatorname{mult}_{\Gamma} \Delta
\end{aligned}
$$

follow from $(1+\varepsilon) B \approx B+\varepsilon \delta A+\varepsilon \Delta$. Thus we have (2) by taking $\varepsilon \downarrow 0$.
(3) Let A be a very ample divisor. Then $\tau_{\Gamma}(B+\varepsilon A)_{\mathbb{Q}} \geq \tau_{\Gamma}(B)_{\mathbb{Q}}$ and $\sigma_{\Gamma}(B+$ $\varepsilon A)_{\mathbb{Q}} \leq \sigma_{\Gamma}(B)_{\mathbb{Q}}$ for any $\varepsilon \in \mathbb{Q}>0$ (cf. (1)). There exists an effective \mathbb{R}-divisor Δ such that $B \sim_{\mathbb{Q}} \delta A+\Delta$ for some $\delta \in \mathbb{Q}_{>0}$ by II, 3.16. The inequalities

$$
\begin{aligned}
(1+\varepsilon) \sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \sigma_{\Gamma}(B+\varepsilon \delta A)_{\mathbb{Q}}+\varepsilon \operatorname{mult}_{\Gamma} \Delta \\
(1+\varepsilon) \tau_{\Gamma}(B)_{\mathbb{Q}} \geq \tau_{\Gamma}(B+\varepsilon \delta A)_{\mathbb{Q}}+\varepsilon \operatorname{mult}_{\Gamma} \Delta
\end{aligned}
$$

follow from $(1+\varepsilon) B \sim_{\mathbb{Q}} B+\varepsilon \delta A+\varepsilon \Delta$. Thus we have

$$
\begin{equation*}
\sigma_{\Gamma}(B)_{\mathbb{Q}}=\lim _{\mathbb{Q} \ni \varepsilon \downarrow 0} \sigma_{\Gamma}(B+\varepsilon A)_{\mathbb{Q}}, \quad \text { and } \quad \tau_{\Gamma}(B)_{\mathbb{Q}}=\lim _{\mathbb{Q} \ni \varepsilon \downarrow 0} \tau_{\Gamma}(B+\varepsilon A)_{\mathbb{Q}} \tag{III-4}
\end{equation*}
$$

The inequalities $\sigma_{\Gamma}(B)_{\mathbb{Q}} \geq \sigma_{\Gamma}(B)$ and $\tau_{\Gamma}(B)_{\mathbb{Q}} \leq \tau_{\Gamma}(B)$ follow from $|B|_{\mathbb{Q}} \subset|B|_{\text {num }}$. For an effective \mathbb{R}-divisor $\Delta \in|B|_{\text {num }}, B+\varepsilon A-\Delta$ is ample for any $\varepsilon \in \mathbb{Q}_{>0}$. Here $\sigma_{\Gamma}(B+\varepsilon A-\Delta)_{\mathbb{Q}}=0$ by (1) and $\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(B+\varepsilon A-\Delta)_{\mathbb{Q}}=0$ by (III-1). Therefore, by (III-4), we have $\sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \operatorname{mult}_{\Gamma} \Delta \leq \tau_{\Gamma}(B)_{\mathbb{Q}}$. Thus the equalities in (3) hold.
(4) If $\Delta \in|m B|$ for some $m \in \mathbb{N}$, then mult ${ }_{\Gamma} \Delta \geq \sigma_{\Gamma}(m B)_{\mathbb{Z}} \geq m \sigma_{\Gamma}(B)$. Hence $\Delta-m \sigma_{\Gamma}(B) \Gamma \in\left|m B^{\circ}\right|$. In particular, $\left|B^{\circ}\right|_{\mathbb{Q}}+\sigma_{\Gamma}(B) \Gamma=|B|_{\mathbb{Q}}$, which implies the first half assertion of (4). The bigness follows from the isomorphisms $\mathrm{H}^{0}\left(X, \mathrm{LB}_{\lrcorner}\right) \simeq \mathrm{H}^{0}\left(X, \mathrm{~L}^{\circ}{ }^{\circ}\right)(\mathrm{cf}$. II.5.4).
(5) There exist a number $m \in \mathbb{N}$ and effective \mathbb{R}-divisors $\Delta_{i} \in|m B|$ for $1 \leq$ $i \leq l$ such that $\operatorname{mult}_{\Gamma_{i}} \Delta_{i}<m \varepsilon$. For an \mathbb{R}-divisor $\Delta \in|m B|$, the condition: mult $_{\Gamma_{i}} \Delta<m \varepsilon$, is a Zariski-open condition in the projective space $|m B|$. Thus we can find an \mathbb{R}-divisor $\Delta \in|m B|$ satisfying mult $\Gamma_{i} \Delta<m \varepsilon$ for any i.
1.5. Lemma Let D be a pseudo-effective \mathbb{R}-divisor of X.
(1) For any ample \mathbb{R}-divisor A,

$$
\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon A) \leq \lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon A) \leq \frac{D \cdot A^{n-1}}{\Gamma \cdot A^{n-1}}<+\infty
$$

(2) The limits $\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon A)$ and $\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon A)$ do not depend on the choice of ample divisors A.

Proof. (1) This is a consequence of (III-1).
(2) Let A^{\prime} be another ample \mathbb{R}-divisor. Then there are an effective \mathbb{R}-divisor Δ and a positive number δ such that $A^{\prime} \approx \delta A+\Delta$. Hence we have

$$
\begin{gathered}
\sigma_{\Gamma}(D+\varepsilon \delta A)+\varepsilon \operatorname{mult}_{\Gamma} \Delta \geq \sigma_{\Gamma}\left(D+\varepsilon A^{\prime}\right) \\
\tau_{\Gamma}(D+\varepsilon \delta A)+\varepsilon \operatorname{mult}_{\Gamma} \Delta \leq \tau_{\Gamma}\left(D+\varepsilon A^{\prime}\right)
\end{gathered}
$$

They induce inequalities $\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon A) \geq \lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}\left(D+\varepsilon A^{\prime}\right)$ and $\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+$ $\varepsilon A) \leq \lim _{\varepsilon \downarrow 0} \tau_{\Gamma}\left(D+\varepsilon A^{\prime}\right)$. Changing A with A^{\prime}, we have the equalities.
1.6. Definition For a pseudo-effective \mathbb{R}-divisor D and a prime divisor Γ, we define

$$
\sigma_{\Gamma}(D):=\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon A), \quad \text { and } \quad \tau_{\Gamma}(D):=\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon A)
$$

Note that if $D \approx D^{\prime}$, then $\sigma_{\Gamma}(D)=\sigma_{\Gamma}\left(D^{\prime}\right)$ and $\tau_{\Gamma}(D)=\tau_{\Gamma}\left(D^{\prime}\right)$. In particular, σ_{Γ} and τ_{Γ} are functions on the closed convex cone $\operatorname{PE}(X)$. Here, σ_{Γ} is lower convex and τ_{Γ} is upper convex. We have another expression of τ_{Γ} :

$$
\tau_{\Gamma}(D)=\max \left\{t \in \mathbb{R}_{\geq 0} \mid D-t \Gamma \in \mathrm{PE}(X)\right\}
$$

1.7. Lemma

(1) $\sigma_{\Gamma}: \operatorname{PE}(X) \rightarrow \mathbb{R}_{\geq 0}$ is lower semi-continuous and $\tau_{\Gamma}: \operatorname{PE}(X) \rightarrow \mathbb{R}_{\geq 0}$ is upper semi-continuous. Both functions are continuous on $\operatorname{Big}(X)$.
(2) $\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon E)=\sigma_{\Gamma}(D)$ and $\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon E)=\tau_{\Gamma}(D)$ for any pseudo-effective \mathbb{R}-divisor E.
(3) Let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ be mutually distinct prime divisors such that $\sigma_{\Gamma_{i}}(D)=$ 0 . Then, for any ample \mathbb{R}-divisor A, there exists an effective \mathbb{R}-divisor Δ such that $\Delta \sim_{\mathbb{Q}} D+A$ and $\Gamma_{i} \not \subset \operatorname{Supp}(\Delta)$ for any i.

Proof. (1) Let $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of pseudo-effective \mathbb{R}-divisors whose Chern classes $c_{1}\left(D_{n}\right)$ are convergent to $c_{1}(D)$. Let us take a norm $\|\cdot\|$ for the finitedimensional real vector space $\mathrm{N}^{1}(X)$ and let U_{r} be the open ball $\left\{z \in \mathrm{~N}^{1}(X) ;\|z\|<\right.$ $r\}$ for $r \in \mathbb{R}_{>0}$. We fix an ample \mathbb{R}-divisor A on X. Then, for any $r>0$, there is a number n_{0} such that $c_{1}\left(D-D_{n}\right) \in U_{r}$ for $n \geq n_{0}$. For any $\varepsilon>0$, there is an $r>0$ such that $U_{r}+\varepsilon A$ is contained in the ample cone $\operatorname{Amp}(X)$. Applying the triangle inequalities to $D+\varepsilon A=\left(D-D_{n}+\varepsilon A\right)+D_{n}$, we have

$$
\begin{aligned}
\sigma_{\Gamma}(D) & =\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon A) \leq \underline{\lim }_{n \rightarrow \infty} \sigma_{\Gamma}\left(D_{n}\right), \\
\tau_{\Gamma}(D) & =\lim _{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon A) \geq \varlimsup_{n \rightarrow \infty} \tau_{\Gamma}\left(D_{n}\right) .
\end{aligned}
$$

Next assume that D is big. Then there is a positive number δ such that $D-\delta A$ is still big. We can take $r_{1}>0$ such that $D-\delta A+U_{r_{1}} \subset \operatorname{Big}(X)$. For any $\varepsilon>0$, there is a real number $r \in\left(0, r_{1}\right)$ such that $U_{r}+\varepsilon A \subset \operatorname{Amp}(X)$. Applying the triangle inequalities to $D_{n}+(\varepsilon-\delta) A=\left(D_{n}-D+\varepsilon A\right)+D-\delta A$ for $\varepsilon<\delta$, we have

$$
\varlimsup_{n \rightarrow \infty} \sigma_{\Gamma}\left(D_{n}\right) \leq \sigma_{\Gamma}(D-\delta A), \quad \text { and } \quad \underset{n \rightarrow \infty}{\varliminf_{\Gamma}} \tau_{\Gamma}\left(D_{n}\right) \geq \tau_{\Gamma}(D-\delta A)
$$

Hence it is enough to show

$$
\lim _{t \downarrow 0} \sigma_{\Gamma}(D-t A)=\sigma_{\Gamma}(D), \quad \text { and } \quad \lim _{t \downarrow 0} \tau_{\Gamma}(D-t A)=\tau_{\Gamma}(D)
$$

Since $D-\delta A$ is big, there exists an effective \mathbb{R}-divisor Δ with $D-\delta A \approx \Delta$. Hence $D-t \delta A \approx(1-t) D+t \Delta$ for any $t>0$, which induce

$$
\begin{aligned}
\sigma_{\Gamma}(D-t \delta A) & \leq(1-t) \sigma_{\Gamma}(D)+t \text { mult }_{\Gamma} \Delta, \\
\tau_{\Gamma}(D-t \delta A) & \geq(1-t) \tau_{\Gamma}(D)+t \text { mult }_{\Gamma} \Delta .
\end{aligned}
$$

By taking $t \downarrow 0$, we are done.
(2) By (1), we have $\underline{\lim }_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D+\varepsilon E) \geq \sigma_{\Gamma}(D)$ and $\overline{\lim }_{\varepsilon \downarrow 0} \tau_{\Gamma}(D+\varepsilon E) \leq \tau_{\Gamma}(D)$. On the other hand, $\sigma_{\Gamma}(D+\varepsilon E) \leq \sigma_{\Gamma}(D)+\varepsilon \sigma_{\Gamma}(E)$ and $\tau_{\Gamma}(D+\varepsilon E) \geq \tau_{\Gamma}(D)+\varepsilon \tau_{\Gamma}(E)$ for any $\varepsilon>0$. Thus we have the equalities by taking $\varepsilon \downarrow 0$.
(3) Let us take $m \in \mathbb{N}$ such that $m A+\Gamma_{i}$ is ample for any i. By $\mathbf{1 . 4}$-(5), for any small $\varepsilon>0$, there exist positive rational numbers λ, δ_{i}, and an effective \mathbb{R}-divisor B such that $B+\sum_{i=1}^{l} \delta_{i} \Gamma_{i} \sim_{\mathbb{Q}} D+\lambda A, \Gamma_{i} \not \subset \operatorname{Supp} B$ for any i, and $m\left(\sum_{i} \delta_{i}\right)+\lambda<\varepsilon$. Then

$$
B+\sum_{i=1}^{l} \delta_{i}\left(m A+\Gamma_{i}\right) \sim_{\mathbb{Q}} D+\left(m \sum_{i=1}^{l} \delta_{i}+\lambda\right) A
$$

Thus we can find an expected effective \mathbb{R}-divisor.
Remark In (1), the function $\sigma_{\Gamma}: \operatorname{PE}(X) \rightarrow \mathbb{R}_{\geq 0}$ is not necessarily continuous. An example is given in IV,2.8. However, σ_{Γ} is continuous if $\operatorname{dim} X=2$ by $\mathbf{1 . 1 9}$. The property (3) is generalized to $\mathbf{V}, \mathbf{1 . 3}$.
1.8. Lemma Let D be a pseudo-effective \mathbb{R}-divisor, $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ mutually distinct prime divisors, and let $s_{1}, s_{2}, \ldots, s_{l}$ be real numbers with $0 \leq s_{i} \leq \sigma_{\Gamma_{i}}(D)$. Then $\sigma_{\Gamma_{i}}\left(D-\sum_{j=1}^{l} s_{j} \Gamma_{j}\right)=\sigma_{\Gamma_{i}}(D)-s_{i}$ for any i.

Proof. If D is big, this is proved by 1.4-(4). Let $\varepsilon>0$ be a real number satisfying $s_{i}>\varepsilon$ for any i with $s_{i}>0$. We define $s_{i}(\varepsilon)$ to be the following number:

$$
s_{i}(\varepsilon):= \begin{cases}s_{i}-\varepsilon & \text { if } s_{i}>0 \\ 0 & \text { if } s_{i}=0\end{cases}
$$

Let us consider \mathbb{R}-divisors $E:=D-\sum_{j=1}^{l} s_{j} \Gamma_{j}$ and $E(\varepsilon):=D-\sum_{j=1}^{l} s_{j}(\varepsilon) \Gamma_{j}$. There exist an ample \mathbb{R}-divisor A and a real number $\delta>0$ satisfying $\sigma_{\Gamma_{i}}(D+\delta A) \geq$ $s_{i}(\varepsilon)$ for all i. Then $E(\varepsilon)+\delta A$ is also big and $\sigma_{\Gamma_{i}}(E(\varepsilon)+\delta A)=\sigma_{\Gamma_{i}}(D+\delta A)-$ $s_{i}(\varepsilon)$. Thus $\sigma_{\Gamma_{i}}(E(\varepsilon))=\lim _{\delta \downarrow 0} \sigma_{\Gamma_{i}}(E(\varepsilon)+\delta A)=\sigma_{\Gamma_{i}}(D)-s_{i}(\varepsilon)$ by 1.7-(2). Then $\sigma_{\Gamma_{i}}(E) \leq \sigma_{\Gamma_{i}}(D)-s_{i}$ by the semi-continuity shown in 1.7-(1). On the other hand, $\sigma_{\Gamma_{i}}(D) \leq \sigma_{\Gamma_{i}}(E)+s_{i}$ follows from $D=E+\sum_{j=1}^{l} s_{j} \Gamma_{j}$ by the lower convexity of $\sigma_{\Gamma_{i}}$.
1.9. Corollary Let D be a pseudo-effective \mathbb{R}-divisor and let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ be mutually distinct prime divisors with $\sigma_{\Gamma_{i}}(D)>0$ for any i. Then, for $s_{i} \in \mathbb{R}_{\geq 0}$,

$$
\sigma_{\Gamma_{i}}\left(D+\sum s_{j} \Gamma_{j}\right)=\sigma_{\Gamma_{i}}(D)+s_{i} .
$$

Proof. Let E be the \mathbb{R}-divisor $D+\sum s_{j} \Gamma_{j}$ and let $\sigma_{i}=\sigma_{\Gamma_{i}}(D)$. For $0<c<1$, we have

$$
(1-c)\left(D-\sum \sigma_{i} \Gamma_{i}\right)+c E=D+\sum\left(-(1-c) \sigma_{i}+c s_{i}\right) \Gamma_{i}
$$

Let c be a number with $0<c<\sigma_{i} /\left(s_{i}+\sigma_{i}\right)$ for any i. Then $-\sigma_{j}<-(1-c) \sigma_{j}+c s_{j}<$ 0 . By 1.8, we infer that $\sigma_{\Gamma_{i}}(E) \geq \sigma_{i}+s_{i}$. The other inequality is derived from the lower convexity of $\sigma_{\Gamma_{i}}$.
1.10. Proposition Let D be a pseudo-effective \mathbb{R}-divisor and let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ be mutually distinct prime divisors of X with $\sigma_{\Gamma_{i}}(D)>0$ for any i. Then

$$
\sigma_{\Gamma_{i}}\left(\sum_{j=1}^{l} x_{j} \Gamma_{j}\right)=x_{i}
$$

for any $x_{1}, x_{2}, \ldots, x_{l} \in \mathbb{R}_{\geq 0}$. In particular, $c_{1}\left(\Gamma_{1}\right), c_{1}\left(\Gamma_{2}\right), \ldots, c_{1}\left(\Gamma_{l}\right)$ are linearly independent in $\mathrm{N}^{1}(X)$.

Proof. Let us take $\alpha \in \mathbb{R}_{>0}$ with $\sigma_{\Gamma_{i}}(D)>\alpha x_{i}$ for any i. Then

$$
\sigma_{\Gamma_{i}}(D) \leq \sigma_{\Gamma_{i}}\left(D-\alpha \sum x_{j} \Gamma_{j}\right)+\alpha \sigma_{\Gamma_{i}}\left(\sum x_{j} \Gamma_{j}\right)
$$

Thus the equality $\sigma_{\Gamma_{i}}\left(\sum x_{j} \Gamma_{j}\right)=x_{i}$ follows from 1.8. Suppose that there is a linear relation

$$
\sum_{i=1}^{s} a_{i} \Gamma_{i} \approx \sum_{j=s+1}^{l} b_{j} \Gamma_{j}
$$

for some $a_{i}, b_{j} \in \mathbb{R}_{\geq 0}$ and for some $1 \leq s<l$. Then

$$
a_{k}=\sigma_{\Gamma_{k}}\left(\sum_{i=1}^{s} a_{i} \Gamma_{i}\right)=\sigma_{\Gamma_{k}}\left(\sum_{j=s+1}^{l} b_{j} \Gamma_{j}\right)=0
$$

for $k \leq s$. Hence $a_{i}=b_{j}=0$ for all i, j.
1.11. Corollary For any pseudo-effective \mathbb{R}-divisor D, the number of prime divisors Γ satisfying $\sigma_{\Gamma}(D)>0$ is less than the Picard number $\rho(X)$.

§1.b. Zariski-decomposition problem.

1.12. Definition Let D be a pseudo-effective \mathbb{R}-divisor of a non-singular projective variety X. We define

$$
N_{\sigma}(D):=\sum \sigma_{\Gamma}(D) \Gamma, \quad \text { and } \quad P_{\sigma}(D):=D-N_{\sigma}(D)
$$

The decomposition $D=P_{\sigma}(D)+N_{\sigma}(D)$ is called the σ-decomposition of D. Here, $P_{\sigma}(D)$ and $N_{\sigma}(D)$ are called the positive and the negative parts of the σ decomposition of D, respectively.
1.13. Definition Let $\operatorname{Mv}^{\prime}(X)$ be the convex cone in $\mathrm{N}^{1}(X)$ generated by the first Chern classes $c_{1}(L)$ of all the fixed part free divisors L (i.e., $|L|_{\text {fix }}=0$). We denote its closure by $\overline{\mathrm{Mv}}(X)$ and the interior of $\overline{\mathrm{Mv}}(X)$ by $\operatorname{Mv}(X)$. The cones $\overline{\mathrm{Mv}}(X)$ and $\operatorname{Mv}(X)$ are called the movable cone and the strictly movable cone, respectively. An \mathbb{R}-divisor D is called movable if $c_{1}(D) \in \overline{\operatorname{Mv}}(X)$.
The movable cone was introduced by Kawamata in [58]. There are inclusions $\operatorname{Nef}(X) \subset \overline{\operatorname{Mv}}(X) \subset \operatorname{PE}(X)$ and $\operatorname{Amp}(X) \subset \operatorname{Mv}(X) \subset \operatorname{Big}(X)$.
1.14. Proposition Let D be a pseudo-effective \mathbb{R}-divisor.
(1) $N_{\sigma}(D)=0$ if and only if D is movable.
(2) If $D-\Delta$ is movable for an effective \mathbb{R}-divisor Δ, then $\Delta \geq N_{\sigma}(D)$.

Proof. (1) Assume that $N_{\sigma}(D)=0$. Then, by the proof of 1.7-(3), we infer that $c_{1}(D+A) \in \mathrm{Mv}^{\prime}(X)$ for any ample \mathbb{R}-divisor A. Therefore $c_{1}(D) \in \overline{\mathrm{Mv}}(X)$. The converse is derived from 1.7 -(1).
(2) By (1), $N_{\sigma}(D-\Delta)=0$. Thus $\sigma_{\Gamma}(D) \leq \sigma_{\Gamma}(D-\Delta)+\sigma_{\Gamma}(\Delta) \leq \operatorname{mult}_{\Gamma} \Delta$ for any prime divisor Γ. Therefore $N_{\sigma}(D) \leq \Delta$.
1.15. Lemma Let D be a pseudo-effective \mathbb{R}-divisor, Γ a prime divisor, and Δ an effective \mathbb{R}-divisor with $\Delta \leq N_{\sigma}(D)$. Then

$$
\tau_{\Gamma}(D)=\tau_{\Gamma}(D-\Delta)+\operatorname{mult}_{\Gamma} \Delta
$$

In particular, $\tau_{\Gamma}(D)=\tau_{\Gamma}\left(P_{\sigma}(D)\right)+\sigma_{\Gamma}(D)$.
Proof. We know $\tau_{\Gamma}(D) \geq \sigma_{\Gamma}(D) \geq \operatorname{mult}_{\Gamma} \Delta$. If $D-t \Gamma$ is pseudo-effective for some $t \in \mathbb{R}_{\geq 0}$, then $\sigma_{\Gamma^{\prime}}(D-t \Gamma) \geq \sigma_{\Gamma^{\prime}}(D) \geq \operatorname{mult}_{\Gamma^{\prime}} \Delta$ for any prime divisor $\Gamma^{\prime} \neq \Gamma$. Thus $D-\Delta-\left(\tau_{\Gamma}(D)-\operatorname{mult}_{\Gamma} \Delta\right) \Gamma$ is pseudo-effective. In particular, $\tau_{\Gamma}(D-\Delta) \geq \tau_{\Gamma}(D)-\operatorname{mult}_{\Gamma} \Delta$. On the other hand,

$$
D-\Delta-\tau_{\Gamma}(D-\Delta) \Gamma \leq D-\left(\tau_{\Gamma}(D-\Delta)+\operatorname{mult}_{\Gamma} \Delta\right) \Gamma .
$$

Thus we have the equality.
1.16. Definition The σ-decomposition $D=P_{\sigma}(D)+N_{\sigma}(D)$ for a pseudoeffective \mathbb{R}-divisor is called a Zariski-decomposition if $P_{\sigma}(D)$ is nef.

1.17. Remark

(1) If X is a surface, then the movable cone $\overline{\mathrm{Mv}}(X)$ coincides with the nef cone $\operatorname{Nef}(X)$. Therefore $\mathbf{1 . 1 4}$ implies that the σ-decomposition is nothing but the usual Zariski-decomposition (cf. [151], [20]).
(2) If $P_{\sigma}(D)$ is nef, then the decomposition $D=P_{\sigma}(D)+N_{\sigma}(D)$ is a Zariskidecomposition in the sense of Fujita [25]. It is not clear that a Zariskidecomposition in the sense of Fujita is a Zariski-decomposition in our sense.
(3) If D is a big \mathbb{R}-divisor, then the definitions of Zariski-decomposition $D=$ $P+N$ given in [8], [57], [91], and in [25] coincide with the definition of ours. This is derived from that

$$
N_{\sigma}(B)=\left.\left.\lim _{m \rightarrow \infty} \frac{1}{m}\right|_{\llcorner } m B_{\lrcorner}\right|_{\text {fix }}
$$

for any big \mathbb{R}-divisor B, which follows from (III-2) and $\mathbf{1 . 4}$-(3).
(4) If D is a big \mathbb{R}-divisor, then $R(X, D):=\bigoplus_{m=0}^{\infty} \mathrm{H}^{0}\left(X,{ }_{L} m D_{\lrcorner}\right)$is a finitely generated \mathbb{C}-algebra if and only if there exists a birational morphism $f: Y \rightarrow X$ from a non-singular projective variety such that $P_{\sigma}\left(\mu^{*} D\right)$ is a semi-ample \mathbb{Q}-divisor. This is derived from II, 3.1 applied to the algebraic case.

Problem (Existence of Zariski-decomposition) For a given pseudo-effective \mathbb{R}-divisor D of X, does there exist a birational morphism $\mu: Y \rightarrow X$ from a nonsingular projective variety with $P_{\sigma}\left(\mu^{*} D\right)$ being nef?

The author tried to show the existence, but finally found a counterexample for a big \mathbb{R}-divisor ([103], [104]). The counterexample is explained in IV, $\mathbf{2 . 1 0}$ below by the notion of toric bundles.
1.18. Lemma Let $f: X \rightarrow Y$ be a generically finite surjective morphism of non-singular projective varieties, D a pseudo-effective \mathbb{R}-divisor of X, and Γ a prime divisor of Y. Suppose that $\sigma_{\Gamma^{\prime}}(D)=0$ for any prime divisor Γ^{\prime} of X satisfying $\Gamma=f\left(\Gamma^{\prime}\right)$. Then $\sigma_{\Gamma}\left(f_{*} D\right)=0$. In particular, if D is movable, then so is $f_{*} D$.

Proof. For any ample divisor H of X, for any positive real number ε, and for any prime divisor Γ^{\prime} with $\Gamma=f\left(\Gamma^{\prime}\right)$, there is an effective \mathbb{R}-divisor $\Delta \in|D+\varepsilon H|_{\mathbb{Q}}$ with mult $\Gamma^{\prime} \Delta=0$, by 1.7 -(3). Then $f_{*} \Delta \in\left|f_{*} D+\varepsilon f_{*} H\right|_{\mathbb{Q}}$ and mult $f_{*} \Delta=0$. Hence $\sigma_{\Gamma}\left(f_{*} D+\varepsilon f_{*} H\right)=0$. Taking $\varepsilon \downarrow 0$, we have $\sigma_{\Gamma}\left(f_{*} D\right)=0$.

Remark The push-forward $f_{*} D$ for a nef divisor D is not necessarily nef.
We shall show the following continuity mentioned before:
1.19. Proposition The function $\sigma_{\Gamma}: \operatorname{PE}(X) \rightarrow \mathbb{R}_{\geq 0}$ for a prime divisor Γ on a non-singular projective surface X is continuous.

The proof of 1.19 is given after the following:
1.20. Lemma Let D be a nef \mathbb{R}-divisor on a non-singular projective surface X with $D^{2}=0$. Then there exist at most finitely many irreducible curves C with $C^{2}<0$ such that $D-\varepsilon C$ is pseudo-effective for some $\varepsilon>0$.

Proof. We may assume that $D \not \approx 0$. Let $\mathcal{S}=\mathcal{S}_{D}$ be the set of such curves C. For $C \in \mathcal{S}$, let $\alpha>0$ be a number with $D-\alpha C$ being pseudo-effective. Then $0=D^{2} \geq(D-\alpha C) \cdot D \geq 0$. Hence $D \cdot C=0$ and $(D-\alpha C)^{2}<0$. Let N be the negative part of the Zariski-decomposition of $D-\alpha C$ and let $F:=\alpha C+N$. Then $L:=D-F$ is nef and

$$
0=D^{2}=D \cdot F+D \cdot L \geq F \cdot L+L^{2} \geq L^{2} \geq 0
$$

Any prime component Γ of F is an element of \mathcal{S}. Further, $D \cdot \Gamma=L \cdot \Gamma=F \cdot \Gamma=0$. Let C^{\prime} be a curve belonging to \mathcal{S} but not contained in Supp F. Similarly let $\alpha^{\prime}>0$ be a number with $D-\alpha^{\prime} C^{\prime}$ being pseudo-effective, N^{\prime} the negative part of the Zariski-decomposition of $D-\alpha^{\prime} C^{\prime}$, and let F^{\prime} the \mathbb{R}-divisor $\alpha^{\prime} C^{\prime}+N^{\prime}$. Then we infer that $\operatorname{Supp} F \cap \operatorname{Supp} F^{\prime}=\emptyset$ from the usual construction (cf. [151], [20]) of the negative part N^{\prime}. In particular, the prime components of $\operatorname{Supp} N \cup \operatorname{Supp} N^{\prime}$ are linearly independent in $\mathrm{N}^{1}(X)$. Since the Picard number $\rho(X)=\operatorname{dim} \mathrm{N}^{1}(X)$ is bounded, there exist only finitely many such negative parts N. Hence \mathcal{S} is finite.

Proof of 1.19. We may assume that D is not big by $1.7-(1)$. Let $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of pseudo-effective \mathbb{R}-divisors such that $c_{1}(D)=\lim _{n \rightarrow \infty} c_{1}\left(D_{n}\right)$. If Γ is an irreducible curve with $\sigma_{\Gamma}(D)>0$, then $\sigma_{\Gamma}(D) \leq \sigma_{\Gamma}\left(D_{n}\right)$ except for finitely many n by 1.7-(1). In particular $D_{n}-\sigma_{\Gamma}(D) \Gamma$ is pseudo-effective for $n \gg 0$. Hence we may assume that $\sigma_{\Gamma}(D)=0$ and moreover that D is nef. Thus $D^{2}=0$. We set $N_{n}:=N_{\sigma}\left(D_{n}\right)$. Then $N_{\infty}:=\overline{\lim } N_{n}$ exists by 1.20. Here, $D-N_{\infty}$ is nef. If
$N_{\infty} \neq 0$, then $N_{\infty}^{2}<0$, since $\operatorname{Supp} N_{\infty} \subset \operatorname{Supp} N_{n}$ for some n. However, $N_{\infty}^{2}=0$ follows from

$$
0=D^{2} \geq\left(D-N_{\infty}\right) D \geq\left(D-N_{\infty}\right)^{2} \geq 0
$$

Therefore, $N_{\infty}=0$ and σ_{Γ} is continuous.

§2. Invariant σ along subvarieties

In order to analyze the behavior of N_{σ} under a blowing-up, we need to generalize the function σ_{Γ}. Let $W \subset X$ be a subvariety. For a prime divisor Γ, we denote the multiplicity of Γ along W by mult ${ }_{W} \Gamma$. For an \mathbb{R}-divisor D, we define the multiplicity mult ${ }_{W} D$ of D along W by $\sum_{\Gamma}\left(\right.$ mult $\left._{\Gamma} D\right)\left(\operatorname{mult}_{W} \Gamma\right)$, where we take all the prime components Γ of D.
2.1. Definition Let $f: Y \rightarrow X$ be a birational morphism from a non-singular projective variety such that $f^{*} \mathcal{I}_{W} /($ tor $)$ is an invertible sheaf for the defining ideal sheaf \mathcal{I}_{W} of W. Then $f^{*} \mathcal{I}_{W} /($ tor $)=\mathcal{O}_{Y}(-E) \subset \mathcal{O}_{Y}$ for an effective divisor E of Y. We define E_{W} to be the prime component of E such that, over a dense Zariski-open subset $U \subset X$ with $W \cap U$ being non-singular, $\left.E_{W}\right|_{f^{-1} U}$ is the proper transform of the exceptional divisor of the blowing-up along the ideal \mathcal{I}_{W}.

Let Γ be a prime divisor of X. Then mult ${ }_{W} \Gamma$ is the maximal number m with $f^{*} \Gamma \geq m E_{W}$. Hence mult ${ }_{W} \Delta=\operatorname{mult}_{E_{W}} f^{*} \Delta$ for any \mathbb{R}-divisor Δ. Let A be an ample \mathbb{R}-divisor of X. Then the following equalities hold by 1.7 -(2):

$$
\begin{aligned}
\sigma_{E_{W}}\left(f^{*} D\right) & =\lim _{\varepsilon \downarrow 0} \sigma_{E_{W}}\left(f^{*}(D+\varepsilon A)\right)=\lim _{\varepsilon \downarrow 0} \inf \left\{\operatorname{mult}_{W} \Delta|\Delta \in| D+\left.\varepsilon A\right|_{\text {num }}\right\} \\
\tau_{E_{W}}\left(f^{*} D\right) & =\lim _{\varepsilon \downarrow 0} \tau_{E_{W}}\left(f^{*}(D+\varepsilon A)\right)=\lim _{\varepsilon \downarrow 0} \sup \left\{\operatorname{mult}_{W} \Delta|\Delta \in| D+\left.\varepsilon A\right|_{\text {num }}\right\} .
\end{aligned}
$$

2.2. Definition Let $W \subset X$ be a subvariety of $\operatorname{codim} W \geq 2$. For a pseudoeffective \mathbb{R}-divisor D, we define $\sigma_{W}(D):=\sigma_{E_{W}}\left(f^{*} D\right)$ and $\tau_{W}(D):=\tau_{E_{W}}\left(f^{*} D\right)$.

2.3. Lemma

(1) $\sigma_{W}(D) \leq \sigma_{x}(D)$ and $\tau_{W}(D) \leq \tau_{x}(D)$ for any point $x \in W$.
(2) There is a countable union \mathcal{S} of proper closed analytic subsets of W such that $\sigma_{W}(D)=\sigma_{x}(D)$ for any $x \in W \backslash \mathcal{S}$.
(3) The function $X \ni x \mapsto \sigma_{x}(B)$ is upper semi-continuous if B is big.

Proof. (1) and (2) Let $\Delta=\sum r_{j} \Gamma_{j}$ be the prime decomposition of an effective \mathbb{R}-divisor Δ. By definition, mult ${ }_{W} \Delta=\sum r_{j} \operatorname{mult}_{W} \Gamma_{j}$. Hence mult ${ }_{x} \Delta \geq \operatorname{mult}_{W} \Delta$ holds and there exists a Zariski-open dense subset U of W such that mult ${ }_{x} \Delta=$ mult $_{W} \Delta$ for $x \in U$. For an ample divisor $A, \varepsilon \in \mathbb{Q}_{>0}$, and $m \in \mathbb{N}$, we write $\boldsymbol{\Delta}(m, \varepsilon)=|m(D+\varepsilon A)|$. Then the inequalities
(III-5)

$$
\begin{aligned}
\inf \left\{\operatorname{mult}_{x} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon)\right\} & \geq \inf \left\{\operatorname{mult}_{W} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon)\right\} \\
\sup \left\{\operatorname{mult}_{x} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon)\right\} & \geq \sup \left\{\operatorname{mult}_{W} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon)\right\}
\end{aligned}
$$

hold, which imply (1). Since $\boldsymbol{\Delta}(m, \varepsilon)=|\llcorner m(D+\varepsilon A)\lrcorner|+\langle m(D+\varepsilon A)\rangle$, we can find a Zariski-open dense subset $U(m, \varepsilon) \subset W$ such that the equality holds in (III-5) for any $x \in U(m, \varepsilon)$. Thus (2) holds for $W \backslash \mathcal{S}=\bigcap U(m, \varepsilon)$.
(3) We have $\sigma_{x}(B)=\inf \left\{\left.\operatorname{mult}_{x} \Delta|\Delta \in| B\right|_{\text {num }}\right\}$, since B is big. Therefore the result follows from the upper semi-continuity of the function $x \mapsto \operatorname{mult}_{x} \Delta$.

Question Does the property (3) hold also for a pseudo-effective \mathbb{R}-divisor?
2.4. Lemma Let $f: Y \rightarrow X$ be a birational morphism of non-singular projective varieties.
(1) Suppose that f is the blowing-up at a point $x \in X$. Let Δ be an effective divisor of X and let Δ^{\prime} be the proper transform in Y. Then mult ${ }_{y} \Delta^{\prime} \leq$ mult $_{x} \Delta$ for any $y \in f^{-1}(x)$.
(2) Let $y \in Y$ and $x \in X$ be points with $x=f(y)$. Then there exist positive integers k_{1} and k_{2} such that

$$
k_{1} \operatorname{mult}_{x} \Delta \leq \operatorname{mult}_{y} f^{*} \Delta \leq k_{2} \operatorname{mult}_{x} \Delta
$$

for any effective divisor Δ of X.
Proof. (1) The fiber $E:=f^{-1}(x)$ is isomorphic to a projective space. We have $\operatorname{mult}_{y} \Delta^{\prime} \leq\left.\operatorname{mult}_{y} \Delta^{\prime}\right|_{E}$. Since $\left.\Delta^{\prime}\right|_{E}$ is an effective divisor of degree mult ${ }_{x} \Delta$, we have $\left.\operatorname{mult}_{y} \Delta^{\prime}\right|_{E} \leq \operatorname{mult}_{x} \Delta$.
(2) Let \mathfrak{m}_{x} and \mathfrak{m}_{y} be the maximal ideal sheaves at x and y, respectively. Let k_{1} be the maximum positive integer satisfying $f^{*} \mathfrak{m}_{x} /($ tor $) \subset \mathfrak{m}_{y}^{k_{1}}$. Let Δ be an effective divisor of X. Then $\operatorname{mult}_{y} f^{*} \Delta \geq k_{1}$ mult $_{x} \Delta$. In order to obtain the other inequality, we may assume that f is a succession of blowups along non-singular centers since we can apply the inequality of the left hand side. Further we may assume that f is only the blowing-up along a non-singular center $C \ni x$. Assume first that $C=\{x\}$. Then $\operatorname{mult}_{y} f^{*} \Delta=\operatorname{mult}_{y} \Delta^{\prime}+\operatorname{mult}_{x} \Delta \leq 2$ mult $_{x} \Delta$ by (1). We can take $k_{2}=2$ in this case. Next assume that $C \neq\{x\}$. Then there is the intersection W of general very ample divisors such that $W \ni x, W \not \subset \Delta, W$ intersects C transversely at x, and mult ${ }_{x} \Delta=$ mult $\left._{x} \Delta\right|_{W}$. Then mult $f_{y} f^{*} \Delta \leq\left.\operatorname{mult}_{y} f^{*} \Delta\right|_{f^{-1} W}$. By applying the case above to W, we have $\operatorname{mult}_{y} f^{*} \Delta \leq\left. 2 \operatorname{mult}_{x} \Delta\right|_{W}=2$ mult $_{x} \Delta$. Thus we are done.
2.5. Lemma Let D be a pseudo-effective \mathbb{R}-divisor of X.
(1) If $f: Y \rightarrow X$ is a birational morphism from a non-singular projective variety Y, then $N_{\sigma}\left(f^{*} D\right) \geq f^{*} N_{\sigma}(D)$ and $f_{*} P_{\sigma}\left(f^{*} D\right)=P_{\sigma}(D)$. If further $P_{\sigma}(D)$ is nef, then $P_{\sigma}\left(f^{*} D\right)=f^{*} P_{\sigma}(D)$.
(2) For any subvariety $W \subset X$, there are equalities

$$
\begin{aligned}
\sigma_{W}(D) & =\sigma_{W}\left(P_{\sigma}(D)\right)+\operatorname{mult}_{W} N_{\sigma}(D) \\
\tau_{W}(D) & =\tau_{W}\left(P_{\sigma}(D)\right)+\operatorname{mult}_{W} N_{\sigma}(D)
\end{aligned}
$$

(3) Let $\rho_{x}: Q_{x}(X) \rightarrow X$ be the blowing-up at a point $x \in X$ and let y be a point of $\rho_{x}^{-1}(x)$. Then $\sigma_{y}\left(P_{\sigma}\left(\rho_{x}^{*} D\right)\right) \leq \sigma_{x}\left(P_{\sigma}(D)\right)$.
(4) Let $f: Y \rightarrow X$ be a birational morphism from a non-singular projective variety. If $\sigma_{x}(D)=0$, then $\sigma_{y}\left(f^{*} D\right)=0$ for any $y \in f^{-1}(x)$.
Proof. (1) Let A be an ample divisor of X. If Δ is an effective \mathbb{R}-divisor of Y such that $\Delta \approx f^{*}(D+\varepsilon A)$ for some $\varepsilon \in \mathbb{R}_{>0}$, then $\Delta=f^{*}\left(f_{*} \Delta\right)$ and $f_{*} \Delta \approx D+\varepsilon A$. Therefore $N_{\sigma}\left(f^{*}(D+\varepsilon A)\right) \geq f^{*} N_{\sigma}(D+\varepsilon A)$. The first inequality is obtained by $\varepsilon \downarrow 0$ (cf. 1.7-(2)). Since the difference of two \mathbb{R}-divisors lies on the exceptional locus, we have the equality of $f_{*} P_{\sigma}$. In case $P_{\sigma}(D)$ is nef, the equality for $f^{*} P_{\sigma}$ follows from 1.14-(2).
(2) In case codim $W \geq 2$, let $f: Y \rightarrow X$ and E_{W} be as in 2.1. In case $\operatorname{codim} W=1$, let $f=\mathrm{id}: Y=X$ and $E_{W}=W$. Then

$$
\begin{aligned}
\sigma_{E_{W}}\left(f^{*} D\right) & =\sigma_{E_{W}}\left(f^{*} P_{\sigma}(D)\right)+\operatorname{mult}_{E_{W}} f^{*} N_{\sigma}(D), \\
\tau_{E_{W}}\left(f^{*} D\right) & =\tau_{E_{W}}\left(f^{*} P_{\sigma}(D)\right)+\operatorname{mult}_{E_{W}} f^{*} N_{\sigma}(D),
\end{aligned}
$$

by (1), 1.8, and 1.15 . Thus we are done by $\mathbf{2 . 1}, 2.2$.
(3) and (4) We may assume that $c_{1}(D) \in \operatorname{Mv}(X)$ by (1) and 1.7. Then (3) and (4) are derived from $\mathbf{2 . 4}-(1)$ and $\mathbf{2 . 4}-(2)$, respectively.

Remark The assertion (4) above is proved directly from V, 1.5.
2.6. Definition ([77]) For a pseudo-effective \mathbb{R}-divisor D of X, the numerical base locus of D is defined by

$$
\operatorname{NBs}(D):=\left\{x \in X \mid \sigma_{x}(D)>0\right\}
$$

If $x \notin \operatorname{NBs}(D)$, i.e., $\sigma_{x}(D)=0$, then D is called nef at x (cf. 2.8 below). If $W \cap \operatorname{NBs}(D)=\emptyset$ for a subset $W \subset X$, then D is called nef along W.
2.7. Lemma Let D be a pseudo-effective \mathbb{R}-divisor and let W be a subvariety such that $\left.D\right|_{W}$ is not pseudo-effective in the sense of II.5.8. Then $\sigma_{W}(D)>0$.

Proof. Let $f: Y \rightarrow X$ be a birational morphism of $\mathbf{2 . 1}$ for W. Then $\left.f^{*} D\right|_{E_{W}}$ is not pseudo-effective by II,5.6-(2). Hence $\sigma_{W}(D)=\sigma_{E_{W}}\left(f^{*} D\right)>0$.
2.8. Remark If D is nef at a point x, i.e., $\sigma_{x}(D)=0$, then $D \cdot C \geq 0$ for any irreducible curve C passing through x. However, the converse does not hold in general. For example, there is a pseudo-effective divisor D on some non-singular projective surface such that $D \cdot \Gamma \geq 0$ for some irreducible component Γ of the negative part N of the Zariski-decomposition of D. For a general point $x \in \Gamma$, we infer that $D \cdot C \geq 0$ for any irreducible curve C passing through x while $\sigma_{x}(D)>0$.
2.9. Lemma If D is strictly movable, i.e., $c_{1}(D) \in \operatorname{Mv}(X)$, then there exist at most a finite number of subvarieties W of X with $\sigma_{W}(D)>0$ and codim $W=2$.

Proof. Let Z be the intersection of all the supports of the members of $|D|_{\text {num }}$. Then codim $Z \geq 2$ by $\mathbf{1 . 7}$-(3). If $\sigma_{W}(D)>0$, then W is an irreducible component of Z.
2.10. Lemma Let Γ be a prime divisor and let Δ be an effective divisor of X with $\Gamma \not \subset \operatorname{Supp} \Delta$. Let $W_{1}, W_{2}, \ldots, W_{k}$ be irreducible components of $\left.\Delta\right|_{\Gamma}$. Then

$$
\sum\left(\operatorname{mult}_{W_{i}} \Delta\right) W_{i} \leq\left.\Delta\right|_{\Gamma}
$$

as cycles of codimension two.
Proof. It suffices to show that mult ${ }_{W} \Delta \leq$ mult $\left._{W} \Delta\right|_{\Gamma}$ for any $W=W_{i}$. Let $f: Y \rightarrow X$ be a birational morphism of $\mathbf{2 . 1}$ for W and let E_{W} be the divisor over W. Then mult $W_{W} \Delta=\operatorname{mult}_{E_{W}} f^{*} \Delta$ and mult $\left.{ }_{W} \Delta\right|_{\Gamma}=\operatorname{mult}_{E_{W} \cap \Gamma^{\prime}}\left(\left.f^{*} \Delta\right|_{\Gamma^{\prime}}\right)$ for the proper transform Γ^{\prime} of Γ. Here

$$
\left.\left(f^{*} \Delta-\left(\operatorname{mult}_{W} \Delta\right) E_{W}\right)\right|_{\Gamma^{\prime}}
$$

is an effective divisor, since Γ^{\prime} is not a prime component of $f^{*} \Delta-\left(\right.$ mult $\left._{W} \Delta\right) E_{W}$. Thus mult ${ }_{W} \Delta \leq\left.\operatorname{mult}_{W} \Delta\right|_{\Gamma}$.
2.11. Proposition (Moriwaki (cf. [93, 4.1])) For a movable big \mathbb{R}-divisor B, the formal cycle

$$
\sum_{\operatorname{codim} W=2} \sigma_{W}(B) W
$$

of codimension two is uniformly convergent in the real vector space $\mathrm{N}^{2}(X)$.
Proof. Let F_{m} be the fixed divisor $|m B|_{\text {fix }}=\mid\left\llcorner\left. m B_{\lrcorner}\right|_{\text {fix }}+\langle m B\rangle\right.$ for $m \in \mathbb{N}(B)$. There exist an integer $m_{0} \in \mathbb{N}$ and a reduced divisor F such that $\operatorname{Supp} F_{m}=F$ for any $m \geq m_{0}$. Let W be a subvariety of $\operatorname{codim} W=2$ with $\sigma_{W}(B)>0$. If $W \not \subset F$, then $W \subset \mathrm{Bs}\left|{ }_{\llcorner } m B_{\lrcorner}\right|$for any $m \geq m_{0}$. Thus the number of W with $W \not \subset F$ is finite. Let Δ be a general member of $\left.\left.\right|_{\llcorner } m B_{\lrcorner}\right|_{\text {red }}$. Then

$$
\sum_{W \subset \Gamma, \operatorname{codim} W=2}\left(\operatorname{mult}_{W} \Delta\right) W \leq\left.\Delta\right|_{\Gamma}
$$

for any prime component Γ of F, by $\mathbf{2 . 1 0}$. Since

$$
0<\sigma_{W}(B) \leq \frac{1}{m} \sigma_{W}(m B)_{\mathbb{Z}}=\frac{1}{m} \text { mult }_{W} \Delta+\frac{1}{m} \text { mult }_{W} F_{m}
$$

the formal cycle $B \cdot F-\sum_{W \subset F} \sigma_{W}(B) W$ is pseudo-effective in $\mathrm{N}^{2}(X)$.
2.12. Proposition For a movable \mathbb{R}-divisor D, the formal cycle

$$
\sum_{\operatorname{codim} W=2} \sigma_{W}(D)^{2} W
$$

of codimension two is uniformly convergent in the real vector space $\mathrm{N}^{2}(X)$.
Proof. Let $W_{1}, W_{2}, \ldots, W_{k}$ be finitely many subvarieties of codimension two in X. There exist a birational morphism $f: Y \rightarrow X$ and prime divisors E_{1}, E_{2}, \ldots, E_{k} of Y satisfying the following conditions (cf. 2.1):
(1) Y is non-singular and projective;
(2) $f\left(E_{i}\right)=W_{i}$ for any i;
(3) there is a Zariski-open subset $U \subset X$ with $\operatorname{codim}(Z \backslash U) \geq 3$ such that f restricted to $f^{-1} U$ is the blowing-up along the smooth center $U \cap \bigcup W_{i}$.

Then $N_{\sigma}\left(f^{*} D\right)=\sum \sigma_{W_{i}}(D) E_{i}+N^{\prime}$ for an effective f-exceptional \mathbb{R}-divisor N^{\prime} with $\operatorname{codim} f\left(\operatorname{Supp} N^{\prime}\right) \geq 3$. Hence

$$
f_{*}\left(N_{\sigma}\left(f^{*} D\right)^{2}\right)=\sum \sigma_{W_{i}}(D)^{2} f_{*}\left(E_{i}^{2}\right)=-\sum \sigma_{W_{i}}(D)^{2} W_{i}
$$

Moreover, the equality

$$
D^{2}+f_{*}\left(N_{\sigma}\left(f^{*} D\right)^{2}\right)=f_{*}\left(P_{\sigma}\left(f^{*} D\right)^{2}\right)
$$

follows from

$$
f^{*} D^{2}+N_{\sigma}\left(f^{*} D\right)^{2}=P_{\sigma}\left(f^{*} D\right)^{2}+2 f^{*} D \cdot N_{\sigma}\left(f^{*} D\right)
$$

Hence

$$
f_{*}\left(P_{\sigma}\left(f^{*} D\right)^{2}\right)=D^{2}-\sum \sigma_{W_{i}}(D)^{2} W_{i}
$$

is a pseudo-effective \mathbb{R}-cycle of codimension two.
2.13. Corollary Let D be a pseudo-effective \mathbb{R}-divisor of X. Then, for any $\varepsilon>0$, there exists a birational morphism $h: Z \rightarrow X$ from a non-singular projective variety such that $\sigma_{W}\left(P_{\sigma}\left(h^{*} D\right)\right)<\varepsilon$ for any the subvariety W of codimension two with $h_{*} W \neq 0$.

Proof. We may assume that D is movable. The number of subvarieties W^{\prime} of codimension two of X with $\sigma_{W^{\prime}}(D) \geq \varepsilon$ is finite. Let $W_{1}^{\prime}, W_{2}^{\prime}, \ldots, W_{l}^{\prime}$ be all of such subvarieties. Let $h: Z \rightarrow X$ be a birational morphism from a non-singular projective variety. Then $D^{2}+h_{*}\left(N_{\sigma}\left(h^{*} D\right)^{2}\right)=h_{*}\left(P_{\sigma}\left(h^{*} D\right)^{2}\right)$ is pseudo-effective. Suppose that $\nu: Z^{\prime} \rightarrow Z$ is a birational morphism from a non-singular projective variety satisfying the following condition similar to that in the proof $\mathbf{2 . 1 2}$. There exist a finite number of subvarieties $W_{i} \subset Z$ of codimension two such that ν is the blowing-up along $\bigcup W_{i}$ over a Zariski-open subset $U \subset Z$ with $\operatorname{codim}(Z \backslash U) \geq 3$. Then

$$
h_{*}^{\prime}\left(P_{\sigma}\left(h^{\prime *} D\right)^{2}\right) \leq h_{*}\left(P_{\sigma}\left(h^{*} D\right)^{2}\right)
$$

for the composite $h^{\prime}: Z^{\prime} \rightarrow Z \rightarrow X$ by the same argument as in 2.12. We set

$$
t_{i}(h):=\max \left\{t \in \mathbb{R}_{\geq 0} \mid h_{*}\left(P_{\sigma}\left(h^{*} D\right)^{2}\right)-t W_{i}^{\prime} \text { is pseudo-effective }\right\}
$$

We may assume that the birational morphism $h: Z \rightarrow X$ satisfies $t_{i}(h)<t_{i}\left(h^{\prime}\right)+\varepsilon^{2}$ for any such birational morphism $Z^{\prime} \rightarrow Z$ above and for any i.

Let W be a subvariety of Z of codimension two with $h_{*} W \neq 0$. If $h(W) \neq W_{i}^{\prime}$ for any i, then $\sigma_{W}\left(P_{\sigma}\left(h^{*} D\right)\right)<\varepsilon$ by $\left[\mathbf{2 . 5}-(3)\right.$. Thus we may assume that $h(W)=W_{i}^{\prime}$ for some i. There is a birational morphism $\mu: Y \rightarrow Z$ from a non-singular projective variety such that μ is isomorphic to the blowing-up along W over a Zariski-open subset $U \subset Z$ with $\operatorname{codim}(Z \backslash U) \geq 3$. Let f be the composite $h \circ \mu$. Then $P_{\sigma}\left(f^{*} D\right)=P_{\sigma}\left(\mu^{*} P_{\sigma}\left(h^{*} D\right)\right)$ and

$$
f_{*}\left(P_{\sigma}\left(f^{*} D\right)^{2}\right)=h_{*}\left(P_{\sigma}\left(h^{*} D\right)^{2}\right)-\sigma_{W}\left(P_{\sigma}\left(h^{*} D\right)\right)^{2} h_{*} W
$$

by the same argument as in 2.12. Hence

$$
\operatorname{deg}(W \rightarrow h(W)) \cdot \sigma_{W}\left(P_{\sigma}\left(h^{*} D\right)\right)^{2} \leq t_{i}(h)-t_{i}(f)<\varepsilon^{2}
$$

Remark Let β be a pseudo-effective algebraic \mathbb{R}-cycle of codimension q of X. Suppose that $\mathrm{cl}(\beta)$ is contained in the interior $\operatorname{Int} \mathrm{PE}^{q}(X)$ of $\mathrm{PE}^{q}(X)$ in $\mathrm{N}^{q}(X)$. Then there is an effective \mathbb{R}-cycle δ such that $\operatorname{cl}(\delta)=\operatorname{cl}(\beta)$. For a subvariety W of codimension q, we define

$$
\begin{aligned}
\sigma_{W}(\beta) & :=\inf \left\{\operatorname{mult}_{W} \delta \mid \delta \geq 0, \operatorname{cl}(\delta)=\operatorname{cl}(\beta)\right\} \\
\tau_{W}(\beta) & :=\sup \left\{t \in \mathbb{R}_{\geq 0} \mid \beta-t W \text { is pseudo-effective }\right\}
\end{aligned}
$$

As in the same argument as before, σ_{W} and τ_{W} can be defined also for pseudoeffective \mathbb{R}-cycles. The following properties hold:
(1) $\sigma_{W}: \mathrm{PE}^{q}(X) \rightarrow \mathbb{R}_{\geq 0}$ is lower semi-continuous and $\tau_{W}: \mathrm{PE}^{q}(E) \rightarrow \mathbb{R}_{\geq 0}$ is upper semi-continuous. Both are continuous on $\operatorname{Int} \mathrm{PE}^{q}(X)$;
(2) $\lim _{\varepsilon \downarrow 0} \sigma_{W}(\zeta+\varepsilon \eta)=\sigma_{W}(\zeta)$ and $\lim _{\varepsilon \downarrow 0} \tau_{W}(\zeta+\varepsilon \eta)=\tau_{W}(\zeta)$ for any pseudoeffective \mathbb{R}-cycle η;
(3) Let $W_{1}, W_{2}, \ldots, W_{l}$ be mutually distinct subvarieties of codimension q and let $s_{1}, s_{2}, \ldots, s_{l}$ be real numbers with $0 \leq s_{i} \leq \sigma_{W_{i}}(\zeta)$. Then $\sigma_{W_{i}}\left(\zeta-\sum s_{j} W_{j}\right)=\sigma_{W_{i}}(\zeta)-s_{i} ;$
(4) If $W_{1}, W_{2}, \ldots, W_{l}$ are mutually distinct subvarieties of codimension q with $\sigma_{W_{i}}(\zeta)>0$, then their cohomology classes $\operatorname{cl}\left(W_{i}\right)$ are linearly independent.
In particular, we can define the σ-decomposition $\zeta=P_{\sigma}(\zeta)+N_{\sigma}(\zeta)$ by

$$
N_{\sigma}(\zeta)=\sum_{\operatorname{codim} W=q} \sigma_{W}(\zeta) W
$$

Remark Let X be a compact Kähler manifold of dimension n. For an integer $k \geq 0$, let $\mathrm{PC}^{k}(X) \subset \mathrm{H}^{k, k}(X, \mathbb{R}):=\mathrm{H}^{2 k}(X, \mathbb{R}) \cap \mathrm{H}^{k, k}(X)$ be the closed convex cone of the cohomology classes of d-closed positive real currents of type (k, k). Instead of the multiplicity, we consider the Lelong number $\rho_{W}(T)$ of such current T along a subvariety W. The previous argument works well and we can define the σ-decomposition for the currents. This is an extension of the σ-decomposition for algebraic cycles.

§3. ν-decomposition

Let X be a non-singular projective variety and let D be a pseudo-effective \mathbb{R}-divisor of X. Then, for a prime divisor Γ, the restriction $\left.P_{\sigma}(D)\right|_{\Gamma}$ is pseudoeffective in the sense of II.5.8. Let $\mathcal{S}(D)$ be the set of effective \mathbb{R}-divisors Δ such that $\left.(D-\Delta)\right|_{\Gamma}$ is pseudo-effective for any prime divisor Γ. Then $N_{\sigma}(D) \in \mathcal{S}(D)$. We set

$$
N_{\nu}(D):=\sum_{\Gamma: \text { prime divisor }} \inf \left\{\operatorname{mult}_{\Gamma} \Delta \mid \Delta \in \mathcal{S}(D)\right\} \Gamma
$$

Then this is an \mathbb{R}-divisor and $N_{\nu}(D) \leq N_{\sigma}(D)$. In particular, $P_{\nu}(D):=D-N_{\nu}(D)$ is also pseudo-effective.

3.1. Lemma $N_{\nu}(D) \in \mathcal{S}(D)$.

Proof. For any prime divisor Γ and for any positive number ε, there is an effective \mathbb{R}-divisor $\Delta \in \mathcal{S}(D)$ such that $\delta:=\operatorname{mult}_{\Gamma} \Delta-\operatorname{mult}_{\Gamma} N_{\nu}(D) \leq \varepsilon$. Thus

$$
\left.\left(D-N_{\nu}(D)\right)\right|_{\Gamma}-\left.\delta \Gamma\right|_{\Gamma}=\left.(D-\Delta)\right|_{\Gamma}+\left.\left(\Delta^{\prime}-N_{\nu}(D)^{\prime}\right)\right|_{\Gamma}
$$

is pseudo-effective for \mathbb{R}-divisors $\Delta^{\prime}=\Delta-\left(\operatorname{mult}_{\Gamma} \Delta\right) \Gamma$ and $N_{\nu}(D)^{\prime}=N_{\nu}(D)-$ $\left(\operatorname{mult}_{\Gamma} N_{\nu}(D)\right) \Gamma$. Therefore $N_{\nu}(D) \in \mathcal{S}(D)$.
3.2. Definition The decomposition $D=P_{\nu}(D)+N_{\nu}(D)$ is called the ν decomposition of D. The \mathbb{R}-divisors $P_{\nu}(D)$ and $N_{\nu}(D)$ are called the positive and the negative parts of the ν-decomposition of D, respectively.
3.3. Lemma Let $D=P_{\nu}(D)+N_{\nu}(D)$ be the ν-decomposition of a pseudoeffective \mathbb{R}-divisor and let Γ be a prime component of $N_{\nu}(D)$. Then $\left.P_{\nu}(D)\right|_{\Gamma}$ is not big.

Proof. Assume the contrary. Then there is a positive number ε such that $\left.\left(P_{\nu}(D)+\varepsilon \Gamma\right)\right|_{\Gamma}$ is still big. If Γ^{\prime} is another prime divisor, then $\left.\left(P_{\nu}(D)+\varepsilon \Gamma\right)\right|_{\Gamma^{\prime}}$ is pseudo-effective. It contradicts the definition of $N_{\nu}(D)$.
3.4. Question If $\left.D\right|_{\Gamma}$ is pseudo-effective for any prime divisor Γ, then is D pseudo-effective?
3.5. Lemma Let B be a big \mathbb{R}-divisor with $N_{\nu}(B)=0$ and let $F=\sum a_{i} \Gamma_{i}$ be the prime decomposition of an effective \mathbb{R}-divisor F such that $\left.B\right|_{\Gamma_{i}}$ is not big for any i. Then $N_{\nu}(B+F)=F$.

Proof. By the definition of N_{ν}, it is enough to show that $\left.(B+F)\right|_{\Gamma_{i}}$ is not pseudo-effective for some i. There is an effective \mathbb{R}-divisor Δ such that $B-\Delta$ is ample. Then $\left.\Delta\right|_{\Gamma_{i}}$ is not pseudo-effective for any i. Moreover, $\left.(B+r \Delta)\right|_{\Gamma_{i}}$ is not pseudo-effective for any $r>0$ by the equality

$$
B=\frac{1}{r+1}(B+r \Delta)+\frac{r}{r+1}(B-\Delta)
$$

Let r be the maximum of $\left\{a_{j} /\left(\operatorname{mult}_{\Gamma_{j}} \Delta\right)\right\}$ and let i be an index attaining the maximum. Then $\left.(B+F)\right|_{\Gamma_{i}}$ is not pseudo-effective, since $\left.(r \Delta-F)\right|_{\Gamma_{i}}$ is effective and $B+r \Delta=B+F+(r \Delta-F)$.
3.6. Corollary (cf. [26, Lemma 1], [76, Theorem 2]) Let H be a nef and big \mathbb{R}-divisor and let E, G, and Δ be effective \mathbb{R}-divisors. Suppose that
(1) E and G have no common prime component,
(2) $H^{n-1} E=0$, where $n=\operatorname{dim} X$,
(3) $\Delta \approx H+E-G$.

Then $E \leq \Delta$.
Proof. Apply 3.5 to $B:=H$ and $F:=E$. Then $N_{\nu}(\Delta+G)=E \leq \Delta+G$.
3.7. Proposition Let B be a big \mathbb{R}-divisor and let N be an effective \mathbb{R}-divisor such that $P=B-N$ is nef and big. Then the following conditions are equivalent:
(1) $\left.P\right|_{\Gamma}$ is not big for any prime component of N;
(2) $N=N_{\nu}(B)$;
(3) $B=P+N$ is a Zariski-decomposition.

Proof. (1) $\Rightarrow(2)$ follows from 3.5. (2) $\Rightarrow(3)$ is trivial.
$(3) \Rightarrow(1)$: We may assume that $\operatorname{Supp} N \cup \operatorname{Supp}\langle P\rangle$ is a simple normal crossing divisor, by taking a suitable blowing-up. For a prime component Γ of N, let us consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(\llcorner m P _ { \lrcorner }) \rightarrow \mathcal { O } _ { X } \left(\llcorner m P _ { \lrcorner } + \Gamma) \rightarrow \mathcal { O } _ { \Gamma } \left(\left\llcorner m P_{\lrcorner}+\Gamma\right) \rightarrow 0 .\right.\right.\right.
$$

By II.5.13, we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m^{n-1}} \mathrm{~h}^{1}\left(X , \llcorner m P _ { \lrcorner }) = 0 , \quad \text { and } \quad \operatorname { l i m } _ { m \rightarrow \infty } \frac { 1 } { m ^ { n - 1 } } \mathrm { h } ^ { 0 } \left(\Gamma, \mathcal{O}_{\Gamma}\left(\left\llcorner m P_{\lrcorner}+\Gamma\right)\right)=0\right.\right.
$$

Thus $\left.P\right|_{\Gamma}$ are not big.
3.8. Corollary Let P be a nef and big \mathbb{R}-divisor and let Γ be a prime divisor such that $\left.P\right|_{\Gamma}$ is big. Then, for any ample divisor A, there exists an effective \mathbb{R} divisor E such that $\Gamma \not \subset \operatorname{Supp} E$ and $a P \sim A+E$ for some $a \in \mathbb{N}$.

Proof. Suppose that $\sigma_{\Gamma}(P+\varepsilon \Gamma)>0$ for any $\varepsilon>0$. Then P is the positive part of the Zariski-decomposition of $P+\Gamma$. This contradicts 3.7. Hence $\sigma_{\Gamma}(P+\delta \Gamma)=0$ for some $\delta>0$. We may assume that there is an effective \mathbb{R}-divisor G such that $\Gamma \not \subset \operatorname{Supp} G$ and $G \sim_{\mathbb{Q}} P+\delta \Gamma$. There is an effective \mathbb{R}-divisor Δ such that $P-\varepsilon \Delta$ is ample for any $0<\varepsilon<1$. Here

$$
\sigma_{\Gamma}(m P+\Delta) \leq \sigma_{\Gamma}\left(m P+\left(\operatorname{mult}_{\Gamma} \Delta\right) \Gamma\right)=0
$$

for $m \gg 0$. Thus there is an effective \mathbb{R}-divisor $E_{1} \sim_{\mathbb{Q}} b P+\Delta$ with $\Gamma \not \subset \operatorname{Supp} E_{1}$ for some $b \in \mathbb{N}$. Further $m P-E_{1} \sim_{\mathbb{Q}}(m-b) P-\Delta$ is ample for $m>b+1$. Thus $c\left((b+2) P-E_{1}\right)-A \sim E_{2}$ for an effective \mathbb{R}-divisor E_{2} with $\Gamma \not \subset \operatorname{Supp} E_{2}$ and for some $c \in \mathbb{N}$. Thus $a=c(b+2)$ and $E=c E_{1}+E_{2}$ satisfy the condition.
3.9. Definition A pseudo-effective \mathbb{R}-divisor D of a non-singular projective variety X is called numerically movable if $\left.D\right|_{\Gamma}$ is pseudo-effective for any prime divisor Γ. We denote by $\operatorname{NMv}(X)$ the set of the first Chern classes of numerically movable pseudo-effective \mathbb{R}-divisors of X, which is a closed convex cone contained in $\operatorname{PE}(X)$.
3.10. Remark (cf. 1.14) For a pseudo-effective \mathbb{R}-divisor D, we have:
(1) $c_{1}\left(P_{\nu}(D)\right) \in \operatorname{NMv}(X)$;
(2) if $c_{1}(D-\Delta) \in \operatorname{NMv}(X)$ for an effective \mathbb{R}-divisor Δ, then $\Delta \geq N_{\nu}(D)$.
3.11. Lemma Let D be a numerically movable \mathbb{R}-divisor such that $|D|_{\text {num }} \neq \emptyset$. Then there exist at most finitely many subvarieties W of codimension two such that $\left.D\right|_{W}$ is not pseudo-effective.

Proof. Let Δ be a member of $|D|_{\text {num }}$. If $\left.D\right|_{W}$ is not pseudo-effective, then $W \subset \Gamma$ for a component Γ of Δ. Let $\mu: Z \rightarrow \Gamma$ be a birational morphism from a nonsingular projective variety and let W^{\prime} be the proper transform of W. Then $\left.\mu^{*} D\right|_{W^{\prime}}$ is not pseudo-effective. Hence W^{\prime} is a prime component of $N_{\sigma}\left(\mu^{*} D\right)$. In particular, Γ contains at most finitely many irreducible subvarieties W of codimension two in X with $\left.D\right|_{W}$ being not pseudo-effective.
3.12. Remark The ν-decomposition of a given pseudo-effective \mathbb{R}-divisor D is calculated as follows: In step 1 , let $\mathcal{D}_{1}=\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{m_{1}}\right\}$ be the set of prime divisors Γ such that $\left.D\right|_{\Gamma}$ is not pseudo-effective. If \mathcal{D}_{1} is empty, then $D=P_{\nu}(D)$, and we stop here. Otherwise, the set \mathcal{T}_{1} defined as

$$
\left\{\left(r_{i}\right)_{i=1}^{m_{1}} \in\left(\mathbb{R}_{\geq 0}\right)^{m_{1}}\left|\left(D-\sum_{i=1}^{m_{1}} r_{i} \Gamma_{i}\right)\right|_{\Gamma_{j}} \text { is pseudo-effective for } 1 \leq j \leq m_{1}\right\}
$$

is not empty. For $1 \leq j \leq m_{1}$, we set

$$
t_{j}^{(1)}:=\inf \left\{t \geq 0 \mid t=r_{j} \text { for some }\left(r_{i}\right) \in \mathcal{T}_{1}\right\}
$$

Then $\left(t_{i}^{(1)}\right) \in \mathcal{T}_{1}$ by the same argument as in the proof of 3.1. We consider the pseudo-effective \mathbb{R}-divisor

$$
D^{(1)}:=D-\sum_{i=1}^{m_{1}} t_{i}^{(1)} \Gamma_{i} .
$$

In step 2, let $\mathcal{D}_{2}=\left\{\Gamma_{m_{1}+1}, \Gamma_{m_{1}+2}, \ldots, \Gamma_{m_{2}}\right\}$ be the set of prime divisors Γ such that $\left.D^{(1)}\right|_{\Gamma}$ is not pseudo-effective. If \mathcal{D}_{2} is empty, then $D^{(1)}=P_{\nu}(D)$, and we stop here. Otherwise, then the set \mathcal{T}_{2} defined as
$\left\{\left(r_{i}\right)_{i=1}^{m_{2}} \in\left(\mathbb{R}_{\geq 0}\right)^{m_{2}}\left|\left(D^{(1)}-\sum_{i=1}^{m_{2}} r_{i} \Gamma_{i}\right)\right|_{\Gamma_{j}}\right.$ is pseudo-effective for $\left.1 \leq j \leq m_{2}\right\}$ is not empty. For $1 \leq j \leq m_{2}$, we set

$$
t_{j}^{(2)}:=\inf \left\{t \geq 0 \mid t=r_{j} \text { for some }\left(r_{i}\right) \in \mathcal{T}_{2}\right\}
$$

Then $\left(t_{i}^{(2)}\right) \in \mathcal{T}_{2}$ and we have the pseudo-effective \mathbb{R}-divisor

$$
D^{(2)}:=D^{(1)}-\sum_{i=1}^{m_{2}} t_{i}^{(2)} \Gamma_{i} .
$$

In step 3, we consider the set \mathcal{D}_{3} of prime divisors Γ such that $\left.D^{(2)}\right|_{\Gamma}$ is not pseudoeffective. In this way, we obtain the sets $\mathcal{D}_{k}, \mathcal{T}_{k}$, and the pseudo-effective \mathbb{R}-divisors $D^{(k)}$. Since the prime divisors contained in some \mathcal{D}_{k} are components of $N_{\sigma}(D)$, this process terminates in a suitable step. The last \mathbb{R}-divisor $D^{(k)}$ is the positive part $P_{\nu}(D)$.

Remark

(1) The construction of Zariski-decomposition on surfaces ([151], [20]) is given by the same way as $\mathbf{3 . 1 2}$. In the case, $t_{i}^{(1)}, t_{i}^{(2)} \cdots$, are calculated by linear equations.
(2) If $P_{\nu}(D) \in \overline{\mathrm{Mv}}(X)$, then the ν-decomposition is the σ-decomposition by 1.14 and 3.10 .
(3) In general, $N_{\sigma}(D) \neq N_{\nu}(D)$. For example, for the blowing-up $f: Y \rightarrow X$ at a point $x \in X$, we have $N_{\nu}\left(f^{*} D\right)=f^{*} N_{\nu}(D)$. However $N_{\sigma}\left(f^{*} D\right) \neq$ $f^{*} N_{\sigma}(D)$ if $\sigma_{x}(D)>0$.

§4. Relative version

§4.a. Relative σ-decomposition. Let $\pi: X \rightarrow S$ be a proper surjective morphism of complex analytic varieties. Assume that X is non-singular. Let B be a π-big \mathbb{R}-divisor with $\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}\right) \neq 0$ and Γ a prime divisor of X. Let m_{B} be the maximum non-negative integer m such that the natural injection

$$
\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}-m \Gamma\right) \hookrightarrow \pi_{*} \mathcal{O}_{X}\left(\left\llcorner_{\llcorner } B_{\lrcorner}\right)\right.
$$

is isomorphic. Note that if the injection is isomorphic over an open subset $\mathcal{U} \subset S$ with $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$, then it is isomorphic over S. In fact, for $i<m_{B}$, the cokernel of

$$
\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}-(i+1) \Gamma\right) \hookrightarrow \pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}-i \Gamma\right)
$$

is contained in the torsion-free sheaf $\pi_{*} \mathcal{O}_{\Gamma}\left(\left\llcorner B_{\lrcorner}-i \Gamma\right)\right.$ of $\pi(\Gamma)$.
For an open subset $\mathcal{U} \subset S$ and for an \mathbb{R}-divisor D of X, we write $X_{\mathcal{U}}=\pi^{-1} \mathcal{U}$ and $D_{\mathcal{U}}=\left.D\right|_{\pi^{-1} \mathcal{U}}$. Let $|B / S, \mathcal{U}|$ be the set of effective \mathbb{R}-divisors Δ defined on $X_{\mathcal{U}}$ such that $\Delta \sim B_{\mathcal{U}}$. If \mathcal{U} is a Stein space with $\pi(\Gamma) \cap \mathcal{U} \neq \emptyset$ and if $\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}\right) \neq 0$, then $|B / S, \mathcal{U}| \neq \emptyset$ and

$$
m_{B}+\operatorname{mult}_{\Gamma}\langle B\rangle=\max \left\{t \in \mathbb{R}_{\geq 0} \mid \Delta \geq t \Gamma_{\mathcal{U}} \text { for any } \Delta \in|B / S, \mathcal{U}|\right\}
$$

The following numbers are defined similarly to 1.1:

$$
\begin{aligned}
\sigma_{\Gamma}(B ; X / S)_{\mathbb{Z}} & := \begin{cases}+\infty, & \text { if } \pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } B_{\lrcorner}\right)=0 \\
m_{B}+\operatorname{mult}_{\Gamma}\langle B\rangle, & \text { otherwise }\end{cases} \\
\sigma_{\Gamma}(B ; X / S) & :=\lim _{m \rightarrow \infty}(1 / m) \sigma_{\Gamma}(m B ; X / S)_{\mathbb{Z}}
\end{aligned}
$$

4.1. Lemma If $\mathcal{U} \subset S$ is a connected open subset with $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$, then

$$
\sigma_{\Gamma^{\prime}}\left(B_{\mathcal{U}} ; X_{\mathcal{U}} / \mathcal{U}\right)=\sigma_{\Gamma}(B ; X / S)
$$

for an irreducible component Γ^{\prime} of $\Gamma_{\mathcal{U}}$.
Proof. This is derived from the property: if Δ is an effective \mathbb{R}-divisor of X and if $\left.\Delta\right|_{\mathcal{U}} \geq m \Gamma^{\prime}$ for some $m>0$, then $\Delta \geq m \Gamma$.

If S is Stein and if A is a π-ample divisor of X, then $\sigma_{\Gamma}(B ; X / S)=\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma}(B+$ $\varepsilon A ; X / S)$ by the same argument as in $1.4-(2)$, -(3). If Δ is an effective \mathbb{R}-divisor of X such that $B-\Delta$ is π-numerically trivial over an open subset $\mathcal{U} \subset S$ with $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$, then $\sigma_{\Gamma}(B ; X / S) \leq \operatorname{mult}_{\Gamma} \Delta$ by the same argument as in $1.4-(3)$. Moreover, $\sigma_{\Gamma}(B ; X / S)$ is the infimum of mult ${ }_{\Gamma} \Delta$ for such Δ provided that S is Stein.

Suppose that $\pi: X \rightarrow S$ is a locally projective morphism. Let D be a π-pseudoeffective \mathbb{R}-divisor of X. Let $\mathcal{U} \subset S$ be a Stein open subset with $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$ such
that there is a relatively ample divisor A of $X_{\mathcal{U}}$ over \mathcal{U}. Let $\Gamma_{\mathcal{U}}=\bigcup \Gamma_{j}$ be the irreducible decomposition. By the previous argument, we infer that the limit

$$
\sigma_{\Gamma}(D ; X / S):=\lim _{\varepsilon \downarrow 0} \sigma_{\Gamma_{j}}\left(D_{\mathcal{U}}+\varepsilon A ; X_{\mathcal{U}} / \mathcal{U}\right)
$$

does not depend on the choices of the Stein open subsets \mathcal{U}, the relatively ample divisor A of $X_{\mathcal{U}}$, and the irreducible component Γ_{j} of $\Gamma \cap X_{\mathcal{U}}$. It is not clear that $\sigma_{\Gamma}(D ; X / S)<+\infty$. By the same argument as in 1.8 and 1.10, we have:
4.2. Lemma Let D be a π-pseudo-effective \mathbb{R}-divisor and let $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{l}$ be mutually distinct prime divisors of X.
(1) If s_{i} are real numbers with $0 \leq s_{i} \leq \sigma_{\Gamma_{i}}(D ; X / S)$, then, for any i,

$$
\sigma_{\Gamma_{i}}\left(D-\sum_{j=1}^{l} s_{j} \Gamma_{j} ; X / S\right)=\sigma_{\Gamma_{i}}(D ; X / S)-s_{i}
$$

(2) Suppose that $\sigma_{\Gamma_{i}}(D ; X / S)>0$ for any i. Then, for any $x_{i} \geq 0$,

$$
\sigma_{\Gamma_{i}}\left(\sum_{j=1}^{l} x_{j} \Gamma_{j} ; X / S\right)=x_{i}
$$

In particular, $\sum_{i=1}^{l} x_{i} \Gamma_{i}$ is π-numerically trivial over an open subset $\mathcal{U} \subset$ S if and only if $x_{i}=0$ for all i with $\pi\left(\Gamma_{i}\right) \cap \mathcal{U} \neq \emptyset$.
4.3. Lemma $\sigma_{\Gamma}(D ; X / S)<+\infty$ provided that one of the following conditions is satisfied:
(1) $\pi(\Gamma)=S$;
(2) There exists an effective \mathbb{R}-divisor Δ such that $D-\Delta$ is relatively numerically trivial over an open subset \mathcal{U} with $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$;
(3) Supp D does not dominate S;
(4) $\operatorname{codim} \pi(\Gamma)=1$.

Proof. Case (1) It follows from $1.5-(1)$ applied to the restriction of D to a 'general' fiber of π.

Case (2) Trivial.
Case (3) Since $\pi_{*} \mathcal{O}_{X}\left(L_{\lrcorner}\right) \neq 0$, there is an effective \mathbb{R}-divisor Δ such that $\Delta \sim D$, locally on S. Thus it is reduced to Case (2).

Case (4) We may assume that π has connected fibers and a relatively ample divisor A and that S is normal. Let $\Gamma_{0}:=\Gamma, \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{l}$ be all the prime divisors of X with $\pi\left(\Gamma_{i}\right)=\pi(\Gamma)$. Then there exist positive integers a_{i}, a reflexive sheaf \mathcal{L} of rank one of S, and a Zariski-open subset U of S such that $\left.\mathcal{L}\right|_{U}$ is invertible, $\operatorname{codim}(S \backslash U) \geq 2$, and

$$
\left.\pi^{*}\left(\left.\mathcal{L}\right|_{U}\right) \simeq \mathcal{O}_{X}\left(\sum_{i=0}^{l} a_{i} \Gamma_{i}\right)\right|_{X_{U}}
$$

By taking a blowing-up of X, we may assume that the image of the evaluation mapping

$$
\pi^{*} \pi_{*} \mathcal{O}_{X}\left(\sum_{i=0}^{l} a_{i} \Gamma_{i}\right) \rightarrow \mathcal{O}_{X}\left(\sum_{i=0}^{l} a_{i} \Gamma_{i}\right)
$$

is an invertible subsheaf. Then the image is written by $\mathcal{O}_{X}\left(\sum_{i=0}^{l} a_{i} \Gamma_{i}-E\right)$ for an effective divisor E with $\operatorname{codim} \pi(E) \geq 2$. Since $\sum_{i=0}^{l} a_{i} \Gamma_{i}-E$ is π-nef, we have $\sigma_{\Gamma_{j}}\left(\sum_{i=0}^{l} a_{i} \Gamma_{i} ; X / S\right) \leq \sigma_{\Gamma_{j}}(E ; X / S)=0$. Thus $\sigma_{\Gamma_{j}}(D ; X / S)=0$ for some Γ_{j}. For any $\varepsilon>0$,

$$
\left.\left(D+\varepsilon A-\sum_{i=0}^{l} \sigma_{\Gamma_{i}}(D+\varepsilon A ; X / S) \Gamma_{i}\right)\right|_{\Gamma_{j}}
$$

is $\left(\left.\pi\right|_{\Gamma_{j}}\right)$-pseudo-effective. Hence if $\pi\left(\Gamma_{k} \cap \Gamma_{j}\right)=\pi(\Gamma)$, then $\sigma_{\Gamma_{k}}(D ; X / S)<+\infty$. Since π has connected fibers, we have $\sigma_{\Gamma}(D ; X / S)<+\infty$.

Question Is there an example in which $\sigma_{\Gamma}(D ; X / S)=+\infty$?
Let us consider the formal sum

$$
N_{\sigma}(D ; X / S):=\sum_{\Gamma: \text { prime divisor }} \sigma_{\Gamma}(D ; X / S) \Gamma
$$

Let us fix a point $P \in S$ and recall the real vector space $\mathrm{N}^{1}(X / S ; P)$ ([98], Chapter II, §5.d). By 4.2 and by $\operatorname{dim} \mathrm{N}^{1}(X / S ; P)<\infty$, there exist only a finite number of prime divisors Γ such that $\sigma_{\Gamma}(D ; X / S)>0$ and $\pi(\Gamma) \ni P$. Therefore, if $\sigma_{\Gamma}(D ; X / S)<+\infty$ for all prime divisors Γ, then $N_{\sigma}(D ; X / S)$ is an effective \mathbb{R} divisor. In this case, we can define the relative σ-decomposition $D=P_{\sigma}(D ; X / S)+$ $N_{\sigma}(D ; X / S)$. Also we can define the relative ν-decomposition as in $\S \mathbf{3}$. Suppose that $P_{\sigma}(D ; X / S)$ is π-nef over the point P. Then $P_{\sigma}(D ; X / S)+\varepsilon A$ is π-ample over P for any π-ample divisor A and for any $\varepsilon>0$. Thus $\sigma_{x}\left(P_{\sigma}(D ; X / S) ; X / S\right)=0$ for any $x \in \pi^{-1}(P)$ and $P_{\sigma}(D ; X / S)$ is π-nef over a 'general' point $s \in S$. Let $\nu: Y \rightarrow X$ be a bimeromorphic morphism from a non-singular variety Y locally projective over S. Then $P_{\sigma}\left(\nu^{*} D ; Y / S\right) \leq \nu^{*} P_{\sigma}(D ; X / S)$ by $\mathbf{2 . 5}-(1)$, and the difference does not lie over P. Thus the relative σ-decomposition is called a relative Zariski-decomposition over P. We have the following problem:

Problem Let $\pi: X \rightarrow C$ be a projective surjective morphism from a nonsingular variety into a non-singular curve, $P \in C$ a point, and D a divisor of X such that D is π-nef over P. Then does there exist an open neighborhood U of P such that D is π-nef over U ?

The set of points of C over which D is not π-nef, is countable. The problem asks whether the set is discrete or not. The divisor D is π-pseudo-effective. If D admits a relative Zariski-decomposition over C, then $\left\{x \in X \mid \sigma_{x}(D ; X / S)>0\right\}$ is a Zariski-closed subset of X away from $\pi^{-1}(P)$ and the answer of the problem is yes. If $\operatorname{dim} X=2$, the answer is yes. If D is π-numerically trivial over P, then the answer is also yes by II.5.15. If there is an effective \mathbb{R}-divisor Δ such that $D-\Delta$ is π-numerically trivial over P, then the problem is reduced to a lower-dimensional case. In particular, for the case $\operatorname{dim} X=3$, the the answer is unknown only in the case: $\left.D\right|_{\pi^{-1}(t)}$ is not numerically trivial and not big for general $t \in C$.
§4.b. Threefolds. We note some special properties on threefolds. Let X be a complex analytic manifold of dimension three and let D be an \mathbb{R}-divisor.
4.4. Proposition Suppose that X is projective and D is numerically movable. Let $C_{1}, C_{2}, \ldots, C_{l}$ be irreducible curves with $D \cdot C_{i}<0$ for any i. Then there exists a bimeromorphic morphism $\pi: X \rightarrow Z$ into a normal compact complex analytic threefold such that $\pi\left(C_{i}\right)$ is a point for any i and that π induces an isomorphism $X \backslash \bigcup C_{i} \simeq Z \backslash \bigcup \pi\left(C_{i}\right)$.

Proof. We may assume that D is big. Thus, for any i, there is a prime divisor Γ_{i} such that $\Gamma_{i} \cdot C_{i}<0$. Note that $\left.(t D+A)\right|_{\Gamma_{i}}$ is big for any $t>0$ and for any ample divisor A of X. Thus there exists an effective Cartier divisor E_{i} of Γ_{i} such that the intersection number $\left(E_{i} \cdot C_{i}\right)_{\Gamma_{i}}$ in Γ_{i} is negative. Let \mathcal{J}_{i} be the defining ideal of E_{i} on X. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(-\Gamma_{i}\right) \otimes \mathcal{O}_{C_{i}} \rightarrow \mathcal{J}_{i} \otimes \mathcal{O}_{C_{i}} \rightarrow \mathcal{O}_{\Gamma_{i}}\left(-E_{i}\right) \otimes \mathcal{O}_{C_{i}} \rightarrow 0
$$

we infer that $\mathcal{J}_{i} \otimes \mathcal{O}_{C_{i}}$ is an ample vector bundle. There is an ideal $\mathcal{J} \subset \mathcal{O}_{X}$ such that $\sum \mathcal{J}_{j} \subset \mathcal{J}, \operatorname{Supp} \mathcal{O}_{X} / \mathcal{J}=\bigcup C_{j}$, and that $\operatorname{Supp}\left(\mathcal{J} / \sum \mathcal{J}_{j}\right)$ does not contain any C_{i}. Then the torsion-free part $\nu_{i}^{*} \mathcal{J} /($ tor $)$ is also ample for the normalization $\nu_{i}: \tilde{C}_{i} \rightarrow C_{i} \subset X$. We can contract the curves C_{i} by the contraction criterion in [2], [17] (cf. [102, 1.4]).

Remark For an \mathbb{R}-divisor of a non-singular projective threefold, the condition of numerically movable is close to that of nef. If D is a numerically movable and big \mathbb{R}-divisor, then there is at most a finite number of irreducible curves C with $D \cdot C<0$ by 3.11. These curves are all contractible by 4.4.

Let $f: X \rightarrow Z$ be a bimeromorphic morphism onto a normal variety such that the f-exceptional locus is a non-singular projective curve C. This morphism f is called the contraction of C, and C is called an exceptional curve in X (cf. [102]). Let P be the point $f(C)$. We shall consider the relative Zariski-decomposition problem over P for a divisor on X. Since $\mathrm{N}^{1}(X / Z ; P)$ is one-dimensional, we treat a line bundle \mathcal{L} of X with $\mathcal{L} \cdot C<0$. Under the situation, we have $N_{\sigma}(\mathcal{L} ; X / Z)=0$. In order to obtain a relative Zariski-decomposition of \mathcal{L}, we need to blow up along C. We follow the notation in $[\mathbf{1 0 2}, \S 2]$. Let $\mu_{1}: X_{1} \rightarrow X$ be the blowing-up along C and let E_{1} be the exceptional divisor $\mu_{1}^{-1}(C) \simeq \mathbb{P}_{C}\left(\mathcal{I}_{C} / \mathcal{I}_{C}^{2}\right)$, where \mathcal{I}_{C} is the defining ideal of C in X.
4.5. Lemma If the conormal bundle $\mathcal{I}_{C} / \mathcal{I}_{C}^{2}$ is semi-stable, then

$$
N_{\nu}\left(\mu_{1}^{*} \mathcal{L} ; X_{1} / Z\right)=\frac{-2(\mathcal{L} \cdot C)}{\operatorname{deg}\left(\mathcal{I}_{C} / \mathcal{I}_{C}^{2}\right)} E_{1}
$$

and the positive part $P_{\nu}\left(\mu_{1}^{*} \mathcal{L} ; X_{1} / Z\right)$ is relatively nef over P. In particular, \mathcal{L} admits a relative Zariski-decomposition over P.

Proof. Since $\mathcal{I}_{C} / \mathcal{I}_{C}^{2}$ is semi-stable, all the effective divisors of E_{1} are nef by [82, 3.1]. For a real number x, we set $\Delta:=\left.\left(\mu_{1}^{*} \mathcal{L}-x E_{1}\right)\right|_{E_{1}}$. Then Δ is pseudoeffective if and only if $\Delta^{2} \geq 0$ and $x>0$. This is equivalent to:

$$
x \operatorname{deg}\left(\mathcal{I}_{C} / \mathcal{I}_{C}^{2}\right)+2 \operatorname{deg}\left(\left.\mathcal{L}\right|_{C}\right) \geq 0
$$

Therefore, $N_{\nu}\left(\mu_{1}^{*} \mathcal{L} ; X_{1} / Z\right)$ is written as above and $\left.P_{\nu}\left(\mu_{1}^{*} \mathcal{L} ; X_{1} / Z\right)\right|_{E_{1}}$ is nef.
Next assume that the conormal bundle $\mathcal{I}_{C} / \mathcal{I}_{C}^{2}$ is not semi-stable. The HarderNarasimhan filtration of the conormal bundle induces an exact sequence

$$
0 \rightarrow \mathcal{L}_{0} \rightarrow \mathcal{I}_{C} / \mathcal{I}_{C}^{2} \rightarrow \mathcal{M}_{0} \rightarrow 0
$$

where \mathcal{L}_{0} and \mathcal{M}_{0} are line bundles of C with $\operatorname{deg} \mathcal{L}_{0}>\operatorname{deg} \mathcal{M}_{0}$. The section C_{1} of the ruling $E_{1} \rightarrow C$ corresponding to the surjection $\mathcal{I}_{C} / \mathcal{I}_{C}^{2} \rightarrow \mathcal{M}_{0}$ satisfies

$$
\mathcal{O}_{X_{1}}\left(C_{1}\right) \otimes \mathcal{O}_{C_{1}} \simeq \mathcal{M}_{0} \otimes \mathcal{L}_{0}^{-1}
$$

Thus C_{1} is a negative section: $C_{1}^{2}<0$ in E_{1}.
4.6. Lemma \mathcal{L} admits a relative Zariski-decomposition over P provided that $2 \operatorname{deg} \mathcal{M}_{0} \geq \operatorname{deg} \mathcal{L}_{0}$.

Proof. Let $\mu_{2}: X_{2} \rightarrow X_{1}$ be the blowing-up along C_{1}, E_{2} the μ_{2}-exceptional divisor, and E_{1}^{\prime} the proper transform of E_{1}. Let us consider the exact sequence

$$
0 \rightarrow \mathcal{O}\left(-E_{1}\right) \otimes \mathcal{O}_{C_{1}} \rightarrow \mathcal{I}_{C_{1}} / \mathcal{I}_{C_{1}}^{2} \rightarrow \mathcal{O}_{C_{1}} \otimes \mathcal{O}_{E_{1}}\left(-C_{1}\right) \rightarrow 0
$$

If $2 \operatorname{deg}\left(\mathcal{M}_{0}\right)>\operatorname{deg}\left(\mathcal{L}_{0}\right)$, then $C_{2}:=E_{1}^{\prime} \cap E_{2}$ is the negative section of E_{2}. If $2 \operatorname{deg}\left(\mathcal{M}_{0}\right)=\operatorname{deg}\left(\mathcal{L}_{0}\right)$, then E_{2} is the ruled surface over C associated with the semi-stable vector bundle $\mathcal{I}_{C_{1}} / \mathcal{I}_{C_{1}}^{2}$. Therefore, by [102, 2.4], we obtain a birational morphism $\varphi: Y \rightarrow X_{2}$ from a non-singular variety such that
(1) $\varphi^{-1}\left(E_{1}^{\prime} \cup E_{2}\right)$ is a union of relatively minimal ruled surfaces $F_{j}(1 \leq j \leq k)$ over C for some $k \geq 2$,
(2) F_{k} is a ruled surface associated with a semi-stable vector bundle of C,
(3) F_{j} for $j<k$ admits a negative section which is the complete intersection of F_{j} and other F_{i}.
For an \mathbb{R}-divisor Δ of Y, if $\left.\Delta\right|_{F_{j}}$ is pseudo-effective for any $1 \leq j \leq k$, then $\left.\Delta\right|_{F_{j}}$ is nef for any j. Thus the relative ν-decomposition over P of the pullback of \mathcal{L} to Y is a relative Zariski-decomposition.
4.7. Proposition If X is isomorphic to an open neighborhood of the zero section of a geometric vector bundle \mathbb{V} of rank two on C, then \mathcal{L} admits a relative Zariski-decomposition over P.

Proof. Let \mathcal{E} be a locally free sheaf of rank two of C such that $\mathbb{V}=\mathbb{V}\left(\mathcal{E}^{\vee}\right)=$ $\mathbb{L}(\mathcal{E})\left(\right.$ cf. II, 1.7). Let $p: \mathbb{P}(\mathcal{E}) \rightarrow C$ be the associated \mathbb{P}^{1}-bundle. Then the natural
surjective homomorphism $p^{*} \mathcal{E} \rightarrow \mathcal{O}_{\mathcal{E}}(1)$ defines a commutative diagram

where $\mathbb{L}=\mathbb{L}\left(\mathcal{O}_{\mathcal{E}}(1)\right)$ is the geometric line bundle over $\mathbb{P}(\mathcal{E})$ associated with $\mathcal{O}_{\mathcal{E}}(-1)$. The morphism $\mathbb{L} \rightarrow \mathbb{V}$ is isomorphic to the blowing-up along the zero section C (cf. IV, 3.1). Thus we may assume that $X=\mathbb{V}, X_{1}=\mathbb{L}$, and that E_{1} is the zero section of $\mathbb{L} \rightarrow \mathbb{P}(\mathcal{E})$. Let $C_{1} \subset \mathbb{P}(\mathcal{E})$ be the negative section and let $F_{1} \subset X_{1}$ be its pullback by $X_{1}=\mathbb{L} \rightarrow \mathbb{P}(\mathcal{E})$. Then the complete intersection $F_{1} \cap E_{1}$ is the negative section $C_{1} \subset E_{1}$. The curve C_{1} is also the negative section of F_{1}, since it is contractible. Let $\mu_{2}: X_{2} \rightarrow X_{1}$ be the blowing-up along C_{1}. Then $\mu_{2}^{*} F_{1}=F_{1}^{\prime}+E_{2}$, $\mu_{2}^{*} E_{1}=E_{1}^{\prime}+E_{2}$, and $F_{1}^{\prime} \cap E_{1}^{\prime}=\emptyset$, for $E_{2}:=\mu_{2}^{-1}\left(C_{1}\right)$ and for the proper transforms F_{1}^{\prime} and E_{1}^{\prime} of F_{1} and E_{1}, respectively. The negative section C_{2} of E_{2} is either $F_{1}^{\prime} \cap E_{2}$ or $E_{1}^{\prime} \cap E_{2}$. Next, we consider the blowing-up along C_{2}. In this way, we have a sequence of blowups

$$
X_{k} \xrightarrow{\mu_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\mu_{1}} X_{0}=X
$$

whose center $C_{i} \subset X_{i}$ is the negative section of the μ_{i}-exceptional divisor E_{i} for $i \geq 1$. Here, C_{i} is the complete intersection of E_{i} either with the proper transform of some other E_{j} or with the proper transform of F_{1}. By [102, 2.4], there is a number k such that E_{k} admits no negative sections. If Δ is an \mathbb{R}-divisor of X_{k} such that $\left.\Delta\right|_{E_{i}^{\prime}}$ is pseudo-effective for the proper transform E_{i}^{\prime} of E_{i} for any i, then $\left.\Delta\right|_{E_{i}^{\prime}}$ is nef for any i. Hence the relative ν-decomposition over P of the pullback of \mathcal{L} to X_{k} is a relative Zariski-decomposition.
4.8. Lemma If there exist two prime divisors Δ_{1} and Δ_{2} with $\Delta_{1} \cdot C<0$, $\Delta_{2} \cdot C<0$, and $\Delta_{1} \cap \Delta_{2}=C$, then \mathcal{L} admits a relative Zariski-decomposition over P.

Proof. Let us choose positive integers m_{1} and m_{2} satisfying $m_{1}\left(\Delta_{1} \cdot C_{1}\right)=$ $m_{2}\left(\Delta_{2} \cdot C_{2}\right)$ and let $f: V \rightarrow X$ be the blowing-up of X along the ideal sheaf $\mathcal{J}:=\mathcal{O}_{X}\left(-m_{1} \Delta_{1}\right)+\mathcal{O}_{X}\left(-m_{2} \Delta_{2}\right)$. Let G be the effective Cartier divisor defined by the invertible ideal sheaf $\mathcal{J} \mathcal{O}_{V}$. Note that V and G are Cohen-Macaulay. Since $\mathcal{J} \otimes \mathcal{O}_{C} \simeq \mathcal{O}_{C}\left(-m_{1} \Delta_{1}\right) \oplus \mathcal{O}_{C}\left(-m_{2} \Delta_{2}\right), E:=G_{\text {red }}$ is the ruled surface over C associated with the semi-stable vector bundle $\mathcal{J} \otimes \mathcal{O}_{C}$. There is a filtration of coherent subsheaves

$$
\mathcal{O}_{G}=\mathcal{F}_{0} \supset \mathcal{F}_{1} \supset \mathcal{F}_{2} \supset \cdots \supset \mathcal{F}_{k} \supset \mathcal{F}_{k+1}
$$

such that $\mathcal{F}_{i} / \mathcal{F}_{i+1}$ is a non-zero torsion-free \mathcal{O}_{E}-module for $i \leq k$ and $\operatorname{Supp} \mathcal{F}_{k+1} \neq$ E. We have $\mathcal{F}_{k+1}=0$, since \mathcal{O}_{G} is Cohen-Macaulay. Let α be the minimum of real numbers $x \geq 0$ such that $\left.f^{*} \mathcal{L}\right|_{E}-\left.x G\right|_{E}$ is pseudo-effective. Then $\alpha \in \mathbb{Q}>0$. For any $\beta \in \mathbb{Q}_{>0}$ with $\beta<\alpha$, there is an integer $b \in \mathbb{N}$ such that

$$
\mathrm{H}^{0}\left(E, f^{*} \mathcal{L}^{\otimes m} \otimes \mathcal{O}_{V}(-m \beta G) \otimes \mathcal{F}_{i} / \mathcal{F}_{i+1}\right)=0
$$

for any $m \geq b$ with $m \beta \in \mathbb{Z}$ and for any $0 \leq i \leq k$. Hence

$$
\mathrm{H}^{0}\left(V, f^{*} \mathcal{L}^{\otimes m} \otimes \mathcal{O}_{V}(-m \beta G)\right) \simeq \mathrm{H}^{0}\left(V, f^{*} \mathcal{L}^{\otimes m}\right) \simeq \mathrm{H}^{0}\left(X, \mathcal{L}^{\otimes m}\right)
$$

Let $\rho: Y \rightarrow V$ be a bimeromorphic morphism from a non-singular variety. Then

$$
N_{\sigma}\left(\rho^{*} f^{*} \mathcal{L}\right) \geq \alpha \rho^{*} G .
$$

On the other hand, $\rho^{*} f^{*} \mathcal{L}-\alpha \rho^{*} G$ is relatively nef over P. Hence the nef \mathbb{Q}-divisor is the positive part of a relative Zariski-decomposition over P.

Example There is an example where the assumption of 4.8 is not satisfied: Let $0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{E} \rightarrow \mathcal{O}_{C} \rightarrow 0$ be the non-trivial extension over an elliptic curve C and let \mathbb{E} be the geometric vector bundle $\mathbb{V}(\mathcal{E} \otimes \mathcal{N})$ associated with the locally free sheaf $\mathcal{E} \otimes \mathcal{N}$, where \mathcal{N} is a negative line bundle on C. Then the zero-section of \mathbb{E} is an exceptional curve, but there exist no such prime divisors Δ_{1}, Δ_{2} on any neighborhood of the zero-section as in 4.8.

Example If there is a bimeromorphic morphism $X^{\prime} \rightarrow Z$ that is isomorphic outside P and is not isomorphic to the original f, then the assumption of 4.8 is satisfied. But the converse does not hold in general. For example, let \mathbb{E} be the geometric vector bundle $\mathbb{V}\left(\mathcal{O}_{C} \oplus \mathcal{M}\right)$ associated with $\mathcal{O}_{C} \oplus \mathcal{M}$ on an elliptic curve C such that \mathcal{M} has degree zero but is not a torsion element of $\operatorname{Pic}(C)$. Then a relative Zariski-decomposition for a divisor L on X with $L \cdot C<0$ exists by 4.7, but its positive part is not relatively semi-ample over Z. Thus it is impossible to obtain the morphism $X^{\prime} \rightarrow Z$ above.

§5. Pullbacks of divisors

§5.a. Remarks on exceptional divisors. We give some remarks on exceptional divisors along Fujita's argument in [25]. Let $\pi: X \rightarrow S$ be a proper surjective morphism of normal complex analytic varieties and let D be an \mathbb{R}-divisor of X with $\pi(\operatorname{Supp} D) \neq S$. If $\operatorname{codim} \pi(\operatorname{Supp} D) \geq 2$, then D is called π-exceptional or exceptional for π. Suppose that $\operatorname{codim} \pi(\operatorname{Supp} D)=1$ and let Θ be a prime divisor contained in $\pi(\operatorname{Supp} D)$. If there is a prime divisor $\Gamma \subset X$ with $\pi(\Gamma)=\Theta$ and $\Gamma \not \subset \operatorname{Supp} D$, then D is called of insufficient fiber type along Θ. If such Θ exists, D is called of insufficient fiber type. We assume that X is non-singular and projective over S, and we set $n=\operatorname{dim} X$ and $d=\operatorname{dim} S$. The proofs of $\mathbf{5 . 1}$ and 5.2 below are similar to that of [25, (1.5)]:
5.1. Lemma Let Δ be a π-exceptional effective \mathbb{R}-divisor of X. Then there is a prime component Γ such that $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective over $\pi(\Gamma)$.

Proof. We may replace S by an open subset. Thus we assume that S is a Stein space. By assumption, $e:=\operatorname{dim} \pi(\operatorname{Supp} \Delta) \leq d-2$. Let $H_{1}, H_{2}, \ldots, H_{e}$ be general prime divisors such that $\pi(\operatorname{Supp} \Delta) \cap \bigcap_{i=1}^{e} H_{i}$ is zero-dimensional and that
the pullback $\pi^{-1}\left(\bigcap_{i=1}^{e} H_{i}\right)$ is a non-singular subvariety of X of codimension e. Let $A_{1}, A_{2}, \ldots, A_{n-e-2}$ be general π-ample divisors of X. Then the intersection

$$
Y:=\bigcap_{j=1}^{n-e-2} A_{j} \cap \bigcap_{i=1}^{e} \pi^{-1} H_{i}
$$

is a non-singular surface with $\operatorname{dim} \pi(Y)=2$. For a prime component Γ of Δ, the restriction $\Gamma \cap Y$ is $\left(\left.\pi\right|_{Y}\right)$-exceptional provided that $\pi(\Gamma) \cap \bigcap_{i=1}^{e} H_{i} \neq \emptyset$. Therefore, there is a component Γ such that $\Delta \cdot \gamma<0$ for an irreducible component γ of $\Gamma \cap Y$. Thus $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective.
5.2. Lemma Let Δ be an effective \mathbb{R}-divisor of X with $\pi(\operatorname{Supp} \Delta) \neq S$ and let Θ be a prime divisor contained in $\pi(\operatorname{Supp} \Delta)$. Suppose that Δ is not π-numerically trivial over a general point of Θ. Then there is a prime component Γ of Δ such that $\pi(\Gamma)=\Theta$ and $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective.

Proof. Assume the contrary. We may also assume that S is Stein. Then there is a non-singular curve $C \subset S$ such that $Z:=\pi^{-1}(C)$ is a non-singular subvariety of codimension $d-1, \Theta \cap C$ is zero-dimensional, and that $\left.\Delta\right|_{Z \cap \Gamma}$ is relatively pseudoeffective over $\Theta \cap C$ for any prime component Γ. Let $A_{1}, A_{2}, \ldots, A_{n-d-1}$ be general π-ample divisors of X such that

$$
Y:=Z \cap \bigcap_{j=1}^{n-d-1} A_{j}
$$

is a non-singular surface, $\pi(Y)=C$, and that $\left.\Delta\right|_{Y \cap \Gamma}$ is relatively pseudo-effective. Since any fiber of $Y \rightarrow C$ is one-dimensional, $\left.\Delta\right|_{Y \cap \Gamma}$ is nef. Hence $\left.\Delta\right|_{Y}$ is $\left(\left.\pi\right|_{Y}\right)$-nef over C and $\pi\left(\operatorname{Supp}\left(\left.\Delta\right|_{Y}\right)\right)=\Theta \cap C$. Therefore Δ is π-numerically trivial over $\Theta \cap C$. This is a contradiction.
5.3. Corollary If Δ is an effective \mathbb{R}-divisor of insufficient fiber type over S, then $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for some prime component Γ of Δ.
5.4. Definition Let D be an effective \mathbb{R}-divisor of X. If there is a sequence of projective surjective morphisms $\phi_{k}: X_{k} \rightarrow X_{k+1}(0 \leq k \leq l)$ satisfying the following two conditions, then D is called successively π-exceptional:
(1) π is isomorphic to the composite $X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{l+1}=S$;
(2) Any prime component Γ of D is exceptional for some

$$
\pi_{k+1}:=\phi_{k} \circ \cdots \circ \phi_{0}: X \rightarrow X_{k+1}(0 \leq k \leq l)
$$

An effective \mathbb{R}-divisor Δ is called weakly π-exceptional if there is such a sequence of projective surjective morphisms satisfying the condition (1) above and the following condition (2') instead of (2) above:
(2') There is a decomposition $\Delta=\Delta_{0}+\Delta_{1}+\cdots+\Delta_{l}$ of effective \mathbb{R}-divisors such that any two distinct Δ_{i} and Δ_{j} have no common prime components, and that, for any $1 \leq k \leq l$,
(a) $\operatorname{codim} \pi_{k}\left(\operatorname{Supp} \Delta_{k}\right)=1$, and
(b) $\pi_{k_{*}}\left(\Delta_{k}\right)$ is exceptional or of insufficient fiber type over X_{k+1}.

Remark A successively π-exceptional divisor is not necessarily π-exceptional. There is an example where a prime component Γ is exceptional over X_{1} but dominates X_{2}.
5.5. Proposition If Δ is a weakly π-exceptional effective \mathbb{R}-divisor, then $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for some prime component Γ of Δ.

Proof. Since the condition is local on S, we may assume that S is a Stein space. We prove by induction on the number l in 5.4. The case $l=0$ is done in 5.1 and 5.3. Assume that l is positive and the statement holds for $l-1$. We decompose π by $\pi_{l}: X \rightarrow X_{l}$ and $\phi_{l}: X_{l} \rightarrow X_{l+1}=S$. We set $D_{0}=\Delta_{0}+\Delta_{1}+\cdots+\Delta_{l-1}$ and $D_{1}=\Delta_{l}$. Then D_{0} is weakly π_{l}-exceptional. Suppose that there is a prime component Γ of D_{0} such that $\pi_{l}(\Gamma) \subset \pi_{l}\left(\operatorname{Supp} D_{1}\right)$. We consider new \mathbb{R}-divisors $D_{0}^{\prime}:=D_{0}-\left(\right.$ mult $\left._{\Gamma} D_{0}\right) \Gamma$ and $D_{1}^{\prime}:=D_{1}+\left(\right.$ mult $\left._{\Gamma} D_{0}\right) \Gamma$. Then $\pi_{l *} D_{1}^{\prime}$ is ϕ_{l}-exceptional or of insufficient type over $X_{l+1}=S$. Thus we may replace D_{0} by D_{0}^{\prime} and D_{1} by D_{1}^{\prime}, respectively. If $D_{0}=0$, then $\Delta=\Delta_{l}$ satisfies the required condition by $\mathbf{5 . 1}$ and 5.3. Hence we may assume that $D_{0} \neq 0$ and $\pi_{l}(\Gamma) \not \subset \pi_{l}\left(\operatorname{Supp} D_{1}\right)$ for any prime component Γ of D_{0}. There is a ϕ_{l}-ample divisor H such that $\pi_{l}^{*} H \geq D_{1}$ and $\Gamma \not \subset \pi_{l}^{*} H$ for any prime component Γ of D_{0}. By induction, $\left.\left(D_{0}+\pi_{l}^{*} H\right)\right|_{\Gamma}$ is not $\left(\left.\pi_{l}\right|_{\Gamma}\right)$-pseudo-effective for some prime component Γ of D_{0}. Thus $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective.
5.6. Corollary (cf. Fujita's lemma [61, 1-3-2]) $\pi_{*} \mathcal{O}_{D}(D)=0$ for a weakly π-exceptional effective divisor D.

Proof. By 5.5, $\pi_{*} \mathcal{O}_{\Gamma}(D)=0$ for some prime component Γ of D. Thus $\pi_{*} \mathcal{O}_{D-\Gamma}(D-\Gamma) \simeq \pi_{*} \mathcal{O}_{D}(D)$. Since $D-\Gamma$ is also a weakly π-exceptional effective divisor, we are done by induction.
5.7. Proposition (cf. $[\mathbf{2 5},(1.9)])$ Let Δ be a weakly π-exceptional effective \mathbb{R}-divisor of X. Then $\Delta=N_{\sigma}(\Delta ; X / S)=N_{\nu}(\Delta ; X / S)$.

Proof. Let $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{m_{1}}\right\}$ be the set of prime components Γ of Δ such that $\left.\Delta\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective. This is not empty by 5.5. Let α_{i} be the number

$$
\inf \left\{\alpha>0\left|\left(\Delta-\alpha \Gamma_{i}\right)\right|_{\Gamma_{i}} \text { is }\left(\left.\pi\right|_{\Gamma_{i}}\right) \text {-pseudo-effective }\right\} .
$$

Then $\alpha_{i} \leq \operatorname{mult}_{\Gamma_{i}} \Delta$. By the same argument as in $\mathbf{3 . 1 2}$, we infer that $\left.\Delta^{(1)}\right|_{\Gamma_{i}}$ is $\left(\left.\pi\right|_{\Gamma_{i}}\right)$-pseudo-effective for any $1 \leq i \leq m_{1}$, for the effective \mathbb{R}-divisor

$$
\Delta^{(1)}=\Delta-\sum_{i=1}^{m_{1}} \alpha_{i} \Gamma_{i}
$$

Next, we consider the set $\left\{\Gamma_{m_{1}+1}, \Gamma_{m_{1}+2}, \ldots, \Gamma_{m_{2}}\right\}$ of prime components Γ of $\Delta^{(1)}$ such that $\left.\Delta^{(1)}\right|_{\Gamma}$ is not π-pseudo-effective. It is also not empty if $\Delta^{(1)} \neq 0$. For $1 \leq i \leq m_{2}$, let $\alpha_{i}^{(1)}$ be the number

$$
\inf \left\{\alpha>0\left|\left(\Delta^{(1)}-\alpha \Gamma_{i}\right)\right|_{\Gamma_{i}} \text { is }\left(\left.\pi\right|_{\Gamma_{i}}\right) \text {-pseudo-effective }\right\} .
$$

Then, by the same argument as in $\mathbf{3 . 1 2}$, we infer that $\left.\Delta^{(2)}\right|_{\Gamma_{i}}$ is $\left(\left.\pi\right|_{\Gamma_{i}}\right)$-pseudoeffective for $1 \leq i \leq m_{2}$, for the effective \mathbb{R}-divisor

$$
\Delta^{(2)}:=\Delta^{(1)}-\sum_{i=1}^{m_{2}} \alpha_{i}^{(1)} \Gamma_{i}
$$

As in $\mathbf{3 . 1 2}$, we finally have $\Delta=N_{\nu}(\Delta ; X / S)$.
5.8. Lemma Suppose that $\pi: X \rightarrow S$ has connected fibers and S is nonsingular. Let D be an effective \mathbb{R}-divisor of X not dominating S. Suppose that $\left.D\right|_{\Gamma}$ is relatively pseudo-effective over $\pi(\Gamma)$ for any prime component Γ of D. Then there exist an effective \mathbb{R}-divisor Δ on S and a π-exceptional effective \mathbb{R}-divisor E such that $D=\pi^{*} \Delta-E$.

Proof. Let $S^{\circ} \subset S$ be the maximum Zariski-open subset over which π is flat. Let $\Theta \subset S$ be a prime divisor and let I_{Θ} be the set of prime components Γ of D satisfying $\Theta=\pi(\Gamma)$. Suppose that $I_{\Theta} \neq \emptyset$. If Γ is a prime divisor of X with $\pi(\Gamma)=\Theta$, then $\Gamma \in I_{\Theta}$ by 5.3. Let us define $a_{\Gamma}:=\operatorname{mult}_{\Gamma} D$ and $b_{\Gamma}:=\operatorname{mult}_{\Gamma} \pi^{*} \Theta$ for $\Gamma \in I_{\Theta}$, and $r_{\Theta}:=\min \left\{a_{\Gamma} / b_{\Gamma} \mid \Gamma \in I_{\Theta}\right\}$. Then the multiplicity

$$
\operatorname{mult}_{\Gamma}\left(D-r_{\Theta} \pi^{*} \Theta\right)=a_{\Gamma}-r_{\Theta} b_{\Gamma}
$$

is non-negative for any $\Gamma \in I_{\Theta}$ and is zero for some $\Gamma_{0} \in I_{\Theta}$. Thus $D-r_{\Theta} \pi^{*} \Theta$ is an effective \mathbb{R}-divisor over S°. Since $\left.\left(D-r_{\Theta} \pi^{*} \Theta\right)\right|_{\Gamma^{\prime}}$ is relatively pseudo-effective over Θ for any $\Gamma^{\prime} \in I_{\Theta}, D-r_{\Theta} \pi^{*} \Theta$ is not of insufficient fiber type over S°. Hence $a_{\Gamma}=r_{\Theta} b_{\Gamma}$ for any $\Gamma \in I_{\Theta}$. Therefore, $D=\sum_{\Theta} r_{\Theta} \pi^{*} \Theta+E_{1}-E_{2}$ for some π exceptional effective \mathbb{R}-divisors E_{1} and E_{2} without common prime components. Then $\left.E_{1}\right|_{\Gamma}$ is also relatively pseudo-effective over $\pi(\Gamma)$ for any component Γ of E_{1}. Thus $E_{1}=0$ by 5.1.
5.9. Corollary Suppose that $\pi: X \rightarrow S$ has connected fibers. Let D be a π-nef effective \mathbb{R}-divisor of X not dominating S. Then there exist
(1) bimeromorphic morphisms $\mu: S^{\prime} \rightarrow S$ and $\nu: X^{\prime} \rightarrow X$ from non-singular varieties,
(2) a morphism $\pi^{\prime}: X^{\prime} \rightarrow S^{\prime}$ over S,
(3) an effective \mathbb{R}-divisor Δ on S^{\prime}
such that $\nu^{*} D=\pi^{\prime *} \Delta$.
Proof. Let $\mu: S^{\prime} \rightarrow S$ be a bimeromorphic morphism from a non-singular variety flattening π and let $\pi^{\prime}: X^{\prime} \rightarrow S^{\prime}$ be a bimeromorphic transform of π by μ. We may assume that X^{\prime} is non-singular. Let $\nu: X^{\prime} \rightarrow X$ be the induced bimeromorphic morphism. By 5.8, there exist an effective \mathbb{R}-divisor Δ and a π exceptional effective \mathbb{R}-divisor E such that $\nu^{*} D=\pi^{\prime *} \Delta-E$. Let $V \rightarrow X \times_{Y} Y^{\prime}$ be the normalization of the main component of $X \times_{Y} Y^{\prime}$ and let $\nu_{1}: X^{\prime} \rightarrow V$ and $\pi_{V}: V \rightarrow S^{\prime}$ be the induced morphisms. Then we have $\nu_{1 *} \nu^{*} D=\pi_{V}^{*} \Delta$ by taking $\nu_{1 *}$. Hence we have $E=0$ by taking ν_{1}^{*}.
§5.b. Mumford pullback. Let $\pi: X \rightarrow S$ be a proper surjective morphism of normal complex analytic varieties. Suppose that π is a bimeromorphic morphism from a non-singular surface. Then the numerical pullback or the Mumford pullback $\pi^{*}(D)$ of a divisor D of S is defined as a \mathbb{Q}-divisor of X satisfying the following two conditions:
(1) $\pi_{*}\left(\pi^{*}(D)\right)=D$;
(2) $\pi^{*}(D)$ is π-numerically trivial.

It exists uniquely. Hence, every divisor of a normal surface is numerically \mathbb{Q}-Cartier. We give a generalization of the Mumford pullback to the case of proper surjective morphism from a non-singular variety of arbitrary dimension. However, the second condition above must be weakened. Suppose that $\pi: X \rightarrow S$ is a projective surjective morphism and X is non-singular.
5.10. Lemma Let D be an \mathbb{R}-divisor of X.
(1) Suppose that D is a Cartier divisor and $\pi_{*} \mathcal{O}_{X}(D) \neq 0$. Then there is a π-exceptional effective divisor E such that

$$
\left(\pi_{*} \mathcal{O}_{X}(D)\right)^{\wedge} \simeq \pi_{*} \mathcal{O}_{X}(D+E)
$$

(2) Assume that, for any π-exceptional effective \mathbb{R}-divisor E, there is a prime component Γ of E such that $\left.(D+E)\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective. Then $\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{\lrcorner}\right)$is a reflexive sheaf.
(3) For any relatively compact open subset $U \subset S$, there exists a π-exceptional effective divisor E on $\pi^{-1} U$ such that

$$
\left(\pi _ { * } \mathcal { O } _ { X } (\llcorner D _ { \lrcorner })) ^ { \wedge } | _ { U } \simeq \pi _ { * } \mathcal { O } _ { \pi ^ { - 1 } U } \left(\left\llcorner\left. D\right|_{U}+t E_{\lrcorner}\right)\right.\right.
$$

for any $t \in \mathbb{R}_{>0}$.
(4) If $N_{\nu}(D ; X / S)=0$, then $\pi_{*} \mathcal{O}_{X}\left(\left\llcorner^{-} D_{\lrcorner}\right)\right.$is reflexive.

Proof. (1) Let \mathcal{K} and \mathcal{G} be the kernel and the image of

$$
\pi^{*} \pi_{*} \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D)
$$

respectively. Then \mathcal{G} is a torsion-free sheaf of rank one. Let \mathcal{G}^{\prime} be the cokernel of the composite

$$
\mathcal{K} \rightarrow \pi^{*} \pi_{*} \mathcal{O}_{X}(D) \rightarrow \pi^{*}\left(\left(\pi_{*} \mathcal{O}_{X}(D)\right)^{\wedge}\right)
$$

Then $\mathcal{G} \rightarrow \mathcal{G}^{\prime}$ is isomorphic over $\pi^{-1} U$ for a Zariski-open subset $U \subset S$ with $\operatorname{codim}(S \backslash U) \geq 2$. Thus $\mathcal{G}^{\prime \wedge}=\mathcal{G}^{\wedge} \otimes \mathcal{O}_{X}(E)$ for an effective divisor E supported in $\pi^{-1}(S \backslash U)$. Therefore, $\mathcal{G}^{\prime \wedge} \subset \mathcal{O}_{X}(D+E)$. In particular, we have homomorphisms

$$
\left(\pi_{*} \mathcal{O}_{X}(D)\right)^{\wedge} \rightarrow \pi_{*} \mathcal{G}^{\prime} \rightarrow \pi_{*} \mathcal{O}_{X}(D+E)
$$

which are isomorphic over U. Hence $\left(\pi_{*} \mathcal{O}_{X}(D)\right)^{\wedge}=\pi_{*} \mathcal{O}_{X}(D+E)$.
(2) By (1), we have a π-exceptional effective divisor E such that $\left(\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{\lrcorner}\right)\right)^{\wedge}$ $\simeq \pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{\lrcorner}+E\right)$. By assumption, $E \leq N_{\nu}(D+E, X / S) \leq N_{\sigma}(D+E ; X / S)$. Therefore, $\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{\lrcorner}+E\right) \simeq \pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{\lrcorner}\right)$.
(3) Let \mathcal{E} be the set of π-exceptional prime divisors. We may assume $\mathcal{E} \neq \emptyset$ by (1). Moreover, we may assume that \mathcal{E} is a finite set, since we can replace S by
an open neighborhood of the compact set \bar{U}. Suppose that there is a π-exceptional effective divisor E such that $\left.E\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for any $\Gamma \in \mathcal{E}$. Then mult $_{\Gamma} E>0$ for any $\Gamma \in \mathcal{E}$. Moreover, there is an integer $b>0$ such that $\left.(D+\beta E)\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for any $\Gamma \in \mathcal{E}$ and for any $\beta \geq b$. We set $D_{t}=t(D+b E)$ for a given number $t \in \mathbb{R}_{>0}$. For an arbitrary π-exceptional effective \mathbb{R}-divisor G, let $c \in \mathbb{R}_{>0}$ be the maximum satisfying $c E \geq G$. Then a prime divisor $\Gamma \in \mathcal{E}$ is not contained in $\operatorname{Supp}(c E-G)$. Thus $\left.\left(D_{t}+G\right)\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective, since

$$
\left.\left(D_{t}+G\right)\right|_{\Gamma}+\left.(c E-G)\right|_{\Gamma}=\left.t(D+(b+c / t) E)\right|_{\Gamma}
$$

Thus $\pi_{*} \mathcal{O}_{X}\left({ }_{\llcorner } D_{t\lrcorner}\right)$ is reflexive by (2).
Therefore, it is enough to find such a divisor E. Let $\nu: S^{\prime} \rightarrow S$ be a bimeromorphic morphism flattening π. We may assume that ν is projective and there is a ν-exceptional effective Cartier divisor Δ of S^{\prime} with $-\Delta$ being ν-ample. Let V be the normalization of the main component of $X \times_{S} S^{\prime}$ and let $\mu: V \rightarrow X$ and $\varphi: V \rightarrow S^{\prime}$ be the induced morphisms. We consider $E:=\mu_{*}\left(\varphi^{*} \Delta\right)$. Then $\varphi^{*} \Delta \geq \mu^{*} E$ by 5.8, since $-\varphi^{*} \Delta$ is μ-nef. Suppose that $\left.E\right|_{\Gamma}$ is $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for some $\Gamma \in \mathcal{E}$. Then $\left.\varphi^{*} \Delta\right|_{\Gamma^{\prime}}$ is relatively pseudo-effective over $\pi(\Gamma)$ for the proper transform Γ^{\prime} of Γ in V. Hence the relatively nef divisor $-\left.\varphi^{*} \Delta\right|_{\Gamma^{\prime}}$ over $\pi(\Gamma)$ is numerically trivial along a general fiber of $\Gamma^{\prime} \rightarrow \pi(\Gamma)$. This is a contradiction, since $-\Delta$ is ν-ample and $\varphi\left(\Gamma^{\prime}\right)$ is a prime divisor for the equi-dimensional morphism $\varphi: V \rightarrow S^{\prime}$. Hence $\left.E\right|_{\Gamma}$ is not pseudo-effective for any $\Gamma \in \mathcal{E}$.
(4) Let E be a π-exceptional effective \mathbb{R}-divisor and let Γ be a prime component. If $\left.(-D+E)\right|_{\Gamma}$ is $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective, then $\left.E\right|_{\Gamma}$ is $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective. Therefore the result follows from 5.1 and (2) above.
5.11. Corollary Suppose that π has connected fibers. Let B be an \mathbb{R}-divisor of S. Then there exists an \mathbb{R}-divisor D of X such that
(1) $\operatorname{Supp} D$ is contained in the union of π-exceptional prime divisors and of $\pi^{-1}(\operatorname{Supp} B)$,
(2) $\pi_{*} \mathcal{O}_{X}\left(\left\llcorner D_{\lrcorner}\right) \simeq \mathcal{O}_{S}\left(\left\llcorner B_{\lrcorner}\right)\right.\right.$for any $t \in \mathbb{R}_{>0}$,
(3) $\left.D\right|_{\Gamma}$ is $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective for any prime divisor Γ.

Moreover, the maximum $\pi^{\circledast}(B)$ of such \mathbb{R}-divisors D exists.
Proof. There is an \mathbb{R}-divisor D_{0} of X such that

- $\operatorname{codim} \pi(\Gamma) \geq 2$ or $\pi(\Gamma)$ is a prime divisor contained in $\operatorname{Supp} B$ for any prime component Γ of $\operatorname{Supp} D_{0}$,
- $D_{0}=\pi^{*} B$ over a non-singular Zariski-open subset $S^{\circ} \subset S$ of $\operatorname{codim}(S \backslash$ $\left.S^{\circ}\right) \geq 2$.
Let D_{1} be the \mathbb{R}-divisor $-P_{\nu}\left(-D_{0} ; X / S\right)$. Note that this is a usual \mathbb{R}-divisor, by 4.3-(3). Then $\pi_{*} \mathcal{O}_{X}\left(\left\llcorner D_{1\lrcorner}\right) \simeq \mathcal{O}_{S}\left(\left\llcorner B_{\lrcorner}\right)\right.\right.$for any $t>0$ by 5.10. We define

$$
\pi^{\circledast}(B):=P_{\nu}\left(D_{1} ; X / S\right)=P_{\nu}\left(-P_{\nu}\left(-D_{0} ; X / S\right) ; X / S\right) .
$$

Then the \mathbb{R}-divisor $\pi^{\circledast}(B)$ satisfies the required three conditions above. Let D be an \mathbb{R}-divisor satisfying the same three conditions. Since $D=D_{0}$ over the S°,
there are effective π-exceptional \mathbb{R}-divisors E_{1} and E_{2} having no common prime components such that $D=D_{1}+E_{1}-E_{2}$. Then, by 5.1, we have $E_{1}=0$, since $\left.\left(D-D_{1}\right)\right|_{\Gamma}$ is $\left.\pi\right|_{\Gamma}$-pseudo-effective. Hence $D+E_{2}=D_{1}$ and $D \leq \pi^{\circledast}(B)$.
5.12. Definition The \mathbb{R}-divisor $\pi^{\circledast}(B)$ in 5.11 is called the Mumford pullback of B. The Mumford pullback is defined also in the case where general fibers are not connected, as follows: let $X \rightarrow V \rightarrow S$ be the Stein factorization of π and we write the morphisms by $f: X \rightarrow V$ and $\tau: V \rightarrow S$. Since τ is a finite morphism, we can define $\tau^{\circledast}(B)$ as the closure of $\tau^{*}(B)$ over a Zariski-open subset S° of $\operatorname{codim}\left(S \backslash S^{\circ}\right) \geq 2$. The Mumford pullback $\pi^{\circledast}(B)$ is defined to be $f^{\circledast}\left(\tau^{\circledast}(B)\right)$.

Remark (1) For \mathbb{R}-divisors B, B_{1}, B_{2} of S,

$$
\begin{aligned}
\pi^{\circledast}(-B) & =P_{\nu}\left(-\pi^{\circledast}(B) ; X / S\right), \\
\pi^{\circledast}\left(B_{1}+B_{2}\right) & =P_{\nu}\left(-P_{\nu}\left(-\pi^{\circledast}\left(B_{1}\right)-\pi^{\circledast}\left(B_{2}\right) ; X / S\right) ; X / S\right) .
\end{aligned}
$$

(2) If Γ is a π-exceptional prime divisor, then $\left.\pi^{\circledast}(B)\right|_{\Gamma}$ is not $\left(\left.\pi\right|_{\Gamma}\right)$-big, by 3.3.
(3) If π is a bimeromorphic morphism, then

$$
P_{\sigma}\left(\pi^{\circledast}(B) ; X / S\right) \leq D \leq \pi^{\circledast}(B)
$$

for any \mathbb{R}-divisor D satisfying the conditions of 5.11, since every divisor of X is relatively big over S.
5.13. Lemma Let Γ be a π-exceptional prime divisor with $\operatorname{codim} \pi(\Gamma)=2$. Then

$$
\begin{aligned}
\operatorname{mult}_{\Gamma} P_{\sigma}\left(\pi^{\circledast}(B) ; X / S\right) & =\operatorname{mult}_{\Gamma} \pi^{\circledast}(B), \\
\operatorname{mult}_{\Gamma}\left(\pi^{\circledast}\left(B_{1}\right)+\pi^{\circledast}\left(B_{2}\right)\right) & =\operatorname{mult}_{\Gamma} \pi^{\circledast}\left(B_{1}+B_{2}\right)
\end{aligned}
$$

for any \mathbb{R}-divisors B, B_{1}, B_{2} of S. If $\lambda: Z \rightarrow X$ is a bimeromorphic morphism from a non-singular variety Z, then mult $\Gamma^{\circledast}(B)=\operatorname{mult}_{\Gamma^{\prime}}(\pi \circ \lambda)^{\circledast}(B)$ for the proper transform Γ^{\prime} of Γ.

Proof. First we treat the case where π is bimeromorphic. Then general fibers of $\Gamma \rightarrow \pi(\Gamma)$ are one-dimensional. Now $\left.\pi^{\circledast}(B)\right|_{\Gamma}$ is $\left(\left.\pi\right|_{\Gamma}\right)$-pseudo-effective but not $\left(\left.\pi\right|_{\Gamma}\right)$-big. Hence $\pi^{\circledast}(B) \cdot \gamma=0$ for any irreducible component γ of a general fiber of $\left.\pi\right|_{\Gamma}$. Therefore $\pi^{\circledast}(B)$ is π-numerically trivial outside a Zariski-closed subset of S of codimension greater than two. Therefore $P_{\sigma}\left(\pi^{\circledast}(B) ; X / S\right)=\pi^{\circledast}(B)$ outside the set. In particular, mult ${ }_{\Gamma} P_{\sigma}\left(\pi^{\circledast}(B) ; X / S\right)=\operatorname{mult}_{\Gamma} \pi^{\circledast}(B)$.

Next, we consider the general case. Let $\nu: Y \rightarrow S$ be a bimeromorphic morphism flattening π. Then, for the normalization V of the main component of $X \times_{S} Y$, the induced morphism $q: V \rightarrow Y$ is equi-dimensional. Let $\varphi: Z \rightarrow V$ be a bimeromorphic morphism from a non-singular variety and let $\phi: V \rightarrow X$, $\lambda: Z \rightarrow X$, and $p: Z \rightarrow Y$ be induced morphisms. By definition,

$$
(\nu \circ p)^{\circledast}(B)=P_{\nu}\left(-P_{\nu}\left(-p^{*}\left(\nu^{\circledast}(B)\right) ; Z / S\right) ; Z / S\right) .
$$

Therefore it is $(\nu \circ p)$-numerically trivial over a Zariski-open subset $U \subset S$ with $\operatorname{codim}(S \backslash U) \geq 3$. Let $D:=\lambda_{*}\left((\nu \circ p)^{\circledast}(B)\right)$. Then $\lambda^{*} D=(\nu \circ p)^{\circledast}(B)$ over U. Hence $\pi^{\circledast}(B)=P_{\nu}\left(-P_{\nu}(-D ; X / S) ; X / S\right)$ is also π-numerically trivial over U and $\lambda^{*} \pi^{\circledast}(B)=(\nu \circ p)^{\circledast}(B)=p^{*} \nu^{\circledast}(B)$ over U.

Let S be a normal projective variety of $d=\operatorname{dim} S \geq 2$. Let B_{1} and B_{2} be Weil divisors and let $D_{1}, D_{2}, \ldots, D_{d-2}$ be Cartier divisors of S. For a bimeromorphic morphism $\pi: X \rightarrow S$ from a non-singular projective variety, the intersection number

$$
\pi^{\circledast}\left(B_{1}\right) \cdot \pi^{\circledast}\left(B_{2}\right) \cdot \pi^{*} D_{1} \cdots \pi^{*} D_{d-2}
$$

is rational. It is independent of the choice of π. Thus we can define the intersection number ($B_{1} \cdot B_{2} \cdot D_{1} \cdots D_{d-2}$) as above.

Remark A divisor D of a normal complex analytic variety S is numerically \mathbb{Q} Cartier if and only if $\pi^{\circledast}(D)$ is π-numerically trivial for a bimeromorphic morphism $\pi: X \rightarrow S$ from a non-singular variety.
$\S 5 . c . \sigma$-decompositions of pullbacks. We study the σ-decomposition of the pullback of a pseudo-effective \mathbb{R}-divisor by a projective surjective morphism. For the sake of simplicity, here, we consider in the projective algebraic category. Let $f: Y \rightarrow X$ be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective \mathbb{R}-divisor of X.
5.14. Lemma If E is a pseudo-effective \mathbb{R}-divisor of Y with $N_{\sigma}(E ; Y / X)=E$, then $N_{\sigma}\left(f^{*} D+E\right)=N_{\sigma}\left(f^{*} D\right)+E$.

Proof. This is derived from $N_{\sigma}\left(D^{\prime}\right) \geq N_{\sigma}\left(D^{\prime} ; Y / X\right)$ for any pseudo-effective \mathbb{R}-divisor D^{\prime}

Note that a weakly f-exceptional effective \mathbb{R}-divisor E satisfies $N_{\sigma}(E ; Y / X)=E$.
5.15. Lemma Let Γ be a prime divisor of X and let Γ^{\prime} be a prime divisor of Y with $f\left(\Gamma^{\prime}\right)=\Gamma$. Then

$$
\sigma_{\Gamma^{\prime}}\left(f^{*} D\right)=\left(\operatorname{mult}_{\Gamma^{\prime}} f^{*} \Gamma\right) \sigma_{\Gamma}(D)
$$

Proof. For a divisor Δ, we have mult $\Gamma^{\prime} f^{*} \Delta=\left(\operatorname{mult}_{\Gamma^{\prime}} f^{*} \Gamma\right)$ mult $_{\Gamma} \Delta$. Therefore, the equality holds if f is a birational morphism, and the inequality $\sigma_{\Gamma^{\prime}}\left(f^{*} D\right) \leq$ (mult $\left.\Gamma^{\prime} f^{*} \Gamma\right) \sigma_{\Gamma}(D)$ holds in general. Suppose that f is generically finite. By considering the Galois closure, we may assume f is Galois and the Galois group G acts on Y holomorphically. The negative part $N_{\sigma}\left(f^{*} D\right)$ is G-invariant. Therefore

$$
N_{\sigma}\left(f^{*} D\right)=f^{*} N+E
$$

for an effective \mathbb{R}-divisor N of X and an f-exceptional \mathbb{R}-divisor E. Then $N \leq$ $N_{\sigma}(D)$ by the argument above. Since $f_{*} P_{\sigma}\left(f^{*} D\right)$ is movable by 1.18 ,

$$
(\operatorname{deg} f) N=f_{*} N_{\sigma}\left(f^{*} D\right) \geq(\operatorname{deg} f) N_{\sigma}(D)
$$

Hence $N=N_{\sigma}(D)$ and $\sigma_{\Gamma^{\prime}}\left(f^{*} D\right)=\left(\right.$ mult $\left._{\Gamma^{\prime}} f^{*} D\right) \sigma_{\Gamma}(D)$.

Next suppose that $\operatorname{dim} Y>\operatorname{dim} X \geq 1$. Then $D-\left(\sigma^{\prime} / \mu\right) \Gamma$ is pseudo-effective for $\sigma^{\prime}:=\sigma_{\Gamma^{\prime}}\left(f^{*} D\right)$ and $\mu:=\operatorname{mult}_{\Gamma^{\prime}} f^{*} \Gamma$. Thus $f^{*} D-\sigma^{\prime} \Gamma^{\prime}=f^{*}\left(D-\left(\sigma^{\prime} / \mu\right) \Gamma\right)+R$ for an effective \mathbb{R}-divisor R which is of insufficient fiber type over X. Hence $N_{\sigma}\left(f^{*} D-\right.$ $\left.\sigma^{\prime} \Gamma^{\prime} ; Y / X\right)=N_{\sigma}(R ; Y / X)=R$. Since $N_{\sigma}\left(f^{*} D-\sigma^{\prime} \Gamma^{\prime}\right) \geq N_{\sigma}\left(f^{*} D-\sigma^{\prime} \Gamma^{\prime} ; Y / X\right)=$ R, we have $\sigma_{\Gamma^{\prime}}\left(f^{*}\left(D-\left(\sigma^{\prime} / \mu\right) \Gamma\right)\right)=0$. For a general ample divisor H of Y, H dominates $X, \Gamma^{\prime} \cap H$ dominates Γ, and

$$
\sigma_{\Gamma^{\prime \prime}}\left(\left.f^{*}\left(D-\left(\sigma^{\prime} / \mu\right) \Gamma\right)\right|_{H}\right)=0
$$

for any prime component $\Gamma^{\prime \prime}$ of $\Gamma^{\prime} \cap H$. By induction on $\operatorname{dim} Y-\operatorname{dim} X$, we infer that $\sigma_{\Gamma}\left(D-\left(\sigma^{\prime} / \mu\right) \Gamma\right)=\sigma_{\Gamma}(D)-\sigma^{\prime} / \mu=0$.
5.16. Theorem Let $f: Y \rightarrow X$ be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective \mathbb{R}-divisor of X. Then $N_{\sigma}\left(f^{*} D\right)-$ $f^{*} N_{\sigma}(D)$ is an f-exceptional effective \mathbb{R}-divisor.

Proof. Let E be the \mathbb{R}-divisor $N_{\sigma}\left(f^{*} D\right)-f^{*} N_{\sigma}(D)$ and let Γ be a prime divisor of Y. If Γ dominates X, then

$$
\sigma_{\Gamma}\left(f^{*} D\right)=\operatorname{mult}_{\Gamma} N_{\sigma}\left(f^{*} D\right)=\operatorname{mult}_{\Gamma} f^{*} N_{\sigma}(D)=0
$$

Hence Γ is not a component of E. If $f(\Gamma)$ is a prime divisor, then Γ is not a component of E by 5.15. Hence every component of E is f-exceptional. Let E_{1} and E_{2} be the positive and the negative parts of the prime decomposition of E, respectively: $E=E_{1}-E_{2}$. Suppose that $E_{2} \neq 0$. Then $\left.E_{2}\right|_{\Gamma}$ is relatively pseudoeffective over $f(\Gamma)$ for any component Γ of E_{2}. This contradicts 5.1.
5.17. Corollary Let $f: Y \rightarrow X$ and $g: Z \rightarrow Y$ be surjective morphisms of non-singular projective varieties. Suppose that $P_{\sigma}\left(f^{*} D\right)$ is nef for a pseudo-effective \mathbb{R}-divisor D of X. Then $P_{\sigma}\left(g^{*} f^{*} D\right)=g^{*} P_{\sigma}\left(f^{*} D\right)$.
5.18. Corollary Let $f: Y \rightarrow X$ be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective \mathbb{R}-divisor of X. If $P_{\sigma}\left(f^{*} D\right)$ is nef, then there is a birational morphism $\lambda: Z \rightarrow X$ such that $P_{\sigma}\left(\lambda^{*} D\right)$ is nef.

Proof. By considering a flattening of f, we have the following commutative diagram:

where Z and M are non-singular projective varieties, V is a normal projective variety, $\lambda: Z \rightarrow X, \nu: M \rightarrow V$ are birational morphisms, and $q: V \rightarrow Z$ is an equi-dimensional surjective morphism. Let $\mu: M \rightarrow V \rightarrow Y$ be the composite. Since $P_{\sigma}\left(f^{*} D\right)$ is nef, $N_{\sigma}\left(\mu^{*} f^{*} D\right)=\mu^{*} N_{\sigma}\left(f^{*} D\right)$. By 5.16, $E=N_{\sigma}\left(\mu^{*} f^{*} D\right)-$ $g^{*} N_{\sigma}\left(\lambda^{*} D\right)$ is an effective \mathbb{R}-divisor with $\operatorname{codim} g(E) \geq 2$. Thus $\nu_{*} N_{\sigma}\left(\mu^{*} f^{*} D\right)=$ $q^{*} N_{\sigma}\left(\lambda^{*} D\right)$. Therefore $E=0, P_{\sigma}\left(\lambda^{*} D\right)$ is nef, and $\mu^{*} P_{\sigma}\left(f^{*} D\right)=g^{*} P_{\sigma}\left(\lambda^{*} D\right)$.

