# CHAPTER III

# Zariski-decomposition Problem

We introduce the notion of  $\sigma$ -decomposition in §1 and that of  $\nu$ -decomposition in §3 for pseudo-effective  $\mathbb{R}$ -divisors on non-singular projective varieties. We consider the Zariski-decomposition problem for pseudo-effective  $\mathbb{R}$ -divisors by studying properties on  $\sigma$ - and  $\nu$ -decompositions. The invariant  $\sigma$  along subvarieties is studied in §2. In §4, we extend the study of these decompositions to the case of relatively pseudo-effective  $\mathbb{R}$ -divisors on varieties projective over a fixed base space. In §5, we consider the pullback of pseudo-effective  $\mathbb{R}$ -divisors by a projective surjective morphism and compare the  $\sigma$ -decomposition of the pullback with the original  $\sigma$ decomposition.

# §1. $\sigma$ -decomposition

§1.a. Invariants  $\sigma_{\Gamma}$  and  $\tau_{\Gamma}$ . Let X be a non-singular projective variety of dimension n and let B be a big  $\mathbb{R}$ -divisor of X. The linear system |B| is the set of effective  $\mathbb{R}$ -divisors linearly equivalent to B. Similarly, we define  $|B|_{\mathbb{Q}}$  and  $|B|_{\text{num}}$  to be the sets of effective  $\mathbb{R}$ -divisors  $\Delta$  satisfying  $\Delta \sim_{\mathbb{Q}} B$  and  $\Delta \approx B$ , respectively. By definition, we may write  $|B| = |\_B_{\bot}| + \langle B \rangle$  and

$$|B|_{\mathbb{Q}} = \bigcup_{m \in \mathbb{N}} \frac{1}{m} |mB|.$$

There is a positive integer  $m_0$  such that  $|mB| \neq \emptyset$  for  $m \ge m_0$ , by **II.3.17**.

**1.1. Definition** For a prime divisor  $\Gamma$ , we define:

$$\sigma_{\Gamma}(B)_{\mathbb{Z}} := \begin{cases} \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B| \}, & \text{if } |B| \neq \emptyset, \\ +\infty, & \text{if } |B| = \emptyset; \end{cases}$$
  
$$\sigma_{\Gamma}(B)_{\mathbb{Q}} := \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\mathbb{Q}} \}; \\ \sigma_{\Gamma}(B) := \inf\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\operatorname{num}} \}. \end{cases}$$

Then these three functions  $\sigma_{\Gamma}(\cdot)_*$  (\* =  $\mathbb{Z}$ ,  $\mathbb{Q}$ , and  $\emptyset$ ) satisfy the triangle inequality:

$$\sigma_{\Gamma}(B_1 + B_2)_* \le \sigma_{\Gamma}(B_1)_* + \sigma_{\Gamma}(B_2)_*.$$

| - | n |
|---|---|
| 1 | Э |
|   |   |

**1.2. Definition** Similarly to the above, we define:

$$\begin{split} \tau_{\Gamma}(B)_{\mathbb{Z}} &:= \begin{cases} \sup\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B| \}, & \text{ if } |B| \neq \emptyset, \\ -\infty, & \text{ if } |B| = \emptyset; \end{cases} \\ \tau_{\Gamma}(B)_{\mathbb{Q}} &:= \sup\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\mathbb{Q}} \}; \\ \tau_{\Gamma}(B) &:= \sup\{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in |B|_{\operatorname{num}} \}. \end{split}$$

Then these three functions  $\tau_{\Gamma}(\cdot)_*$  satisfy the triangle inequality:

$$\tau_{\Gamma}(B_1 + B_2)_* \ge \tau_{\Gamma}(B_1)_* + \tau_{\Gamma}(B_2)_*.$$

The function  $\tau_{\Gamma}(\cdot)$  is expressed also by

$$\tau_{\Gamma}(B) = \max\{t \in \mathbb{R}_{\geq 0} \mid B - t\Gamma \in \operatorname{PE}(X)\}.$$

In particular,  $B - \tau_{\Gamma}(B)\Gamma$  is pseudo-effective but not big. For  $t < \tau_{\Gamma}(B)$ , we have  $\tau_{\Gamma}(B - t\Gamma) = \tau_{\Gamma}(B) - t$ . The inequality  $(B - \tau_{\Gamma}(B)\Gamma) \cdot A^{n-1} \ge 0$  holds for any ample divisor A. In particular,

(III-1) 
$$\tau_{\Gamma}(B) \le \frac{B \cdot A^{n-1}}{\Gamma \cdot A^{n-1}} < +\infty.$$

The following equalities and inequalities hold for the functions  $\sigma_{\Gamma}(\cdot)_*$  and  $\tau_{\Gamma}(\cdot)_*$ :

$$\begin{aligned} \sigma_{\Gamma}(B) &\leq \sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \frac{1}{m} \sigma_{\Gamma}(mB)_{\mathbb{Z}}, & \tau_{\Gamma}(B) \geq \tau_{\Gamma}(B)_{\mathbb{Q}} \geq \frac{1}{m} \tau_{\Gamma}(mB)_{\mathbb{Z}}, \\ \sigma_{\Gamma}(qB)_{\mathbb{Q}} &= q \sigma_{\Gamma}(B)_{\mathbb{Q}}, & \tau_{\Gamma}(qB)_{\mathbb{Q}} = q \tau_{\Gamma}(B)_{\mathbb{Q}}, \\ \sigma_{\Gamma}(tB) &= t \sigma_{\Gamma}(B), & \tau_{\Gamma}(tB) = t \tau_{\Gamma}(B), \end{aligned}$$

for  $m \in \mathbb{N}$ ,  $q \in \mathbb{Q}_{>0}$ , and  $t \in \mathbb{R}_{>0}$ . Moreover, we have the following equalities by **1.3** below:

(III-2) 
$$\sigma_{\Gamma}(B)_{\mathbb{Q}} = \lim_{\mathbb{N} \ni m \to \infty} \frac{1}{m} \sigma_{\Gamma}(mB)_{\mathbb{Z}} = \lim_{\mathbb{N} \ni m \to \infty} \frac{1}{m} \sigma_{\Gamma}(mB)_{\mathbb{Z}},$$

(III-3) 
$$\tau_{\Gamma}(B)_{\mathbb{Q}} = \lim_{\mathbb{N} \ni m \to \infty} \frac{1}{m} \tau_{\Gamma}(mB)_{\mathbb{Z}} = \lim_{\mathbb{N} \ni m \to \infty} \frac{1}{m} \tau_{\Gamma}(mB)_{\mathbb{Z}}.$$

**1.3. Lemma** Let d be a positive integer and let f be a function  $\mathbb{N}_{\geq d} \to \mathbb{R}$  such that

$$f(k_1 + k_2) \le f(k_1) + f(k_2)$$

for any  $k_1, k_2 \ge d$ . Furthermore, suppose that the sequence  $\{f(k)/k\}$  for  $k \ge d$  is bounded below. Then the limit  $\lim_{k\to\infty} f(k)/k$  exists.

PROOF. For integers  $k \ge 1$  and  $l \ge d$ , we have  $f(kl) \le kf(l)$ . Thus  $f(kl)/(kl) \le f(l)/l$ . In particular, the limit

$$f_l := \lim_{k \to \infty} l^{-k} f(l^k)$$

exists for any l > 1 by the assumption of boundedness. Let a and b be mutually coprime integers greater than d. Then there is an integer e = e(a, b) > d such that

#### 1. $\sigma$ -DECOMPOSITION

any integer  $m \ge e$  is written as  $m = k_1 a + k_2 b$  for some integers  $k_1, k_2 \ge 0$ . Then  $f(m) \le k_1 f(a) + k_2 f(b)$ . Thus

$$\frac{f(m)}{m} \le \frac{k_1 f(a) + k_2 f(b)}{k_1 a + k_2 b} \le \max\left\{\frac{f(a)}{a}, \frac{f(b)}{b}\right\}$$

In particular,  $f_l \leq \max\{f_a, f_b\}$  for any l > 1. Hence  $f_{\infty} = f_l$  is independent of the choice of l. Thus  $f_{\infty} = \lim_{k \to \infty} f(k)/k$ .

The following simpler proof is due to S. Mori:

ANOTHER PROOF OF **1.3**. Let us fix an integer l > d. An integer m > l has an expression m = ql + r for  $0 \le q \in \mathbb{Z}$  and  $l \le r \le 2l - 1$ . Thus  $f(m) \le qf(l) + f(r)$ . Hence

$$\frac{f(m)}{m} \le \frac{qf(l) + f(r)}{ql + r} = \left(\frac{ql}{ql + r}\right)\frac{f(l)}{l} + \left(\frac{r}{ql + r}\right)\frac{f(r)}{r}.$$

By taking  $m \to \infty$ , we have:

$$\overline{\lim}_{m \to \infty} \frac{f(m)}{m} \le \frac{f(l)}{l}.$$

Thus the limit exists.

**1.4. Lemma** Let B be a big  $\mathbb{R}$ -divisor and  $\Gamma$  a prime divisor.

- (1)  $\sigma_{\Gamma}(A)_{\mathbb{Q}} = 0$  for any ample  $\mathbb{R}$ -divisor A.
- (2)  $\lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(B + \varepsilon A) = \sigma_{\Gamma}(B)$  and  $\lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(B + \varepsilon A) = \tau_{\Gamma}(B)$  for any ample  $\mathbb{R}$ -divisor A.
- (3)  $\sigma_{\Gamma}(B)_{\mathbb{Q}} = \sigma_{\Gamma}(B)$  and  $\tau_{\Gamma}(B)_{\mathbb{Q}} = \tau_{\Gamma}(B)$ .
- (4) The  $\mathbb{R}$ -divisor  $B^{\circ} := B \sigma_{\Gamma}(B)\Gamma$  satisfies  $\sigma_{\Gamma}(B^{\circ}) = 0$  and  $\sigma_{\Gamma'}(B^{\circ}) = \sigma_{\Gamma'}(B)$  for any other prime divisor  $\Gamma'$ . Furthermore,  $B^{\circ}$  is also big.
- (5) Let  $\Gamma_1, \Gamma_2, \ldots, \Gamma_l$  be mutually distinct prime divisors with  $\sigma_{\Gamma_i}(B) = 0$  for all *i*. Then, for any  $\varepsilon > 0$ , there is an effective  $\mathbb{R}$ -divisor  $\Delta \in |B|_{\mathbb{Q}}$  such that  $\operatorname{mult}_{\Gamma_i} \Delta < \varepsilon$  for any *i*.

PROOF. (1) By **II.5.2**, it suffices to show  $\sigma_{\Gamma}(tA)_{\mathbb{Q}} = 0$  for any  $t \in \mathbb{R}_{>0}$  and for a very ample effective divisor A. The equality holds for  $t \in \mathbb{Q}$ . Hence even for  $t \notin \mathbb{Q}$ , we have

$$\sigma_{\Gamma}(tA)_{\mathbb{Q}} \leq \lim_{\mathbb{Q} \ni q \uparrow t} (t-q) \operatorname{mult}_{\Gamma} A = 0.$$

(2)  $\tau_{\Gamma}(B + \varepsilon A) \geq \tau_{\Gamma}(B)$  and  $\sigma_{\Gamma}(B + \varepsilon A) \leq \sigma_{\Gamma}(B)$  for any  $\varepsilon \in \mathbb{R}_{>0}$ , since  $\sigma_{\Gamma}(\varepsilon A) = 0$ . There exist a number  $\delta \in \mathbb{R}_{>0}$  and an effective  $\mathbb{R}$ -divisor  $\Delta$  satisfying  $B \sim_{\mathbb{Q}} \delta A + \Delta$  by **II.3.16**. The inequalities

$$(1+\varepsilon)\sigma_{\Gamma}(B) \leq \sigma_{\Gamma}(B+\varepsilon\delta A) + \varepsilon \operatorname{mult}_{\Gamma} \Delta, (1+\varepsilon)\tau_{\Gamma}(B) \geq \tau_{\Gamma}(B+\varepsilon\delta A) + \varepsilon \operatorname{mult}_{\Gamma} \Delta,$$

follow from  $(1 + \varepsilon)B \approx B + \varepsilon \delta A + \varepsilon \Delta$ . Thus we have (2) by taking  $\varepsilon \downarrow 0$ .

(3) Let A be a very ample divisor. Then  $\tau_{\Gamma}(B + \varepsilon A)_{\mathbb{Q}} \geq \tau_{\Gamma}(B)_{\mathbb{Q}}$  and  $\sigma_{\Gamma}(B + \varepsilon A)_{\mathbb{Q}} \leq \sigma_{\Gamma}(B)_{\mathbb{Q}}$  for any  $\varepsilon \in \mathbb{Q}_{>0}$  (cf. (1)). There exists an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $B \sim_{\mathbb{Q}} \delta A + \Delta$  for some  $\delta \in \mathbb{Q}_{>0}$  by **II.3.16**. The inequalities

$$(1+\varepsilon)\sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \sigma_{\Gamma}(B+\varepsilon\delta A)_{\mathbb{Q}} + \varepsilon \operatorname{mult}_{\Gamma} \Delta, (1+\varepsilon)\tau_{\Gamma}(B)_{\mathbb{Q}} \geq \tau_{\Gamma}(B+\varepsilon\delta A)_{\mathbb{Q}} + \varepsilon \operatorname{mult}_{\Gamma} \Delta,$$

follow from  $(1 + \varepsilon)B \sim_{\mathbb{Q}} B + \varepsilon \delta A + \varepsilon \Delta$ . Thus we have

$$(\text{III-4}) \quad \ \sigma_{\Gamma}(B)_{\mathbb{Q}} = \lim_{\mathbb{Q} \ni \varepsilon \downarrow 0} \sigma_{\Gamma}(B + \varepsilon A)_{\mathbb{Q}}, \quad \text{ and } \quad \tau_{\Gamma}(B)_{\mathbb{Q}} = \lim_{\mathbb{Q} \ni \varepsilon \downarrow 0} \tau_{\Gamma}(B + \varepsilon A)_{\mathbb{Q}}.$$

The inequalities  $\sigma_{\Gamma}(B)_{\mathbb{Q}} \geq \sigma_{\Gamma}(B)$  and  $\tau_{\Gamma}(B)_{\mathbb{Q}} \leq \tau_{\Gamma}(B)$  follow from  $|B|_{\mathbb{Q}} \subset |B|_{\text{num}}$ . For an effective  $\mathbb{R}$ -divisor  $\Delta \in |B|_{\text{num}}$ ,  $B + \varepsilon A - \Delta$  is ample for any  $\varepsilon \in \mathbb{Q}_{>0}$ . Here  $\sigma_{\Gamma}(B + \varepsilon A - \Delta)_{\mathbb{Q}} = 0$  by (1) and  $\lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(B + \varepsilon A - \Delta)_{\mathbb{Q}} = 0$  by (III-1). Therefore, by (III-4), we have  $\sigma_{\Gamma}(B)_{\mathbb{Q}} \leq \text{mult}_{\Gamma} \Delta \leq \tau_{\Gamma}(B)_{\mathbb{Q}}$ . Thus the equalities in (3) hold. (4) If  $\Delta \in |mB|$  for some  $m \in \mathbb{N}$ , then  $\text{mult}_{\Gamma} \Delta \geq \sigma_{\Gamma}(mB)_{\mathbb{Z}} \geq m\sigma_{\Gamma}(B)$ .

(4) If  $\Delta \in |mB|$  for some  $m \in \mathbb{N}$ , then  $\operatorname{mult}_{\Gamma} \Delta \geq \sigma_{\Gamma}(mB)_{\mathbb{Z}} \geq m\sigma_{\Gamma}(B)$ . Hence  $\Delta - m\sigma_{\Gamma}(B)\Gamma \in |mB^{\circ}|$ . In particular,  $|B^{\circ}|_{\mathbb{Q}} + \sigma_{\Gamma}(B)\Gamma = |B|_{\mathbb{Q}}$ , which implies the first half assertion of (4). The bigness follows from the isomorphisms  $\operatorname{H}^{0}(X, \lfloor mB \rfloor) \simeq \operatorname{H}^{0}(X, \lfloor mB^{\circ} \rfloor)$  (cf. **II.5.4**).

(5) There exist a number  $m \in \mathbb{N}$  and effective  $\mathbb{R}$ -divisors  $\Delta_i \in |mB|$  for  $1 \leq i \leq l$  such that  $\operatorname{mult}_{\Gamma_i} \Delta_i < m\varepsilon$ . For an  $\mathbb{R}$ -divisor  $\Delta \in |mB|$ , the condition:  $\operatorname{mult}_{\Gamma_i} \Delta < m\varepsilon$ , is a Zariski-open condition in the projective space |mB|. Thus we can find an  $\mathbb{R}$ -divisor  $\Delta \in |mB|$  satisfying  $\operatorname{mult}_{\Gamma_i} \Delta < m\varepsilon$  for any i.  $\Box$ 

**1.5. Lemma** Let D be a pseudo-effective  $\mathbb{R}$ -divisor of X.

(1) For any ample  $\mathbb{R}$ -divisor A,

$$\lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A) \leq \lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A) \leq \frac{D \cdot A^{n-1}}{\Gamma \cdot A^{n-1}} < +\infty.$$

(2) The limits  $\lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A)$  and  $\lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A)$  do not depend on the choice of ample divisors A.

**PROOF.** (1) This is a consequence of (III-1).

(2) Let A' be another ample  $\mathbb{R}$ -divisor. Then there are an effective  $\mathbb{R}$ -divisor  $\Delta$  and a positive number  $\delta$  such that  $A' \approx \delta A + \Delta$ . Hence we have

$$\sigma_{\Gamma}(D + \varepsilon \delta A) + \varepsilon \operatorname{mult}_{\Gamma} \Delta \ge \sigma_{\Gamma}(D + \varepsilon A'),$$
  
$$\tau_{\Gamma}(D + \varepsilon \delta A) + \varepsilon \operatorname{mult}_{\Gamma} \Delta \le \tau_{\Gamma}(D + \varepsilon A').$$

They induce inequalities  $\lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A) \geq \lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A')$  and  $\lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A) \leq \lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A')$ . Changing A with A', we have the equalities.  $\Box$ 

**1.6. Definition** For a pseudo-effective  $\mathbb{R}$ -divisor D and a prime divisor  $\Gamma$ , we define

$$\sigma_{\Gamma}(D) := \lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A), \quad \text{ and } \quad \tau_{\Gamma}(D) := \lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A).$$

#### 1. $\sigma$ -DECOMPOSITION

Note that if  $D \approx D'$ , then  $\sigma_{\Gamma}(D) = \sigma_{\Gamma}(D')$  and  $\tau_{\Gamma}(D) = \tau_{\Gamma}(D')$ . In particular,  $\sigma_{\Gamma}$  and  $\tau_{\Gamma}$  are functions on the closed convex cone PE(X). Here,  $\sigma_{\Gamma}$  is lower convex and  $\tau_{\Gamma}$  is upper convex. We have another expression of  $\tau_{\Gamma}$ :

$$\tau_{\Gamma}(D) = \max\{t \in \mathbb{R}_{>0} \mid D - t\Gamma \in \mathrm{PE}(X)\}.$$

# 1.7. Lemma

- (1)  $\sigma_{\Gamma} \colon \operatorname{PE}(X) \to \mathbb{R}_{\geq 0}$  is lower semi-continuous and  $\tau_{\Gamma} \colon \operatorname{PE}(X) \to \mathbb{R}_{\geq 0}$  is upper semi-continuous. Both functions are continuous on  $\operatorname{Big}(X)$ .
- (2)  $\lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon E) = \sigma_{\Gamma}(D)$  and  $\lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon E) = \tau_{\Gamma}(D)$  for any pseudo-effective  $\mathbb{R}$ -divisor E.
- (3) Let  $\Gamma_1, \Gamma_2, \ldots, \Gamma_l$  be mutually distinct prime divisors such that  $\sigma_{\Gamma_i}(D) = 0$ . Then, for any ample  $\mathbb{R}$ -divisor A, there exists an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $\Delta \sim_{\mathbb{Q}} D + A$  and  $\Gamma_i \not\subset \text{Supp}(\Delta)$  for any i.

PROOF. (1) Let  $\{D_n\}_{n\in\mathbb{N}}$  be a sequence of pseudo-effective  $\mathbb{R}$ -divisors whose Chern classes  $c_1(D_n)$  are convergent to  $c_1(D)$ . Let us take a norm  $\|\cdot\|$  for the finitedimensional real vector space  $\mathbb{N}^1(X)$  and let  $U_r$  be the open ball  $\{z \in \mathbb{N}^1(X); \|z\| < r\}$  for  $r \in \mathbb{R}_{>0}$ . We fix an ample  $\mathbb{R}$ -divisor A on X. Then, for any r > 0, there is a number  $n_0$  such that  $c_1(D - D_n) \in U_r$  for  $n \ge n_0$ . For any  $\varepsilon > 0$ , there is an r > 0such that  $U_r + \varepsilon A$  is contained in the ample cone  $\operatorname{Amp}(X)$ . Applying the triangle inequalities to  $D + \varepsilon A = (D - D_n + \varepsilon A) + D_n$ , we have

$$\sigma_{\Gamma}(D) = \lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon A) \le \lim_{n \to \infty} \sigma_{\Gamma}(D_n),$$
  
$$\tau_{\Gamma}(D) = \lim_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon A) \ge \lim_{n \to \infty} \tau_{\Gamma}(D_n).$$

Next assume that D is big. Then there is a positive number  $\delta$  such that  $D - \delta A$ is still big. We can take  $r_1 > 0$  such that  $D - \delta A + U_{r_1} \subset \text{Big}(X)$ . For any  $\varepsilon > 0$ , there is a real number  $r \in (0, r_1)$  such that  $U_r + \varepsilon A \subset \text{Amp}(X)$ . Applying the triangle inequalities to  $D_n + (\varepsilon - \delta)A = (D_n - D + \varepsilon A) + D - \delta A$  for  $\varepsilon < \delta$ , we have

$$\lim_{n \to \infty} \sigma_{\Gamma}(D_n) \le \sigma_{\Gamma}(D - \delta A), \quad \text{and} \quad \lim_{n \to \infty} \tau_{\Gamma}(D_n) \ge \tau_{\Gamma}(D - \delta A).$$

Hence it is enough to show

$$\lim_{t\downarrow 0} \sigma_{\Gamma}(D - tA) = \sigma_{\Gamma}(D), \text{ and } \lim_{t\downarrow 0} \tau_{\Gamma}(D - tA) = \tau_{\Gamma}(D).$$

Since  $D - \delta A$  is big, there exists an effective  $\mathbb{R}$ -divisor  $\Delta$  with  $D - \delta A \approx \Delta$ . Hence  $D - t\delta A \approx (1 - t)D + t\Delta$  for any t > 0, which induce

$$\sigma_{\Gamma}(D - t\delta A) \le (1 - t)\sigma_{\Gamma}(D) + t \operatorname{mult}_{\Gamma} \Delta,$$
  
$$\tau_{\Gamma}(D - t\delta A) \ge (1 - t)\tau_{\Gamma}(D) + t \operatorname{mult}_{\Gamma} \Delta.$$

By taking  $t \downarrow 0$ , we are done.

(2) By (1), we have  $\underline{\lim}_{\varepsilon \downarrow 0} \sigma_{\Gamma}(D + \varepsilon E) \ge \sigma_{\Gamma}(D)$  and  $\overline{\lim}_{\varepsilon \downarrow 0} \tau_{\Gamma}(D + \varepsilon E) \le \tau_{\Gamma}(D)$ . On the other hand,  $\sigma_{\Gamma}(D + \varepsilon E) \le \sigma_{\Gamma}(D) + \varepsilon \sigma_{\Gamma}(E)$  and  $\tau_{\Gamma}(D + \varepsilon E) \ge \tau_{\Gamma}(D) + \varepsilon \tau_{\Gamma}(E)$  for any  $\varepsilon > 0$ . Thus we have the equalities by taking  $\varepsilon \downarrow 0$ . (3) Let us take  $m \in \mathbb{N}$  such that  $mA + \Gamma_i$  is ample for any *i*. By **1.4**-(5), for any small  $\varepsilon > 0$ , there exist positive rational numbers  $\lambda$ ,  $\delta_i$ , and an effective  $\mathbb{R}$ -divisor B such that  $B + \sum_{i=1}^{l} \delta_i \Gamma_i \sim_{\mathbb{Q}} D + \lambda A$ ,  $\Gamma_i \not\subset \text{Supp } B$  for any *i*, and  $m(\sum_i \delta_i) + \lambda < \varepsilon$ . Then

$$B + \sum_{i=1}^{l} \delta_i \left( mA + \Gamma_i \right) \sim_{\mathbb{Q}} D + \left( m \sum_{i=1}^{l} \delta_i + \lambda \right) A.$$

Thus we can find an expected effective  $\mathbb R\text{-divisor}.$ 

**Remark** In (1), the function  $\sigma_{\Gamma} \colon \operatorname{PE}(X) \to \mathbb{R}_{\geq 0}$  is not necessarily continuous. An example is given in **IV.2.8**. However,  $\sigma_{\Gamma}$  is continuous if dim X = 2 by **1.19**. The property (3) is generalized to **V.1.3**.

**1.8. Lemma** Let D be a pseudo-effective  $\mathbb{R}$ -divisor,  $\Gamma_1, \Gamma_2, \ldots, \Gamma_l$  mutually distinct prime divisors, and let  $s_1, s_2, \ldots, s_l$  be real numbers with  $0 \le s_i \le \sigma_{\Gamma_i}(D)$ . Then  $\sigma_{\Gamma_i}(D - \sum_{j=1}^l s_j \Gamma_j) = \sigma_{\Gamma_i}(D) - s_i$  for any i.

PROOF. If D is big, this is proved by **1.4**-(4). Let  $\varepsilon > 0$  be a real number satisfying  $s_i > \varepsilon$  for any i with  $s_i > 0$ . We define  $s_i(\varepsilon)$  to be the following number:

$$s_i(\varepsilon) := \begin{cases} s_i - \varepsilon & \text{if } s_i > 0; \\ 0 & \text{if } s_i = 0. \end{cases}$$

Let us consider  $\mathbb{R}$ -divisors  $E := D - \sum_{j=1}^{l} s_j \Gamma_j$  and  $E(\varepsilon) := D - \sum_{j=1}^{l} s_j(\varepsilon) \Gamma_j$ . There exist an ample  $\mathbb{R}$ -divisor A and a real number  $\delta > 0$  satisfying  $\sigma_{\Gamma_i}(D + \delta A) \ge s_i(\varepsilon)$  for all i. Then  $E(\varepsilon) + \delta A$  is also big and  $\sigma_{\Gamma_i}(E(\varepsilon) + \delta A) = \sigma_{\Gamma_i}(D + \delta A) - s_i(\varepsilon)$ . Thus  $\sigma_{\Gamma_i}(E(\varepsilon)) = \lim_{\delta \downarrow 0} \sigma_{\Gamma_i}(E(\varepsilon) + \delta A) = \sigma_{\Gamma_i}(D) - s_i(\varepsilon)$  by **1.7**-(2). Then  $\sigma_{\Gamma_i}(E) \le \sigma_{\Gamma_i}(D) - s_i$  by the semi-continuity shown in **1.7**-(1). On the other hand,  $\sigma_{\Gamma_i}(D) \le \sigma_{\Gamma_i}(E) + s_i$  follows from  $D = E + \sum_{j=1}^{l} s_j \Gamma_j$  by the lower convexity of  $\sigma_{\Gamma_i}$ .

**1.9. Corollary** Let D be a pseudo-effective  $\mathbb{R}$ -divisor and let  $\Gamma_1, \Gamma_2, \ldots, \Gamma_l$ be mutually distinct prime divisors with  $\sigma_{\Gamma_i}(D) > 0$  for any i. Then, for  $s_i \in \mathbb{R}_{\geq 0}$ ,

$$\sigma_{\Gamma_i}\left(D + \sum s_j \Gamma_j\right) = \sigma_{\Gamma_i}(D) + s_i.$$

PROOF. Let E be the  $\mathbb{R}$ -divisor  $D + \sum s_j \Gamma_j$  and let  $\sigma_i = \sigma_{\Gamma_i}(D)$ . For 0 < c < 1, we have

$$(1-c)\left(D-\sum_{i}\sigma_{i}\Gamma_{i}\right)+cE=D+\sum_{i}(-(1-c)\sigma_{i}+cs_{i})\Gamma_{i}.$$

Let c be a number with  $0 < c < \sigma_i/(s_i+\sigma_i)$  for any i. Then  $-\sigma_j < -(1-c)\sigma_j+cs_j < 0$ . By **1.8**, we infer that  $\sigma_{\Gamma_i}(E) \ge \sigma_i + s_i$ . The other inequality is derived from the lower convexity of  $\sigma_{\Gamma_i}$ .

**1.10. Proposition** Let D be a pseudo-effective  $\mathbb{R}$ -divisor and let  $\Gamma_1, \Gamma_2, \ldots, \Gamma_l$  be mutually distinct prime divisors of X with  $\sigma_{\Gamma_i}(D) > 0$  for any i. Then

$$\sigma_{\Gamma_i}\left(\sum_{j=1}^l x_j \Gamma_j\right) = x_i$$

for any  $x_1, x_2, \ldots, x_l \in \mathbb{R}_{\geq 0}$ . In particular,  $c_1(\Gamma_1), c_1(\Gamma_2), \ldots, c_1(\Gamma_l)$  are linearly independent in  $N^1(X)$ .

PROOF. Let us take  $\alpha \in \mathbb{R}_{>0}$  with  $\sigma_{\Gamma_i}(D) > \alpha x_i$  for any *i*. Then

$$\sigma_{\Gamma_i}(D) \le \sigma_{\Gamma_i} \left( D - \alpha \sum x_j \Gamma_j \right) + \alpha \sigma_{\Gamma_i} \left( \sum x_j \Gamma_j \right).$$

Thus the equality  $\sigma_{\Gamma_i}(\sum x_j \Gamma_j) = x_i$  follows from **1.8**. Suppose that there is a linear relation

$$\sum_{i=1}^{s} a_i \Gamma_i \approx \sum_{j=s+1}^{l} b_j \Gamma_j$$

for some  $a_i, b_j \in \mathbb{R}_{\geq 0}$  and for some  $1 \leq s < l$ . Then

$$a_{k} = \sigma_{\Gamma_{k}} \left( \sum_{i=1}^{s} a_{i} \Gamma_{i} \right) = \sigma_{\Gamma_{k}} \left( \sum_{j=s+1}^{l} b_{j} \Gamma_{j} \right) = 0$$

for  $k \leq s$ . Hence  $a_i = b_j = 0$  for all i, j.

**1.11. Corollary** For any pseudo-effective  $\mathbb{R}$ -divisor D, the number of prime divisors  $\Gamma$  satisfying  $\sigma_{\Gamma}(D) > 0$  is less than the Picard number  $\rho(X)$ .

# §1.b. Zariski-decomposition problem.

**1.12. Definition** Let D be a pseudo-effective  $\mathbb{R}$ -divisor of a non-singular projective variety X. We define

$$N_{\sigma}(D) := \sum \sigma_{\Gamma}(D)\Gamma$$
, and  $P_{\sigma}(D) := D - N_{\sigma}(D)$ .

The decomposition  $D = P_{\sigma}(D) + N_{\sigma}(D)$  is called the  $\sigma$ -decomposition of D. Here,  $P_{\sigma}(D)$  and  $N_{\sigma}(D)$  are called the positive and the negative parts of the  $\sigma$ -decomposition of D, respectively.

**1.13. Definition** Let  $\operatorname{Mv}'(X)$  be the convex cone in  $\operatorname{N}^1(X)$  generated by the first Chern classes  $c_1(L)$  of all the fixed part free divisors L (i.e.,  $|L|_{\text{fix}} = 0$ ). We denote its closure by  $\overline{\operatorname{Mv}}(X)$  and the interior of  $\overline{\operatorname{Mv}}(X)$  by  $\operatorname{Mv}(X)$ . The cones  $\overline{\operatorname{Mv}}(X)$  and  $\operatorname{Mv}(X)$  are called the *movable cone* and the *strictly movable cone*, respectively. An  $\mathbb{R}$ -divisor D is called *movable* if  $c_1(D) \in \overline{\operatorname{Mv}}(X)$ .

The movable cone was introduced by Kawamata in [58]. There are inclusions  $Nef(X) \subset \overline{Mv}(X) \subset PE(X)$  and  $Amp(X) \subset Mv(X) \subset Big(X)$ .

**1.14.** Proposition Let D be a pseudo-effective  $\mathbb{R}$ -divisor.

- (1)  $N_{\sigma}(D) = 0$  if and only if D is movable.
- (2) If  $D \Delta$  is movable for an effective  $\mathbb{R}$ -divisor  $\Delta$ , then  $\Delta \geq N_{\sigma}(D)$ .

PROOF. (1) Assume that  $N_{\sigma}(D) = 0$ . Then, by the proof of **1.7**-(3), we infer that  $c_1(D+A) \in \operatorname{Mv}'(X)$  for any ample  $\mathbb{R}$ -divisor A. Therefore  $c_1(D) \in \overline{\operatorname{Mv}}(X)$ . The converse is derived from **1.7**-(1).

(2) By (1),  $N_{\sigma}(D - \Delta) = 0$ . Thus  $\sigma_{\Gamma}(D) \leq \sigma_{\Gamma}(D - \Delta) + \sigma_{\Gamma}(\Delta) \leq \text{mult}_{\Gamma} \Delta$  for any prime divisor  $\Gamma$ . Therefore  $N_{\sigma}(D) \leq \Delta$ .

**1.15. Lemma** Let D be a pseudo-effective  $\mathbb{R}$ -divisor,  $\Gamma$  a prime divisor, and  $\Delta$  an effective  $\mathbb{R}$ -divisor with  $\Delta \leq N_{\sigma}(D)$ . Then

$$\tau_{\Gamma}(D) = \tau_{\Gamma}(D - \Delta) + \operatorname{mult}_{\Gamma} \Delta.$$

In particular,  $\tau_{\Gamma}(D) = \tau_{\Gamma}(P_{\sigma}(D)) + \sigma_{\Gamma}(D)$ .

PROOF. We know  $\tau_{\Gamma}(D) \geq \sigma_{\Gamma}(D) \geq \operatorname{mult}_{\Gamma} \Delta$ . If  $D - t\Gamma$  is pseudo-effective for some  $t \in \mathbb{R}_{\geq 0}$ , then  $\sigma_{\Gamma'}(D - t\Gamma) \geq \sigma_{\Gamma'}(D) \geq \operatorname{mult}_{\Gamma'} \Delta$  for any prime divisor  $\Gamma' \neq \Gamma$ . Thus  $D - \Delta - (\tau_{\Gamma}(D) - \operatorname{mult}_{\Gamma} \Delta)\Gamma$  is pseudo-effective. In particular,  $\tau_{\Gamma}(D - \Delta) \geq \tau_{\Gamma}(D) - \operatorname{mult}_{\Gamma} \Delta$ . On the other hand,

$$D - \Delta - \tau_{\Gamma} (D - \Delta) \Gamma \leq D - (\tau_{\Gamma} (D - \Delta) + \operatorname{mult}_{\Gamma} \Delta) \Gamma.$$

Thus we have the equality.

**1.16. Definition** The  $\sigma$ -decomposition  $D = P_{\sigma}(D) + N_{\sigma}(D)$  for a pseudoeffective  $\mathbb{R}$ -divisor is called a *Zariski-decomposition* if  $P_{\sigma}(D)$  is nef.

## 1.17. Remark

- (1) If X is a surface, then the movable cone  $\overline{\text{Mv}}(X)$  coincides with the nef cone Nef(X). Therefore **1.14** implies that the  $\sigma$ -decomposition is nothing but the usual Zariski-decomposition (cf. [151], [20]).
- (2) If  $P_{\sigma}(D)$  is nef, then the decomposition  $D = P_{\sigma}(D) + N_{\sigma}(D)$  is a Zariskidecomposition in the sense of Fujita [25]. It is not clear that a Zariskidecomposition in the sense of Fujita is a Zariski-decomposition in our sense.
- (3) If D is a big  $\mathbb{R}$ -divisor, then the definitions of Zariski-decomposition D = P + N given in [8], [57], [91], and in [25] coincide with the definition of ours. This is derived from that

$$N_{\sigma}(B) = \lim_{m \to \infty} \frac{1}{m} | mB_{\perp} |_{\text{fix}}$$

for any big  $\mathbb{R}$ -divisor B, which follows from (III-2) and **1.4**-(3).

(4) If D is a big  $\mathbb{R}$ -divisor, then  $R(X, D) := \bigoplus_{m=0}^{\infty} \operatorname{H}^{0}(X, \lfloor mD \rfloor)$  is a finitely generated  $\mathbb{C}$ -algebra if and only if there exists a birational morphism  $f: Y \to X$  from a non-singular projective variety such that  $P_{\sigma}(\mu^*D)$  is a semi-ample  $\mathbb{Q}$ -divisor. This is derived from **II.3.1** applied to the algebraic case.

**Problem** (Existence of Zariski-decomposition) For a given pseudo-effective  $\mathbb{R}$ -divisor D of X, does there exist a birational morphism  $\mu: Y \to X$  from a non-singular projective variety with  $P_{\sigma}(\mu^*D)$  being nef?

The author tried to show the existence, but finally found a counterexample for a big  $\mathbb{R}$ -divisor ([103], [104]). The counterexample is explained in IV.2.10 below by the notion of toric bundles.

86

#### 1. $\sigma$ -DECOMPOSITION

**1.18. Lemma** Let  $f: X \to Y$  be a generically finite surjective morphism of non-singular projective varieties, D a pseudo-effective  $\mathbb{R}$ -divisor of X, and  $\Gamma$  a prime divisor of Y. Suppose that  $\sigma_{\Gamma'}(D) = 0$  for any prime divisor  $\Gamma'$  of X satisfying  $\Gamma = f(\Gamma')$ . Then  $\sigma_{\Gamma}(f_*D) = 0$ . In particular, if D is movable, then so is  $f_*D$ .

PROOF. For any ample divisor H of X, for any positive real number  $\varepsilon$ , and for any prime divisor  $\Gamma'$  with  $\Gamma = f(\Gamma')$ , there is an effective  $\mathbb{R}$ -divisor  $\Delta \in |D + \varepsilon H|_{\mathbb{Q}}$ with  $\operatorname{mult}_{\Gamma'} \Delta = 0$ , by **1.7**-(3). Then  $f_*\Delta \in |f_*D + \varepsilon f_*H|_{\mathbb{Q}}$  and  $\operatorname{mult}_{\Gamma} f_*\Delta = 0$ . Hence  $\sigma_{\Gamma}(f_*D + \varepsilon f_*H) = 0$ . Taking  $\varepsilon \downarrow 0$ , we have  $\sigma_{\Gamma}(f_*D) = 0$ .

**Remark** The push-forward  $f_*D$  for a nef divisor D is not necessarily nef.

We shall show the following continuity mentioned before:

**1.19. Proposition** The function  $\sigma_{\Gamma} \colon \operatorname{PE}(X) \to \mathbb{R}_{\geq 0}$  for a prime divisor  $\Gamma$  on a non-singular projective surface X is continuous.

The proof of **1.19** is given after the following:

**1.20. Lemma** Let D be a nef  $\mathbb{R}$ -divisor on a non-singular projective surface X with  $D^2 = 0$ . Then there exist at most finitely many irreducible curves C with  $C^2 < 0$  such that  $D - \varepsilon C$  is pseudo-effective for some  $\varepsilon > 0$ .

PROOF. We may assume that  $D \not\approx 0$ . Let  $S = S_D$  be the set of such curves C. For  $C \in S$ , let  $\alpha > 0$  be a number with  $D - \alpha C$  being pseudo-effective. Then  $0 = D^2 \ge (D - \alpha C) \cdot D \ge 0$ . Hence  $D \cdot C = 0$  and  $(D - \alpha C)^2 < 0$ . Let N be the negative part of the Zariski-decomposition of  $D - \alpha C$  and let  $F := \alpha C + N$ . Then L := D - F is nef and

$$0 = D^2 = D \cdot F + D \cdot L \ge F \cdot L + L^2 \ge L^2 \ge 0.$$

Any prime component  $\Gamma$  of F is an element of S. Further,  $D \cdot \Gamma = L \cdot \Gamma = F \cdot \Gamma = 0$ . Let C' be a curve belonging to S but not contained in Supp F. Similarly let  $\alpha' > 0$  be a number with  $D - \alpha'C'$  being pseudo-effective, N' the negative part of the Zariski-decomposition of  $D - \alpha'C'$ , and let F' the  $\mathbb{R}$ -divisor  $\alpha'C' + N'$ . Then we infer that Supp  $F \cap$  Supp  $F' = \emptyset$  from the usual construction (cf. [151], [20]) of the negative part N'. In particular, the prime components of Supp  $N \cup$  Supp N' are linearly independent in  $N^1(X)$ . Since the Picard number  $\rho(X) = \dim N^1(X)$  is bounded, there exist only finitely many such negative parts N. Hence S is finite.  $\Box$ 

PROOF OF 1.19. We may assume that D is not big by 1.7-(1). Let  $\{D_n\}_{n\in\mathbb{N}}$ be a sequence of pseudo-effective  $\mathbb{R}$ -divisors such that  $c_1(D) = \lim_{n\to\infty} c_1(D_n)$ . If  $\Gamma$  is an irreducible curve with  $\sigma_{\Gamma}(D) > 0$ , then  $\sigma_{\Gamma}(D) \leq \sigma_{\Gamma}(D_n)$  except for finitely many n by 1.7-(1). In particular  $D_n - \sigma_{\Gamma}(D)\Gamma$  is pseudo-effective for  $n \gg 0$ . Hence we may assume that  $\sigma_{\Gamma}(D) = 0$  and moreover that D is nef. Thus  $D^2 = 0$ . We set  $N_n := N_{\sigma}(D_n)$ . Then  $N_{\infty} := \overline{\lim} N_n$  exists by 1.20. Here,  $D - N_{\infty}$  is nef. If  $N_{\infty} \neq 0$ , then  $N_{\infty}^2 < 0$ , since  $\operatorname{Supp} N_{\infty} \subset \operatorname{Supp} N_n$  for some *n*. However,  $N_{\infty}^2 = 0$  follows from

$$0 = D^{2} \ge (D - N_{\infty})D \ge (D - N_{\infty})^{2} \ge 0.$$

Therefore,  $N_{\infty} = 0$  and  $\sigma_{\Gamma}$  is continuous.

# §2. Invariant $\sigma$ along subvarieties

In order to analyze the behavior of  $N_{\sigma}$  under a blowing-up, we need to generalize the function  $\sigma_{\Gamma}$ . Let  $W \subset X$  be a subvariety. For a prime divisor  $\Gamma$ , we denote the multiplicity of  $\Gamma$  along W by  $\operatorname{mult}_W \Gamma$ . For an  $\mathbb{R}$ -divisor D, we define the multiplicity  $\operatorname{mult}_W D$  of D along W by  $\sum_{\Gamma} (\operatorname{mult}_{\Gamma} D)(\operatorname{mult}_W \Gamma)$ , where we take all the prime components  $\Gamma$  of D.

**2.1. Definition** Let  $f: Y \to X$  be a birational morphism from a non-singular projective variety such that  $f^*\mathcal{I}_W/(\text{tor})$  is an invertible sheaf for the defining ideal sheaf  $\mathcal{I}_W$  of W. Then  $f^*\mathcal{I}_W/(\text{tor}) = \mathcal{O}_Y(-E) \subset \mathcal{O}_Y$  for an effective divisor E of Y. We define  $E_W$  to be the prime component of E such that, over a dense Zariski-open subset  $U \subset X$  with  $W \cap U$  being non-singular,  $E_W|_{f^{-1}U}$  is the proper transform of the exceptional divisor of the blowing-up along the ideal  $\mathcal{I}_W$ .

Let  $\Gamma$  be a prime divisor of X. Then  $\operatorname{mult}_W \Gamma$  is the maximal number m with  $f^*\Gamma \geq mE_W$ . Hence  $\operatorname{mult}_W \Delta = \operatorname{mult}_{E_W} f^*\Delta$  for any  $\mathbb{R}$ -divisor  $\Delta$ . Let A be an ample  $\mathbb{R}$ -divisor of X. Then the following equalities hold by **1.7**-(2):

$$\sigma_{E_W}(f^*D) = \lim_{\varepsilon \downarrow 0} \sigma_{E_W}(f^*(D + \varepsilon A)) = \lim_{\varepsilon \downarrow 0} \inf\{\operatorname{mult}_W \Delta \mid \Delta \in |D + \varepsilon A|_{\operatorname{num}}\};$$
  
$$\tau_{E_W}(f^*D) = \lim_{\varepsilon \downarrow 0} \tau_{E_W}(f^*(D + \varepsilon A)) = \lim_{\varepsilon \downarrow 0} \sup\{\operatorname{mult}_W \Delta \mid \Delta \in |D + \varepsilon A|_{\operatorname{num}}\}.$$

**2.2. Definition** Let  $W \subset X$  be a subvariety of codim  $W \ge 2$ . For a pseudoeffective  $\mathbb{R}$ -divisor D, we define  $\sigma_W(D) := \sigma_{E_W}(f^*D)$  and  $\tau_W(D) := \tau_{E_W}(f^*D)$ .

## 2.3. Lemma

- (1)  $\sigma_W(D) \leq \sigma_x(D)$  and  $\tau_W(D) \leq \tau_x(D)$  for any point  $x \in W$ .
- (2) There is a countable union S of proper closed analytic subsets of W such that  $\sigma_W(D) = \sigma_x(D)$  for any  $x \in W \setminus S$ .
- (3) The function  $X \ni x \mapsto \sigma_x(B)$  is upper semi-continuous if B is big.

PROOF. (1) and (2) Let  $\Delta = \sum r_j \Gamma_j$  be the prime decomposition of an effective  $\mathbb{R}$ -divisor  $\Delta$ . By definition,  $\operatorname{mult}_W \Delta = \sum r_j \operatorname{mult}_W \Gamma_j$ . Hence  $\operatorname{mult}_x \Delta \geq \operatorname{mult}_W \Delta$  holds and there exists a Zariski-open dense subset U of W such that  $\operatorname{mult}_x \Delta = \operatorname{mult}_W \Delta$  for  $x \in U$ . For an ample divisor  $A, \varepsilon \in \mathbb{Q}_{>0}$ , and  $m \in \mathbb{N}$ , we write  $\Delta(m, \varepsilon) = |m(D + \varepsilon A)|$ . Then the inequalities

(III-5) 
$$\inf\{ \operatorname{mult}_{x} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon) \} \ge \inf\{ \operatorname{mult}_{W} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon) \},$$
$$\sup\{ \operatorname{mult}_{x} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon) \} \ge \sup\{ \operatorname{mult}_{W} \Delta \mid \Delta \in \boldsymbol{\Delta}(m, \varepsilon) \}$$

88

hold, which imply (1). Since  $\Delta(m, \varepsilon) = | \lfloor m(D + \varepsilon A) \rfloor | + \langle m(D + \varepsilon A) \rangle$ , we can find a Zariski-open dense subset  $U(m, \varepsilon) \subset W$  such that the equality holds in (III-5) for any  $x \in U(m, \varepsilon)$ . Thus (2) holds for  $W \smallsetminus S = \bigcap U(m, \varepsilon)$ .

(3) We have  $\sigma_x(B) = \inf \{ \operatorname{mult}_x \Delta \mid \Delta \in |B|_{\operatorname{num}} \}$ , since B is big. Therefore the result follows from the upper semi-continuity of the function  $x \mapsto \operatorname{mult}_x \Delta$ .  $\Box$ 

**Question** Does the property (3) hold also for a pseudo-effective  $\mathbb{R}$ -divisor?

**2.4. Lemma** Let  $f: Y \to X$  be a birational morphism of non-singular projective varieties.

- (1) Suppose that f is the blowing-up at a point  $x \in X$ . Let  $\Delta$  be an effective divisor of X and let  $\Delta'$  be the proper transform in Y. Then  $\operatorname{mult}_y \Delta' \leq \operatorname{mult}_x \Delta$  for any  $y \in f^{-1}(x)$ .
- (2) Let  $y \in Y$  and  $x \in X$  be points with x = f(y). Then there exist positive integers  $k_1$  and  $k_2$  such that

 $k_1 \operatorname{mult}_x \Delta \leq \operatorname{mult}_y f^* \Delta \leq k_2 \operatorname{mult}_x \Delta$ 

for any effective divisor  $\Delta$  of X.

PROOF. (1) The fiber  $E := f^{-1}(x)$  is isomorphic to a projective space. We have  $\operatorname{mult}_y \Delta' \leq \operatorname{mult}_y \Delta'|_E$ . Since  $\Delta'|_E$  is an effective divisor of degree  $\operatorname{mult}_x \Delta$ , we have  $\operatorname{mult}_y \Delta'|_E \leq \operatorname{mult}_x \Delta$ .

(2) Let  $\mathfrak{m}_x$  and  $\mathfrak{m}_y$  be the maximal ideal sheaves at x and y, respectively. Let  $k_1$  be the maximum positive integer satisfying  $f^*\mathfrak{m}_x/(\operatorname{tor}) \subset \mathfrak{m}_y^{k_1}$ . Let  $\Delta$  be an effective divisor of X. Then  $\operatorname{mult}_y f^*\Delta \geq k_1 \operatorname{mult}_x \Delta$ . In order to obtain the other inequality, we may assume that f is a succession of blowups along non-singular centers since we can apply the inequality of the left hand side. Further we may assume that f is only the blowing-up along a non-singular center  $C \ni x$ . Assume first that  $C = \{x\}$ . Then  $\operatorname{mult}_y f^*\Delta = \operatorname{mult}_y \Delta' + \operatorname{mult}_x \Delta \leq 2 \operatorname{mult}_x \Delta$  by (1). We can take  $k_2 = 2$  in this case. Next assume that  $C \neq \{x\}$ . Then there is the intersection W of general very ample divisors such that  $W \ni x$ ,  $W \not\subset \Delta$ , W intersects C transversely at x, and  $\operatorname{mult}_x \Delta = \operatorname{mult}_x \Delta|_W$ . Then  $\operatorname{mult}_y f^*\Delta \leq 2 \operatorname{mult}_x \Delta|_{f^{-1}W}$ . By applying the case above to W, we have  $\operatorname{mult}_y f^*\Delta \leq 2 \operatorname{mult}_x \Delta|_W = 2 \operatorname{mult}_x \Delta$ . Thus we are done.

**2.5. Lemma** Let D be a pseudo-effective  $\mathbb{R}$ -divisor of X.

- (1) If  $f: Y \to X$  is a birational morphism from a non-singular projective variety Y, then  $N_{\sigma}(f^*D) \ge f^*N_{\sigma}(D)$  and  $f_*P_{\sigma}(f^*D) = P_{\sigma}(D)$ . If further  $P_{\sigma}(D)$  is nef, then  $P_{\sigma}(f^*D) = f^*P_{\sigma}(D)$ .
- (2) For any subvariety  $W \subset X$ , there are equalities

 $\sigma_W(D) = \sigma_W(P_\sigma(D)) + \operatorname{mult}_W N_\sigma(D),$  $\tau_W(D) = \tau_W(P_\sigma(D)) + \operatorname{mult}_W N_\sigma(D).$ 

(3) Let  $\rho_x \colon Q_x(X) \to X$  be the blowing-up at a point  $x \in X$  and let y be a point of  $\rho_x^{-1}(x)$ . Then  $\sigma_y(P_\sigma(\rho_x^*D)) \leq \sigma_x(P_\sigma(D))$ .

#### III. ZARISKI-DECOMPOSITION PROBLEM

(4) Let  $f: Y \to X$  be a birational morphism from a non-singular projective variety. If  $\sigma_x(D) = 0$ , then  $\sigma_y(f^*D) = 0$  for any  $y \in f^{-1}(x)$ .

PROOF. (1) Let A be an ample divisor of X. If  $\Delta$  is an effective  $\mathbb{R}$ -divisor of Y such that  $\Delta \approx f^*(D + \varepsilon A)$  for some  $\varepsilon \in \mathbb{R}_{>0}$ , then  $\Delta = f^*(f_*\Delta)$  and  $f_*\Delta \approx D + \varepsilon A$ . Therefore  $N_{\sigma}(f^*(D + \varepsilon A)) \geq f^*N_{\sigma}(D + \varepsilon A)$ . The first inequality is obtained by  $\varepsilon \downarrow 0$  (cf. 1.7-(2)). Since the difference of two  $\mathbb{R}$ -divisors lies on the exceptional locus, we have the equality of  $f_*P_{\sigma}$ . In case  $P_{\sigma}(D)$  is nef, the equality for  $f^*P_{\sigma}$  follows from 1.14-(2).

(2) In case  $\operatorname{codim} W \ge 2$ , let  $f: Y \to X$  and  $E_W$  be as in **2.1**. In case  $\operatorname{codim} W = 1$ , let  $f = \operatorname{id}: Y = X$  and  $E_W = W$ . Then

$$\sigma_{E_W}(f^*D) = \sigma_{E_W}(f^*P_{\sigma}(D)) + \operatorname{mult}_{E_W} f^*N_{\sigma}(D),$$
  
$$\tau_{E_W}(f^*D) = \tau_{E_W}(f^*P_{\sigma}(D)) + \operatorname{mult}_{E_W} f^*N_{\sigma}(D),$$

by (1), **1.8**, and **1.15**. Thus we are done by **2.1**, **2.2**.

(3) and (4) We may assume that  $c_1(D) \in Mv(X)$  by (1) and **1.7**. Then (3) and (4) are derived from **2.4**-(1) and **2.4**-(2), respectively.

**Remark** The assertion (4) above is proved directly from **V.1.5**.

**2.6. Definition** ([77]) For a pseudo-effective  $\mathbb{R}$ -divisor D of X, the numerical base locus of D is defined by

$$\operatorname{NBs}(D) := \{ x \in X \mid \sigma_x(D) > 0 \}.$$

If  $x \notin \text{NBs}(D)$ , i.e.,  $\sigma_x(D) = 0$ , then D is called *nef at* x (cf. **2.8** below). If  $W \cap \text{NBs}(D) = \emptyset$  for a subset  $W \subset X$ , then D is called *nef along* W.

**2.7. Lemma** Let D be a pseudo-effective  $\mathbb{R}$ -divisor and let W be a subvariety such that  $D|_W$  is not pseudo-effective in the sense of **II.5.8**. Then  $\sigma_W(D) > 0$ .

PROOF. Let  $f: Y \to X$  be a birational morphism of **2.1** for W. Then  $f^*D|_{E_W}$  is not pseudo-effective by **II.5.6**-(2). Hence  $\sigma_W(D) = \sigma_{E_W}(f^*D) > 0$ .

**2.8. Remark** If D is nef at a point x, i.e.,  $\sigma_x(D) = 0$ , then  $D \cdot C \ge 0$  for any irreducible curve C passing through x. However, the converse does not hold in general. For example, there is a pseudo-effective divisor D on some non-singular projective surface such that  $D \cdot \Gamma \ge 0$  for some irreducible component  $\Gamma$  of the negative part N of the Zariski-decomposition of D. For a general point  $x \in \Gamma$ , we infer that  $D \cdot C \ge 0$  for any irreducible curve C passing through x while  $\sigma_x(D) > 0$ .

**2.9. Lemma** If D is strictly movable, i.e.,  $c_1(D) \in Mv(X)$ , then there exist at most a finite number of subvarieties W of X with  $\sigma_W(D) > 0$  and codim W = 2.

PROOF. Let Z be the intersection of all the supports of the members of  $|D|_{\text{num}}$ . Then codim  $Z \ge 2$  by **1.7**-(3). If  $\sigma_W(D) > 0$ , then W is an irreducible component of Z.

**2.10. Lemma** Let  $\Gamma$  be a prime divisor and let  $\Delta$  be an effective divisor of X with  $\Gamma \not\subset \text{Supp }\Delta$ . Let  $W_1, W_2, \ldots, W_k$  be irreducible components of  $\Delta|_{\Gamma}$ . Then

$$\sum (\operatorname{mult}_{W_i} \Delta) W_i \le \Delta|_{\mathrm{I}}$$

as cycles of codimension two.

PROOF. It suffices to show that  $\operatorname{mult}_W \Delta \leq \operatorname{mult}_W \Delta|_{\Gamma}$  for any  $W = W_i$ . Let  $f: Y \to X$  be a birational morphism of **2.1** for W and let  $E_W$  be the divisor over W. Then  $\operatorname{mult}_W \Delta = \operatorname{mult}_{E_W} f^* \Delta$  and  $\operatorname{mult}_W \Delta|_{\Gamma} = \operatorname{mult}_{E_W \cap \Gamma'}(f^* \Delta|_{\Gamma'})$  for the proper transform  $\Gamma'$  of  $\Gamma$ . Here

$$(f^*\Delta - (\operatorname{mult}_W \Delta) E_W)|_{\Gamma}$$

is an effective divisor, since  $\Gamma'$  is not a prime component of  $f^*\Delta - (\operatorname{mult}_W \Delta)E_W$ . Thus  $\operatorname{mult}_W \Delta \leq \operatorname{mult}_W \Delta|_{\Gamma}$ .

**2.11. Proposition** (Moriwaki (cf. [93, 4.1])) For a movable big  $\mathbb{R}$ -divisor B, the formal cycle

$$\sum_{\operatorname{codim} W=2} \sigma_W(B) W$$

of codimension two is uniformly convergent in the real vector space  $N^2(X)$ .

PROOF. Let  $F_m$  be the fixed divisor  $|mB|_{\text{fix}} = \lfloor mB_{\perp} \mid_{\text{fix}} + \langle mB \rangle$  for  $m \in \mathbb{N}(B)$ . There exist an integer  $m_0 \in \mathbb{N}$  and a reduced divisor F such that  $\text{Supp } F_m = F$  for any  $m \geq m_0$ . Let W be a subvariety of codim W = 2 with  $\sigma_W(B) > 0$ . If  $W \not\subset F$ , then  $W \subset \text{Bs} \mid mB_{\perp} \mid$  for any  $m \geq m_0$ . Thus the number of W with  $W \not\subset F$  is finite. Let  $\Delta$  be a general member of  $\mid mB_{\perp} \mid_{\text{red}}$ . Then

$$\sum_{W \subset \Gamma, \operatorname{codim} W = 2} (\operatorname{mult}_W \Delta) W \leq \Delta|_{\Gamma}$$

for any prime component  $\Gamma$  of F, by **2.10**. Since

$$0 < \sigma_W(B) \le \frac{1}{m} \sigma_W(mB)_{\mathbb{Z}} = \frac{1}{m} \operatorname{mult}_W \Delta + \frac{1}{m} \operatorname{mult}_W F_m,$$

the formal cycle  $B \cdot F - \sum_{W \subset F} \sigma_W(B)W$  is pseudo-effective in  $N^2(X)$ .

**2.12.** Proposition For a movable  $\mathbb{R}$ -divisor D, the formal cycle

$$\sum_{\operatorname{codim} W=2} \sigma_W(D)^2 W$$

of codimension two is uniformly convergent in the real vector space  $N^2(X)$ .

PROOF. Let  $W_1, W_2, \ldots, W_k$  be finitely many subvarieties of codimension two in X. There exist a birational morphism  $f: Y \to X$  and prime divisors  $E_1, E_2, \ldots, E_k$  of Y satisfying the following conditions (cf. **2.1**):

- (1) Y is non-singular and projective;
- (2)  $f(E_i) = W_i$  for any i;
- (3) there is a Zariski-open subset  $U \subset X$  with  $\operatorname{codim}(Z \setminus U) \geq 3$  such that f restricted to  $f^{-1}U$  is the blowing-up along the smooth center  $U \cap \bigcup W_i$ .

Then  $N_{\sigma}(f^*D) = \sum \sigma_{W_i}(D)E_i + N'$  for an effective *f*-exceptional  $\mathbb{R}$ -divisor N' with codim  $f(\operatorname{Supp} N') \geq 3$ . Hence

$$\sigma_*(N_{\sigma}(f^*D)^2) = \sum \sigma_{W_i}(D)^2 f_*(E_i^2) = -\sum \sigma_{W_i}(D)^2 W_i.$$

Moreover, the equality

f

$$D^{2} + f_{*}(N_{\sigma}(f^{*}D)^{2}) = f_{*}(P_{\sigma}(f^{*}D)^{2})$$

follows from

$$f^*D^2 + N_{\sigma}(f^*D)^2 = P_{\sigma}(f^*D)^2 + 2f^*D \cdot N_{\sigma}(f^*D).$$

Hence

$$f_*(P_{\sigma}(f^*D)^2) = D^2 - \sum \sigma_{W_i}(D)^2 W_i$$

is a pseudo-effective  $\mathbb{R}$ -cycle of codimension two.

**2.13. Corollary** Let D be a pseudo-effective  $\mathbb{R}$ -divisor of X. Then, for any  $\varepsilon > 0$ , there exists a birational morphism  $h: Z \to X$  from a non-singular projective variety such that  $\sigma_W(P_{\sigma}(h^*D)) < \varepsilon$  for any the subvariety W of codimension two with  $h_*W \neq 0$ .

PROOF. We may assume that D is movable. The number of subvarieties W'of codimension two of X with  $\sigma_{W'}(D) \geq \varepsilon$  is finite. Let  $W'_1, W'_2, \ldots, W'_l$  be all of such subvarieties. Let  $h: Z \to X$  be a birational morphism from a non-singular projective variety. Then  $D^2 + h_*(N_{\sigma}(h^*D)^2) = h_*(P_{\sigma}(h^*D)^2)$  is pseudo-effective. Suppose that  $\nu: Z' \to Z$  is a birational morphism from a non-singular projective variety satisfying the following condition similar to that in the proof **2.12**: There exist a finite number of subvarieties  $W_i \subset Z$  of codimension two such that  $\nu$  is the blowing-up along  $\bigcup W_i$  over a Zariski-open subset  $U \subset Z$  with  $\operatorname{codim}(Z \setminus U) \geq 3$ . Then

$$h'_{*}(P_{\sigma}({h'}^{*}D)^{2}) \leq h_{*}(P_{\sigma}(h^{*}D)^{2})$$

for the composite  $h': Z' \to Z \to X$  by the same argument as in **2.12**. We set

$$t_i(h) := \max\{t \in \mathbb{R}_{\geq 0} \mid h_*(P_\sigma(h^*D)^2) - tW'_i \text{ is pseudo-effective}\}.$$

We may assume that the birational morphism  $h: Z \to X$  satisfies  $t_i(h) < t_i(h') + \varepsilon^2$ for any such birational morphism  $Z' \to Z$  above and for any *i*.

Let W be a subvariety of Z of codimension two with  $h_*W \neq 0$ . If  $h(W) \neq W'_i$ for any i, then  $\sigma_W(P_{\sigma}(h^*D)) < \varepsilon$  by **2.5**-(3). Thus we may assume that  $h(W) = W'_i$ for some i. There is a birational morphism  $\mu: Y \to Z$  from a non-singular projective variety such that  $\mu$  is isomorphic to the blowing-up along W over a Zariski-open subset  $U \subset Z$  with  $\operatorname{codim}(Z \smallsetminus U) \geq 3$ . Let f be the composite  $h \circ \mu$ . Then  $P_{\sigma}(f^*D) = P_{\sigma}(\mu^*P_{\sigma}(h^*D))$  and

$$f_*(P_{\sigma}(f^*D)^2) = h_*(P_{\sigma}(h^*D)^2) - \sigma_W(P_{\sigma}(h^*D))^2 h_*W$$

by the same argument as in **2.12**. Hence

$$\deg(W \to h(W)) \cdot \sigma_W(P_{\sigma}(h^*D))^2 \le t_i(h) - t_i(f) < \varepsilon^2. \qquad \Box$$

92

**Remark** Let  $\beta$  be a pseudo-effective algebraic  $\mathbb{R}$ -cycle of codimension q of X. Suppose that  $\operatorname{cl}(\beta)$  is contained in the interior  $\operatorname{Int} \operatorname{PE}^q(X)$  of  $\operatorname{PE}^q(X)$  in  $\operatorname{N}^q(X)$ . Then there is an effective  $\mathbb{R}$ -cycle  $\delta$  such that  $\operatorname{cl}(\delta) = \operatorname{cl}(\beta)$ . For a subvariety W of codimension q, we define

$$\begin{aligned} &\sigma_W(\beta) := \inf\{ \operatorname{mult}_W \delta \mid \delta \ge 0, \operatorname{cl}(\delta) = \operatorname{cl}(\beta) \}, \\ &\tau_W(\beta) := \sup\{ t \in \mathbb{R}_{\ge 0} \mid \beta - tW \text{ is pseudo-effective} \}. \end{aligned}$$

As in the same argument as before,  $\sigma_W$  and  $\tau_W$  can be defined also for pseudoeffective  $\mathbb{R}$ -cycles. The following properties hold:

- (1)  $\sigma_W \colon \operatorname{PE}^q(X) \to \mathbb{R}_{\geq 0}$  is lower semi-continuous and  $\tau_W \colon \operatorname{PE}^q(E) \to \mathbb{R}_{\geq 0}$  is upper semi-continuous. Both are continuous on  $\operatorname{Int} \operatorname{PE}^q(X)$ ;
- (2)  $\lim_{\varepsilon \downarrow 0} \sigma_W(\zeta + \varepsilon \eta) = \sigma_W(\zeta)$  and  $\lim_{\varepsilon \downarrow 0} \tau_W(\zeta + \varepsilon \eta) = \tau_W(\zeta)$  for any pseudoeffective  $\mathbb{R}$ -cycle  $\eta$ ;
- (3) Let  $W_1, W_2, \ldots, W_l$  be mutually distinct subvarieties of codimension qand let  $s_1, s_2, \ldots, s_l$  be real numbers with  $0 \le s_i \le \sigma_{W_i}(\zeta)$ . Then  $\sigma_{W_i}(\zeta - \sum s_j W_j) = \sigma_{W_i}(\zeta) - s_i;$
- (4) If  $W_1, W_2, \ldots, W_l$  are mutually distinct subvarieties of codimension q with  $\sigma_{W_i}(\zeta) > 0$ , then their cohomology classes  $cl(W_i)$  are linearly independent.

In particular, we can define the  $\sigma$ -decomposition  $\zeta = P_{\sigma}(\zeta) + N_{\sigma}(\zeta)$  by

$$N_{\sigma}(\zeta) = \sum_{\operatorname{codim} W=q} \sigma_W(\zeta) W.$$

**Remark** Let X be a compact Kähler manifold of dimension n. For an integer  $k \geq 0$ , let  $\mathrm{PC}^k(X) \subset \mathrm{H}^{k,k}(X,\mathbb{R}) := \mathrm{H}^{2k}(X,\mathbb{R}) \cap \mathrm{H}^{k,k}(X)$  be the closed convex cone of the cohomology classes of d-closed positive real currents of type (k,k). Instead of the multiplicity, we consider the Lelong number  $\rho_W(T)$  of such current T along a subvariety W. The previous argument works well and we can define the  $\sigma$ -decomposition for the currents. This is an extension of the  $\sigma$ -decomposition for algebraic cycles.

# §3. $\nu$ -decomposition

Let X be a non-singular projective variety and let D be a pseudo-effective  $\mathbb{R}$ -divisor of X. Then, for a prime divisor  $\Gamma$ , the restriction  $P_{\sigma}(D)|_{\Gamma}$  is pseudo-effective in the sense of **II.5.8**. Let  $\mathcal{S}(D)$  be the set of effective  $\mathbb{R}$ -divisors  $\Delta$  such that  $(D - \Delta)|_{\Gamma}$  is pseudo-effective for any prime divisor  $\Gamma$ . Then  $N_{\sigma}(D) \in \mathcal{S}(D)$ . We set

$$N_{\nu}(D) := \sum_{\Gamma: \text{ prime divisor}} \inf \{ \operatorname{mult}_{\Gamma} \Delta \mid \Delta \in \mathcal{S}(D) \} \Gamma.$$

Then this is an  $\mathbb{R}$ -divisor and  $N_{\nu}(D) \leq N_{\sigma}(D)$ . In particular,  $P_{\nu}(D) := D - N_{\nu}(D)$  is also pseudo-effective.

**3.1. Lemma**  $N_{\nu}(D) \in \mathcal{S}(D)$ .

PROOF. For any prime divisor  $\Gamma$  and for any positive number  $\varepsilon$ , there is an effective  $\mathbb{R}$ -divisor  $\Delta \in \mathcal{S}(D)$  such that  $\delta := \operatorname{mult}_{\Gamma} \Delta - \operatorname{mult}_{\Gamma} N_{\nu}(D) \leq \varepsilon$ . Thus

$$(D - N_{\nu}(D))|_{\Gamma} - \delta\Gamma|_{\Gamma} = (D - \Delta)|_{\Gamma} + (\Delta' - N_{\nu}(D)')|_{\Gamma}$$

is pseudo-effective for  $\mathbb{R}$ -divisors  $\Delta' = \Delta - (\operatorname{mult}_{\Gamma} \Delta)\Gamma$  and  $N_{\nu}(D)' = N_{\nu}(D) - (\operatorname{mult}_{\Gamma} N_{\nu}(D))\Gamma$ . Therefore  $N_{\nu}(D) \in \mathcal{S}(D)$ .  $\Box$ 

**3.2. Definition** The decomposition  $D = P_{\nu}(D) + N_{\nu}(D)$  is called the  $\nu$ -decomposition of D. The  $\mathbb{R}$ -divisors  $P_{\nu}(D)$  and  $N_{\nu}(D)$  are called the positive and the negative parts of the  $\nu$ -decomposition of D, respectively.

**3.3. Lemma** Let  $D = P_{\nu}(D) + N_{\nu}(D)$  be the  $\nu$ -decomposition of a pseudoeffective  $\mathbb{R}$ -divisor and let  $\Gamma$  be a prime component of  $N_{\nu}(D)$ . Then  $P_{\nu}(D)|_{\Gamma}$  is not big.

PROOF. Assume the contrary. Then there is a positive number  $\varepsilon$  such that  $(P_{\nu}(D) + \varepsilon \Gamma)|_{\Gamma}$  is still big. If  $\Gamma'$  is another prime divisor, then  $(P_{\nu}(D) + \varepsilon \Gamma)|_{\Gamma'}$  is pseudo-effective. It contradicts the definition of  $N_{\nu}(D)$ .

**3.4.** Question If  $D|_{\Gamma}$  is pseudo-effective for any prime divisor  $\Gamma$ , then is D pseudo-effective?

**3.5. Lemma** Let B be a big  $\mathbb{R}$ -divisor with  $N_{\nu}(B) = 0$  and let  $F = \sum a_i \Gamma_i$  be the prime decomposition of an effective  $\mathbb{R}$ -divisor F such that  $B|_{\Gamma_i}$  is not big for any i. Then  $N_{\nu}(B+F) = F$ .

PROOF. By the definition of  $N_{\nu}$ , it is enough to show that  $(B + F)|_{\Gamma_i}$  is not pseudo-effective for some *i*. There is an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $B - \Delta$  is ample. Then  $\Delta|_{\Gamma_i}$  is not pseudo-effective for any *i*. Moreover,  $(B + r\Delta)|_{\Gamma_i}$  is not pseudo-effective for any r > 0 by the equality

$$B = \frac{1}{r+1}(B+r\Delta) + \frac{r}{r+1}(B-\Delta).$$

Let r be the maximum of  $\{a_j/(\operatorname{mult}_{\Gamma_j} \Delta)\}$  and let i be an index attaining the maximum. Then  $(B+F)|_{\Gamma_i}$  is not pseudo-effective, since  $(r\Delta - F)|_{\Gamma_i}$  is effective and  $B + r\Delta = B + F + (r\Delta - F)$ .

**3.6.** Corollary (cf. [26, Lemma 1], [76, Theorem 2]) Let H be a nef and big  $\mathbb{R}$ -divisor and let E, G, and  $\Delta$  be effective  $\mathbb{R}$ -divisors. Suppose that

- (1) E and G have no common prime component,
- (2)  $H^{n-1}E = 0$ , where  $n = \dim X$ ,
- (3)  $\Delta \approx H + E G$ .

Then  $E \leq \Delta$ .

PROOF. Apply 3.5 to B := H and F := E. Then  $N_{\nu}(\Delta + G) = E \leq \Delta + G$ .  $\Box$ 

**3.7. Proposition** Let B be a big  $\mathbb{R}$ -divisor and let N be an effective  $\mathbb{R}$ -divisor such that P = B - N is nef and big. Then the following conditions are equivalent:

- (1)  $P|_{\Gamma}$  is not big for any prime component of N;
- (2)  $N = N_{\nu}(B);$
- (3) B = P + N is a Zariski-decomposition.

PROOF. (1)  $\Rightarrow$  (2) follows from **3.5**. (2)  $\Rightarrow$  (3) is trivial.

(3)  $\Rightarrow$  (1): We may assume that Supp  $N \cup \text{Supp}\langle P \rangle$  is a simple normal crossing divisor, by taking a suitable blowing-up. For a prime component  $\Gamma$  of N, let us consider the exact sequence

$$0 \to \mathcal{O}_X(\lfloor mP \rfloor) \to \mathcal{O}_X(\lfloor mP \rfloor + \Gamma) \to \mathcal{O}_\Gamma(\lfloor mP \rfloor + \Gamma) \to 0$$

By **II.5.13**, we have

$$\lim_{m \to \infty} \frac{1}{m^{n-1}} h^1(X, \lfloor mP \rfloor) = 0, \quad \text{and} \quad \lim_{m \to \infty} \frac{1}{m^{n-1}} h^0(\Gamma, \mathcal{O}_{\Gamma}(\lfloor mP \rfloor + \Gamma)) = 0.$$
  
hus  $P|_{\Gamma}$  are not big.

Thus  $P|_{\Gamma}$  are not big.

**3.8.** Corollary Let P be a nef and big  $\mathbb{R}$ -divisor and let  $\Gamma$  be a prime divisor such that  $P|_{\Gamma}$  is big. Then, for any ample divisor A, there exists an effective  $\mathbb{R}$ divisor E such that  $\Gamma \not\subset \text{Supp } E$  and  $aP \sim A + E$  for some  $a \in \mathbb{N}$ .

PROOF. Suppose that  $\sigma_{\Gamma}(P + \varepsilon \Gamma) > 0$  for any  $\varepsilon > 0$ . Then P is the positive part of the Zariski-decomposition of  $P + \Gamma$ . This contradicts **3.7**. Hence  $\sigma_{\Gamma}(P + \delta \Gamma) = 0$ for some  $\delta > 0$ . We may assume that there is an effective  $\mathbb{R}$ -divisor G such that  $\Gamma \not\subset \operatorname{Supp} G$  and  $G \sim_{\mathbb{Q}} P + \delta\Gamma$ . There is an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $P - \varepsilon\Delta$ is ample for any  $0 < \varepsilon < 1$ . Here

$$\sigma_{\Gamma}(mP + \Delta) \le \sigma_{\Gamma}(mP + (\operatorname{mult}_{\Gamma} \Delta)\Gamma) = 0$$

for  $m \gg 0$ . Thus there is an effective  $\mathbb{R}$ -divisor  $E_1 \sim_{\mathbb{Q}} bP + \Delta$  with  $\Gamma \not\subset \operatorname{Supp} E_1$ for some  $b \in \mathbb{N}$ . Further  $mP - E_1 \sim_{\mathbb{Q}} (m-b)P - \Delta$  is ample for m > b+1. Thus  $c((b+2)P - E_1) - A \sim E_2$  for an effective  $\mathbb{R}$ -divisor  $E_2$  with  $\Gamma \not\subset \text{Supp } E_2$  and for some  $c \in \mathbb{N}$ . Thus a = c(b+2) and  $E = cE_1 + E_2$  satisfy the condition. 

**3.9. Definition** A pseudo-effective  $\mathbb{R}$ -divisor D of a non-singular projective variety X is called *numerically movable* if  $D|_{\Gamma}$  is pseudo-effective for any prime divisor  $\Gamma$ . We denote by NMv(X) the set of the first Chern classes of numerically movable pseudo-effective  $\mathbb{R}$ -divisors of X, which is a closed convex cone contained in PE(X).

**3.10. Remark** (cf. 1.14) For a pseudo-effective  $\mathbb{R}$ -divisor D, we have:

- (1)  $c_1(P_{\nu}(D)) \in NMv(X);$
- (2) if  $c_1(D \Delta) \in \mathrm{NMv}(X)$  for an effective  $\mathbb{R}$ -divisor  $\Delta$ , then  $\Delta \geq N_{\nu}(D)$ .

**3.11. Lemma** Let D be a numerically movable  $\mathbb{R}$ -divisor such that  $|D|_{\text{num}} \neq \emptyset$ . Then there exist at most finitely many subvarieties W of codimension two such that  $D|_W$  is not pseudo-effective.

PROOF. Let  $\Delta$  be a member of  $|D|_{\text{num}}$ . If  $D|_W$  is not pseudo-effective, then  $W \subset \Gamma$  for a component  $\Gamma$  of  $\Delta$ . Let  $\mu: Z \to \Gamma$  be a birational morphism from a nonsingular projective variety and let W' be the proper transform of W. Then  $\mu^*D|_{W'}$  is not pseudo-effective. Hence W' is a prime component of  $N_{\sigma}(\mu^*D)$ . In particular,  $\Gamma$  contains at most finitely many irreducible subvarieties W of codimension two in X with  $D|_W$  being not pseudo-effective.  $\Box$ 

**3.12. Remark** The  $\nu$ -decomposition of a given pseudo-effective  $\mathbb{R}$ -divisor D is calculated as follows: In step 1, let  $\mathcal{D}_1 = \{\Gamma_1, \Gamma_2, \ldots, \Gamma_{m_1}\}$  be the set of prime divisors  $\Gamma$  such that  $D|_{\Gamma}$  is not pseudo-effective. If  $\mathcal{D}_1$  is empty, then  $D = P_{\nu}(D)$ , and we stop here. Otherwise, the set  $\mathcal{T}_1$  defined as

$$\left\{ \left( r_i \right)_{i=1}^{m_1} \in (\mathbb{R}_{\geq 0})^{m_1} \mid \left( D - \sum_{i=1}^{m_1} r_i \Gamma_i \right) \right|_{\Gamma_j} \text{ is pseudo-effective for } 1 \le j \le m_1 \right\}$$

is not empty. For  $1 \leq j \leq m_1$ , we set

$$t_j^{(1)} := \inf\{t \ge 0 \mid t = r_j \text{ for some } (r_i) \in \mathcal{T}_1\}.$$

Then  $(t_i^{(1)}) \in \mathcal{T}_1$  by the same argument as in the proof of **3.1**. We consider the pseudo-effective  $\mathbb{R}$ -divisor

$$D^{(1)} := D - \sum_{i=1}^{m_1} t_i^{(1)} \Gamma_i.$$

In step 2, let  $\mathcal{D}_2 = \{\Gamma_{m_1+1}, \Gamma_{m_1+2}, \dots, \Gamma_{m_2}\}$  be the set of prime divisors  $\Gamma$  such that  $D^{(1)}|_{\Gamma}$  is not pseudo-effective. If  $\mathcal{D}_2$  is empty, then  $D^{(1)} = P_{\nu}(D)$ , and we stop here. Otherwise, then the set  $\mathcal{T}_2$  defined as

$$\left\{ \left(r_i\right)_{i=1}^{m_2} \in (\mathbb{R}_{\geq 0})^{m_2} \mid \left(D^{(1)} - \sum_{i=1}^{m_2} r_i \Gamma_i\right) \right|_{\Gamma_j} \text{ is pseudo-effective for } 1 \le j \le m_2 \right\}$$
  
is not empty. For  $1 \le j \le m_2$ , we set

 $t_j^{(2)} := \inf\{t \ge 0 \mid t = r_j \text{ for some } (r_i) \in \mathcal{T}_2\}.$ 

Then  $(t_i^{(2)}) \in \mathcal{T}_2$  and we have the pseudo-effective  $\mathbb{R}$ -divisor

$$D^{(2)} := D^{(1)} - \sum_{i=1}^{m_2} t_i^{(2)} \Gamma_i.$$

In step 3, we consider the set  $\mathcal{D}_3$  of prime divisors  $\Gamma$  such that  $D^{(2)}|_{\Gamma}$  is not pseudoeffective. In this way, we obtain the sets  $\mathcal{D}_k$ ,  $\mathcal{T}_k$ , and the pseudo-effective  $\mathbb{R}$ -divisors  $D^{(k)}$ . Since the prime divisors contained in some  $\mathcal{D}_k$  are components of  $N_{\sigma}(D)$ , this process terminates in a suitable step. The last  $\mathbb{R}$ -divisor  $D^{(k)}$  is the positive part  $P_{\nu}(D)$ .

## Remark

- (1) The construction of Zariski-decomposition on surfaces ([151], [20]) is given by the same way as 3.12. In the case,  $t_i^{(1)}, t_i^{(2)} \cdots$ , are calculated by linear equations.
- (2) If  $P_{\nu}(D) \in \overline{\mathrm{Mv}}(X)$ , then the  $\nu$ -decomposition is the  $\sigma$ -decomposition by **1.14** and **3.10**.

#### 4. RELATIVE VERSION

(3) In general,  $N_{\sigma}(D) \neq N_{\nu}(D)$ . For example, for the blowing-up  $f: Y \to X$ at a point  $x \in X$ , we have  $N_{\nu}(f^*D) = f^*N_{\nu}(D)$ . However  $N_{\sigma}(f^*D) \neq f^*N_{\sigma}(D)$  if  $\sigma_x(D) > 0$ .

## §4. Relative version

§4.a. Relative  $\sigma$ -decomposition. Let  $\pi: X \to S$  be a proper surjective morphism of complex analytic varieties. Assume that X is non-singular. Let B be a  $\pi$ -big  $\mathbb{R}$ -divisor with  $\pi_* \mathcal{O}_X(\lfloor B \rfloor) \neq 0$  and  $\Gamma$  a prime divisor of X. Let  $m_B$  be the maximum non-negative integer m such that the natural injection

$$\pi_*\mathcal{O}_X(\_B\_ - m\Gamma) \hookrightarrow \pi_*\mathcal{O}_X(\_B\_)$$

is isomorphic. Note that if the injection is isomorphic over an open subset  $\mathcal{U} \subset S$  with  $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$ , then it is isomorphic over S. In fact, for  $i < m_B$ , the cokernel of

$$\pi_*\mathcal{O}_X(\underline{B}_{\neg} - (i+1)\Gamma) \hookrightarrow \pi_*\mathcal{O}_X(\underline{B}_{\neg} - i\Gamma)$$

is contained in the torsion-free sheaf  $\pi_* \mathcal{O}_{\Gamma}( \_B\_ - i\Gamma)$  of  $\pi(\Gamma)$ .

For an open subset  $\mathcal{U} \subset S$  and for an  $\mathbb{R}$ -divisor D of X, we write  $X_{\mathcal{U}} = \pi^{-1}\mathcal{U}$ and  $D_{\mathcal{U}} = D|_{\pi^{-1}\mathcal{U}}$ . Let  $|B/S,\mathcal{U}|$  be the set of effective  $\mathbb{R}$ -divisors  $\Delta$  defined on  $X_{\mathcal{U}}$ such that  $\Delta \sim B_{\mathcal{U}}$ . If  $\mathcal{U}$  is a Stein space with  $\pi(\Gamma) \cap \mathcal{U} \neq \emptyset$  and if  $\pi_*\mathcal{O}_X(\ B_{\mathcal{U}}) \neq 0$ , then  $|B/S,\mathcal{U}| \neq \emptyset$  and

 $m_B + \operatorname{mult}_{\Gamma}\langle B \rangle = \max\{t \in \mathbb{R}_{>0} \mid \Delta \ge t\Gamma_{\mathcal{U}} \text{ for any } \Delta \in |B/S, \mathcal{U}|\}.$ 

The following numbers are defined similarly to **1.1**:

$$\sigma_{\Gamma}(B; X/S)_{\mathbb{Z}} := \begin{cases} +\infty, & \text{if } \pi_* \mathcal{O}_X(\lfloor B \rfloor) = 0, \\ m_B + \text{mult}_{\Gamma} \langle B \rangle, & \text{otherwise;} \end{cases}$$
$$\sigma_{\Gamma}(B; X/S) := \lim_{m \to \infty} (1/m) \sigma_{\Gamma}(mB; X/S)_{\mathbb{Z}}.$$

**4.1. Lemma** If  $\mathcal{U} \subset S$  is a connected open subset with  $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$ , then

$$\sigma_{\Gamma'}(B_{\mathcal{U}}; X_{\mathcal{U}}/\mathcal{U}) = \sigma_{\Gamma}(B; X/S)$$

for an irreducible component  $\Gamma'$  of  $\Gamma_{\mathcal{U}}$ .

PROOF. This is derived from the property: if  $\Delta$  is an effective  $\mathbb{R}$ -divisor of X and if  $\Delta|_{\mathcal{U}} \geq m\Gamma'$  for some m > 0, then  $\Delta \geq m\Gamma$ .

If S is Stein and if A is a  $\pi$ -ample divisor of X, then  $\sigma_{\Gamma}(B; X/S) = \lim_{\varepsilon \downarrow 0} \sigma_{\Gamma}(B + \varepsilon A; X/S)$  by the same argument as in **1.4**-(2), -(3). If  $\Delta$  is an effective  $\mathbb{R}$ -divisor of X such that  $B - \Delta$  is  $\pi$ -numerically trivial over an open subset  $\mathcal{U} \subset S$  with  $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$ , then  $\sigma_{\Gamma}(B; X/S) \leq \text{mult}_{\Gamma} \Delta$  by the same argument as in **1.4**-(3). Moreover,  $\sigma_{\Gamma}(B; X/S)$  is the infimum of  $\text{mult}_{\Gamma} \Delta$  for such  $\Delta$  provided that S is Stein.

Suppose that  $\pi: X \to S$  is a locally projective morphism. Let D be a  $\pi$ -pseudoeffective  $\mathbb{R}$ -divisor of X. Let  $\mathcal{U} \subset S$  be a Stein open subset with  $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$  such that there is a relatively ample divisor A of  $X_{\mathcal{U}}$  over  $\mathcal{U}$ . Let  $\Gamma_{\mathcal{U}} = \bigcup \Gamma_j$  be the irreducible decomposition. By the previous argument, we infer that the limit

$$\sigma_{\Gamma}(D; X/S) := \lim_{\varepsilon \downarrow 0} \sigma_{\Gamma_i}(D_{\mathcal{U}} + \varepsilon A; X_{\mathcal{U}}/\mathcal{U})$$

does not depend on the choices of the Stein open subsets  $\mathcal{U}$ , the relatively ample divisor A of  $X_{\mathcal{U}}$ , and the irreducible component  $\Gamma_j$  of  $\Gamma \cap X_{\mathcal{U}}$ . It is not clear that  $\sigma_{\Gamma}(D; X/S) < +\infty$ . By the same argument as in **1.8** and **1.10**, we have:

**4.2. Lemma** Let D be a  $\pi$ -pseudo-effective  $\mathbb{R}$ -divisor and let  $\Gamma_1, \Gamma_2, \cdots, \Gamma_l$  be mutually distinct prime divisors of X.

(1) If  $s_i$  are real numbers with  $0 \le s_i \le \sigma_{\Gamma_i}(D; X/S)$ , then, for any i,

$$\sigma_{\Gamma_i}\left(D - \sum_{j=1}^l s_j \Gamma_j; X/S\right) = \sigma_{\Gamma_i}(D; X/S) - s_i.$$

(2) Suppose that  $\sigma_{\Gamma_i}(D; X/S) > 0$  for any *i*. Then, for any  $x_i \ge 0$ ,

$$\sigma_{\Gamma_i}\left(\sum_{j=1}^l x_j \Gamma_j; X/S\right) = x_i$$

In particular,  $\sum_{i=1}^{l} x_i \Gamma_i$  is  $\pi$ -numerically trivial over an open subset  $\mathcal{U} \subset S$  if and only if  $x_i = 0$  for all i with  $\pi(\Gamma_i) \cap \mathcal{U} \neq \emptyset$ .

**4.3. Lemma**  $\sigma_{\Gamma}(D; X/S) < +\infty$  provided that one of the following conditions is satisfied:

- (1)  $\pi(\Gamma) = S;$
- (2) There exists an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $D \Delta$  is relatively numerically trivial over an open subset  $\mathcal{U}$  with  $\mathcal{U} \cap \pi(\Gamma) \neq \emptyset$ ;
- (3)  $\operatorname{Supp} D$  does not dominate S;
- (4)  $\operatorname{codim} \pi(\Gamma) = 1.$

PROOF. Case (1) It follows from 1.5-(1) applied to the restriction of D to a 'general' fiber of  $\pi$ .

Case (2) Trivial.

Case (3) Since  $\pi_* \mathcal{O}_X(\lfloor D \rfloor) \neq 0$ , there is an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $\Delta \sim D$ , locally on S. Thus it is reduced to Case (2).

Case (4) We may assume that  $\pi$  has connected fibers and a relatively ample divisor A and that S is normal. Let  $\Gamma_0 := \Gamma, \Gamma_1, \Gamma_2, \ldots, \Gamma_l$  be all the prime divisors of X with  $\pi(\Gamma_i) = \pi(\Gamma)$ . Then there exist positive integers  $a_i$ , a reflexive sheaf  $\mathcal{L}$  of rank one of S, and a Zariski-open subset U of S such that  $\mathcal{L}|_U$  is invertible,  $\operatorname{codim}(S \setminus U) \geq 2$ , and

$$\pi^*(\mathcal{L}|_U) \simeq \mathcal{O}_X\left(\sum_{i=0}^l a_i \Gamma_i\right)\Big|_{X_U}$$

By taking a blowing-up of X, we may assume that the image of the evaluation mapping

$$\pi^* \pi_* \mathcal{O}_X \left( \sum_{i=0}^l a_i \Gamma_i \right) \to \mathcal{O}_X \left( \sum_{i=0}^l a_i \Gamma_i \right)$$

is an invertible subsheaf. Then the image is written by  $\mathcal{O}_X(\sum_{i=0}^l a_i\Gamma_i - E)$  for an effective divisor E with  $\operatorname{codim} \pi(E) \geq 2$ . Since  $\sum_{i=0}^l a_i\Gamma_i - E$  is  $\pi$ -nef, we have  $\sigma_{\Gamma_j}(\sum_{i=0}^l a_i\Gamma_i; X/S) \leq \sigma_{\Gamma_j}(E; X/S) = 0$ . Thus  $\sigma_{\Gamma_j}(D; X/S) = 0$  for some  $\Gamma_j$ . For any  $\varepsilon > 0$ ,

$$\left(D + \varepsilon A - \sum_{i=0}^{l} \sigma_{\Gamma_i} (D + \varepsilon A; X/S) \Gamma_i\right) \Big|_{\Gamma}$$

is  $(\pi|_{\Gamma_j})$ -pseudo-effective. Hence if  $\pi(\Gamma_k \cap \Gamma_j) = \pi(\Gamma)$ , then  $\sigma_{\Gamma_k}(D; X/S) < +\infty$ . Since  $\pi$  has connected fibers, we have  $\sigma_{\Gamma}(D; X/S) < +\infty$ .

**Question** Is there an example in which  $\sigma_{\Gamma}(D; X/S) = +\infty$ ?

Let us consider the formal sum

$$N_{\sigma}(D; X/S) := \sum_{\Gamma: \text{ prime divisor}} \sigma_{\Gamma}(D; X/S) \Gamma.$$

Let us fix a point  $P \in S$  and recall the real vector space  $N^1(X/S; P)$  ([98], Chapter II, §5.d). By 4.2 and by dim  $N^1(X/S; P) < \infty$ , there exist only a finite number of prime divisors  $\Gamma$  such that  $\sigma_{\Gamma}(D; X/S) > 0$  and  $\pi(\Gamma) \ni P$ . Therefore, if  $\sigma_{\Gamma}(D; X/S) < +\infty$  for all prime divisors  $\Gamma$ , then  $N_{\sigma}(D; X/S)$  is an effective  $\mathbb{R}$ divisor. In this case, we can define the relative  $\sigma$ -decomposition  $D = P_{\sigma}(D; X/S) + N_{\sigma}(D; X/S)$ . Also we can define the relative  $\nu$ -decomposition as in §3. Suppose that  $P_{\sigma}(D; X/S)$  is  $\pi$ -nef over the point P. Then  $P_{\sigma}(D; X/S) + \varepsilon A$  is  $\pi$ -ample over P for any  $\pi$ -ample divisor A and for any  $\varepsilon > 0$ . Thus  $\sigma_x(P_{\sigma}(D; X/S); X/S) = 0$ for any  $x \in \pi^{-1}(P)$  and  $P_{\sigma}(D; X/S)$  is  $\pi$ -nef over a 'general' point  $s \in S$ . Let  $\nu: Y \to X$  be a bimeromorphic morphism from a non-singular variety Y locally projective over S. Then  $P_{\sigma}(\nu^*D; Y/S) \leq \nu^* P_{\sigma}(D; X/S)$  by 2.5-(1), and the difference does not lie over P. We have the following problem:

**Problem** Let  $\pi: X \to C$  be a projective surjective morphism from a nonsingular variety into a non-singular curve,  $P \in C$  a point, and D a divisor of Xsuch that D is  $\pi$ -nef over P. Then does there exist an open neighborhood U of Psuch that D is  $\pi$ -nef over U?

The set of points of C over which D is not  $\pi$ -nef, is countable. The problem asks whether the set is discrete or not. The divisor D is  $\pi$ -pseudo-effective. If D admits a relative Zariski-decomposition over C, then  $\{x \in X \mid \sigma_x(D; X/S) > 0\}$  is a Zariski-closed subset of X away from  $\pi^{-1}(P)$  and the answer of the problem is yes. If dim X = 2, the answer is yes. If D is  $\pi$ -numerically trivial over P, then the answer is also yes by **II.5.15**. If there is an effective  $\mathbb{R}$ -divisor  $\Delta$  such that  $D - \Delta$ is  $\pi$ -numerically trivial over P, then the problem is reduced to a lower-dimensional case. In particular, for the case dim X = 3, the the answer is unknown only in the case:  $D|_{\pi^{-1}(t)}$  is not numerically trivial and not big for general  $t \in C$ . §4.b. Threefolds. We note some special properties on threefolds. Let X be a complex analytic manifold of dimension three and let D be an  $\mathbb{R}$ -divisor.

**4.4. Proposition** Suppose that X is projective and D is numerically movable. Let  $C_1, C_2, \ldots, C_l$  be irreducible curves with  $D \cdot C_i < 0$  for any i. Then there exists a bimeromorphic morphism  $\pi \colon X \to Z$  into a normal compact complex analytic threefold such that  $\pi(C_i)$  is a point for any i and that  $\pi$  induces an isomorphism  $X \setminus \bigcup C_i \simeq Z \setminus \bigcup \pi(C_i)$ .

PROOF. We may assume that D is big. Thus, for any i, there is a prime divisor  $\Gamma_i$  such that  $\Gamma_i \cdot C_i < 0$ . Note that  $(tD + A)|_{\Gamma_i}$  is big for any t > 0 and for any ample divisor A of X. Thus there exists an effective Cartier divisor  $E_i$  of  $\Gamma_i$  such that the intersection number  $(E_i \cdot C_i)_{\Gamma_i}$  in  $\Gamma_i$  is negative. Let  $\mathcal{J}_i$  be the defining ideal of  $E_i$  on X. From the exact sequence

 $0 \to \mathcal{O}_X(-\Gamma_i) \otimes \mathcal{O}_{C_i} \to \mathcal{J}_i \otimes \mathcal{O}_{C_i} \to \mathcal{O}_{\Gamma_i}(-E_i) \otimes \mathcal{O}_{C_i} \to 0,$ 

we infer that  $\mathcal{J}_i \otimes \mathcal{O}_{C_i}$  is an ample vector bundle. There is an ideal  $\mathcal{J} \subset \mathcal{O}_X$  such that  $\sum \mathcal{J}_j \subset \mathcal{J}$ ,  $\operatorname{Supp} \mathcal{O}_X / \mathcal{J} = \bigcup C_j$ , and that  $\operatorname{Supp}(\mathcal{J} / \sum \mathcal{J}_j)$  does not contain any  $C_i$ . Then the torsion-free part  $\nu_i^* \mathcal{J} / (\operatorname{tor})$  is also ample for the normalization  $\nu_i \colon \tilde{C}_i \to C_i \subset X$ . We can contract the curves  $C_i$  by the contraction criterion in [2], [17] (cf. [102, 1.4]).

**Remark** For an  $\mathbb{R}$ -divisor of a non-singular projective threefold, the condition of numerically movable is close to that of nef. If D is a numerically movable and big  $\mathbb{R}$ -divisor, then there is at most a finite number of irreducible curves C with  $D \cdot C < 0$  by **3.11**. These curves are all contractible by **4.4**.

Let  $f: X \to Z$  be a bimeromorphic morphism onto a normal variety such that the *f*-exceptional locus is a non-singular projective curve *C*. This morphism *f* is called the *contraction* of *C*, and *C* is called an *exceptional curve* in *X* (cf. [102]). Let *P* be the point f(C). We shall consider the relative Zariski-decomposition problem over *P* for a divisor on *X*. Since  $N^1(X/Z; P)$  is one-dimensional, we treat a line bundle  $\mathcal{L}$  of *X* with  $\mathcal{L} \cdot C < 0$ . Under the situation, we have  $N_{\sigma}(\mathcal{L}; X/Z) = 0$ . In order to obtain a relative Zariski-decomposition of  $\mathcal{L}$ , we need to blow up along *C*. We follow the notation in [102, §2]. Let  $\mu_1: X_1 \to X$  be the blowing-up along *C* and let  $E_1$  be the exceptional divisor  $\mu_1^{-1}(C) \simeq \mathbb{P}_C(\mathcal{I}_C/\mathcal{I}_C^2)$ , where  $\mathcal{I}_C$  is the defining ideal of *C* in *X*.

**4.5. Lemma** If the conormal bundle  $\mathcal{I}_C/\mathcal{I}_C^2$  is semi-stable, then

$$N_{\nu}(\mu_1^*\mathcal{L}; X_1/Z) = \frac{-2(\mathcal{L} \cdot C)}{\deg(\mathcal{I}_C/\mathcal{I}_C^2)} E_1$$

and the positive part  $P_{\nu}(\mu_1^*\mathcal{L}; X_1/Z)$  is relatively nef over P. In particular,  $\mathcal{L}$  admits a relative Zariski-decomposition over P.

#### 4. RELATIVE VERSION

PROOF. Since  $\mathcal{I}_C/\mathcal{I}_C^2$  is semi-stable, all the effective divisors of  $E_1$  are nef by [82, 3.1]. For a real number x, we set  $\Delta := (\mu_1^* \mathcal{L} - x E_1)|_{E_1}$ . Then  $\Delta$  is pseudo-effective if and only if  $\Delta^2 \ge 0$  and x > 0. This is equivalent to:

$$x \deg(\mathcal{I}_C/\mathcal{I}_C^2) + 2 \deg(\mathcal{L}|_C) \ge 0$$

Therefore,  $N_{\nu}(\mu_1^*\mathcal{L}; X_1/Z)$  is written as above and  $P_{\nu}(\mu_1^*\mathcal{L}; X_1/Z)|_{E_1}$  is nef.  $\Box$ 

Next assume that the conormal bundle  $\mathcal{I}_C/\mathcal{I}_C^2$  is not semi-stable. The Harder– Narasimhan filtration of the conormal bundle induces an exact sequence

$$0 \to \mathcal{L}_0 \to \mathcal{I}_C / \mathcal{I}_C^2 \to \mathcal{M}_0 \to 0,$$

where  $\mathcal{L}_0$  and  $\mathcal{M}_0$  are line bundles of C with  $\deg \mathcal{L}_0 > \deg \mathcal{M}_0$ . The section  $C_1$  of the ruling  $E_1 \to C$  corresponding to the surjection  $\mathcal{I}_C/\mathcal{I}_C^2 \to \mathcal{M}_0$  satisfies

$$\mathcal{O}_{X_1}(C_1) \otimes \mathcal{O}_{C_1} \simeq \mathcal{M}_0 \otimes \mathcal{L}_0^{-1}$$

Thus  $C_1$  is a negative section:  $C_1^2 < 0$  in  $E_1$ .

**4.6. Lemma**  $\mathcal{L}$  admits a relative Zariski-decomposition over P provided that  $2 \deg \mathcal{M}_0 \geq \deg \mathcal{L}_0$ .

PROOF. Let  $\mu_2: X_2 \to X_1$  be the blowing-up along  $C_1, E_2$  the  $\mu_2$ -exceptional divisor, and  $E'_1$  the proper transform of  $E_1$ . Let us consider the exact sequence

$$0 \to \mathcal{O}(-E_1) \otimes \mathcal{O}_{C_1} \to \mathcal{I}_{C_1}/\mathcal{I}_{C_1}^2 \to \mathcal{O}_{C_1} \otimes \mathcal{O}_{E_1}(-C_1) \to 0.$$

If  $2 \operatorname{deg}(\mathcal{M}_0) > \operatorname{deg}(\mathcal{L}_0)$ , then  $C_2 := E'_1 \cap E_2$  is the negative section of  $E_2$ . If  $2 \operatorname{deg}(\mathcal{M}_0) = \operatorname{deg}(\mathcal{L}_0)$ , then  $E_2$  is the ruled surface over C associated with the semi-stable vector bundle  $\mathcal{I}_{C_1}/\mathcal{I}_{C_1}^2$ . Therefore, by [102, 2.4], we obtain a birational morphism  $\varphi: Y \to X_2$  from a non-singular variety such that

- (1)  $\varphi^{-1}(E'_1 \cup E_2)$  is a union of relatively minimal ruled surfaces  $F_j$   $(1 \le j \le k)$  over C for some  $k \ge 2$ ,
- (2)  $F_k$  is a ruled surface associated with a semi-stable vector bundle of C,
- (3)  $F_j$  for j < k admits a negative section which is the complete intersection of  $F_j$  and other  $F_i$ .

For an  $\mathbb{R}$ -divisor  $\Delta$  of Y, if  $\Delta|_{F_j}$  is pseudo-effective for any  $1 \leq j \leq k$ , then  $\Delta|_{F_j}$  is nef for any j. Thus the relative  $\nu$ -decomposition over P of the pullback of  $\mathcal{L}$  to Y is a relative Zariski-decomposition.

**4.7.** Proposition If X is isomorphic to an open neighborhood of the zero section of a geometric vector bundle  $\mathbb{V}$  of rank two on C, then  $\mathcal{L}$  admits a relative Zariski-decomposition over P.

PROOF. Let  $\mathcal{E}$  be a locally free sheaf of rank two of C such that  $\mathbb{V} = \mathbb{V}(\mathcal{E}^{\vee}) = \mathbb{L}(\mathcal{E})$  (cf. **II.1.7**). Let  $p: \mathbb{P}(\mathcal{E}) \to C$  be the associated  $\mathbb{P}^1$ -bundle. Then the natural

surjective homomorphism  $p^* \mathcal{E} \to \mathcal{O}_{\mathcal{E}}(1)$  defines a commutative diagram



where  $\mathbb{L} = \mathbb{L}(\mathcal{O}_{\mathcal{E}}(1))$  is the geometric line bundle over  $\mathbb{P}(\mathcal{E})$  associated with  $\mathcal{O}_{\mathcal{E}}(-1)$ . The morphism  $\mathbb{L} \to \mathbb{V}$  is isomorphic to the blowing-up along the zero section C (cf. **IV.3.1**). Thus we may assume that  $X = \mathbb{V}, X_1 = \mathbb{L}$ , and that  $E_1$  is the zero section of  $\mathbb{L} \to \mathbb{P}(\mathcal{E})$ . Let  $C_1 \subset \mathbb{P}(\mathcal{E})$  be the negative section and let  $F_1 \subset X_1$  be its pullback by  $X_1 = \mathbb{L} \to \mathbb{P}(\mathcal{E})$ . Then the complete intersection  $F_1 \cap E_1$  is the negative section  $C_1 \subset E_1$ . The curve  $C_1$  is also the negative section of  $F_1$ , since it is contractible. Let  $\mu_2 \colon X_2 \to X_1$  be the blowing-up along  $C_1$ . Then  $\mu_2^*F_1 = F'_1 + E_2$ ,  $\mu_2^*E_1 = E'_1 + E_2$ , and  $F'_1 \cap E'_1 = \emptyset$ , for  $E_2 := \mu_2^{-1}(C_1)$  and for the proper transforms  $F'_1$  and  $E'_1$  of  $F_1$  and  $E_1$ , respectively. The negative section  $C_2$  of  $E_2$  is either  $F'_1 \cap E_2$  or  $E'_1 \cap E_2$ . Next, we consider the blowing-up along  $C_2$ . In this way, we have a sequence of blowups

$$X_k \xrightarrow{\mu_k} X_{k-1} \to \dots \to X_1 \xrightarrow{\mu_1} X_0 = X$$

whose center  $C_i \subset X_i$  is the negative section of the  $\mu_i$ -exceptional divisor  $E_i$  for  $i \geq 1$ . Here,  $C_i$  is the complete intersection of  $E_i$  either with the proper transform of some other  $E_j$  or with the proper transform of  $F_1$ . By [102, 2.4], there is a number k such that  $E_k$  admits no negative sections. If  $\Delta$  is an  $\mathbb{R}$ -divisor of  $X_k$  such that  $\Delta|_{E'_i}$  is pseudo-effective for the proper transform  $E'_i$  of  $E_i$  for any i, then  $\Delta|_{E'_i}$  is nef for any i. Hence the relative  $\nu$ -decomposition over P of the pullback of  $\mathcal{L}$  to  $X_k$  is a relative Zariski-decomposition.

**4.8. Lemma** If there exist two prime divisors  $\Delta_1$  and  $\Delta_2$  with  $\Delta_1 \cdot C < 0$ ,  $\Delta_2 \cdot C < 0$ , and  $\Delta_1 \cap \Delta_2 = C$ , then  $\mathcal{L}$  admits a relative Zariski-decomposition over P.

PROOF. Let us choose positive integers  $m_1$  and  $m_2$  satisfying  $m_1(\Delta_1 \cdot C_1) = m_2(\Delta_2 \cdot C_2)$  and let  $f: V \to X$  be the blowing-up of X along the ideal sheaf  $\mathcal{J} := \mathcal{O}_X(-m_1\Delta_1) + \mathcal{O}_X(-m_2\Delta_2)$ . Let G be the effective Cartier divisor defined by the invertible ideal sheaf  $\mathcal{JO}_V$ . Note that V and G are Cohen–Macaulay. Since  $\mathcal{J} \otimes \mathcal{O}_C \simeq \mathcal{O}_C(-m_1\Delta_1) \oplus \mathcal{O}_C(-m_2\Delta_2)$ ,  $E := G_{\text{red}}$  is the ruled surface over C associated with the semi-stable vector bundle  $\mathcal{J} \otimes \mathcal{O}_C$ . There is a filtration of coherent subsheaves

$$\mathcal{O}_G = \mathcal{F}_0 \supset \mathcal{F}_1 \supset \mathcal{F}_2 \supset \cdots \supset \mathcal{F}_k \supset \mathcal{F}_{k+1}$$

such that  $\mathcal{F}_i/\mathcal{F}_{i+1}$  is a non-zero torsion-free  $\mathcal{O}_E$ -module for  $i \leq k$  and  $\operatorname{Supp} \mathcal{F}_{k+1} \neq E$ . We have  $\mathcal{F}_{k+1} = 0$ , since  $\mathcal{O}_G$  is Cohen–Macaulay. Let  $\alpha$  be the minimum of real numbers  $x \geq 0$  such that  $f^*\mathcal{L}|_E - xG|_E$  is pseudo-effective. Then  $\alpha \in \mathbb{Q}_{>0}$ . For any  $\beta \in \mathbb{Q}_{>0}$  with  $\beta < \alpha$ , there is an integer  $b \in \mathbb{N}$  such that

$$\mathrm{H}^{0}(E, f^{*}\mathcal{L}^{\otimes m} \otimes \mathcal{O}_{V}(-m\beta G) \otimes \mathcal{F}_{i}/\mathcal{F}_{i+1}) = 0$$

for any  $m \ge b$  with  $m\beta \in \mathbb{Z}$  and for any  $0 \le i \le k$ . Hence

$$\mathrm{H}^{0}(V, f^{*}\mathcal{L}^{\otimes m} \otimes \mathcal{O}_{V}(-m\beta G)) \simeq \mathrm{H}^{0}(V, f^{*}\mathcal{L}^{\otimes m}) \simeq \mathrm{H}^{0}(X, \mathcal{L}^{\otimes m})$$

Let  $\rho: Y \to V$  be a bimeromorphic morphism from a non-singular variety. Then

$$N_{\sigma}(\rho^* f^* \mathcal{L}) \ge \alpha \rho^* G.$$

On the other hand,  $\rho^* f^* \mathcal{L} - \alpha \rho^* G$  is relatively nef over P. Hence the nef  $\mathbb{Q}$ -divisor is the positive part of a relative Zariski-decomposition over P.

**Example** There is an example where the assumption of **4.8** is not satisfied: Let  $0 \to \mathcal{O}_C \to \mathcal{E} \to \mathcal{O}_C \to 0$  be the non-trivial extension over an elliptic curve C and let  $\mathbb{E}$  be the geometric vector bundle  $\mathbb{V}(\mathcal{E} \otimes \mathcal{N})$  associated with the locally free sheaf  $\mathcal{E} \otimes \mathcal{N}$ , where  $\mathcal{N}$  is a negative line bundle on C. Then the zero-section of  $\mathbb{E}$  is an exceptional curve, but there exist no such prime divisors  $\Delta_1, \Delta_2$  on any neighborhood of the zero-section as in **4.8**.

**Example** If there is a bimeromorphic morphism  $X' \to Z$  that is isomorphic outside P and is not isomorphic to the original f, then the assumption of **4.8** is satisfied. But the converse does not hold in general. For example, let  $\mathbb{E}$  be the geometric vector bundle  $\mathbb{V}(\mathcal{O}_C \oplus \mathcal{M})$  associated with  $\mathcal{O}_C \oplus \mathcal{M}$  on an elliptic curve C such that  $\mathcal{M}$  has degree zero but is not a torsion element of Pic(C). Then a relative Zariski-decomposition for a divisor L on X with  $L \cdot C < 0$  exists by **4.7**, but its positive part is not relatively semi-ample over Z. Thus it is impossible to obtain the morphism  $X' \to Z$  above.

## §5. Pullbacks of divisors

§5.a. Remarks on exceptional divisors. We give some remarks on exceptional divisors along Fujita's argument in [25]. Let  $\pi: X \to S$  be a proper surjective morphism of normal complex analytic varieties and let D be an  $\mathbb{R}$ -divisor of X with  $\pi(\operatorname{Supp} D) \neq S$ . If  $\operatorname{codim} \pi(\operatorname{Supp} D) \geq 2$ , then D is called  $\pi$ -exceptional or exceptional for  $\pi$ . Suppose that  $\operatorname{codim} \pi(\operatorname{Supp} D) = 1$  and let  $\Theta$  be a prime divisor contained in  $\pi(\operatorname{Supp} D)$ . If there is a prime divisor  $\Gamma \subset X$  with  $\pi(\Gamma) = \Theta$  and  $\Gamma \not\subset \operatorname{Supp} D$ , then D is called of insufficient fiber type along  $\Theta$ . If such  $\Theta$  exists, D is called of insufficient fiber type. We assume that X is non-singular and projective over S, and we set  $n = \dim X$  and  $d = \dim S$ . The proofs of 5.1 and 5.2 below are similar to that of [25, (1.5)]:

**5.1. Lemma** Let  $\Delta$  be a  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor of X. Then there is a prime component  $\Gamma$  such that  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective over  $\pi(\Gamma)$ .

PROOF. We may replace S by an open subset. Thus we assume that S is a Stein space. By assumption,  $e := \dim \pi(\operatorname{Supp} \Delta) \leq d - 2$ . Let  $H_1, H_2, \ldots, H_e$  be general prime divisors such that  $\pi(\operatorname{Supp} \Delta) \cap \bigcap_{i=1}^e H_i$  is zero-dimensional and that

the pullback  $\pi^{-1}(\bigcap_{i=1}^{e} H_i)$  is a non-singular subvariety of X of codimension e. Let  $A_1, A_2, \ldots, A_{n-e-2}$  be general  $\pi$ -ample divisors of X. Then the intersection

$$Y := \bigcap_{j=1}^{n-e-2} A_j \cap \bigcap_{i=1}^{e} \pi^{-1} H_i$$

is a non-singular surface with  $\dim \pi(Y) = 2$ . For a prime component  $\Gamma$  of  $\Delta$ , the restriction  $\Gamma \cap Y$  is  $(\pi|_Y)$ -exceptional provided that  $\pi(\Gamma) \cap \bigcap_{i=1}^e H_i \neq \emptyset$ . Therefore, there is a component  $\Gamma$  such that  $\Delta \cdot \gamma < 0$  for an irreducible component  $\gamma$  of  $\Gamma \cap Y$ . Thus  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective.

**5.2. Lemma** Let  $\Delta$  be an effective  $\mathbb{R}$ -divisor of X with  $\pi(\operatorname{Supp} \Delta) \neq S$  and let  $\Theta$  be a prime divisor contained in  $\pi(\operatorname{Supp} \Delta)$ . Suppose that  $\Delta$  is not  $\pi$ -numerically trivial over a general point of  $\Theta$ . Then there is a prime component  $\Gamma$  of  $\Delta$  such that  $\pi(\Gamma) = \Theta$  and  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective.

PROOF. Assume the contrary. We may also assume that S is Stein. Then there is a non-singular curve  $C \subset S$  such that  $Z := \pi^{-1}(C)$  is a non-singular subvariety of codimension d-1,  $\Theta \cap C$  is zero-dimensional, and that  $\Delta|_{Z \cap \Gamma}$  is relatively pseudoeffective over  $\Theta \cap C$  for any prime component  $\Gamma$ . Let  $A_1, A_2, \ldots, A_{n-d-1}$  be general  $\pi$ -ample divisors of X such that

$$Y := Z \cap \bigcap_{j=1}^{n-d-1} A_j$$

is a non-singular surface,  $\pi(Y) = C$ , and that  $\Delta|_{Y \cap \Gamma}$  is relatively pseudo-effective. Since any fiber of  $Y \to C$  is one-dimensional,  $\Delta|_{Y \cap \Gamma}$  is nef. Hence  $\Delta|_Y$  is  $(\pi|_Y)$ -nef over C and  $\pi(\operatorname{Supp}(\Delta|_Y)) = \Theta \cap C$ . Therefore  $\Delta$  is  $\pi$ -numerically trivial over  $\Theta \cap C$ . This is a contradiction.

**5.3. Corollary** If  $\Delta$  is an effective  $\mathbb{R}$ -divisor of insufficient fiber type over S, then  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective for some prime component  $\Gamma$  of  $\Delta$ .

**5.4. Definition** Let D be an effective  $\mathbb{R}$ -divisor of X. If there is a sequence of projective surjective morphisms  $\phi_k \colon X_k \to X_{k+1}$   $(0 \le k \le l)$  satisfying the following two conditions, then D is called *successively*  $\pi$ -exceptional:

- (1)  $\pi$  is isomorphic to the composite  $X = X_0 \to X_1 \to \cdots \to X_{l+1} = S$ ;
- (2) Any prime component  $\Gamma$  of D is exceptional for some

$$\pi_{k+1} := \phi_k \circ \cdots \circ \phi_0 \colon X \to X_{k+1} \ (0 \le k \le l).$$

An effective  $\mathbb{R}$ -divisor  $\Delta$  is called *weakly*  $\pi$ -*exceptional* if there is such a sequence of projective surjective morphisms satisfying the condition (1) above and the following condition (2') instead of (2) above:

- (2') There is a decomposition  $\Delta = \Delta_0 + \Delta_1 + \cdots + \Delta_l$  of effective  $\mathbb{R}$ -divisors such that any two distinct  $\Delta_i$  and  $\Delta_j$  have no common prime components, and that, for any  $1 \leq k \leq l$ ,
  - (a)  $\operatorname{codim} \pi_k(\operatorname{Supp} \Delta_k) = 1$ , and
  - (b)  $\pi_{k*}(\Delta_k)$  is exceptional or of insufficient fiber type over  $X_{k+1}$ .

**Remark** A successively  $\pi$ -exceptional divisor is not necessarily  $\pi$ -exceptional. There is an example where a prime component  $\Gamma$  is exceptional over  $X_1$  but dominates  $X_2$ .

**5.5.** Proposition If  $\Delta$  is a weakly  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor, then  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective for some prime component  $\Gamma$  of  $\Delta$ .

PROOF. Since the condition is local on S, we may assume that S is a Stein space. We prove by induction on the number l in **5.4**. The case l = 0 is done in **5.1** and **5.3**. Assume that l is positive and the statement holds for l-1. We decompose  $\pi$  by  $\pi_l: X \to X_l$  and  $\phi_l: X_l \to X_{l+1} = S$ . We set  $D_0 = \Delta_0 + \Delta_1 + \cdots + \Delta_{l-1}$ and  $D_1 = \Delta_l$ . Then  $D_0$  is weakly  $\pi_l$ -exceptional. Suppose that there is a prime component  $\Gamma$  of  $D_0$  such that  $\pi_l(\Gamma) \subset \pi_l(\operatorname{Supp} D_1)$ . We consider new  $\mathbb{R}$ -divisors  $D'_0 := D_0 - (\operatorname{mult}_{\Gamma} D_0)\Gamma$  and  $D'_1 := D_1 + (\operatorname{mult}_{\Gamma} D_0)\Gamma$ . Then  $\pi_{l*}D'_1$  is  $\phi_l$ -exceptional or of insufficient type over  $X_{l+1} = S$ . Thus we may replace  $D_0$  by  $D'_0$  and  $D_1$  by  $D'_1$ , respectively. If  $D_0 = 0$ , then  $\Delta = \Delta_l$  satisfies the required condition by **5.1** and **5.3**. Hence we may assume that  $D_0 \neq 0$  and  $\pi_l(\Gamma) \not\subset \pi_l(\operatorname{Supp} D_1)$  for any prime component  $\Gamma$  of  $D_0$ . There is a  $\phi_l$ -ample divisor H such that  $\pi_l^* H \geq D_1$ and  $\Gamma \not\subset \pi_l^* H$  for any prime component  $\Gamma$  of  $D_0$ . By induction,  $(D_0 + \pi_l^* H)|_{\Gamma}$  is not  $(\pi_l|_{\Gamma})$ -pseudo-effective for some prime component  $\Gamma$  of  $D_0$ . Thus  $\Delta|_{\Gamma}$  is not  $(\pi_l|_{\Gamma})$ -pseudo-effective.

**5.6.** Corollary (cf. Fujita's lemma [61, 1-3-2])  $\pi_* \mathcal{O}_D(D) = 0$  for a weakly  $\pi$ -exceptional effective divisor D.

PROOF. By **5.5**,  $\pi_*\mathcal{O}_{\Gamma}(D) = 0$  for some prime component  $\Gamma$  of D. Thus  $\pi_*\mathcal{O}_{D-\Gamma}(D-\Gamma) \simeq \pi_*\mathcal{O}_D(D)$ . Since  $D-\Gamma$  is also a weakly  $\pi$ -exceptional effective divisor, we are done by induction.

**5.7.** Proposition (cf. [25, (1.9)]) Let  $\Delta$  be a weakly  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor of X. Then  $\Delta = N_{\sigma}(\Delta; X/S) = N_{\nu}(\Delta; X/S)$ .

PROOF. Let  $\{\Gamma_1, \Gamma_2, \ldots, \Gamma_{m_1}\}$  be the set of prime components  $\Gamma$  of  $\Delta$  such that  $\Delta|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective. This is not empty by **5.5**. Let  $\alpha_i$  be the number

$$\inf \{ \alpha > 0 \mid (\Delta - \alpha \Gamma_i)|_{\Gamma_i} \text{ is } (\pi|_{\Gamma_i}) \text{-pseudo-effective} \}.$$

Then  $\alpha_i \leq \text{mult}_{\Gamma_i} \Delta$ . By the same argument as in **3.12**, we infer that  $\Delta^{(1)}|_{\Gamma_i}$  is  $(\pi|_{\Gamma_i})$ -pseudo-effective for any  $1 \leq i \leq m_1$ , for the effective  $\mathbb{R}$ -divisor

$$\Delta^{(1)} = \Delta - \sum_{i=1}^{m_1} \alpha_i \Gamma_i.$$

Next, we consider the set  $\{\Gamma_{m_1+1}, \Gamma_{m_1+2}, \ldots, \Gamma_{m_2}\}$  of prime components  $\Gamma$  of  $\Delta^{(1)}$  such that  $\Delta^{(1)}|_{\Gamma}$  is not  $\pi$ -pseudo-effective. It is also not empty if  $\Delta^{(1)} \neq 0$ . For  $1 \leq i \leq m_2$ , let  $\alpha_i^{(1)}$  be the number

 $\inf \{ \alpha > 0 \mid (\Delta^{(1)} - \alpha \Gamma_i)|_{\Gamma_i} \text{ is } (\pi|_{\Gamma_i}) \text{-pseudo-effective} \}.$ 

Then, by the same argument as in **3.12**, we infer that  $\Delta^{(2)}|_{\Gamma_i}$  is  $(\pi|_{\Gamma_i})$ -pseudoeffective for  $1 \leq i \leq m_2$ , for the effective  $\mathbb{R}$ -divisor

$$\Delta^{(2)} := \Delta^{(1)} - \sum_{i=1}^{m_2} \alpha_i^{(1)} \Gamma_i.$$

As in **3.12**, we finally have  $\Delta = N_{\nu}(\Delta; X/S)$ .

**5.8. Lemma** Suppose that  $\pi: X \to S$  has connected fibers and S is nonsingular. Let D be an effective  $\mathbb{R}$ -divisor of X not dominating S. Suppose that  $D|_{\Gamma}$  is relatively pseudo-effective over  $\pi(\Gamma)$  for any prime component  $\Gamma$  of D. Then there exist an effective  $\mathbb{R}$ -divisor  $\Delta$  on S and a  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor Esuch that  $D = \pi^* \Delta - E$ .

PROOF. Let  $S^{\circ} \subset S$  be the maximum Zariski-open subset over which  $\pi$  is flat. Let  $\Theta \subset S$  be a prime divisor and let  $I_{\Theta}$  be the set of prime components  $\Gamma$  of D satisfying  $\Theta = \pi(\Gamma)$ . Suppose that  $I_{\Theta} \neq \emptyset$ . If  $\Gamma$  is a prime divisor of X with  $\pi(\Gamma) = \Theta$ , then  $\Gamma \in I_{\Theta}$  by **5.3**. Let us define  $a_{\Gamma} := \text{mult}_{\Gamma} D$  and  $b_{\Gamma} := \text{mult}_{\Gamma} \pi^* \Theta$  for  $\Gamma \in I_{\Theta}$ , and  $r_{\Theta} := \min\{a_{\Gamma}/b_{\Gamma} \mid \Gamma \in I_{\Theta}\}$ . Then the multiplicity

$$\operatorname{mult}_{\Gamma}(D - r_{\Theta}\pi^*\Theta) = a_{\Gamma} - r_{\Theta}b_{\Gamma}$$

is non-negative for any  $\Gamma \in I_{\Theta}$  and is zero for some  $\Gamma_0 \in I_{\Theta}$ . Thus  $D - r_{\Theta}\pi^*\Theta$  is an effective  $\mathbb{R}$ -divisor over  $S^{\circ}$ . Since  $(D - r_{\Theta}\pi^*\Theta)|_{\Gamma'}$  is relatively pseudo-effective over  $\Theta$  for any  $\Gamma' \in I_{\Theta}$ ,  $D - r_{\Theta}\pi^*\Theta$  is not of insufficient fiber type over  $S^{\circ}$ . Hence  $a_{\Gamma} = r_{\Theta}b_{\Gamma}$  for any  $\Gamma \in I_{\Theta}$ . Therefore,  $D = \sum_{\Theta} r_{\Theta}\pi^*\Theta + E_1 - E_2$  for some  $\pi$ exceptional effective  $\mathbb{R}$ -divisors  $E_1$  and  $E_2$  without common prime components. Then  $E_1|_{\Gamma}$  is also relatively pseudo-effective over  $\pi(\Gamma)$  for any component  $\Gamma$  of  $E_1$ . Thus  $E_1 = 0$  by **5.1**.

**5.9. Corollary** Suppose that  $\pi: X \to S$  has connected fibers. Let D be a  $\pi$ -nef effective  $\mathbb{R}$ -divisor of X not dominating S. Then there exist

- (1) bimeromorphic morphisms  $\mu: S' \to S$  and  $\nu: X' \to X$  from non-singular varieties,
- (2) a morphism  $\pi' \colon X' \to S'$  over S,
- (3) an effective  $\mathbb{R}$ -divisor  $\Delta$  on S'

such that  $\nu^* D = {\pi'}^* \Delta$ .

PROOF. Let  $\mu: S' \to S$  be a bimeromorphic morphism from a non-singular variety flattening  $\pi$  and let  $\pi': X' \to S'$  be a bimeromorphic transform of  $\pi$  by  $\mu$ . We may assume that X' is non-singular. Let  $\nu: X' \to X$  be the induced bimeromorphic morphism. By **5.8**, there exist an effective  $\mathbb{R}$ -divisor  $\Delta$  and a  $\pi$ exceptional effective  $\mathbb{R}$ -divisor E such that  $\nu^*D = \pi'^*\Delta - E$ . Let  $V \to X \times_Y Y'$ be the normalization of the main component of  $X \times_Y Y'$  and let  $\nu_1: X' \to V$  and  $\pi_V: V \to S'$  be the induced morphisms. Then we have  $\nu_{1*}\nu^*D = \pi_V^*\Delta$  by taking  $\nu_{1*}$ . Hence we have E = 0 by taking  $\nu_1^*$ .

§5.b. Mumford pullback. Let  $\pi: X \to S$  be a proper surjective morphism of normal complex analytic varieties. Suppose that  $\pi$  is a bimeromorphic morphism from a non-singular surface. Then the *numerical pullback* or the *Mumford pullback*  $\pi^*(D)$  of a divisor D of S is defined as a  $\mathbb{Q}$ -divisor of X satisfying the following two conditions:

1) 
$$\pi_*(\pi^*(D)) = D;$$

(2)  $\pi^*(D)$  is  $\pi$ -numerically trivial.

It exists uniquely. Hence, every divisor of a normal surface is numerically  $\mathbb{Q}$ -Cartier. We give a generalization of the Mumford pullback to the case of proper surjective morphism from a non-singular variety of arbitrary dimension. However, the second condition above must be weakened. Suppose that  $\pi: X \to S$  is a projective surjective morphism and X is non-singular.

## **5.10. Lemma** Let D be an $\mathbb{R}$ -divisor of X.

(1) Suppose that D is a Cartier divisor and  $\pi_*\mathcal{O}_X(D) \neq 0$ . Then there is a  $\pi$ -exceptional effective divisor E such that

$$(\pi_*\mathcal{O}_X(D))^\wedge \simeq \pi_*\mathcal{O}_X(D+E).$$

- (2) Assume that, for any  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor E, there is a prime component  $\Gamma$  of E such that  $(D+E)|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective. Then  $\pi_*\mathcal{O}_X(\_D\_)$  is a reflexive sheaf.
- (3) For any relatively compact open subset  $U \subset S$ , there exists a  $\pi$ -exceptional effective divisor E on  $\pi^{-1}U$  such that

$$(\pi_*\mathcal{O}_X(_t tD_1))^{\wedge}|_U \simeq \pi_*\mathcal{O}_{\pi^{-1}U}(_t tD|_U + tE_1)$$

for any  $t \in \mathbb{R}_{>0}$ .

(4) If  $N_{\nu}(D; X/S) = 0$ , then  $\pi_* \mathcal{O}_X(\_-D_{\bot})$  is reflexive.

**PROOF.** (1) Let  $\mathcal{K}$  and  $\mathcal{G}$  be the kernel and the image of

$$\pi^*\pi_*\mathcal{O}_X(D) \to \mathcal{O}_X(D),$$

respectively. Then  ${\mathcal G}$  is a torsion-free sheaf of rank one. Let  ${\mathcal G}'$  be the cokernel of the composite

$$\mathcal{K} \to \pi^* \pi_* \mathcal{O}_X(D) \to \pi^*((\pi_* \mathcal{O}_X(D))^\wedge).$$

Then  $\mathcal{G} \to \mathcal{G}'$  is isomorphic over  $\pi^{-1}U$  for a Zariski-open subset  $U \subset S$  with  $\operatorname{codim}(S \setminus U) \geq 2$ . Thus  $\mathcal{G}'^{\wedge} = \mathcal{G}^{\wedge} \otimes \mathcal{O}_X(E)$  for an effective divisor E supported in  $\pi^{-1}(S \setminus U)$ . Therefore,  $\mathcal{G}'^{\wedge} \subset \mathcal{O}_X(D+E)$ . In particular, we have homomorphisms

$$(\pi_*\mathcal{O}_X(D))^{\wedge} \to \pi_*\mathcal{G}' \to \pi_*\mathcal{O}_X(D+E)$$

which are isomorphic over U. Hence  $(\pi_*\mathcal{O}_X(D))^{\wedge} = \pi_*\mathcal{O}_X(D+E)$ .

(2) By (1), we have a  $\pi$ -exceptional effective divisor E such that  $(\pi_*\mathcal{O}_X(\lfloor D_{\perp}))^{\wedge} \simeq \pi_*\mathcal{O}_X(\lfloor D_{\perp} + E)$ . By assumption,  $E \leq N_{\nu}(D + E, X/S) \leq N_{\sigma}(D + E; X/S)$ . Therefore,  $\pi_*\mathcal{O}_X(\lfloor D_{\perp} + E) \simeq \pi_*\mathcal{O}_X(\lfloor D_{\perp})$ .

(3) Let  $\mathcal{E}$  be the set of  $\pi$ -exceptional prime divisors. We may assume  $\mathcal{E} \neq \emptyset$  by (1). Moreover, we may assume that  $\mathcal{E}$  is a finite set, since we can replace S by

an open neighborhood of the compact set  $\overline{U}$ . Suppose that there is a  $\pi$ -exceptional effective divisor E such that  $E|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective for any  $\Gamma \in \mathcal{E}$ . Then  $\operatorname{mult}_{\Gamma} E > 0$  for any  $\Gamma \in \mathcal{E}$ . Moreover, there is an integer b > 0 such that  $(D+\beta E)|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective for any  $\Gamma \in \mathcal{E}$  and for any  $\beta \geq b$ . We set  $D_t = t(D+bE)$  for a given number  $t \in \mathbb{R}_{>0}$ . For an arbitrary  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor G, let  $c \in \mathbb{R}_{>0}$  be the maximum satisfying  $cE \geq G$ . Then a prime divisor  $\Gamma \in \mathcal{E}$  is not contained in  $\operatorname{Supp}(cE - G)$ . Thus  $(D_t + G)|_{\Gamma}$  is not  $(\pi|_{\Gamma})$ -pseudo-effective, since

$$(D_t + G)|_{\Gamma} + (cE - G)|_{\Gamma} = t(D + (b + c/t)E)|_{\Gamma}.$$

Thus  $\pi_* \mathcal{O}_X( \ D_{t \perp})$  is reflexive by (2).

Therefore, it is enough to find such a divisor E. Let  $\nu: S' \to S$  be a bimeromorphic morphism flattening  $\pi$ . We may assume that  $\nu$  is projective and there is a  $\nu$ -exceptional effective Cartier divisor  $\Delta$  of S' with  $-\Delta$  being  $\nu$ -ample. Let V be the normalization of the main component of  $X \times_S S'$  and let  $\mu: V \to X$  and  $\varphi: V \to S'$ be the induced morphisms. We consider  $E := \mu_*(\varphi^* \Delta)$ . Then  $\varphi^* \Delta \ge \mu^* E$  by **5.8**, since  $-\varphi^* \Delta$  is  $\mu$ -nef. Suppose that  $E|_{\Gamma}$  is  $(\pi|_{\Gamma})$ -pseudo-effective for some  $\Gamma \in \mathcal{E}$ . Then  $\varphi^* \Delta|_{\Gamma'}$  is relatively pseudo-effective over  $\pi(\Gamma)$  for the proper transform  $\Gamma'$  of  $\Gamma$  in V. Hence the relatively nef divisor  $-\varphi^* \Delta|_{\Gamma'}$  over  $\pi(\Gamma)$  is numerically trivial along a general fiber of  $\Gamma' \to \pi(\Gamma)$ . This is a contradiction, since  $-\Delta$  is  $\nu$ -ample and  $\varphi(\Gamma')$  is a prime divisor for the equi-dimensional morphism  $\varphi: V \to S'$ . Hence  $E|_{\Gamma}$  is not pseudo-effective for any  $\Gamma \in \mathcal{E}$ .

(4) Let E be a  $\pi$ -exceptional effective  $\mathbb{R}$ -divisor and let  $\Gamma$  be a prime component. If  $(-D+E)|_{\Gamma}$  is  $(\pi|_{\Gamma})$ -pseudo-effective, then  $E|_{\Gamma}$  is  $(\pi|_{\Gamma})$ -pseudo-effective. Therefore the result follows from **5.1** and (2) above.

**5.11. Corollary** Suppose that  $\pi$  has connected fibers. Let B be an  $\mathbb{R}$ -divisor of S. Then there exists an  $\mathbb{R}$ -divisor D of X such that

- (1) Supp D is contained in the union of  $\pi$ -exceptional prime divisors and of  $\pi^{-1}(\operatorname{Supp} B)$ ,
- (2)  $\pi_* \mathcal{O}_X(tD_{\perp}) \simeq \mathcal{O}_S(tB_{\perp})$  for any  $t \in \mathbb{R}_{>0}$ ,
- (3)  $D|_{\Gamma}$  is  $(\pi|_{\Gamma})$ -pseudo-effective for any prime divisor  $\Gamma$ .

Moreover, the maximum  $\pi^{\circledast}(B)$  of such  $\mathbb{R}$ -divisors D exists.

**PROOF.** There is an  $\mathbb{R}$ -divisor  $D_0$  of X such that

- $\operatorname{codim} \pi(\Gamma) \geq 2$  or  $\pi(\Gamma)$  is a prime divisor contained in  $\operatorname{Supp} B$  for any prime component  $\Gamma$  of  $\operatorname{Supp} D_0$ ,
- $D_0 = \pi^* B$  over a non-singular Zariski-open subset  $S^\circ \subset S$  of  $\operatorname{codim}(S \smallsetminus S^\circ) \geq 2$ .

Let  $D_1$  be the  $\mathbb{R}$ -divisor  $-P_{\nu}(-D_0; X/S)$ . Note that this is a usual  $\mathbb{R}$ -divisor, by **4.3**-(3). Then  $\pi_* \mathcal{O}_X({}_t t D_{1_1}) \simeq \mathcal{O}_S({}_t t B_{\perp})$  for any t > 0 by **5.10**. We define

$$\pi^{\circledast}(B) := P_{\nu}(D_1; X/S) = P_{\nu}(-P_{\nu}(-D_0; X/S); X/S).$$

Then the  $\mathbb{R}$ -divisor  $\pi^{\circledast}(B)$  satisfies the required three conditions above. Let D be an  $\mathbb{R}$ -divisor satisfying the same three conditions. Since  $D = D_0$  over the  $S^{\circ}$ ,

there are effective  $\pi$ -exceptional  $\mathbb{R}$ -divisors  $E_1$  and  $E_2$  having no common prime components such that  $D = D_1 + E_1 - E_2$ . Then, by **5.1**, we have  $E_1 = 0$ , since  $(D - D_1)|_{\Gamma}$  is  $\pi|_{\Gamma}$ -pseudo-effective. Hence  $D + E_2 = D_1$  and  $D \leq \pi^{\circledast}(B)$ .

**5.12. Definition** The  $\mathbb{R}$ -divisor  $\pi^{\circledast}(B)$  in **5.11** is called the *Mumford pullback* of B. The Mumford pullback is defined also in the case where general fibers are not connected, as follows: let  $X \to V \to S$  be the Stein factorization of  $\pi$  and we write the morphisms by  $f: X \to V$  and  $\tau: V \to S$ . Since  $\tau$  is a finite morphism, we can define  $\tau^{\circledast}(B)$  as the closure of  $\tau^*(B)$  over a Zariski-open subset  $S^{\circ}$  of  $\operatorname{codim}(S \setminus S^{\circ}) \geq 2$ . The Mumford pullback  $\pi^{\circledast}(B)$  is defined to be  $f^{\circledast}(\tau^{\circledast}(B))$ .

**Remark** (1) For 
$$\mathbb{R}$$
-divisors  $B, B_1, B_2$  of  $S$ ,

$$\pi^{\circledast}(-B) = P_{\nu}(-\pi^{\circledast}(B); X/S),$$
  
$$\pi^{\circledast}(B_1 + B_2) = P_{\nu}(-P_{\nu}(-\pi^{\circledast}(B_1) - \pi^{\circledast}(B_2); X/S); X/S).$$

- (2) If Γ is a π-exceptional prime divisor, then π<sup>®</sup>(B)|<sub>Γ</sub> is not (π|<sub>Γ</sub>)-big, by
   **3.3**.
- (3) If  $\pi$  is a bimeromorphic morphism, then

$$P_{\sigma}(\pi^{\circledast}(B); X/S) \le D \le \pi^{\circledast}(B)$$

for any  $\mathbb{R}$ -divisor D satisfying the conditions of **5.11**, since every divisor of X is relatively big over S.

**5.13. Lemma** Let  $\Gamma$  be a  $\pi$ -exceptional prime divisor with  $\operatorname{codim} \pi(\Gamma) = 2$ . Then

$$\operatorname{mult}_{\Gamma} P_{\sigma}(\pi^{\circledast}(B); X/S) = \operatorname{mult}_{\Gamma} \pi^{\circledast}(B),$$
$$\operatorname{mult}_{\Gamma}(\pi^{\circledast}(B_1) + \pi^{\circledast}(B_2)) = \operatorname{mult}_{\Gamma} \pi^{\circledast}(B_1 + B_2)$$

for any  $\mathbb{R}$ -divisors B,  $B_1$ ,  $B_2$  of S. If  $\lambda: Z \to X$  is a bimeromorphic morphism from a non-singular variety Z, then  $\operatorname{mult}_{\Gamma} \pi^{\circledast}(B) = \operatorname{mult}_{\Gamma'}(\pi \circ \lambda)^{\circledast}(B)$  for the proper transform  $\Gamma'$  of  $\Gamma$ .

PROOF. First we treat the case where  $\pi$  is bimeromorphic. Then general fibers of  $\Gamma \to \pi(\Gamma)$  are one-dimensional. Now  $\pi^{\circledast}(B)|_{\Gamma}$  is  $(\pi|_{\Gamma})$ -pseudo-effective but not  $(\pi|_{\Gamma})$ -big. Hence  $\pi^{\circledast}(B) \cdot \gamma = 0$  for any irreducible component  $\gamma$  of a general fiber of  $\pi|_{\Gamma}$ . Therefore  $\pi^{\circledast}(B)$  is  $\pi$ -numerically trivial outside a Zariski-closed subset of S of codimension greater than two. Therefore  $P_{\sigma}(\pi^{\circledast}(B); X/S) = \pi^{\circledast}(B)$  outside the set. In particular,  $\operatorname{mult}_{\Gamma} P_{\sigma}(\pi^{\circledast}(B); X/S) = \operatorname{mult}_{\Gamma} \pi^{\circledast}(B)$ .

Next, we consider the general case. Let  $\nu: Y \to S$  be a bimeromorphic morphism flattening  $\pi$ . Then, for the normalization V of the main component of  $X \times_S Y$ , the induced morphism  $q: V \to Y$  is equi-dimensional. Let  $\varphi: Z \to V$  be a bimeromorphic morphism from a non-singular variety and let  $\phi: V \to X$ ,  $\lambda: Z \to X$ , and  $p: Z \to Y$  be induced morphisms. By definition,

$$(\nu \circ p)^{(*)}(B) = P_{\nu}(-P_{\nu}(-p^{*}(\nu^{(*)}(B)); Z/S); Z/S).$$

Therefore it is  $(\nu \circ p)$ -numerically trivial over a Zariski-open subset  $U \subset S$  with  $\operatorname{codim}(S \smallsetminus U) \geq 3$ . Let  $D := \lambda_*((\nu \circ p)^{\circledast}(B))$ . Then  $\lambda^*D = (\nu \circ p)^{\circledast}(B)$  over U. Hence  $\pi^{\circledast}(B) = P_{\nu}(-P_{\nu}(-D; X/S); X/S)$  is also  $\pi$ -numerically trivial over U and  $\lambda^*\pi^{\circledast}(B) = (\nu \circ p)^{\circledast}(B) = p^*\nu^{\circledast}(B)$  over U.

Let S be a normal projective variety of  $d = \dim S \ge 2$ . Let  $B_1$  and  $B_2$  be Weil divisors and let  $D_1, D_2, \ldots, D_{d-2}$  be Cartier divisors of S. For a bimeromorphic morphism  $\pi: X \to S$  from a non-singular projective variety, the intersection number

$$\pi^{(*)}(B_1) \cdot \pi^{(*)}(B_2) \cdot \pi^* D_1 \cdots \pi^* D_{d-2}$$

is rational. It is independent of the choice of  $\pi$ . Thus we can define the intersection number  $(B_1 \cdot B_2 \cdot D_1 \cdots D_{d-2})$  as above.

**Remark** A divisor D of a normal complex analytic variety S is numerically  $\mathbb{Q}$ -Cartier if and only if  $\pi^{\circledast}(D)$  is  $\pi$ -numerically trivial for a bimeromorphic morphism  $\pi: X \to S$  from a non-singular variety.

**§5.c.**  $\sigma$ -decompositions of pullbacks. We study the  $\sigma$ -decomposition of the pullback of a pseudo-effective  $\mathbb{R}$ -divisor by a projective surjective morphism. For the sake of simplicity, here, we consider in the projective algebraic category. Let  $f: Y \to X$  be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective  $\mathbb{R}$ -divisor of X.

**5.14. Lemma** If E is a pseudo-effective  $\mathbb{R}$ -divisor of Y with  $N_{\sigma}(E; Y/X) = E$ , then  $N_{\sigma}(f^*D + E) = N_{\sigma}(f^*D) + E$ .

PROOF. This is derived from  $N_{\sigma}(D') \geq N_{\sigma}(D'; Y/X)$  for any pseudo-effective  $\mathbb{R}$ -divisor D'.

Note that a weakly f-exceptional effective  $\mathbb{R}$ -divisor E satisfies  $N_{\sigma}(E; Y/X) = E$ .

**5.15. Lemma** Let  $\Gamma$  be a prime divisor of X and let  $\Gamma'$  be a prime divisor of Y with  $f(\Gamma') = \Gamma$ . Then

$$\sigma_{\Gamma'}(f^*D) = (\operatorname{mult}_{\Gamma'} f^*\Gamma) \sigma_{\Gamma}(D).$$

PROOF. For a divisor  $\Delta$ , we have  $\operatorname{mult}_{\Gamma'} f^*\Delta = (\operatorname{mult}_{\Gamma'} f^*\Gamma) \operatorname{mult}_{\Gamma} \Delta$ . Therefore, the equality holds if f is a birational morphism, and the inequality  $\sigma_{\Gamma'}(f^*D) \leq (\operatorname{mult}_{\Gamma'} f^*\Gamma)\sigma_{\Gamma}(D)$  holds in general. Suppose that f is generically finite. By considering the Galois closure, we may assume f is Galois and the Galois group G acts on Y holomorphically. The negative part  $N_{\sigma}(f^*D)$  is G-invariant. Therefore

$$N_{\sigma}(f^*D) = f^*N + E$$

for an effective  $\mathbb{R}$ -divisor N of X and an f-exceptional  $\mathbb{R}$ -divisor E. Then  $N \leq N_{\sigma}(D)$  by the argument above. Since  $f_*P_{\sigma}(f^*D)$  is movable by **1.18**,

$$(\deg f)N = f_*N_{\sigma}(f^*D) \ge (\deg f)N_{\sigma}(D).$$

Hence  $N = N_{\sigma}(D)$  and  $\sigma_{\Gamma'}(f^*D) = (\operatorname{mult}_{\Gamma'} f^*D)\sigma_{\Gamma}(D)$ .

Next suppose that  $\dim Y > \dim X \ge 1$ . Then  $D - (\sigma'/\mu)\Gamma$  is pseudo-effective for  $\sigma' := \sigma_{\Gamma'}(f^*D)$  and  $\mu := \operatorname{mult}_{\Gamma'} f^*\Gamma$ . Thus  $f^*D - \sigma'\Gamma' = f^*(D - (\sigma'/\mu)\Gamma) + R$  for an effective  $\mathbb{R}$ -divisor R which is of insufficient fiber type over X. Hence  $N_{\sigma}(f^*D - \sigma'\Gamma'; Y/X) = N_{\sigma}(R; Y/X) = R$ . Since  $N_{\sigma}(f^*D - \sigma'\Gamma') \ge N_{\sigma}(f^*D - \sigma'\Gamma'; Y/X) = R$ , we have  $\sigma_{\Gamma'}(f^*(D - (\sigma'/\mu)\Gamma)) = 0$ . For a general ample divisor H of Y, Hdominates  $X, \Gamma' \cap H$  dominates  $\Gamma$ , and

$$\sigma_{\Gamma''}(f^*(D - (\sigma'/\mu)\Gamma)|_H) = 0,$$

for any prime component  $\Gamma''$  of  $\Gamma' \cap H$ . By induction on dim  $Y - \dim X$ , we infer that  $\sigma_{\Gamma}(D - (\sigma'/\mu)\Gamma) = \sigma_{\Gamma}(D) - \sigma'/\mu = 0$ .

**5.16.** Theorem Let  $f: Y \to X$  be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective  $\mathbb{R}$ -divisor of X. Then  $N_{\sigma}(f^*D) - f^*N_{\sigma}(D)$  is an f-exceptional effective  $\mathbb{R}$ -divisor.

PROOF. Let E be the  $\mathbb{R}$ -divisor  $N_{\sigma}(f^*D) - f^*N_{\sigma}(D)$  and let  $\Gamma$  be a prime divisor of Y. If  $\Gamma$  dominates X, then

$$\sigma_{\Gamma}(f^*D) = \operatorname{mult}_{\Gamma} N_{\sigma}(f^*D) = \operatorname{mult}_{\Gamma} f^*N_{\sigma}(D) = 0$$

Hence  $\Gamma$  is not a component of E. If  $f(\Gamma)$  is a prime divisor, then  $\Gamma$  is not a component of E by **5.15**. Hence every component of E is f-exceptional. Let  $E_1$  and  $E_2$  be the positive and the negative parts of the prime decomposition of E, respectively:  $E = E_1 - E_2$ . Suppose that  $E_2 \neq 0$ . Then  $E_2|_{\Gamma}$  is relatively pseudo-effective over  $f(\Gamma)$  for any component  $\Gamma$  of  $E_2$ . This contradicts **5.1**.

**5.17.** Corollary Let  $f: Y \to X$  and  $g: Z \to Y$  be surjective morphisms of non-singular projective varieties. Suppose that  $P_{\sigma}(f^*D)$  is nef for a pseudo-effective  $\mathbb{R}$ -divisor D of X. Then  $P_{\sigma}(g^*f^*D) = g^*P_{\sigma}(f^*D)$ .

**5.18.** Corollary Let  $f: Y \to X$  be a surjective morphism of non-singular projective varieties and let D be a pseudo-effective  $\mathbb{R}$ -divisor of X. If  $P_{\sigma}(f^*D)$  is nef, then there is a birational morphism  $\lambda: Z \to X$  such that  $P_{\sigma}(\lambda^*D)$  is nef.

PROOF. By considering a flattening of f, we have the following commutative diagram:

$$\begin{array}{cccc} M & \xrightarrow{\nu} & V & \longrightarrow & Y \\ g \downarrow & & q \downarrow & & f \downarrow \\ Z & \underbrace{\qquad} & Z & \xrightarrow{\lambda} & X, \end{array}$$

where Z and M are non-singular projective varieties, V is a normal projective variety,  $\lambda: Z \to X, \nu: M \to V$  are birational morphisms, and  $q: V \to Z$  is an equi-dimensional surjective morphism. Let  $\mu: M \to V \to Y$  be the composite. Since  $P_{\sigma}(f^*D)$  is nef,  $N_{\sigma}(\mu^*f^*D) = \mu^*N_{\sigma}(f^*D)$ . By **5.16**,  $E = N_{\sigma}(\mu^*f^*D) - g^*N_{\sigma}(\lambda^*D)$  is an effective  $\mathbb{R}$ -divisor with codim  $g(E) \geq 2$ . Thus  $\nu_*N_{\sigma}(\mu^*f^*D) = q^*N_{\sigma}(\lambda^*D)$ . Therefore  $E = 0, P_{\sigma}(\lambda^*D)$  is nef, and  $\mu^*P_{\sigma}(f^*D) = g^*P_{\sigma}(\lambda^*D)$ .  $\Box$