
APPENDIX C

$p$-adic symmetric domains and Totaro’s theorem

By TSUZUKI NOBUO

This appendix is a short exposition of M. Rapoport and T. Zink’s con-
struction of p-adic symmetric domains [RZ96] and of B. Totaro’s theorem
[Tot96]. Let $G$ be a connected reductive algebraic group over $\mathbb{Q}_{p}$ . The
set $\mathcal{F}$ of filtrations on an F-isocrystal with G-structure has a structure of a
homogeneous space. Rapoport and Zink introduced a p-adic rigid analytic
structure on the set $\mathcal{F}^{wa}$ of weakly admissible points in $\mathcal{F}$ . They conjectured
that the point in $\mathcal{F}^{wa}$ is characterized by the semistability in the sense of the
geometric invariant theory [MFK94] and Totaro proved this conjecture.

1. Weakly admissible filtered isocrystals.

We recall J.-M. Fontaine’s definition of weakly admissible filtered F-
isocrystals [Fon79].

1.1. Let $p$ be a prime number, $k$ a perfect field of characteristic $p,$ $K_{0}$ an
absolutely unramified discrete valuation field of mixed characteristics $(0,p)$

with residue field $k,$ $\overline{K}_{0}$ an algebraic closure of $K_{0}$ , and $\sigma$ the Frobenius
automorphism on $K_{0}$ .

Definition 1.2. (1) An F-isocrystal over $k$ , (we simply say “isocrystal”),
is a finite dimensional $K_{0}$-vector space $V$ with a bijective $\sigma$-linear endo-
morphism $\Phi$ : $V\rightarrow V$ . We denote the category of isocrystals over $k$ by
Isoc $(K_{0})$ .

(2) For a totally ramified finite extension $K$ of $K_{0}$ in $\overline{K}_{0}$ , a filtered
isocrystal (V, $\Phi,$ $F$ ) over $K$ is an isocrystal (V, $\Phi$ ) with a decreasing filtration
$F$ on the K-vector space $V\otimes_{K_{0}}K$ such that $F^{r}=V\otimes_{K_{0}}K$ for $r\ll O$ and
$F^{s}=0$ for $s\gg O$ . We denote the category of filtered isocrystals over $K$ by
$MF(K)$ .

Fontaine also introduced a filtered isocrystal with nilpotent operator $N$

[Fon94]. In this appendix we restrict our attension to filtered isocrystals
with $N=0$ .

The category $MF(K)$ is a $\mathbb{Q}_{p}$-linear additive category $with\otimes and$ inter-
nal $Hom’ s$ , but not abelian. A subobject (V’, $\Phi^{\prime},$

$F^{\prime}$ ) of a filtered isocrystal
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$(V, \Phi, F)$ is a $\Phi$-stable $K_{0}$-subspace $V^{\prime}$ such that $\Phi^{\prime}=\Phi|_{V^{\prime}}$ and $F^{\prime i}=$

$(V’\otimes_{K_{0}}K)\cap F^{i}$ for all $i$ .

Definition 1.3. Let $K$ be a totally ramified finite extension of $K_{0}$ in $\overline{K}_{0}$ . A
filtered isocrystal (V, $\Phi,$ $F$ ) over $K$ is weakly admissible if, for any subobject
(V’, $\Phi^{\prime},$

$F^{\prime}$ ) $\neq 0$ , we have

$\sum_{i}i\dim_{F^{\prime}}gr_{F^{\prime}}^{i}(V^{\prime}\otimes_{K_{0}}K)\leq ord_{p}(\det(\Phi^{\prime}))$

and the equality holds for (V’, $\Phi^{\prime},$
$F^{\prime}$ ) $=(V, \Phi, F)$ . Here $ord_{p}$ is an additive

valuation of $K_{0}$ normalized by $ord_{p}(p)=1$ .

The category of weakly admissible filtered isocrystals is an abelian cat-
egory which is closed under duals in the category of filtered isocrystals.
Fontaine proved that an admissible filtered isocrystal over $K$ , that means
a filtered isocrystal arising from a crystalline representation of the absolute
Galois group of $K$ via Fontaine’s functor, is weakly admissible and conjec-
tured that a weakly admissible filtered isocrystal is admissible in [Fon79].
The category of admissible filtered isocrystals is a $\mathbb{Q}_{p}$-linear abelian category
$with\otimes and$ duals. Hence, he also conjectured that the category of weakly
admissible filtered isocrystals is closed $under\otimes$ , and this was proved by G.
Faltings in [Fa195]. (See also [Tot96].)

In [CFOO] P. Colmez and Fontaine proved a weakly admissible filtered
isocrystal is admissible.

2. Filtered isocrystals with $G$-structure.

2.1. Let $G$ be a linear algebraic group over $\mathbb{Q}_{p}$ and denote by $Rep_{\mathbb{Q}_{p}}(G)$

the category of finite dimensional $\mathbb{Q}_{p}$-rational representations of $G$ . An
exact faithful $\otimes$-functor $Rep_{\mathbb{Q}_{p}}(G)\rightarrow Isoc(K_{0})$ is called an isocrystal with
G-structure over $K_{0}$ .

Let $b\in G(K_{0})$ . Then, the functor
$Rep_{\mathbb{Q}_{p}}(G)\rightarrow Isoc(K_{0})$

associated to $b$ , defined by $V\mapsto(V\otimes K_{0}, b(id\otimes\sigma))$ , is an isocrystal with
G-structure over $K_{0}$ . [Kot85] Two elements $b$ and $b^{\prime}$ in $G(K_{0})$ are conjugate
if and only if there is an element $g\in G(K_{0})$ such that $gb\sigma(g)^{-1}=b^{\prime}$ . In
this case, $g$ defines an isomorphism between the isocrystals with G-structure
associated to $b$ and $b^{\prime}$ .

If $G$ is connected and $k$ is algebraically closed, then any isocrystal with
G-structure over $K_{0}$ is associated to an element $b\in G(K_{0})$ as above. [RR96]

2.2. Let $D=\lim_{\leftarrow}G_{m}$ be the pro-algebraic group over $\mathbb{Q}$ whose character
group is $\mathbb{Q}_{p}$ . For an element $b\in G(K_{0})$ , R.E. Kottwitz defined a morphism

$\nu$ : $D\rightarrow G_{K_{0}}$

of algebraic groups over $K_{0}$ which is characterized by the property that, for
any object $V$ in $Rep_{\mathbb{Q}_{p}}(G)$ , the $\mathbb{Q}$-grading of $V\otimes K_{0}$ associated $to-\nu$ is the
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slope grading of the isocrystal $(V\otimes K_{0}, b(id\otimes\sigma))$ . (The sign of our $\nu$ is
different from the one in [Kot85].) For a suitable positive integer $s,$ $ s\nu$ is
regarded as a one-parameter subgroup of $G$ over $K_{0}$ .

Definition 2.3. A $\sigma$-conjugacy class $\overline{b}$ of $G(K_{0})$ is decent if there is an
element $b\in\overline{b}$ such that

$(b\sigma)^{s}=s\nu(p)\sigma^{s}$

for some positive integer $s$ .

One knows that, for a decent $\sigma$-conjugacy class $\overline{b},$ $b$ and $\nu$ as above are
defined over $\mathbb{Q}_{p^{s}}$ . If $G$ is connected and $k$ is algebraically closed, then any
$\sigma$-conjugacy class is decent. [Kot85]

2.4. Let $K$ be a totally ramified finite extension of $K_{0}$ in $\overline{K}_{0}$ . For a one-
parameter subgroup $\lambda$ : $G_{m}\rightarrow G$ over $K$ and an element $b\in G(K_{0})$ , we
have an exact $\otimes$-functor

$\mathcal{I}$ : $Rep_{\mathbb{Q}_{p}}(G)\rightarrow MF(K)$

which is defined by $ V-\rangle$ $(V\otimes K_{0}, b(id\otimes\sigma),$ $F_{\lambda}$ ). Here $V_{K,\lambda,j}$ is the subspace
of $V\otimes K$ of weight $j$ with respect to $\lambda$ and

$F_{\lambda}^{i}=\bigoplus_{j\geq i}V_{K,\lambda,j}$

is the weight filtration associated to $\lambda$ .

Definition 2.5. A pair $(\lambda, b)$ as above is weakly admissible if and only if
the filtered isocrystal $\mathcal{I}(V)$ over $K$ is so for any object $V$ in $Rep_{\mathbb{Q}_{p}}(G)$ .

To see the weak admissibility for $(\lambda, b)$ , it is enough to check the weak
admissibility of $\mathcal{I}(V)$ for a faithful representation $V$ of $G$ . Indeed, any
representation of $G$ appears as a direct summand of $V^{\otimes m}\otimes(V^{\vee})^{\otimes n}$ and
$\mathcal{I}(V)^{\otimes m}\otimes(\mathcal{I}(V)^{\vee})^{\otimes n}$ is weakly admissible by Faltings (see 1.3). Here $V^{\vee}$

(resp. $\mathcal{I}(V)^{\vee}$ ) is the dual of $V$ (resp. $\mathcal{I}(V)$ ).

3. Totaro’s theorem.

In this section we assume that $k$ is algebraically closed.

3.1. Let $G$ be a reductive algebraic group over $\mathbb{Q}_{p}$ . We fix a conjugacy class
of a one-parameter subgroup $\lambda$ : $G_{m}\rightarrow G$ over $\overline{K}_{0}$ . Here two one-parameter
subgroups $\lambda,$

$\lambda^{\prime}$ are conjugate if and only if $g\lambda g^{-1}=\lambda^{\prime}$ for some element
$g\in G(\overline{K}_{0})$ . Then, there is a finite extension $E$ of $\mathbb{Q}_{p}$ in $\overline{K}_{0}$ such that the
conjugacy class of $\lambda$ is defined over $E$ . Let us suppose that $\lambda$ is defined over
$E$ and denote by $\dot{E}$ the compo,site field $EK_{0}$ in $\overline{K}_{0}$

3.2. Two one-parameter subgroups of $G$ over $\overline{K}_{0}$ are equivalent if and only
if they define the same weight filtration for any object in $Rep_{\mathbb{Q}_{p}}(G)$ . Note
that, if two one-parameter subgroups are equivalent, then they belong to
the same conjugacy class.
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Consider the functor
$ R\mapsto$ {the equivalence classes in the conjugacy class of $\lambda$ defined over $R$ }

on the category of E-algebras. If one defines an algebraic subgroup of $G$

over $E$ by
$P(\lambda)(\overline{K}_{0})=$ { $g\in G(\overline{K}_{0})|g\lambda g^{-1}$ is equivalent to $\lambda$ },

then $P(\lambda)$ is parabolic and the functor above is represented by the projective
variety $G_{E}/P(\lambda)$ . We denote this homogeneous space over $E$ by $\mathcal{F}_{\lambda}$ . If $V$

is a faithful representation in $Rep_{\mathbb{Q}_{p}}(G)$ and if we denote by $Flag_{\lambda}(V)$ the
flag variety over $\mathbb{Q}_{p}$ which represents the functor

$ R\mapsto$ $\{$

$F^{i}$ is a direct summand and $rank_{R}F^{i}=\dim_{\overline{K}_{0}}F_{\lambda}^{i}(V\otimes\overline{K}_{0})$

the
$imfiltrationsFofV\otimes RasR$

-modules such that
$\}$

on the category of $\mathbb{Q}_{p}$-algebras, then there is a natural E-closed immersion
$\mathcal{F}_{\lambda}\rightarrow Flag_{\lambda}(V)\otimes_{\mathbb{Q}_{p}}E$ .

3.3. Let $b\in G(K_{0})$ . For a finite extension $K$ of $\dot{E}$ , a point $\xi$ in $\mathcal{F}_{\lambda}(K)$

is called weakly admissible if and only if the pair $(\xi, b)$ is weakly admissi-
ble. This condition is independent of the choice of the representative in the
equivalence class $\xi$ . We denote by $\mathcal{F}_{\lambda,b}^{wa}(K)$ the subset of weakly admissi-
ble points. Totaro gave a characterization of $\mathcal{F}_{\lambda,b}^{wa}$ in the sense of geometric
invariant theory. [Tot96] We explain his theory in the rest of this section.

3.4. For a maximal torus $T$ in $G_{\overline{K}_{0}}$ , let $X^{*}(T)$ be the free abelian group of
characters, $X_{*}(T)$ the free abelian group of one-parameter subgroups, and
$<,$ $>;X^{*}(T)\times X_{*}(T)\rightarrow \mathbb{Z}$ the perfect pairing with $\chi(\xi(t))=t^{<\chi,\xi>}$ . If
$N(T)$ is the normalizer of $T$ in $G$ , the Weyl group $W(T)=N(T)/T$ acts
$X_{*}(T)$ via inner automorphisms.

Now we fix an invariant norm I I on $G$ , a non-negative real valued
function on the set of one-parameter subgroups of $G_{\overline{K}_{0}}$ , such that

a) $||g\xi g^{-1}||=||\xi||$ for any $g\in G(\overline{K}_{0})$ ,
b) for any maximal torus $T$ , there is a positive definite rational valued

bilinear form $(, )$ on $X_{*}(T)\otimes \mathbb{Q}$ with $(\xi, \xi)=||\xi||^{2}$ ,
c) $||\gamma(\xi)||=||\xi||$ for $\gamma\in Ga1(\overline{K}_{0}/K_{0})$ , where $\gamma(\xi)(t)=\gamma(\xi(t))$ .

The bilinear form on $X_{*}(T)\otimes \mathbb{Q}$ as above is invariant under the action
of the Weyl group by (a). For any maximal torus $T$ , invariant norms are
in one-to-one correspondence with $(Ga1(\overline{K}_{0}/K_{0}), W(T))$ -invariant positive
definite rational valued bilinear forms on $X_{*}(T)\otimes \mathbb{Q}$ since all maximal tori
are conjugate and, if $g\xi g^{-1}\in X_{*}(T)$ for $\xi\in X_{*}(T)$ and $g\in G(\overline{K}_{0})$ , then
there is $h\in W(T)$ with $g\xi g^{-1}=h\xi h^{-1}$ by [MFK94]. (See also [Kem78]
and [Tot96].) Hence, such an invariant norm exists.

3.5. Now we assume that $G$ is connected. Let $U(\lambda)$ be the unipotent radical
of $P(\lambda)$ , whose elements act on the graded space gr $F_{\lambda}$ trivially. Then there
is a bijection between the set of maximal tori of $G$ in $P(\lambda)$ and the set of
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maximal tori of $P(\lambda)/U(\lambda)$ by the natural projection $T\mapsto\overline{T}$ . Hence, the
invariant norm on $G$ induces the one on $P(\lambda)/U(\lambda)$ . Fix a maximal torus
$T$ of $G$ . Since the image of $\lambda$ is contained in the center of $P(\lambda)/U(\lambda)$ , the
perfect pairing associated to the invariant norm determines the dual of $\lambda$ in
$X^{*}(\overline{T})$ . This dual can extend to an element in $X^{*}(P(\lambda)/U(\lambda))\otimes \mathbb{Q}$ , which
we call a character $\otimes \mathbb{Q}$ of $P(\lambda)/U(\lambda)$ . Now we define a G-line $bundle\otimes \mathbb{Q}$

on $\mathcal{F}_{\lambda},$ $L_{\lambda}\in Pic^{G}(\mathcal{F}_{\lambda})\otimes \mathbb{Q}$ , by the associated one to the negative of the dual
$character\otimes \mathbb{Q}$ of $\lambda$ . By construction, the line $bundle\otimes \mathbb{Q},$ $L_{\lambda}$ , depends only
on the conjugacy class of $\lambda$ and is ample.

Let $J$ be a smooth affine group scheme over $\mathbb{Q}_{p}$ such that
$J(\mathbb{Q}_{p})=\{9\in G(K_{0})|g(b\sigma)=(b\sigma)g\}$

(which is introduced in [RZ96]). Since $J_{K_{0}}\subset G_{K_{0}}$ , the pull back $L_{\lambda\dot{E}}$ of
$L_{\lambda}$ on $\mathcal{F}_{\lambda\dot{E}}$ is an ample $J_{\overline{E}}$-line bundle.

By the same construction as above, $\nu$ in 2.2 gives a character $\otimes \mathbb{Q}$ of
$P(\nu)$ . The opposite of this $character\otimes \mathbb{Q}$ determines a $J_{\dot{E}}- action\otimes \mathbb{Q}$ on the
trivial line bundle on $\mathcal{F}_{\lambda\overline{E}}$ since $J_{K_{0}}\subset P(\nu)$ . We denote it by $L_{\nu}^{0}$ .

We put a $J_{\dot{E}}$-line $bundle\otimes \mathbb{Q},$ $L=L_{\lambda\overline{E}}\otimes L_{\nu}^{0}$ , on $\mathcal{F}_{\lambda\dot{E}}$ . Then it is ample
and depends only on $b$ and the conjugacy class of $\lambda$ . We denote by $\mathcal{F}_{\lambda}^{ss}(L)$

the set of semistable points in $\mathcal{F}_{\lambda}$ with respect to $L$ in the sense of D.
Mumford [MFK94].

Theorem 3.6. [Tot96] Suppose that $G$ is connected and reductive. For any
finite extension $K$ of $\dot{E}$ , we have

$\mathcal{F}_{\lambda,b}^{wa}(K)=\mathcal{F}_{\lambda\dot{E}}^{ss}(L)(K)$ .

We shall sketch Totaro’s proof. First, let $G=GL(n)$ and let us consider
the invariant norm induced by the pairing

$(\alpha, \beta)=\sum_{i,j}ij\dim_{K}gr_{F_{\alpha}}^{i}\cdot gr_{F_{\beta}}^{\prime}.(V)$

for one-parameter subgroups $\otimes \mathbb{Q},$
$\alpha,$

$\beta$ of $G=GL(V)$ over $K$ . If one puts
$\mu_{\alpha}(V)=\sum_{i}i\dim_{K}gr_{F_{\alpha}}^{i}\cdot(V)/\dim_{K}V$ , then one has

$(\alpha, \beta)=\int(\mu_{\alpha}(F_{\beta}^{j})-\mu_{\alpha}(V))\dim_{K}F_{\beta}^{j}dj+\mu_{\alpha}(V)\mu\beta(V)\dim KV$.

By using the notation in 2.2, $(\xi, b)$ is weakly admissible if and only if $(\xi, \alpha)+$

$(\nu, \alpha)\leq 0$ for any one-parameter subgroup $\alpha$ of $G$ over $K_{0}$ with the filtration
$F_{\alpha}$ as subisocrystals. In other words, $(\xi, b)$ is weakly admissible if and only
if $(\xi, \alpha)+(\nu, \alpha)\leq 0$ for any one-parameter subgroup $\alpha$ of $J$ over $\mathbb{Q}_{p}$ . Hence,
the assertion follows from the calculation of Mumford’s numerical invariant
below.

Lemma 3.7. If $\mu(\xi, \alpha, L)$ is Mumford’s numemcal invartant of $\xi\in \mathcal{F}_{\lambda}$ for a
one-parameter subgroup $\alpha$ of $J$ over $\mathbb{Q}_{p}$ , then

$\mu(\xi, \alpha, L)=-(\xi, \alpha)-(\nu, \alpha)$ .
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Next, let $G$ be arbitrary, $V$ a faithful representation of $G$ , and consider
the invariant norm on $G$ induced from the above norm by the natural im-
mersion $G\rightarrow GL(V)$ . Mumford’s numerical invariant of weakly admissible
points is non-negative for any one-parameter subgroup of $J(GL(V))$ . Hence
it is so for any one-parameter subgroup of $J$ , and the weak admissibility
implies the semistability. To see the converse, one needs to show that, if
$\xi\in \mathcal{F}_{\lambda}^{ss}(L)(K),$ $(\xi, \alpha)+(\nu, \alpha)\leq 0$ for any one-parameter subgroup $\alpha$ of
$J(GL(V))$ over $\mathbb{Q}_{p}$ . If $\alpha$ is semistable for the $G_{K}$-line bundle $L_{\alpha}$ on $\mathcal{F}_{\alpha}$ , the
assertion follows from the first part. In the case where $\alpha$ is not semistable,
one can use Kempf’s filtration [Kem78] and Ramanan and Ramanathan’s
work [RR84], and obtains the required inequality.

Finally one needs to prove the independence of the choice of the norm.
Suppose that the identity is valid for the particular norm. Since $G$ is a
quotient of a product of a torus and some simple algebraic groups by a
finite central subgroup [BT65], one can reduce the assertion in the case of
tori and simple groups. In the case of tori it was proved in [RZ96], and in
the case of simple groups it is true since the norm of the simple group comes
from the Killing form up to a positive rational multiple. $\square $

4. $p$-adic symmetric domains.

Let $k$ be the algebraic closure of the prime field $F_{p},$ $\mathbb{C}_{p}$ the p-adic com-
pletion of a fixed algebraic closure $\overline{\mathbb{Q}}_{p}$ of $\mathbb{Q}_{p}$ , and $K_{0}=\hat{\mathbb{Q}}_{p}^{ur}$ the p-adic
completion of the maximum unramified extension of $\mathbb{Q}_{p}$ in $\mathbb{C}_{p}$ .

4.1. Let $G$ be a reductive group over $\mathbb{Q}_{p},$ $b\in G(K_{0})$ , and fix a conjugacy
class $\{\lambda\}$ of a one-parameter subgroup $\lambda$ of $G$ over $\overline{\mathbb{Q}}_{p}$ .

Rapoport and Zink gave a rigid analytic structure on $\mathcal{F}_{\lambda,b}^{wa}$ as an admis-
sible open subset in $\mathcal{F}_{\lambda\overline{E}}$ and call it the p-adic symmetric domain associated
to the triple $(G, \{\lambda\}, b)$ in [RZ96]. This notion of p-adic symmetric domains
is different from that of M. van der Put and H. Voskuil in $[vdPV92]$ . In-
deed, for any discrete co-compact subgroup $\Gamma$ of $G(\dot{E})$ , the quotient $\mathcal{F}_{\lambda,b}^{wa}/\Gamma$

is not always a proper analytic space over $\dot{E}$ .

Theorem 4.2. [RZ96] The set $\mathcal{F}_{\lambda,b}^{wa}$ of weakly admissible points with respect
to $b$ in $\mathcal{F}_{\lambda}(\mathbb{C}_{p})$ is an admissible open subset of $\mathcal{F}_{\lambda\dot{E}}$ as a rigid analytic space.

Now we sketch the proof of the theorem in [RZ96]. By [Kot85] one may
assume that the $\sigma$-conjugacy class of $b$ is decent with the decent equation
$(b\sigma)^{s}=s\nu(p)\sigma^{s}$ as in 2.3. Let $V$ be a faithful representation in $Rep_{\mathbb{Q}_{p}}(G)$ ,
$V_{s}=V\otimes \mathbb{Q}_{p^{s}}$ , and $\Phi_{s}=b(id\otimes\sigma)$ . Then $(V\otimes K_{0}, b(id\otimes\sigma))=(V_{s}, \Phi_{s})\otimes_{\mathbb{Q}_{p^{S}}}K_{0}$ .
Put $V_{s}=\bigoplus_{\lambda}V_{s,j}$ to be the isotypical decomposition for $\Phi_{s}$ . The functor

$ R\mapsto$ { $V^{\prime}\subset V_{s}\otimes_{\mathbb{Q}_{p^{S}}}R|V^{\prime}$ is a direct summand with $V^{\prime}=\bigoplus_{j}V^{\prime}\cap(V_{s,j}\otimes_{\mathbb{Q}_{p^{S}}}R)$ }

on the category of $\mathbb{Q}_{p^{s}}$ -algebras is represented by a disjoint sum $T^{\prime}$ of closed
subschemes of Grassmannians of $V_{s}$ . $T^{\prime}$ descends to a $\mathbb{Q}_{p}$-variety $T$ and one
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has
$T(\mathbb{Q}_{p})=$ { $\Phi_{s}$ -stable subspaces of $V_{s}$ }.

Indeed, $\Phi_{s}$ gives a descent datum $\alpha$ : $T‘\rightarrow T^{\prime\sigma}$ , where $T^{\prime\sigma}(R)$ is a set of
direct summands of $V_{s,\lambda}\otimes_{\mathbb{Q}_{p^{S}},\sigma}R$ with the isotypical decomposition, and
$\alpha^{s-1}\circ\cdots\circ\alpha$ : $T^{\prime}\rightarrow T^{\prime}$ is the identity by the decent equation.

Consider the closed subscheme over $\mathbb{Q}_{p^{s}}$

$\mathcal{H}\subset(Flag_{\lambda}(V)\times T)\otimes_{\mathbb{Q}_{p}}\mathbb{Q}_{p^{s}}$

which consists of pairs $(F, V^{\prime})$ such that

$\sum_{i}i$ rank $gr_{F\cap V}^{i},$
$(V^{\prime})>ord_{p}(\det(\Phi_{s}|_{V_{J}^{\prime}}))$ .

Then, by the definition of weak admissibility, one has

$\mathcal{F}_{\lambda,b}^{wa}(\mathbb{C}_{p})=\mathcal{F}_{\lambda}(\mathbb{C}_{p})\cap(Flag_{\lambda}(V)(\mathbb{C}_{p})-$ $\cup$ $\mathcal{H}_{t})$ ,
$t\in T(\mathbb{Q}_{p})$

where $\mathcal{F}_{\lambda}(\mathbb{C}_{p})$ is identified with the image of the immersion $\mathcal{F}_{\lambda}(\mathbb{C}_{p})\subset$

$Flag_{\lambda}(\mathbb{C}_{p})$ .
Fix embeddings of $Flag_{\lambda}(V)$ and $T$ in projective spaces over $\mathbb{Q}_{p}$ and a

finite set $\{f_{j}\}$ of bi-homogeneous polynomials of definition of $Flag_{\lambda}(V)\times T$

with integral coefficients. For $\epsilon>0$ , consider a tubular neighbourhood
$\mathcal{H}_{t}(\epsilon)=$ { $x\in Flag_{\lambda}(V)(\mathbb{C}_{p})||f_{j}(x,$ $ t)|<\epsilon$ for all $j$ }

of $\mathcal{H}_{t}$ . Here we choose unimodular representatives for $x$ and $t’ s$ and $||$

is an absolute value on $\mathbb{C}_{p}$ . Then there is a finite set $S\subset T(\mathbb{Q}_{p})$ such
that $\bigcup_{t\in T(\mathbb{Q}_{p})}\mathcal{H}_{t}(\epsilon)=\bigcup_{t\in S}\mathcal{H}_{t}(\epsilon)$ for the local compactness. $\mathcal{F}_{\epsilon}=\mathcal{F}_{\lambda}(\mathbb{C}_{p})\cap$

$(Flag_{\lambda}(V)(\mathbb{C}_{p})-\bigcup_{t\in T(\mathbb{Q}_{p})}\mathcal{H}_{t}(\epsilon))$ is an admissible open subset of $\mathcal{F}_{\lambda,b\dot{E}}^{wa}$ , hence

$\mathcal{F}_{1}\subset \mathcal{F}_{\frac{1}{2}}\subset \mathcal{F}_{\frac{1}{3}}\subset\cdot$
.

is an admissible covering of $\mathcal{F}_{\lambda,b\dot{E}}^{wa}$ . $\square $
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