
APPENDIX A

Rapid Course in $p$-adic Analysis.

By F. KATO

1. Introduction.

In this appendix, $K$ always denotes a complete field with respect to a
non-archimedean valuation $|$ . : $K\rightarrow \mathbb{R}\geq 0$ . The norm $|\cdot|$ is almost always
assumed to be non-trivial, unless otherwise stated.

Let us assume for a while that $K$ is algebraically closed. We view the
field $K$ as an affine space, as we do in complex analysis; $K$ is a metrized
space with the metric induced from the valuation . . We can then follow
the lines of classical complex analysis and define convergence of power series,
Taylor and Laurent expansions, etc...

For instance let us define “holomorphic” functions to be K-valued func-
tions which are locally expressed by convergent power series (cf. [Gou97,
Chap. 4]). This approach drives us however to several problems, which come
mainly from the fact that $K$ with the metric topology is totally disconnected;
for example:

(i) for an open set $U\subseteq K$ the ring of all such holomorphic functions on
$U$ is huge. So is already the subring of all locally constant functions.

(ii) It can be shown that the sheaf of germs of such functions satisfies the
principle of unique continuation; but not in a satisfactory way. In
particular, Lemma 1.1.2 of Chapter I holds but is of no use, because
there is no non-empty connected open subset.

The trouble becomes more apparent when we think the local repre-
sentability by convergent power series in terms of coverings. In the complex
analytic situation, when we speak of the holomorphy of a function $f$ defined
over a connected open set $U$ , we tacitly take a open covering $\{U_{i}\}_{i\in I}$ of $U$

consisting of sufficiently small open neighborhoods such that $f$ restricted on
each member $U_{i}$ can be seen as evaluation of a power series convergent in
$U_{i}$ . The point is that, since $U$ is connected, members of $\{U_{i}\}$ must have
overlaps so that the local properties can be transmitted to whole $U$ . But,
in the non-archimedean situation, such coverings may be refined in such a
way that there are no overlap. This is why the analytic continuation does

(1) $The$ reader may wonder whether there is another approach by means of Cauchy-
Riemann type differential equations. This is unlikely because the differential calculus does
not go well, see [Gou97, Chap. 4].
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206 A. RAPID COURSE IN p-ADIC ANALYSIS.

not work well. So, for the sake of a reasonable analytic theory, we have to
“limit” coverings so that we cannot take arbitrarily fine refinements.

A first method is due to Krasner. He introduced the so-called quasi-
connected sets and, on such subsets, defined analytic functions as uniform
convergent limits of rational functions.

A more modern and systematic treatment was introduced by Tate, with
the so-called Rigid Analysis. Let us briefly view the main idea: let $K$ be as
above, not necessarily algebraically closed. We first set

$K\{t_{1}, \ldots, t_{n}\}$

$=\{\sum_{\nu_{1},\ldots,\nu_{n}\geq 0}a_{\nu_{1},\ldots,\nu_{n}}t_{1}^{\nu_{1}}\cdots t_{n}^{\nu_{n}}\in K[[t_{1}, \ldots, t_{n}]]|$ $ a_{\nu_{1},.,.\nu_{n}}\nu_{1}+\cdot$

.
$\rightarrow 0for+\nu_{n}\rightarrow\infty\}$ ,

which is now called the Tate algebra over $K$ . This is the ring of all functions
expressed by power series convergent on the closed disk $D(0,1^{+})=\{z\in$

$K^{n}||z_{i}|\leq 1\}$ . The algebra $K\{t_{1}, \ldots, t_{n}\}$ is endowed with the sup-norm
$\Vert\cdot\Vert$ , also called the Gauss $ nom\iota$ . We list up some known properties (cf.
[BGR84, 5.2], [$FvdP81$ , II.3]):

(i) The ring $K\{t_{1}, \ldots, t_{n}\}$ satisfies the Weierstrass Preparation Theorem.
(ii) The ring $K\{t_{1}, \ldots, t_{n}\}$ is Noetherian and factorial.
(iii) Every ideal of $K\{t_{1}, \ldots, t_{n}\}$ is closed.
(iv) For any maximal ideal $m$ of $K\{t_{1}, \ldots, t_{n}\}$ , the field $K\{t_{1}, \ldots, t_{n}\}/\mathfrak{m}$

is a finite extension of $K$ .

If, moreover, $K$ is algebraically closed, the set of all maximal ideals, en-
dowed with the natural topology, coincides with $D(0,1^{+})$ . So the situation is
analogous to classical algebraic geometry; $D(0,1^{+})$ to the affine n-space, and
$K\{t_{1}, \ldots, t_{n}\}$ to the coordinate ring. In fact, quotients $A=K\{t_{1}, \ldots, t_{n}\}/I$

by ideals $I$ (called affinoid algebms), and their associated maximal spectra,
Spm(A), called affinoids, forms the fundamental patches from which the
non-archimedean function theory will be developed. Although the natural
metric topology on Spm(A) is terrible for the same reason as above, the
situation becomes much better as far as we deal only with those functions
coming from A. The trick is that, if the algebra A is integral, then we can
pretend that the space Spm(A) is “connected” ; for example, the closed disk
$D(0,1^{+})$ is “connected” in this sense. So, basically according to this point
of view, we can globalize the situation by gluing affinoid patches to obtain
a reasonable theory of analytic functions. The actual recipe to do it is fur-
nished by the notion of Grothendieck topology, which censors the plethora
of coverings. We will see this a little more precisely in what follows.

Remark 1.1. Although the rigid analysis seems to provide the reasonable
topological and analytical framework, one must not expect it to be as nice
as the complex case. Firstly, in classical complex analysis, when we expand
a holomorphic function centered at a point inside its region of convergence,
the resulting Taylor expansion may have a different region of convergence
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than the original one. This is a important method of analytic continuation.
But in the non-archimedean case, this never happens (cf. [Gou97, 4.4]).

Secondly, the topological framework given as above is still not powerful
enough to handle paths. So it is hopeless to treat, for example, fundamental
groups and monodromy in an intuitive way as in the classical complex case.
This difficulty is, in fact, remedied by Berkovich’ theory which we shall see
later on.

2. Rigid analytic spaces.

Let $K$ be as in the previous section; we do not assume in general that
$K$ is algebraically closed.

As mentioned above, an affinoid algebra A over $K$ is a quotient $K\{t_{1}, \ldots, t_{n}\}/I$

for some $n$ by an ideal $I$ . Since $I$ is closed, A has a norm . $|$ induced from the
sup-norm $\Vert$ . I of $K\{t_{1}, \ldots, t_{n}\}$ (”residue norm”). With the residue norm,
A is a Banach K-algebra. The norm $|\cdot|$ itself depends on the presentation
$\alpha:K\{t_{1}, \ldots , t_{n}\}/I\rightarrow\sim A$ , while the induced topology does not. So, strictly
speaking, we should write it like . $|_{\alpha}$ . Clearly, A is Noetherian and, for any
maximal ideal $m$ of $A$ , the residue field $A/\mathfrak{m}$ is a finite extension of $K$ , and
hence, the valuation $|\cdot|$ of $K$ naturally extends to that of it, denoted again
by . $|$ .

The associated affinoid Spm(A) is the set of all maximal ideals of A. For
$x\in Spm(A)$ and $f\in A$ the value of $f$ at $x$ , denoted by $f(x)$ , is the class of $f$

in $A/x$ . The set Spm(A) has the topology generated by the subsets of form
{ $ x\in$ Spm(A) $||f(x)|\leq 1$ } for $ f\in$ A. But, as we pointed out above, this
topology is not very interesting since it makes Spm(A) totally disconnected.
So we should specify the reasonable family of “admissible” open sets (and
coverings), on which the function theory will be built.

Let A be an affinoid algebra over $K$ , and $f_{i}(i=0, \ldots, n)$ a collection
of elements in A which have no common zeros on Spm(A). The subspace

$R=\{x\in Spm(A)||f_{i}(x)|\leq|f_{0}(x)|, i=1, \ldots, n\}$

can be identified with the affinoid $Spm(A_{R})$ , where

$A_{R}=A\otimes_{K}K\{t_{1}, \ldots, t_{n}\}\wedge/(f_{1}-t_{1}f_{0}, \ldots, f_{n}-t_{n}f_{0})$ .

A subset of this form is called a rational subdomain. The identification comes
as follows: We first note that the morphism of affinoids $Spm(AR)\rightarrow Spm(A)$

induced by $A\rightarrow A_{R}$ maps $Spm(A_{R})$ to $R$ . Then $A_{R}$ is the unique solution of
the following universal property (hence, it can be determined up to canonical
isomorphism): for any morphism of affinoids $\phi:Spm(B)\rightarrow Spm(A)$ such
that $\phi(Spm(B))\subset R$ , there exists a unique K-homomorphism $A_{R}\rightarrow B$ such
that the resulting diagram
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$\phi$

$Spm(B)\rightarrow Spm(A)$

. . $/$
$\backslash $

$Spm(A_{R})$

is commutative.

Lemma 2.1. (1) If $R$ and $S$ are rational subdomains in Spm(A), then so is
$R\cap S$ .

(2) If $R_{1}$ is a rational subdomain in Spm(A), and $R_{2}$ is a rational sub-
domain in $R_{1}$ , then $R_{2}$ is a rational subdomain in Spm(A).

PROOF. (1) If $R=\{|f_{i}(x)|\leq|f_{0}(x)|, i=1, \ldots, n\}$ and $ S=\{|g_{j}(x)|\leq$

$|g_{0}(x)|,$ $j=1,$ . . . , $m$ }, then one sees easily that $ R\cap S=\{|f_{i}(x)g_{j}(x)|\leq$

$|f_{0}(x)g_{0}(x)|,$ $i=1,$ $\ldots,$ $n,$ $j=1,$ $\ldots,$
$m$ }.

(2) Exercise. $\square $

Corollary 2.2. Any subspace of the form

$\{|f_{i}(x)|\leq 1, |g_{j}(x)|\geq 1, i=1, \ldots, n, j=1, \ldots, m\}$

is a rational subdomain.

PROOF. It is the intersection of rational subdomains $\{|f_{i}(x)|\leq 1\}$ for
$i\square =$

$1,$
$\ldots$ , $n$ and $\{1\leq|g_{j}(x)|\}$ for $j=1,$ $\ldots,$

$m$ .

Example 2.3 (Rational subdomains of the unit polydisk). Let us assume
that $K$ is algebraically closed. We consider rational subdomains of the unit
polydisk $D(0,1^{+})=Spm(K\{t_{1}, \ldots, t_{n}\})$ .

(1) Closed polydisk: $D(0, |\pi|^{+})=\{x\in K^{n}||x_{i}|\leq|\pi_{i}|, i=1, \ldots, n\}$ , for
$0\neq\pi_{i}\in K,$ $|\pi_{i}|\leq 1$ , is a rational subdomain. The corresponding affinoid
algebra is

$K\{\frac{t_{1}}{\pi_{1}},$
$\ldots,$

$\frac{t_{n}}{\pi_{n}}\}$ .

(2) Annulus: $C(O, |\pi^{(1)}|^{+}, |\pi^{(2)}|^{+})=\{x\in K^{n}||\pi_{i}^{(1)}|\leq|x_{i}|\leq|\pi_{i}^{(2)}|,$ $i=$

$1,$
$\ldots$ , $n$ }, for $0\neq\pi_{i}^{(j)}\in K,$ $|\pi_{i}^{(j)}|\leq 1$ , is a rational subdomain. The

corresponding affinoid algebra is

$K\{\frac{\pi_{1}^{(1)}}{t_{1}},$
$\ldots,$

$\frac{\pi_{n}^{(1)}}{t_{n}},$

$\frac{t_{1}}{\pi_{1}^{(2)}},$ $\ldots,$
$\frac{t_{n}}{\pi_{n}^{(2)}}\}$ .

Let us next review the definition of Grothendieck topology (in a narrow
sense). Let $X$ be a topological space. A Grothendieck topology (G-topology,
in short) on $X$ is a pair $(\mathcal{T}, Gov)$ consisting of

$\bullet$ a collection $\mathcal{T}$ of open subsets in $X$ ,
$\bullet$ an assignment $ U-\rangle$ $Gov(U)$ for any $U\in \mathcal{T}$ , where $Cov(U)$ is a collec-

tion of coverings by elements in $\mathcal{T}$ ,
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such that the following conditions are satisfied:
(1) $\emptyset\in \mathcal{T};U,$ $V\in \mathcal{T}\Rightarrow U\cap V\in \mathcal{T}$ .
(2) $U\in \mathcal{T}\Rightarrow\{U\}\in Gov(U)$ .
(3) $\{U_{i}\}_{i\in I}\in Cov(U),$ $V\subseteq U,$ $V\in \mathcal{T}\Rightarrow\{U_{i}\cap V\}_{i\in I}\in Cov(V)$ .
(4) $\{U_{i}\}_{i\in I}\in Gov(U),$ $\{U_{i,j}\}_{j\in J_{i}}\in Gov(U_{i})\Rightarrow\{U_{i,j}\}_{i\in I,j\in J}\in Gov(U)$ .

Elements in 7 are called admissible open sets, and elements in $eov(U)$

are called admissible coverings of $U$ .
Let $X=Spm(A)$ be an affinoid over $K$ . We introduce a Grothendieck

topology to $X$ by the following recipe:
$\bullet$ An admissible open set is a rational subdomain.
$\bullet$ For a rational subdomain, an admissible covering is a finite covering

consisting of rational subdomains.
Due to Lemma 2.1 this indeed gives a Grothendieck topology. This topology
is equivalent to the so-called weak G-topology in the standard literature (e.g.
[BGR84, 9.1.4]) due to Gerritzen-Grauert theorem [BGR84, 7.3.5].

We define the structure presheaf $\mathcal{O}_{X}$ , with respect to the Grothendieck
topology, by assigning for each rational subdomain $R$ the corresponding
affinoid algebra $A_{R}$ . Due to the following weak form of Tate’s acyclicity
theorem, the presheaf $\mathcal{O}_{X}$ is, in fact, a sheaf (a sheaf of local rings).

Theorem 2.4. Let $U_{1},$
$\ldots$ , $U_{m}$ be rational subdomains of $X=$ Spm(A).

Set $U=U_{1}\cup\cdots\cup U_{m}$ . Then the sequence

$0\rightarrow \mathcal{O}_{X}(U)\rightarrow\prod_{i=1}^{m}\mathcal{O}_{X}(U_{i})\rightarrow\prod_{i,j=1}^{m}\mathcal{O}_{X}(U_{i}\cap U_{j})$

is exact, where the last arrow is the difference of the two possible restriction
morphisms.

For the proof, see, for example, [BGR84, 8.2] or [$FvdP81$ , III.2.2].

Definition 2.5 (Rigid Analytic Space). A rigid analytic space is a lo-
cally ringed space (X, $\mathcal{O}_{X}$ ), with a Grothendieck topology in the above
sense, locally isomorphic to an affinoid; more precisely, there exists a cov-
ering $\{X_{i}\}_{i\in I}$ (possibly infinite) of $X$ by admissible open sets such that
$(X_{i}, \mathcal{O}_{X}|_{X_{i}})$ is isomorphic to a certain affinoid for each $i$ .

Let us see some examples of rigid analytic spaces:

Example 2.6 (Projective Space). The projective space $P^{n}(K)$ has the nat-
ural rigid analytic structure. Here we limit ourselves to demonstrate it only
in the case $n=1$ , and leave the general case to the reader. Let (X: Y) be
the homogeneous coordinate in $\mathbb{P}^{1}(K)$ and set $z=X/Y$ . Set

$u^{+}=\{(X:Y)||X|\leq|Y|\}$ and $u^{-}=\{(X:Y)||X|\geq|Y|\}$ .
Then $U^{+}$ is isomorphic to the closed disk $\{z\in K||z|\leq 1\}$ (the Southern
Hemisphere with the equator) , and $U^{-}$ to $\{z\in K\cup\{\infty\}||z|\geq 1\}$ (the
Northern Hemisphere with the equator). The intersection $u+\cap u^{-}$ is thus
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isomorphic to the circle $\{z\in K||z|=1\}$ . Hence $\{U^{+}, u^{-}\}$ gives the ad-
missible covering of $P^{1}(K)$ which induces, in the obvious way, the structure
of a rigid analytic space.

More generally, an algebraic variety, separated and of finite type over
$K$ , carries the canonical structure of a rigid analytic space.

Any open set (not necessarily admissible) $U$ in a rigid analytic space $X$

will be again a rigid analytic space ( ${}^{t}open$ subanalytic space”); more pre-
cisely, $U$ has the induced analytic structure from that of $X$ . The admissible
open sets of $U$ , for example, are those of $X$ contained in $U$ .

3. Relation with Formal Geometry.

In this section we need to consider the valuation ring $R$ of $K$ . Let
us denote by $m$ the maximal ideal of $R$ , and fix a topological generator
$0\neq\pi\in m$ . The residue field $R/\mathfrak{m}$ is denoted by $k$ .

Let A be an affinoid algebra over $K$ . The spectml $semi- nor\gamma n$ on A is
the function . $|_{\sup}$ : $A\rightarrow \mathbb{R}\geq 0$ defined, for any $f\in A$ , by

$|f|_{\sup}=\sup_{x\in Spm(A)}|f(x)|$
.

It is known that for any representation $\alpha:K\{t_{1}, \ldots, t_{n}\}/I\rightarrow\sim A$ , we have
$|f|_{\sup}\leq|f|_{\alpha}$ for every $f\in A$ (cf. [BGR84, 6.2.1]).

Theorem 3.1 (Maximal modulus principle). For an affinoid algebra A and
an element $f\in A$ , there exists a point $x\in Spm(A)$ such that $|f(x)|=|f|_{\sup}$ .

We refer [BGR84, 6.2.1] for the proof.
Given an affinoid algebra A over $K$ , we introduce the following notation:

$A^{o}$ $=$ $\{f\in A||f|_{\sup}\leq 1\}$ ,
$A^{oo}$ $=$ $\{f\in A||f|_{\sup}<1\}$ ,
A $=$ $A^{o}/A^{oo}$ ;

$A^{o}$ is a R-subalgebra of $A$ , and $A^{oo}$ is an ideal of it. For instance, $K^{o}=R$ ,
$K^{oo}=m$ , and $\overline{K}=k$ .

Example 3.2. We can immediately calculate:
$T_{K}^{n\circ}$ $=$ $R\{t_{1}, \ldots, t_{n}\}$

: $=$ $\{\sum_{\nu_{1},\ldots,\nu_{n}\geq 0}a_{\nu_{1},,\nu_{n}}t_{1}^{\nu_{1}}.\cdot.\cdot\cdot t_{n^{n}}^{\nu}\in R[[t_{1},.,t_{n}]]|\nu_{1}+\cdot+\nu_{n}\rightarrow\infty|a_{\nu_{1},...\cdot,\nu_{n}}.|\rightarrow 0for\}$

$\overline{T_{K}^{n}}$ $=$ $k[t_{1}, \ldots, t_{n}]$ .

Note that $T_{K}^{no}$ is the $(\pi)$-adic completion of the polynomial ring $R[t_{1}, \ldots, t_{n}]$

over $R$ . It should be noticed that $\overline{T_{K}^{n}}$ is a polynomial ring over $k$ ; indeed,
each element in $R\{t_{1}, \ldots , t_{n}\}$ lies, by the convergence condition, in $T_{K}^{n\circ 0}$

modulo finitely many terms.

Proposition 3.3. Let A be an affinoid algebra over $K$ . Then,
(i) $A^{o}$ is a model of $A$ ; i.e. $A^{o}\otimes_{R}K\cong A$ ,
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(ii) $A^{o}$ is $(\pi)$-adically completed,
(iii) $A^{o}$ is topologically of finite type over $R$ ; i.e. $R\{t_{1}, \ldots , t_{n}\}/\mathfrak{a}\cong A$ for

some ideal $\mathfrak{a}$ in $R\{t_{1}, \ldots, t_{n}\}$ ,
(iv) $A^{o}$ is flat over $R$ ,
(v) A is a k-algebra of finite type.

PROOF. (i) and (ii) are easy to see. The flatness of $R$ is now equivalent to
the lack of R-torsion. So (iv) can be seen immediately.

Before proving (iii) and (v), we need some terminology: let $\Vert\cdot\Vert_{\alpha}$ be a
Banach norm of A ( $\alpha:T_{K}^{n}\rightarrow A$ : surjective). We say an element $f$ of A is
power-bounded if $\{\Vert f^{n}\Vert_{\alpha}|n\in N\}$ is bounded. This does not depend on
the choice of the presentation $\alpha$ since the equivalence class of the resulting
norms do not change. An element $f$ of A is said to be topologically nilpotent
if $\lim f^{n}=0$ ; here the limit is taken with respect to the Banach norm $\Vert\cdot||_{\alpha}$ ,
and is not dependent of the choice.

Let us prove (iii). By [BGR84, 6.2.3], $A^{O}$ is the set of all power-bounded
elements of $A$ , and $A^{oo}$ is the set of all topologically nilpotent elements.
Hence a choice of a presentation $\alpha:T_{K}^{n}\rightarrow A$ induces surjections

$T_{K}^{n\circ\circ}T_{K}^{n\circ}$ $\rightarrow^{\rightarrow}$ $A^{oo}A^{o}$

.
(iii) is due to the surjectivity of the first arrow. By the surjectivity of these
arrows and 3.2, we have (v). $\square $

Definition 3.4. An R-algebra $A$ is said to be admissible if $A$ is $(\pi)$ -adically
completed, flat over $R$ , and topologically of finite type over $R$ .

Remark 3.5. By [BL93, 1.1 $(c)$ ], any admissible R-algebra $A$ is topologi-
cally of finite presentation, i.e., there exists a finitely generated ideal $\mathfrak{a}$ in
$R\{t_{1}, \ldots, t_{n}\}$ such that $R\{t_{1}, \ldots, t_{n}\}/\mathfrak{a}\cong A$ .

Definition 3.6 (Formal model and Analytic reduction). Let $X=SpmA$ be
an affinoid over $K$ . Then the formal scheme $\chi=SpfA^{o}$ over $R$ is called the
formal model of $X$ , and the algebraic scheme $\overline{X}=Spec\overline{A}$ over $k$ is called
the analytic reduction of $X$ .

We define the so-called reduction map
$Red_{X}$ : $X=SpmA\rightarrow\overline{X}=Spec$ A

by $\mathfrak{a}-*\mathfrak{a}\cap A^{o}/\mathfrak{a}\cap A^{oo}$ .

Proposition 3.7. The map $Red_{X}$ is continuous with respect to the Zariski
topology of $\overline{X}$ and the G-topology of $X$ ; it maps $X$ surjectively onto the set
of all closed points of $\overline{X}$ .

PROOF. Let us consider the affine open set $U_{\overline{f}}=Spec\overline{A}_{\overline{f}}$ of $Spec$ A relevant
to $\overline{f}\in\overline{A}$ . Take $f\in A^{o}$ from the residue class $\overline{f}$ . The function $f$ takes values
less than equal to 1 on $SpmA$ . So $U_{f}=\{x\in SpmA||f(x)|=1\}$ is a rational
subdomain whose associated affinoid is $SpmA\{f, f^{-1}\}$ . Since the condition
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$|f(x)|=1$ is equivalent to $\overline{f}(Red_{X}(x))\neq 0$ , we have $Red_{X}^{-1}(U_{\overline{f}})=U_{f}$ . Then
the first assertion follows. The last one is almost trivial. $\square $

Example 3.8 (Analytic reduction of the unit disk). Let us consider the
analytic reduction of the unit disk $D^{1}=D(0,1^{+})=SpmK\{T\}$ (here we
assume that $K$ is algebraically closed for simplicity). The analytic reduction
is given by the affine line $A_{k}^{1}=Speck[T]$ . The reduction map $Red_{D^{1}}$ maps
all “interior” points, i.e. those points lying in $D(0,1^{-})$ to the origin in $A_{k}^{1}$ ,
and the other points to the non-zero points. If we identify $D^{1}$ and $R,$ $A_{k}^{1}$ and
$k$ , then this is nothing but the mapping obtained by the reduction modulo
$m$ .

It is very important to see how the formal models behave under localiza-
tion of affinoids. Let $X=SpmA$ be an affinoid over $K$ and $f_{0},$

$\ldots,$
$f_{n}\in A$ a

sequence of elements which does not have common zeros on $SpmA$ . We con-
sider the admissible covering $X=\bigcup_{i}U_{i}$ consisting of rational subdomains

$U_{i}=$ { $x\in X||f_{j}(x)|\leq|f_{i}(x)|$ for $j\neq i$ };

by multiplying a suitable power of $\pi$ , we may assume that each $f_{i}$ belongs
to $A^{o}$ . For each $i$ ,

$U_{i}=SpmA\{\frac{f_{0}}{f_{i}},$
$\ldots,$

$\frac{f_{n}}{f_{i}}\}$ ,

and then the corresponding formal model is given by

$U_{i}=SpfA^{o}\{\frac{f_{0}}{f_{i}},$
$\ldots$ , $\frac{f_{n}}{f_{i}}\}/$ ( $(\pi)$ -torsions).

These formal schemes glue and the resulting morphism

$\bigcup_{0\leq i\leq n}\mathfrak{U}_{i}\rightarrow X=SpfA^{o}$

is the formal blow-up along the ideal $\mathfrak{a}=(f_{0}, \ldots, f_{n})\subset A^{o}$ . We note here
that the ideal $\mathfrak{a}$ contains a power of $\pi$ , or what amounts to the same, $\mathfrak{a}$ is
an open ideal, for $\mathfrak{a}A=A$ .

This simple observation indicates:

Slogan (vague): Refinements of admissible coverings $co$rresponds to formal
blow-up’s along open coherent ideals.

Example 3.9. Let us assume in this example that $K$ is algebraically closed.
We consider the admissible covering $D^{1}=U_{1}\cup U_{2}$ of the unit disk $D^{1}=$

$SpmK\{T\}$ given by
$U_{1}$ $=$ $\{z\in K||z|\leq|\pi|\}$ $=$ $SpmK$
$U_{2}$ $=$ $\{z\in K||\pi|\leq|z|\leq 1\}$ $=$ $SpmK$

$\frac{T}{\pi}\}$ ,
$T,$ $\frac{\pi}{T}$ }.

The corresponding formal models are
$u_{1}$ $=$ $SpfR$

$u_{2}$ $=$ $SpfR$

$\frac{T}{\pi}\}$ $=$

$T,$ $\frac{\pi}{T}$ } $=$

Spf $R\{T, U\}/(\pi U-T)$ ,
Spf $R\{T, V\}/(TV-\pi)$
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respectively. We glue them as $U=V^{-1}$ and get $U_{1}\cup u_{2}\rightarrow D^{1}=SpfR\{T\}$ ,
which is the formal blow-up along the ideal $(\pi, T)$ . Meanwhile, the analytic
reduction is obtained by gluing the following two affine sets:

$\overline{\frac{U}{U}}21$

$==$ $Speck[T,V]/(TV)Speck[T],$

this is the normal crossing of the affine line with coordinate $T$ and the
projective line with the inhomogeneous coordinate $V$ .

We are going to state the Raynaud’s theorem, which provides a close
relationship between rigid geometry and formal geometry; we need some
terminology:

Definition 3.10 (Admissible formal scheme). An R-formal scheme SC is
said to be admissible if it is Zariski locally isomorphic to admissible Spf $A$

with $A$ admissible in the sense of Definition 3.4.
Definition 3.11 (Admissible formal blow-up). Let $X$ be an admissible for-
mal scheme. An admissible formal blow-up of $X$ is the formal blow-up along
a coherent open ideal $J\subset \mathcal{O}_{X}$ , i.e.,

$X^{\prime}=1_{\frac{im}{\lambda}}$
Proj $\bigoplus_{n=0}^{\infty}(9^{n}\otimes 0_{x}\mathcal{O}_{X}/\pi^{\lambda})\rightarrow X$ .

We are going to construct the functor from the category of admissible
formal schemes to the category of rigid analytic spaces; let us start by ob-
serving the affine case. From an affine admissible formal scheme $X=SpfA$ ,
it is easy to get the corresponding rigid analytic space: we just set

$A_{rig}$ : $=A\otimes_{R}K$

which is an affinoid algebra over $K$ . If $A$ is presented as $A=R\{t_{1}, \ldots, t_{n}\}/\mathfrak{a}$ ,
then $K\{t_{1}, \ldots, t_{n}\}/\mathfrak{a}K\{t_{1}, \ldots, t_{n}\}$ gives a presentation of $A_{rig}$ .

To globalize, we need to see the compatibility with localization. Let us
consider the completed localization $A\{f^{-1}\}$ of $A$ with respect to $f\in A$ . The
corresponding affinoid algebra is

$A\{f^{-1}\}\otimes_{R}K$ $=$ $A\{T\}/(1-Tf)\otimes_{R}K$

$=$ $A_{rig}\{T\}/(1-Tf)$ $=$ $A_{rig}\{f^{-1}\}$ ,
and the latter is the affinoid algebra attached to the rational subdomain

$\{x\in SpmA_{rig}||f|\geq 1\}$ ;

this means that the completed localization of formal schemes just corre-
sponds to the localization of rigid spaces with respect to the G-topology. So
we globalize the recipe as above to obtain the functor

Rig: ac $\leftrightarrow\chi_{rig}$

from admissible formal R-schemes to K-rigid analytic spaces. The rigid
analytic space $\chi_{rig}$ is called the Raynaud generic fiber of $X$ .

(2) $We$ follow [EGA I, \S 10] for generalities of formal schemes.
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Proposition 3.12. The functor Rig maps admissible formal blow-up’s of ad-
missible formal schemes to isomorphisms of rigid analytic spaces.

PROOF. This has already been essentially shown just before the Slogan.
Indeed, we may limit ourselves to the affine case, for the centers of blow-up’s
are coherent. We have seen in this case that the Raynaud generic fiber of
admissible formal blow-up’s is the decomposition into rational subdomains,
which does not change the analytic structure. $\square $

Now we state the theorem of Raynaud:

Theorem 3.13 (Raynaud 1972). The functor gives the equivalence of the
following categories,

(i) the category of quasi-compact admissible formal R-schemes, localized
by admissible formal blow-up’s,

(ii) the category of quasi-compact and quasi-separated rigid analytic spaces
over $K$ .

The reader finds a nice comprehensive account of the proof of this the-
orem in [BL93].

4. Topology of Rigid Analytic Space.

In this section, we assume, for simplicity, that $K$ is algebraically closed.

Definition 4.1. (1) A rigid analytic space $X$ is said to be quasi-compact
if every admissible covering of $X$ has a finite admissible refinement.

(2) A rigid analytic space $X$ is said to be connected if there is no admis-
sible covering $\{U_{i}\}_{i\in I}$ of $X$ such that

$\bigcup_{i\in I_{1}}U_{i}\cap\bigcup_{i\in I_{2}}U_{i}=\emptyset$
and

$\bigcup_{i\in I_{1}}U_{i}\neq\emptyset\neq\bigcup_{i\in I_{2}}U_{i}$

for some non-empty subsets $I_{1},$ $I_{2}\subseteq I$ with $I=I_{1}uI_{2}$ .

Since admissible coverings of affinoids are fixed as finite, every affinoid
is quasi-compact. So, we see that a rigid analytic space is quasi-compact
if and only if it is a finite union of affinoids. It is easy to see that a rigid
analytic space $X$ is connected if and only if the ring $\Gamma(X, \mathcal{O}_{X})$ has no other
idempotent than $0$ and 1.

Definition 4.2. A morphism $\pi:Y\rightarrow X$ of rigid analytic spaces over $K$

is said to be an analytic covering if there exists an admissible covering
$\{X_{i}\}_{i\in I}$ of $X$ such that for each $i\in I\pi^{-1}(X_{i})$ is isomorphic to the disjoint
union of copies of $X_{i}$ . A connect rigid analytic space $X$ is said to be simply
connected if there is no other connected analytic covering over $X$ than the
trivial one id: $X\rightarrow X$ (cf. $[vdP87]$ ).

(3)
$or$ else a topological covering, referring to the Grothendieck topology; cf. Chapter I,

\S \S 1.4
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Lemma 4.3. Let $X$ be a connect rigid analytic space $X$ .
(1) The space $X$ is simply connected if and only if every locally constant

sheaf of sets, with respect to the Grothendieck topology, is constant.
(2) If there exists an admissible covering $\{X_{i}\}_{i\in N}$ of $X$ such that $(a)$

every $X_{i}$ is simply connected, and $(b)X_{i}\subseteq X_{i+1}$ for all $i$ , then $X$ is simply
connected.

PROOF. Both are straightforward. $\square $

Example 4.4 (Topology of the closed disk). Let $D=D(0,1^{+})$ be the 1-
dimensional closed disk of radius 1. A rational subdomain in $D$ of form

{ $ x\in D||x-a|\leq\rho$ and $|x-a_{i}|\geq\rho_{i}$ for $i=1,$ $\ldots,$
$s$ },

where $\rho,$ $\rho_{i}\in|K^{*}|$ and $a,$ $a_{i}\in D$ , is called a standard domain. This is the
complement of finite union of open disks. The following properties are easy
to verify:

$\bullet$ If $S_{1}$ and $S_{2}$ are standard domains such that $ S_{1}\cap S_{2}\neq\emptyset$ , then so are
$S_{1}\cup S_{2}$ and $S_{1}\cap S_{2}$ .

$\bullet$ Every finite union of standard domains is uniquely decomposed as a
disjoint union of standard domains.

What is more interesting is the following proposition:

Proposition 4.5. Every rational subdomain in $D$ is a finite union of standard
domains. (Hence standard domains generate the Grothendieck topology of
D.)

SKETCH OF PROOF. (cf. $[GvdP80$ , III.1.18]). Let $R$ be the rational subdo-
main given by $|f_{i}(x)|\leq|f_{0}(x)|$ for $i=1,$ $\ldots,$

$n$ . Deforming those functions
slightly, if necessary, we may assume $f_{i}$ and $f_{j}$ have no common zero for any
$i\neq j$ , and thus, we may concentrate to the single inequality $|f_{1}(x)|\leq|f_{0}(x)|$ .
By Weierstrass Preparation Theorem we may assume $f_{0}$ and $f_{1}$ are polyno-
mials having all their roots in D. Then the proposition follows from an easy
calculation. $\square $

Corollary 4.6. The Grothendieck topology of the projective line $\mathbb{P}_{P\zeta}^{1,an}$ is
generated by standard domains.

Proposition 4.7. Standard domains are connected. Moreover, every con-
nected rational subdomain in $\mathbb{P}_{K}^{1,an}$ is simply connected.

PROOF. The first assertion is obvious since the corresponding affinoid alge-
bra

$K\{t, t_{0}, \ldots, t_{s}\}/((t-a)-t_{0}\pi, \pi_{i}-t_{i}(t-a_{i})$ for $i=1,$ $\ldots,$
$s$ ),

where $a,$ $a_{i}\in K$ and $\pi,$ $\pi_{i}\in K$ , is integral. (Note that $K\{t, t_{0}, \ldots, t_{s}\}$ is
Noetherian and factorial.) The second one is proved by using 4.3 (1). Let
$S$ be a standard domain and $\mathcal{F}$ a constant sheaf of sets on $S$ . We can take
an admissible covering $\{S_{i}\}$ of $S$ which trivializes S. The point is that any
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non-disjoint union of standard domains is standard, and hence, connected.
So the restriction maps $\mathcal{F}(S_{i})\rightarrow \mathcal{F}(S_{i}\cap S_{J})$ must be bijective as far as
$ S_{i}\cap S_{j}\neq\emptyset$ . It follows that $\mathcal{F}(S_{i}\cup S_{j})\rightarrow \mathcal{F}(S_{i})$ are bijective, and repeating
this argument, we concludes $\mathcal{F}$ is constant. $\square $

The following corollary may seen at first:

Corollary 4.8. Every connected open subanalytic space in $\mathbb{P}_{K}^{1,an}$ is simply
connected.

PROOF. A connected open subanalytic space $U$ has an admissible covering
consisting of standard domains. By [$GvdP80$ , III,2.6] and the easy fact that
a non-disjoint union of connected sets is again connected, we see that a finite
non-disjoint union of standard domain is a connected rational subdomain.
Hence the corollary follows from Lemma 4.3 (2) and Proposition 4.7. $\square $

Finally we quote, without proof, a theorem by van der Put which in-
dicates a close relation between the topology of a rigid analytic space and
that of its analytic reduction:

Theorem 4.9. Let $X$ be a quasi-compact rigid analytic space over $K$ which
has the irreducible and smooth analytic reduction. Then $X$ is simply con-
nected.

For the proof, see $[vdP87]$ .

Remark 4.10. By the corollary, we know, for example, that the space $G_{K}^{an}=$

$K^{\times}$ is simply connected. But, on the other hand, it is easy to see that the
map $K^{\times}\rightarrow K^{\times}$ by $x\mapsto x^{n}$ is an analytic morphism. As far as the charac-
teristic of $K$ does not divide $n$ , we are tempted to think of this morphisms
also as an analytic covering. But it is not. Certainly, this morphism induces
isomorphisms between stalks of the structure sheaf, but there is no admis-
sible covering which trivializes this morphism! This kind of morphisms is
said to be \’etale; analytic coverings are \’etale, but not vice versa. Simply
connected analytic spaces may have many \’etale coverings.

5. Berkovich’ approach to non-archimedean analysis

Berkovich’ viewpoint provides an innovative approach to topological
problems of p-adic geometry and analysis, which is much closer to the famil-
iar intuition derived from the complex context $[$Ber90 $]^{}$ . His analysis, in
fact, generalizes, or properly speaking, “completes” the rigid analysis. This
situation is, according to what he says in the introduction of his book, some-
how analogous to that of $\mathbb{R}$ completing $\mathbb{Q}$ . The standard archimedean metric
space $\mathbb{Q}$ is totally disconnected. The rigid analytic viewpoint corresponds,
to some extent, to regarding every rational interval $\{r\in \mathbb{Q}|a\leq r\leq b\}$ as

(4) $We$ refer [BGR84, 9.3.1] for the definition of open subanalytic spaces.
(5) $Already$ in $[vdP82]$ the esquisse of Berkovich’ idea can be seen.
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“connected”, and considering only those functions which come from analytic
functions on the corresponding real interval. Berkovich’ non-archimedean
analysis can be compared, in this context, to analysis on $\mathbb{R}$ itself. Namely,
his presentation of analytic spaces complements those of rigid analysis by
putting some (generic points”, and consequently, simplifies their topology.

Let us be a little more precise about his theory. Let A be a Banach ring,
i.e., a ring together with a norm $\Vert$ . I with respect to which A is complete.

Definition 5.1. (1) A semi-norm $|\cdot|$ on A is said to be bounded if there
exists $C>0$ such that $|f|\leq C\Vert f\Vert$ for any $f\in A$ .

(2) A semi-norm $|\cdot|$ on A is said to be multiplicative if $|fg|=|f||g|$ for
all $f,$ $g\in A$ .

Replacing the maximal spectra Spm(A) of rigid geometry, we have:

Definition 5.2. The Berkovich’ spectrum $M(A)$ for a Banach ring A is
the set of all bounded multiplicative semi-norms on $A$ , endowed with the
weakest topology so that the real valued functions of form . $|\vdash\rightarrow|f|$ for
$f\in A$ are continuous.

In case A is an affinoid algebra (a strict affinoid algebra, in Berkovich’
term) over $K$ , the affinoid space Spm(A) is naturally viewed as a subspace,
with the relative topology, of the Berkovich’ spectrum $M(A)$ . This is done
by identifying an element $\mathfrak{m}$ in Spm(A) with the unique semi-norm $|\cdot|$ on
A such that $\mathfrak{m}=Ker|$ . . The space Spm(A) is identified, in terms of this
correspondence, with the subspace of $M(A)$ consisting of semi-norms $|\cdot|$

such that $\dim_{K}A/Ker$ . $|$ is finite (the $t$‘classical points”).

Example 5.3. Let us consider the usual absolute-value norm . $|_{\infty}$ on $\mathbb{Z}$ .
The spectrum $M(\mathbb{Z})$ consists of the following points:

(i) . $|_{\infty,\epsilon}$ : $=$ . $|_{\infty}^{\epsilon}(0<\epsilon\leq 1)$ .
(ii) The p-adic norm $|\cdot|_{p,\epsilon}$ : with $|p|_{p,\epsilon}=\epsilon(0<\epsilon\leq 1)$ .
(iii) The semi-norm . $|_{p}$ induced from the trivial norm on $\mathbb{Z}/p\mathbb{Z}$ .
(iv) The trivial norm . $|0$ .

As a topological space, $M(\mathbb{Z})$ is a tree with end points . $|_{p}$ and . $|_{\infty}$ . Each
of these points is connected by a single edge with . $|0$ .

On the Berkovich’ spectrum, the affinoid subdomains (incl. rational sub-
domains) are defined in the similar way to rigid analysis. Thus one can
define the structure sheaves on spectra, which one calls affinoid spaces. The
local data consisting of Berkovich’ affinoids and the structure sheaves can
glue to locally ringed spaces; thus we obtain analytic spaces in Berkovich’
sense.

Example 5.4. (Cf. [Ber90, 1.5].) Let $K$ be a non archimedean complete
field. An affine space over $K$ is defined by

$A_{K}^{n}=$ {multiplicative seminorm $|\cdot|$ on $K[t_{1},$
$\ldots,$

$t_{n}]||\cdot|_{1_{K}}$ is bounded}
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together with the weakest topology so that $|\cdot|\mapsto|f|(f\in K[t_{1}, \ldots, t_{n}])$

is continuous. This has a structure of analytic space so that the analytic
functions over it is characterized by limits of rational functions. When $K=$
$\mathbb{C}$ the space $A_{K}^{n}$ is nothing but the usual affine space in the complex analytic
sense. If $K$ is a non-archimedean field, then $A_{K}^{n}$ is a union of balls; i.e., the
spectrum of Tate algebra.

Here are some general properties of Berkovich’ analytic spaces:
(i) Every connected K-analytic space is arcwise connected.
(ii) If $X=M(A)$ with A an affinoid algebra over $K$ , then Krull-dimA $=$

$\dim|X|$ , where $|X|$ is the underlying topological space of $X$ .
(iii) If a K-analytic space $X$ is smooth, then it is locally contractible.

Relation between Berkovich’ analytic spaces and rigid analytic spaces is
as follows. If a Berkovich’ K-analytic space $X$ is formed only by spectra
of (strict) affinoid algebras, we say $X$ is strict. There exists a functor from
the category of separated strict K-analytic spaces to that of separated rigid
analytic spaces over $K$ by

$X\mapsto X_{0}=\{x\in X|[K(x):K]<\infty\}$ ,

where $K(x)$ is the residue field at $x$ .

Theorem 5.5. This functor is fully-faithful, and preserves fiber products.


