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Abstract

This is the text of lectures delivered at the RIMS (Kyoto University) in
July 1998. It presents the basic structures of the theory of noncommutative
symmetric functions, with emphasis on the parallel with the commutative
theory and on the representation theoretical interpretations. Some examples
involving descent algebras and characters of symmetric groups are discussed
in detail.
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1 Introduction
The theory of noncommutative symmetric functions is the outgrowth of a pro-
gram initiated in 1993. The starting point was the theory of quasi-determinants of
Gelfand and Retakh $[34, 35]$ , which is the analogue of the theory of determinants
for matrices with entries in a noncommutative ring. Many classical determinantal
identities can be lifted to the level of quasi-determinants [60]. Such determinan-
tal identities are widely used in the theory of symmetric functions, and most of
them can be translated into formulas involving Schur functions. The original idea
was then to look for some noncommutative analogue of the theory of symmetric
functions, in which quasi-determinants would replace determinants.

Such a theory does exist, and the quasi-determinants arise in applications to
enveloping algebras, roots of noncommutative polynomials, noncommutative con-
tinued fractions, Pad\’e approximants or orthogonal polynomials [33, 87, 36, 37].
These calculations usually take place in a skew field, which is the field of quotients
of a free associative algebra Sym, which appears as the proper analogue of the
classical algebra of symmetric functions.

It is well known that symmetric functions have several interpretations in repre-
sentation theory. It turns out that most of these interpretations have an analogue
in the noncommutative case. It is this aspect of the theory which will be the main
subject of these lectures.

After reviewing briefly the relevant features of the classical theory (Section 2),
we describe in detail the algebraic structure of the Hopf algebra of integral non-
commutative symmetric functions (Section 3), including the duality with quasi-
symmetric functions, and the connection with descent algebras. The representa-
tion theoretical interpretations are discussed in Section 4. The first one, involving
Hecke algebras at $q=0$ , leads us to the definition of quantum quasi-symmetric
functions. The second one, a quantum matrix algebra at $q=0$ , provides us with
the relevant analogues of the Robinson-Schensted correspondence and of the plac-
tic algebra. Finally, a quantized enveloping algebra at $q=0$ , for which one has a
natural notion of Demazure module, and the character formula for these modules,
leads to a new action of the Hecke algebra on polynomials, from which one can de-
fine quasi-symmetric and noncommutative analogues of Hall-Littlewood functions.
Section 5 presents a choice of examples. First, we analyze three idempotents of
the group algebra of the symmetric groups involved in the combinatorics of the
Hausdorff series, and exhibit a natural one-parameter family interpolating between
them. Next, we show that similar calculations can give the decomposition of the
tensor products of certain representations of symmetric groups. We conclude by
the diagonalization of the iterated left q-bracketing operator of the free associative
algebra.

These notes correspond to a series of lectures delivered at the workshop “Combi-
natorics and Representation Theory” held at the Research Institute for Mathemat-
ical Sciences (Kyoto University) in July 1998. I would like to thank the organizers,
Masaki Kashiwara, Kazuhiko Koike, Soichi Okada, Itaru Terada and Hiro-fumi
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Yamada for their kind invitation.
Notations. –We essentially use the notations of Macdonald’s book [80] for

commutative symmetric functions. A minor change is that the algebra of symmetric
functions is denoted by $Sym$ , the coefficients being taken in some field $K$ rather
than in $\mathbb{Z}$ . The symmetric group is denoted by $\mathfrak{S}_{n}$ . The Coxeter generators $(i, i+1)$

are denoted by $s_{i}$ .



42 JEAN-YVES THIBON

2 Some highlights of the commutative theory
Modern textbooks in Algebra usually close their account of symmetric functions
with the so-called “Fundamental Theorem” of the theory, stating that the ring of
symmetric polynomials in $n$ variables

$Sym(X)=K[x_{1}, \ldots, x_{n}]^{\mathfrak{S}_{n}}$

( $K$ is some field of characteristic $0$ ) is freely generated by the elementary symmetric
polynomials

$e_{k}=\sum_{i_{1}<\ldots<\iota_{k}}x_{i_{1}}x_{i_{2}}\cdots x_{\iota_{k}}$ $(k=1,2, \ldots, n)$ .

Thus, $Sym(X)$ is just a polynomial algebra $K[e_{1}, \ldots, e_{n}]$ , with a particular grading
defined by $\deg(e_{k})=k$ .

This is not, however, the end of the story, and the 475 pages of the second
edition of Macdonald’s book [80] do not suffice to exhaust the subject, which is
still an active area of research.

The algebra $Sym$ of symmetric functions is obtained by letting $ n\rightarrow\infty$ . The
classical theory of symmetric functions can therefore be regarded as the study of
the polynomial algebra $K[e_{k} : k\geq 1]$ over an infinite sequence of indeterminates,
graded by $\deg(e_{k})=k$ . Note that the original variables $x_{i}$ can be eliminated from
this definition.

What makes this algebra interesting is the existence of many natural bases
(labelled by partitions), of a canonical scalar product, of a Hopf algebra structure,
and of several other algebraic operations, and also, its many interpretations in
representation theory, algebraic geometry, or mathematical physics.

First of all, $Sym$ , as an algebra, has several distinguished sets of generators.
Let $\lambda(t)=\sum_{k\geq 0}e_{k}t^{k}$ be the generating series of elementary symmetric func-
tions. Then, the complete homogeneous functions $h_{n}$ can be defined by their gen-
erating series $\sigma(t)=\lambda(-t)^{-1}=\sum_{k\geq 0}h_{k}t^{k}$ , and the power-sums $p_{n}$ by $\psi(t)=$

$\sum_{k\geq 1}p_{k}t^{k-1}=\frac{d}{dt}\log\sigma(t)$ (the Newton formulas). One has

$Sym=K[h_{1}, h_{2}, \ldots]=K[p_{1},p_{2}, \ldots]$

as well.
A Hopf algebra structure is defined by means of the comultiplication $\triangle(p_{k})=$

$p_{k}\otimes 1+1\otimes p_{k}$ , and the antipode $\tilde{\omega}(p_{k})=-p_{k}$ . It can be shown that $Sym$ is
isomorphic to its graded dual.

The dimension of the homogeneous component of degree $ 7\iota$ of $Sym$ is $\dim Sym_{n}=$

$|Part(n)|=p(n)$ , the number of partitions of $n$ . Linear bases of $Sym$ are therefore
naturally labelled by partitions. The simplest ones are $m_{\lambda}$ (monomial symmet-
ric functions), $e_{\lambda},$

$h_{\lambda},p_{\lambda}$ (products $e_{\lambda_{1}}e_{\lambda_{2}}\cdots e_{\lambda_{\tau}}$ etc.), and the Schur functions $s_{\lambda}$ ,
which are the fundamental ones in representation theory.

There is a canonical scalar product, which can be defined by either of the
following equivalent formulas:
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$\langle s_{\lambda},$

$s_{\mu}$ } $=\langle m_{\lambda},$ $h_{\mu}$ } $=\langle p_{\lambda},p_{\mu}^{*}$ } $=\delta_{\lambda\mu}$

(where $p_{\mu}^{*}=p_{\mu}/z_{\mu}$ ). This scalar product materializes the self duality of $Sym$ ,
in that $\Delta$ is the adjoint of the multiplication map $ f\otimes g-\rangle$ $fg$ . The equivalence
of these definitions, as well as the self duality, is a consequence of the following
property: for two bases $(u_{\lambda})$ and $(v_{\lambda})$ of $Sym$ ,

$\langle u_{\lambda}, v_{\mu}\rangle=\delta_{\lambda\mu}\Leftrightarrow\prod_{i,j}(1-x_{i}y_{j})^{-1}=\sum_{\lambda}u_{\lambda}(X)v_{\lambda}(Y)$

and of the classical Cauchy identity for Schur functions

$\sum_{\lambda}s_{\lambda}(X)s_{\lambda}(Y)=\prod_{i,j}(1-x_{i}y_{j})^{-1}$

There is a second comultiplication defined by $\delta(p_{k})=p_{k}\otimes p_{k}$ . This co-
multiplication is dual to a multiplication known as the internal product $*,$ $i.e$ .
$\{f*g, h\}=\{f\otimes g, \delta(h)\}$ . The internal product corresponds to the (pointwise)
product of central functions on the symmetric group, via the Frobenius character-
istic map $\chi^{\lambda}\mapsto ch(\chi^{\lambda})=s_{\lambda}$ , where the $\chi^{\lambda}$ are the irreducible characters. This
is an isometric isomorphism $R(\mathfrak{S}_{n})\rightarrow Sym_{n}$ , where $R(\mathfrak{S}_{n})$ is the vector space
spanned by the irreducible characters. One has then ch $(\phi\psi)=ch(\phi)*ch(\psi)$ .

The Frobenius character formula expresses the value $\chi(\sigma)$ of a character $\chi$ on
a permutation $\sigma$ of cycle type $\mu$ as $\chi^{\lambda}(\mu)=\langle s_{\lambda},p_{\mu}$ }.

The cycle index is the map $Z:K\mathfrak{S}_{n}\rightarrow Sym_{n},$ lnapping a permutation of cycle
type $\mu$ onto $p_{\mu}$ . It induces a canonical linear isomorphism between the center of the
group algebra and symmetric functions of degree $n$ . Then, the character formula
can be rewritten as

$\chi(\sigma)=$ \langle ch $(\chi),$ $Z(\sigma)$ }.
Another important point is the induction formula, interpreting the ordinary

multiplication of symmetric functions in terms of induced representations. If $f=$

ch $(\xi)$ and $g=ch(\eta)$ are the characteristics of two representations of $\mathfrak{S}_{m}$ and $\mathfrak{S}_{n}$ ,
then $fg=$ ch $(\chi)$ where $\chi$ is the character of $\mathfrak{S}_{m+n}$ induced from the character
$\xi\times\eta$ of its subgroup $\mathfrak{S}_{m}\times \mathfrak{S}_{n}$ .

Schur functions can also be interpreted as characters of $GL(n, C)$ . The poly-
nomial representations $V_{\lambda}$ of $GL(n, C)$ are parametrized by partitions of length
at most $n$ , and $s_{\lambda}(x_{1}, \ldots, x_{n})=trace_{V_{\lambda}}(X)$ where $X$ is the diagonal matrix
$X=diag(x_{1}, \ldots, x_{n})$ .

Schur functions correspond in a similar way to the irreducible representations of
the q-deformed structures $H_{n}(q),$ $U_{q}(gl_{n})$ or $F_{q}(GL_{n})$ , for generic $q$ . For example,
in the case of the Hecke algebra $H_{n}(q)$ , which is the algebra generated by elements
$T_{1},$

$\ldots,$
$T_{n-1}$ satisfying the braid relations plus the quadratic ones $(T_{i}+1)(T_{i}-q)=$

$0$ , the character formula can be written as [103, 9, 93]

$\chi_{\mu}^{\lambda}(q)=\{s_{\lambda}(X), (q-1)^{-\ell(\mu)}h_{\mu}((q-1)X)\}$ , (1)
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where the $\lambda$-ring notation” $h_{\mu}((q-1)X)$ means the following. In general, if $X$

and $Y$ are two (multi-) sets of variables, identified with the formal sum of their
elements, the symmetric functions of $X+Y,$ $X-Y$ and $XY$ are defined by setting

$p_{k}(X\pm Y)=p_{k}(X)\pm p_{k}(Y)$ , $p_{k}(XY)=p_{k}(X)p_{k}(Y)$ , (2)

and then by expressing any symmetric function as a polynomial in the power sums.
Therefore, the symmetric functions of $(q-1)X=qX-X$ are the images of those
of $X$ under the ring homomorphism $p_{k}\mapsto(q^{k}-1)p_{k}$ .

The Hecke algebra $H_{n}(q)$ was introduced by Iwahori in [49]. The original defi-
nition was as follows. Let $G=GL(n, F_{q})$ and $B$ be the subgroup of $G$ formed by
upper triangular matrices. Then, $G$ acts on the vector space $M=\mathbb{C}G/B$ spanned
by the left cosets of $B$ (which can be identified with complete flags in $F_{q}^{n}$ ). To de-
compose this representation into irreducibles, one can use Schur’s lemma and look
at the centralizer of $\mathbb{C}G$ in End $(M)$ . It turns out that this centralizer is isomorphic
to $H_{n}(q)$ .

From the knowledge of the irreducible representations of $H_{n}(q)$ , one can in
principle obtain the characters of the irreducible representations of $G$ occuring in
the spectrum of $M$ . The characters of these representations, now called unipotent
representations, were in fact first obtained by Steinberg [104], by a different method,
quite similar to the one used by Frobenius to determine the characters of symmetric
groups.

The unipotent representations are parametrized by partitions $\lambda$ of $n$ . Their
name comes from the fact that these are exactly as many as the conjugacy classes
of unipotent elements in $G$ , which are also parametrized by partitions $\mu$ specifying
the sizes of their Jordan cells, so that a unipotent character is determined by its
values on unipotent classes.

Steinberg’s result was that the value $\chi_{\mu}^{\lambda}$ of the unipotent character $\lambda$ on the
unipotent class $\mu$ is a polynomial in $q$ , which has since been recognized as a Kostka-
Foulkes polynomial $[42, 78]$

$\chi_{\mu}^{\lambda}=\tilde{K}_{\lambda\mu}(q)$ . (3)

The Kostka-Foulkes polynomials are the coefficients of the transition matrices be-
tween the bases of Schur functions and of Hall-Littlewood functions. The Hall-
Littlewood Q-functions are defined, for $N$ variables $x_{1},$ $\ldots$ , $x_{N}$ , by the orbit sums

$Q_{\mu}(x_{1}, \ldots, x_{N}; t)=\frac{(1-t)^{\ell(\mu)}}{[m_{0}]_{t}!}\sum_{\sigma\in \mathfrak{S}_{N}}\sigma(x^{\mu}\frac{\Delta_{N}(t)}{\triangle_{N}(1)})$ (4)

where $m_{0}=N-\ell(\mu),$ $[m]_{t}=(1-t^{m})/(1-t)$ and $\triangle_{N}(t)=\prod_{i<j}(x_{i}-tx_{j})$ . The
P-functions are just scaled versions of the $Q’ s$

$P_{\mu}=\frac{1}{(1-t)^{\ell(\mu)}[m_{1}]_{t}!\cdots[m_{n}]_{t}!}Q_{\mu}$ , (5)
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where $m_{i}$ is the multiplicity of $i$ in $\mu$ . Then,

$s_{\lambda}(X)=\sum_{\mu}K_{\lambda\mu}(t)P_{\mu}(X;t)$
, (6)

and

$Q_{\mu}^{\prime}(X;t)=Q_{\mu}(X/(1-t);t)=\sum_{\lambda}K_{\lambda\mu}(t)s_{\lambda}(X)$ (7)

where $Q^{\prime}$ is the adjoint basis of $P$ for the standard scalar product of $Sym$ , and
finally

$\tilde{Q}_{\mu}^{\prime}(X;t)=t^{n(\mu)}Q_{\mu}^{\prime}(X;t^{-1})=\sum_{\lambda}\tilde{K}_{\lambda\mu}(t)s_{\lambda}$
. (8)

The Hall-Littlewood functions can be compactly expressed by means of an ac-
tion of the Hecke algebra $H_{N}(q)$ on the algebra of polynomials in $x_{1},$ $\ldots x_{N}$ (here,
$q=t^{-1})[17]$ . This action is defined in terms of the isobaric divided difference
operators $\pi_{i}$

$\pi_{i}(f)=\frac{x_{i}f-\sigma_{i}(x_{i}f)}{x_{i}-x_{i+1}}$ (9)

where $\sigma_{i}$ is the ring involution exchanging $x_{i}$ and $x_{i+1}$ , by

$T_{i}=(q-1)\pi_{i}+\sigma_{i}$ . (10)

The Hall-Littlewood functions are then, up to a scalar factor, the images of the
monomials by the full symmetrizer

$S^{(N)}=\sum_{\sigma\in \mathfrak{S},\prime}T_{\sigma}$
, (11)

that is,

$S^{(N)}(x^{\mu})=q^{()}2(1-q^{-1})^{-\ell(\mu)}[m_{0}]_{1/q}!Q_{\mu}(x_{1}, \ldots, x_{N} ; q^{-1})N$ (12)

The symmetric functions $\tilde{Q}_{\mu}^{\prime}$ describe the characters of certain graded versions
of the permutation representations of $\mathfrak{S}_{n}$ , i.e. the coefficient of $q^{k}$ is the charac-
teristic of the homogeneous component of degree $k$ (these are the Springer repre-
sentations, in the cohomology rings of unipotent varieties, see [48, 80, 65]). The
simplest case $\mu=(1^{n})$ is already of interest. It describes the usual graded version
of the regular representation, which is realized for example in the coinvariants, in
the cohomology of the flag manifold, or in the space of $\mathfrak{S}_{n}$-harmonic polynomials.
There is a closed formula for this graded character

$\tilde{Q}_{(1^{n})}^{\prime}(X;q)=(q)_{n}h_{n}(\frac{X}{1-q})$ (13)
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(where $(q)_{n}=\prod_{i=1}^{n}(1-q^{i})$ ) which implies that the Kostka-Foulkes polynomials
for $\mu=(1^{n})$ are essentially the principal specializations of Schur functions, i.e.

$\tilde{K}_{\lambda(1^{n})}(q)=(q)_{n}s_{\lambda}(1, q, q^{2}, \cdots)$ . (14)

Combinatorial properties of symmetric functions, for examI le the Littlewood-
Richardson rule for multiplying Schur functions, or the combinatorial interpretation
of Kostka-Foulkes polynomials as generating functions of sets of Young tableaux
according to a certain statistic (charge or cocharge [70], see also [65]), rely essen-
tially on the Robinson-Schensted correspondence, which can be used to define a
multiplicative structure on the set of Young tableaux (the plactic monoid of Las-
coux and Sch\"utzenberger [71]). The plactic monoid over an ordered alphabet $A$

is the quotient of the free monoid $A^{*}$ by the relations $xzy=zxy(x\leq y<z)$ ,
$yxz=yzx(x<y\leq z)$ . These relations can now be understood in terms of crys-
tals. If one considers the letters of $A$ as the vertices of the crystal graph of the
vector representation $V$ of $U_{q}(gl_{n})$ , and words of length $N$ as the vertices of the
crystal graph of $V^{\otimes N}$ , then, two words are equivalent under the plactic relations
whenever they label corresponding vertices of two isomorphic connected compo-
nents of the graph. This allows to define a similar monoid for other Lie algebras,
including the classical ones $[68, 74]$ . The essential facts are that plactic classes
correspond to Young tableaux, and that the plactic Schur functions $S_{\lambda}$ , defined as
the sum of all tableaux of the same shape $\lambda$ , span a commutative subalgebra, iso-
morphic to $Sym(x_{1}, \ldots, x_{n})$ . The Littlewood-Richardson rule, for example, follows
straightforwardly from these facts.

To conclude, let us mention that the main objects of current interest in the
theory of symmetric functions are the Macdonald polynomials [80]. We will not
touch this subject here, since the proper noncommutative analogues of Macdonald
polynomials have not yet been worked out in general. However, the other properties
that have been alluded to in this section will all find some kind of noncommutative
analogue.
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3 The Hopf algebra of noncommutative symmet-
ric functions.

3.1 Algebraic generators
Imitating the description of $Sym$ as a polynomial algebra in independent inde-
terminates $e_{k}$ , graded by $\deg(e_{k})=k$ , one defines the algebra Sym of formal
noncommutative symmetric functions as the free associative algebra on an infinite
sequence $\Lambda_{k}$ of noncommuting indeterminates (the noncommutative elementary
functions), graded by $\deg(\Lambda_{k})=k$ . The coefficients are taken in some field $K$ of
characteristic $0$ , which is assumed to contain the rational functions in all extra
variables $t,$ $q,$ $z,$ $\ldots$ used for generating functions or as deformation parameters.

As in the commutative case, one introduces the generating series

$\lambda(t)=\sum_{n\geq 0}\Lambda_{n}t^{n}$
, (15)

where $t$ is an indeterminate in the ground field K. The complete homogeneous
symmetric functions $S_{n}$ are then naturally defined as the coefficients of the series

$\sigma(t)=\lambda(-t)^{-1}=\sum_{n\geq 0}S_{n}t^{n}$
(16)

A concrete realization $Sym(A)$ of this algebra can be given by taking an infinite
sequence $A=\{a_{n}|n\geq 1\}$ of noncommuting indeterminates of degree 1, by setting

$\lambda(A;t)=\sum_{n\geq 0}\Lambda_{n}(A)t^{n}=\prod_{i\geq 1}^{\leftarrow}(1+ta_{i})$ , (17)

so that $\Lambda_{n}(A)$ gets identified with the sum of all strictly decreasing words of length
$n$ , and $S_{n}(A)$ with the sum of all nondecreasing words of the same length, which
are respectively represented as column-shaped and row-shaped Young tableaux.

The algebra homomorphism $Sym(A)\rightarrow Sym(X)$ defined by $ a_{i}\leftarrow\rangle$ $x_{x}$ , called
the commutative image $F\mapsto\underline{F}$ , maps $\Lambda_{n}$ to $e_{n}$ , so that Sym is actually a noncom-
mutative lifting of the algebra of symmetric functions. One can object however,
that the $\Lambda_{n}(A)$ are not invariant under the symmetric group. At least, not for the
usual action. But we shall see later that they are indeed symmetric for a more
subtle one.

The first really interesting question is “what are the noncommutative power
sums ?”. There are indeed several possibilities. If one starts from the classical
expression

$\sigma(t)=\exp\{\sum_{k\geq 1}p_{k}\frac{t^{k}}{k}\}$ , (18)
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one can choose to define noncommutative power sums $\Phi_{k}$ by the same formula

$\sigma(t)=\exp\{\sum_{k\geq 1}\Phi_{k}\frac{t^{k}}{k}\}$ , (19)

but a noncommutative version of the Newton formulas

$nh_{n}=h_{n-1}p_{1}+h_{n-2}p_{2}+\cdots+p_{n}$ (20)

which are derived by taking the logarithmic derivative of (18) leads to different
noncommutative power-sums $\Psi_{k}$ inductively defined by

$nS_{n}=S_{n-1}\Psi_{1}+S_{n-2}\Psi_{2}+\cdots+\Psi_{n}$ . (21)

Introducing the generating function $\psi(t)=\sum_{k\geq 1}\Psi_{k}t^{k-1}$ , one may regard $\sigma(t)$

as the unique solution of the differential equation

$\frac{d}{dt}\sigma(t)=\sigma(t)\psi(t)$ (22)

satisfying the initial condition $\sigma(0)=1$ . The generating function of the $\Phi_{k}$ , taken
in the form

$\Phi(t)=\sum_{k\cdot\geq 1}\Phi_{k}\frac{t^{k}}{k}$ (23)

is then the logarithm of this solution. From this, one realizes that the relation
between the two kinds of noncommutative power-sums is of a rather complicated
nature. The expression of $\Phi(t)$ as a function of the $\Psi_{k}$ is known as the continuous
Baker-Campbell-Hausdorff (BCH) series [82, 5, 86]. It can be written as a Chen
series (iterated integrals) in a quite explicit form (to be discussed later), and it is
usually interpreted as expressing the logarithm of the “evolution operator” $\sigma(t)$ in
terms of the “Hamiltonian” $\psi(t)[5]$ . It is known that the continuous BCH series
is a Lie series, so that the $\Phi_{k}$ are elements of the free Lie algebra $\mathcal{L}$ generated by
the $\Psi_{k}$ , of which they form another system of generators. In fact, any sequence
$(F_{n})$ of generators of $\mathcal{L}$ , with $\deg(F_{n})=n$ can be shown to provide an admissible
family of noncommutative power sums, in the sense that the commutative image
of $F_{n}$ is a nonzero multiple of $p_{n}$ . Moreover, the Poincar\’e-Birkhoff-Witt theorem
shows that Sym can be identified with the universal enveloping algebra $U(\mathcal{L})$ of
$\mathcal{L}$ . As such, Sym is endowed with a canonical comultiplication $\Delta$ , for which $\mathcal{L}$ is
the space of primitive elements (Friedrich’s theorem, see [96]). In particular,

$\Delta\Psi k=\Psi k\otimes 1+1\otimes\Psi k$ $\triangle\Phi k=\Phi k\otimes 1+1\otimes\Phi k$ , (24)

and also

$\triangle\Lambda_{n}=\sum_{k=0}^{n}\Lambda_{k}\otimes\Lambda_{n-k}$ , $\triangle S_{n}=\sum_{k=0}^{n}S_{k}\otimes S_{n-k}$ . (25)
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That is, the comultiplication of Sym is mapped onto the usual one on $Sym$ under
the commutative image homomorphism.

There is also an analogue of the canonical involution $\omega$ : $e_{n}\leftrightarrow h_{n}$ , defined
in the same way by $\omega(\Lambda_{n})=S_{n}$ , and it is easy to check that the signed version
$\tilde{\omega}(\Lambda_{n})=(-1)^{n}S_{n}$ is an antipode for $\triangle$ .

3.2 Linear bases

As for ordinary symmetric functions, we first define linear bases by taking mono-
mials in the various families of algebraic generators, such as $e_{\lambda}=e_{\lambda_{1}}e_{\lambda_{2}}\cdots e_{\lambda_{r}}$ .
Here, our generators do not commute, so that basis elements of the homogeneous
component $Sym_{n}$ of degree $n$ will be labelled by compositions of $n$ , i.e., ordered se-
quences $I=(i_{1}, \ldots, i_{r})$ of positive integers with $i_{1}+i_{2}+\cdots+i_{r}=n$ . For a sequence
$(G_{n})$ of homogeneous generators with $\deg(G_{n})=n$ , we set $G^{I}=G_{\iota_{1}}G_{i_{2}}\cdots G_{i_{r}}$ .
Therefore, we already have the four bases $\Lambda^{I},$ $S^{I},$ $\Phi^{I}$ and $\Psi^{I}$ .

A composition $I$ of $n$ is conveniently pictured as a ribbon diagram, which
is a rim-hook shaped skew Young diagram whose succesive rows llave lengths
$i_{1},$ $i_{2},$

$\ldots,$
$i_{r}$ (read from top to bottom in the French convention). For example,

the ribbon diagram of shape $I=(3,2,1,4)$ is

The number of compositions of $n$ is equal to $2^{n-1}$ . A useful way to realize this
is to encode the ribbon diagram of a composition $I$ of $n$ by the subset Des $(I)=$

$\{i_{1}, i_{1}+i_{2}, \ldots, i_{1}+i_{2}+\cdots+i_{r-1}\}$ of $\{1, 2, \ldots, n-1\}$ . The elements of Des (I) are
called the descents of the composition.

The next basis that should be defined, to pursue the parallel with the commu-
tative theory, would be the analogue of monomial symmetric functions. However,
we have no way to achieve this at this point. This is because in the classical case,
the monomial basis $(m_{\lambda})$ is dual to the homogeneous one $(h_{\lambda})$ , of which we al-
ready have the noncommutative analogue $(S^{I})$ . But since the comuitiplication $\Delta$

of Sym is obviously cocommutative, Sym cannot be self-dual, and the analogues
of the monomial functions will have to live in the dual Hopf algebra $Sym*$ , to be
discussed in the next section.

On the other hand, we can define the analogues of Schur functions. These are
the so-called ribbon Schur functions. Their original definition was given in terms
of quasi-determinants, but one can as well define them as follows.

The set of all compositions of a given integer $n$ is equipped with the reverse
refinement order, denoted $\preceq$ . For instance, the compositions $J$ of 4 such that
$J\preceq(1,2,1)$ are (1,2,1), $(3,1)$ , $(1,3)$ and (4). The ribbon Schur function $(R_{I})$ is
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defined by the alternating sum

$R_{I}=\sum_{J\preceq I}(-1)^{\ell(I)-\ell(J)}S^{J}$
$(\cdot\supset s^{I}=\sum_{J\preceq I}R_{J})$ , (26)

where $\ell(I)$ denotes the length of $I$ . Clearly, $(R_{I})$ is also a homogenous basis of
Sym.

The commutative image of a ribbon Schur function $R_{I}$ is the corresponding
ordinary ribbon Schur function, which will be denoted by by $r_{I}$ . The $r_{I}$ were first
introduced by MacMahon, in his analysis of Simon Newcomb’s problem [81]. They
arise also, for example, in a generalization by Lascoux and Pragacz [69] of the
Giambelli formula (expressing general Schur functions as determinants of ribbons
instead of just hooks), or as $sl_{n}$-characters of the irreducible components of the
Yangian representations in level 1 modules of $sl_{n}\wedge[56]$ .

An important property of the ribbon Schur functions is their very simple mul-
tiplication formula (already known to MacMahon in the commutative case)

$R_{I}R_{J}=R_{I\triangleright J}+R_{I\cdot J}$ (27)

where $I\triangleright J$ denotes the composition $(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1},j_{2}, \ldots,j_{s})$ and $I\cdot J$ the
composition $(i_{1}, \ldots, i_{r},j_{1}, \ldots,j_{s})$ .

The transition matrices between the above bases can be worked out quite ex-
plicitely (see [33]).

3.3 Duality and quasi-symmetric functions
The next step is to have a look at the dual Hopf algebra Sym* As pointed out in
the preceding section, we need it to define the proper generalization of monomial
symmetric functions. In the commutative case, the duality between monomial
symmetric functions $m_{\lambda}$ and homogeneous products $h_{\lambda}$ comes from the Cauchy-
type identity

$\sigma(XY;1)=\prod_{i_{J}}(1-x_{i}y_{j})^{-1}=\sum_{\lambda}m_{\lambda}(X)h_{\lambda}(Y)$
, (28)

where the sum runs over all partitions. By analogy, let us consider the ordered
product

$\sigma(XA;1)$ $:=\vec{\prod_{i\geq 1}}\sigma(A;x_{i})=\prod_{i\geq 1}^{\rightarrow}\prod_{j\geq 1}^{\rightarrow}(1-x_{i}a,)^{-1}$ (29)

where $A$ is a totally ordered set of noncommutative variables, and $X$ a totally
ordered set of commutative variables, also commuting with those of $A$ . This is a
natural choice, since we already know that the dual of Sym will be commutative.
Expanding the product, we find

$\sigma(XA;1)=\sum_{r,\wedge}M_{I}(X)S^{I}(A)$ , (30)
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where the polynomials $M_{I}$ are defined by

$M_{I}(X)=\sum_{j_{1}<j_{2}<.<j_{r}}..x_{j_{1}}^{i_{1}}x_{j_{2}}^{i_{2}}\cdots x_{j_{r}}^{i_{\backslash }}’$
. (31)

Thus, the $M_{I}$ are pieces of monomial symmetric functions. That is, $m_{\lambda}$ is equal
to the sum of the $M_{I}$ labelled by the distinct rearrangements $I$ of the partition
$\lambda$ . One can show that the $M_{I}$ form the basis of a subalgebra of $K[X]$ , which has
been introduced by Gessel [40] under the name “quasi-symmetric functions”. It
will be denoted by QSym. It is naturally graded, and its homogeneous component
$QSym_{n}$ has, like $Sym_{n}$ , dimension $2^{n-1}$ . One can then define a pairing $\{$ , $\}$

between QSym and Sym by requiring

{ $M_{I},$ $ S^{J}\rangle$ $=\delta_{IJ}$ . (32)

With this at hand, one can show that QSym is actually the (graded) dual Hopf
algebra of Sym ([84], see also [33, 61]). That is,

$\langle f\otimes g, \Delta(P)\rangle=\langle fg, P\rangle$ , (33)

( $\gamma(f),$ $ P\otimes Q\rangle$ $=\langle f,$ $PQ$ }, (34)

where the comutiplication $\gamma$ of QSym maps a quasi-symmetric function $f=f(X)$
to the function $ f(X+Y)\wedge$ , where $ X+Y\wedge$ denotes the ordered sum of two disjoint
totally ordered sets, and $u(X)v(Y)$ is identified with $u\otimes v$ . Also, the antipode $\tilde{\nu}$ of
QSym, defined on the adjoint basis $(F_{I})$ of $(R_{I})$ by $\tilde{\nu}(F_{I})=(-1)^{|I|}F_{I}\sim$ , where $I^{\sim}$ is
the conjugate composition (that is, the composition obtained by reading from right
to left the heights of the columns ot the ribbon diagram of $I,$ $e.g.,$ $(321)^{\sim}=(2211))$

is the adjoint of $\tilde{\omega}$ .
The basis $(F_{I})$ , which is in some sense a quasi-symmetric analogue of the Schur

basis, has the following simple expression

$F_{I}=\sum_{J\succeq I}M_{J}$
(35)

in terms of the quasi-monomial functions $M_{J}$ .
In fact, as observed recently by Hivert [45], quasi-symmetric functions are actu-

ally symmetric, but with respect to an unusual action of the symmetric group
on polynomials. Suppose that $X=\{x_{1}, \ldots, x_{n}\}$ . Let $\mathcal{P}(X)$ (resp. $\mathcal{P}_{k}(X)$ )
be the power set (resp. the set of k-elements subsets) of $X$ . To a monomial
$m=x_{1}^{m_{1}}\cdots x_{n}^{m_{n}}$ , one associates its support $A\in \mathcal{P}(X)$ , which is the set of variables
$x_{i}$ occuring in $m$ with a nonzero exponent. Let $I$ be the composition obtained
by removing the zeros of the sequence $(m_{1}, \ldots, m_{n})$ . Then, we encode $m$ by the
symbol $A^{I}$ . The image of $m$ by a permutation $\sigma\in \mathfrak{S}_{n}$ is then

$\sigma\cdot m=(\sigma A)^{I}$ , (36)
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where $\sigma A$ denotes the image of $A$ by the usual action of permutations on subsets
of $X$ . For example, $s_{1}\cdot x_{1}x_{2}^{3}=x_{1}x_{2}^{3}$ and $s_{2}\cdot x_{1}x_{2}^{3}=x_{1}x_{3}^{3}$ .

Then, it can be shown that the quasi-symmetric polynomials are exactly the
invariants of this action of $\mathfrak{S}_{n}$ on $K[X]$ . Clearly, the quasi-monomial functions
appear as the orbit sums

$M_{I}(X)=\frac{1}{r!(n-r)!}\sum_{\sigma\in \mathfrak{S}_{n}}\sigma\cdot(\{x_{1}, \ldots, x_{r}\})^{I}$ (37)

Moreover, the quasi-symmetric Schur functions $F_{I}$ (quasi-ribbons) admit an
expression analogous to Jacobi’s original definition of Schur functions as ratios of
alternants

$s_{\lambda}(x_{1}, \ldots, x_{n})=J(x^{\lambda})$ $;=\frac{\sum_{\sigma\in \mathfrak{S}_{\mathfrak{n}}}\epsilon(\sigma)\sigma(x^{\lambda+\rho})}{\sum_{\sigma\in \mathfrak{S}_{n}}\epsilon(\sigma)\sigma(x^{\rho})}$ (38)

which is now recognized as the Weyl character formula for $gl_{n}$ . As observed by
Demazure [13] and Bernstein-Gelfand-Gelfand [4], the Jacobi-Weyl symmetrizer $J$

can be factored into a product of elementary operators

$\pi_{i}=(x_{i}-x_{i+1})^{-1}(x_{i}-x_{\iota+1}\sigma_{i})$ (39)

where $\sigma_{i}$ is the automorphism exchanging $x_{i}$ and $x_{i+1}$ . These operators satisfy
the braid relations, so that for any permutation $\sigma\in \mathfrak{S}_{n}$ , there is a well-defined
operator $\pi_{\sigma}=\pi_{i_{1}}\pi_{i_{2}}\cdots\pi_{i_{r}}$ , where $s_{\iota_{1}}s_{x_{2}}\cdots s_{\iota},$. is any reduced decomposition of $\sigma$ .
Then, if $\omega$ denotes the longest permutation of $\mathfrak{S}_{n}$ ,

$J=\pi_{\omega}$ . (40)

It is this expression that can be extended to the quasi-symmetric case. Let

$\pi_{i}^{\prime}=(x_{i}-x_{i+1})^{-1}(x_{i}-x_{i+1}\sigma_{i}^{\prime})$ (41)

where $\sigma_{i}^{\prime}(f)=s_{i}\cdot f$ is the image of $f$ under the quasi-symmetrizing action of
the elementary transposition $s_{i}$ . It can be shown that the braid relations are also
satisfied by these operators. Then $[45, 46]$ ,

$F_{I}(x_{1}, \ldots, x_{n})=\pi_{\omega}^{\prime}(x^{I})$ . (42)

Note that this result allows one to define $F_{I}$ when $I$ is not a composition, that
is, when some of the $i_{k}$ may be $0$ . The standardization rule is as follows. If
$I=$ $(i_{1}, --, i_{r}, 0, \ldots, 0)\in N^{n}$ , with $i_{r}\neq 0$ ,

$F_{I}(x_{1}, \ldots, x_{n})=(-1)^{c_{I}}\sum_{J}F_{J}(X)$
, (43)

where $c_{I}$ is the number of $k<r$ such that $i_{k}=0$ , and the sum runs over all
compositions obtained by replacing all maximal blocks 00. . . $Oj$ (with $j\neq 0$ ) of $I$
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by a composition of $j$ . If no such composition exists, the sum is understood to be
zero. For example,

$F_{005022}=$ $-F_{113112}-F_{122112}-F_{131112}$

$-F_{212112}-F_{221112}-F_{311112}$ .

Finally, since any symmetric function $f$ is in particular quasi-symmetric, one
can expand it on the various bases of QSym. A useful property is then

( $f,$ $ G\rangle$ $=(f,$ $g$ }, (44)

where on the right-hand side, $g=\underline{G}$ is the commutative image of $G$ and the
brackets denote the ordinary scalar product of symmetric functions [40].

3.4 Descent algebras and internal product

It remains to introduce one very important algebraic operation on Sym, namely,
the noncommutative analogue of the internal product $*of$ symmetric functions.
Although this operation is usually defined in terms of characters of symmetric
groups, it also has a more fundamental characterization as the dual of the natural
comultiplication $\delta(f)=f(XY)$ , where, as usual, $XY$ is the set of products $x_{i}y_{j}$

and $u(X)v(Y)$ is identified with $u\otimes v\in Sym\otimes Sym$ . Therefore, the internal
product occurs in algebraic identities such as

$\sigma(XYZ;1)$
$:=\prod_{i_{J},k}(1-x_{i}y_{j}z_{k})^{-1}=\sum_{\lambda,\mu}s_{\lambda}(X)s_{\mu}(Y)(s_{\lambda}*s_{\mu})(Z)$

(45)

which generalizes the Cauchy identity to three sets of variables.
The comultiplication $ f-\rangle$ $f(XY)$ makes sense as well for quasi-symmetric

functions, if ones takes care of the order on the product set $XY$ . That is, $X$ and
$Y$ need to be totally ordered, and one can set $x_{i}y_{j}<x_{k}y_{l}$ whenever $(i, j)<(k, l)$

for the lexicographic order. Let us denote by $ X\times Y\wedge$ the product $XY$ endowed with
this order. Then, we can extend $\delta$ from $Sym$ to QSym by setting [40]

$\delta(f)=f(X\times Y)\wedge$ . (46)

The internal product $*of$ Sym can now be defined as the dual of $\delta$ , that is,

$\langle f, P*Q\rangle=\{\delta(f),$ $ P\otimes Q\rangle$ . (47)

Clearly, each homogeneous component $Sym_{n}$ is $a*$-subalgebra. In fact. it follows
from results of Gessel [40] that this algebra is anti-isomorphic to the so-called
descent algebra $\Sigma_{n}$ of $\mathfrak{S}_{n}$ . The descent algebras have been introduced by Solomon
[101] for general finite Coxeter groups in the following way. Let $(W, S)$ be a Coxeter
system. One says that $w\in W$ has a descent at $s\in S$ if $w$ has a reduced word
ending by $s$ . For $W=\mathfrak{S}_{n}$ and $s_{i}=(i, i+1)$ , this means that $w(i)>w(i+1)$ ,
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whence the terminology. In this case, we rather say that $i$ is a descent of $w$ . Let
Des $(w)$ denote the descent set of $w$ , and for a subset $E\subseteq S$ , set

$D_{E}=\sum_{Des(w)=E}w$
$\in \mathbb{Z}W$ . (48)

Then, Solomon shows that the $D_{E}$ span a $\mathbb{Z}$-subalgebra of $\mathbb{Z}W$ . Moreover

$D_{E^{\prime}}D_{E^{\prime\prime}}=\sum_{E}c_{EE^{\prime}}^{E},D_{E}$ (49)

where the coefficients $c_{EE}^{E},$ , are nonnegative integers.
The canonical anti-isomorphism $\alpha$ : $\Sigma_{n}\rightarrow Sym_{n}$ maps the descent class $D_{E}$

to the ribbon Schur function $R_{I}$ , with $I$ such that $E=$ Des (I). From one of
Solomon’s formulas, one obtains the following multiplication rule.

Let $I=(i_{1}, \ldots, i_{p})$ and $J=(j_{1}, \ldots,j_{q})$ be two compositions of $n$ . Then,

$S^{I}*S^{J}=\sum_{M\in Mat(I,J)}S^{M}$ (50)

where Mat (I, $J$ ) denotes the set of matiices of nonnegative integers $M=(m_{ij})$ of
size $p\times q$ such that $\sum_{s}m_{rs}=i_{r}$ and $\sum_{r}m_{rs}=j_{s}$ for $r\in[1,p]$ and $s\in[1, q]$ , and
where

$S^{M}=S_{m_{11}}S_{m_{12}}\cdots S_{m_{1q}}\cdots S_{m_{p1}}\cdots S_{m_{lq}}$

Note that by definition, if $F$ and $G$ are homogeneous of different degrees, $F*G=0$ ,
and that $S_{n}$ is the unit element of $the*$-subalgebra $Sym_{n}$ .

Let $h_{\lambda}=h_{I}=\underline{S^{I}}$ and $h_{\mu}=h_{J}=\underline{S^{J}}$ be the commutative images of $S^{I}$ and
$S^{J}$ . From the known expression of $h_{\lambda}*h_{\mu}$ in the commutative case, one can see
that $(S^{I}*S^{J})=\underline{S^{I}}*\underline{S^{J}}$ , so that in general

$F*G=\underline{F}*\underline{G}$ , (51)

that is, the commutative image is a homomorphism for the internal products.
From equation (50), one derives a fundamental formula, wltose commutative

version is just a special case of the Mackey formula for the restriction of an induced
character. Let $F_{1},$ $F_{2},$

$\ldots,$
$F_{r},$ $ G\in$ Sym. Then,

$(F_{1}F_{2}\cdots F_{r})*G=\mu_{r}[(F_{1}\otimes\cdots\otimes F_{r})*\triangle^{r}G]$ (52)

where in the right-hand side, $\mu_{r}$ denotes the r-fold ordinary multiplication and $*$

stands for the operation induced on $Sym^{\otimes n}by*[33]$ .
In the commutative case, the power-sums $p_{n}$ and more generally the power-

sum products are quasi-idempotents (i.e., idempotents up to a scalar factor) for
the internal product. Precisely,

$p_{\mu}*p_{\mu}=z_{\mu}p_{\mu}$ (53)
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where for $\mu=(1^{m_{1}}2^{m_{2}}\cdots n^{m_{n}}),$ $z_{\mu}=\prod_{i}i^{m_{\iota}}\cdot m_{i}$ !. Therefore, the commutative im-
ages of noncommutative power sums and their products are quasi-idempotents, and
one may wonder whether there are true quasi-idempotents among them. Thanks
to the anti-isomorphism $\alpha$ with the descent algebra, we could then use them to
construct idempotents in the group algebras of symmetric groups.

As an illustration of the formalism, let us try this program with the power
sums $\Psi_{n}$ . We want to know whether $\Psi_{n}*\Psi_{n}=n\Psi_{n}$ . To this end, we can write a
generating function for $the*$-squares in the form

$\sum_{n\geq 1}(xy)^{n-1}(\Psi_{n}*\Psi_{n})=\psi(x)*\psi(y)$
, (54)

since $\Psi_{i}*\Psi_{j}=0$ for $i\neq j$ . Now, writing (22) in the form

$\psi(t)=\sum_{n\geq 1}t^{n-1}\Psi_{n}=\lambda(-t)\sigma^{\prime}(t)$

and applying the splitting formula (52), we get

$\sum_{n\geq 1}(xy)^{n-}1$
$(\Psi_{n}*\Psi_{n})$ $=$ $\lambda(-x)\sigma(x)*\psi(y)$

$=$ $\mu[(\lambda(-x)\otimes\sigma^{\prime}(x))*(\psi(y)\otimes 1+1\otimes\psi(y))]$

$=$ $\mu[(\lambda(-x)*1)\otimes(\sigma(x)*\psi(y))]$ ,

(since $\sigma(x)$ has no degree zero terms)

$=(\sum_{n\geq 1}nx^{n-1}S_{n})*(\sum_{n\geq 1}y^{n-1}\Psi_{n})=\sum_{n\geq 1}(xy)^{n-1}n\Psi_{n}$ ,

the last equality following from the fact that $S_{n}*F=F$ for $F\in Sym_{n}$ .
Hence, $\Psi_{n}*\Psi_{n}=n\Psi_{n}$ , so that $\theta_{n}=\alpha^{-1}(\Psi_{n})$ is a quasi-idempotent of $\Sigma_{n}$ .

To see what it looks like, we have to expand $\Psi_{n}$ on the ribbon basis. The linear
recurrence (21) together with the multiplication formula for ribbons (27) (recall
that $S_{k}=R_{k}$ ) easily yields

$\Psi_{n}=R_{n}-R_{1,n-1}+R_{1,1,n-2}-\cdots=\sum_{k=0}^{n-1}(-1)^{k}R_{1^{k},n-k}$ , (55)

which is analogous to the classical expression of $p_{n}$ as the alternating sum of hook
Schur functions. Therefore, in the descent algebra,

$\theta_{n}=\sum_{k=0}^{n-1}(-1)^{k}D_{\{1,2,\ldots,k\}}$ . (56)
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On this expression, we can recognize a famous element of the group algebra of
the symmetric group, namely, Dynkin’s left-bracketing operator [21] (see also [102,
111, 30, 2, 96]). The standard left bracketing of a word $w=x_{1}\prime x_{2}\cdots x_{n}$ is the Lie
polynomial

$L_{n}(w)=[\cdots[[[x_{1},x_{2}],$ $x_{3}$ ]
$,$

$x_{4}$ ]
$,$ $\ldots,$

$x_{n}$]. (57)

This formula defines a linear operator $L_{n}$ on the homogeneous component $K_{n}\{A\rangle$

of the free associative algebra $K(A$}. In terms of the right action of the symmetric
group $\mathfrak{S}_{n}$ on $K_{n}(A$ }, defined on words by

$x_{1}x_{2}\cdots x_{n}\cdot\sigma=x_{\sigma(1)}x_{\sigma(2)}\cdots x_{\sigma(n)}$ . (58)

one can write
$L_{n}(w)=\sum_{\sigma\in \mathfrak{S}_{n}}a_{\sigma}(w\cdot\sigma)=w\cdot\theta_{n}$

the coefficient $a_{\sigma}being\pm 1$ or $0$ , according to whether $\sigma$ is a “hook permutation”
or not. To see this, one has only to write the permutations appearing in the first
$\theta_{i}$ as ribbon tableaux and then to argue by induction. For example,

32 3
$\theta_{3}=[[1,2],$ $3$] $=123-$ $-$ $+2$1 3 1 2 1

and it is clear that when expanding $\theta_{4}=[\theta_{3},4]$ one will only get those (signed)
tableaux obtained from the previous ones by adding 4 at the end of the last row,
minus those obtained by adding 4 on the top of the first column. Thus, we have
proved that $\frac{1}{n}L_{n}$ is a projector, whose image is obviously a subspace of the free
Lie algebra. By iteration of Jacobi’s identity, it is easy to see that any Lie element
can be written as a linear combination of standard left bracketings, so that what
we have actually obtained is a proof of Dynkin’s characterization of Lie elements:
a noncommutative homogeneous polynomial $ P\in K_{n}(A\rangle$ is a Lie polynomial if and
only if $L_{n}(P)=nP[21,96,7]$ .

Idempotents such as $\frac{1}{n}\theta_{n}$ , acting as projectors onto the free Lie algebra are
usually called Lie idempotents [30, 2, 96]. They play an important role in the
analysis of the Hausdorff series, or as the building blocks of other idempotents,
such as the Eulerian idempotents, used in Hodge-type decompositions of certain
cohomology theories (see [39, 75, 77, 92, 90, 91]).

So far, our formalism has just led us to an exotic proof of a classical result.
Let us now see whether the method contains the germ of some generalization. One
ingredient in our proof was the analogue (55) of the expansion of a power sum
as an alternating sum of hook Schur functions. This expression has a well known
q-analogue, namely, the one involved in the character formula for Hecke algebras
(1). It can be written in the form

$\frac{h_{n}((1-q)X)}{1-q}=\sum_{k=0}^{n-1}(-q)^{k}s_{n-k,1^{k}}$ . (59)
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Let us look for a noncommutative analogue of this expression. To this aim, it will
be convenient to extend as much as possible the $\lambda$-ring notation of the classical
theory. Given two totally ordered sets $A$ and $B$ of noncommuting variables, we can
define the virtual alphabet $A-B$ by specifying its complete symmetric functions
$S_{n}(A-B)$ . Their generating series is defined by

$\sigma(A-B;t)$ $:=\lambda(B;-t)\sigma(A;t)$ . (60)

$OnealsodefinesthesymmetricfunctionsofA+Bby$

$\sigma(A+B;t)$ $:=\sigma(A;t)\sigma(B;t)$ (61)

where now, $A$ and $B$ can be either real or virtual, and for a real ordered commu-
tative alphabet $X$ , the virtual alphabet $XA$ is defined by

$\sigma(XA;t)=\prod_{i\geq 1}\sigma(A, tx_{i})$
. (62)

These definitions imply a definition of quasi-symmetric functions of a difference
$f(X-Y)$ , which is the same as the one obtained by composing the comultipli-
cation and the antipode, and we can now give a meaning to the noncommutative
symmetric functions of all virtual alphabets cf the type $(X\pm Y)(A\pm B)$ .

The case we have in mind corresponds to $X=\{1\}$ and $Y=\{q\}$ . According to
our definitions,

$\sigma((1-q)A;t)$ $=\sigma(A-qA;t)=\lambda(qA;-t)\sigma(A;t)$

$=\sum_{k\geq 0}t^{k}(-q)^{k}\Lambda_{k}(A)\sum_{l\geq 0}t^{l}S_{l}(A)$ .

Taking into account the fact that $\Lambda_{k}=R_{1^{A}}$ and applying the multiplication rule
for ribbons, we obtain

$S_{n}((1-q)A)=(1-q)\sum_{k=0}^{n-1}(-q)^{k}R_{1^{k},n-k}$ , (63)

the q-analogue we were looking for. The symmetric function

$\Theta_{n}(q)$ $;=\frac{S_{n}((1-q)A)}{1-q}$ (64)

corresponds to a natural q-analogue of Dynkin’s element in the descent algebra.
Indeed, writing permutations as words in the letters 1, 2, . . . , $n$ , it is easy to see
that the image of $\Theta_{n}(q)$ under the isomorphism $\alpha^{-1}$ is the left q-bracketing of the
standard word 12. . . $n$ , that is,

$\alpha^{-1}(\Theta_{n}(q))=\theta_{n}(q)=[[\ldots[[1,2]_{q},$ $3]_{q},$ $\ldots]_{q},$ $n]_{q}$
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where $[R, S]_{q}=RS-qSR$ . Now, we can prove the following q-analog of Dynkin’s
theorem, which, according to what we have already seen, can be understood as
describing the left q-bracketing of a homogeneous Lie polynomial:

$\Theta_{n}(q)*\Psi_{n}=[n]_{q}\Psi_{n}$ . (65)

The proof works exactly as the previous one. Let

$\theta(t)=\sum_{n\geq 1}\Theta_{n}(q)t^{n-1}=\frac{\sigma((1-q)A;t)-1}{(1-q)t}$ (66)

It is easy to see that
$\theta(t)=\lambda(A;-qt)\sigma_{q}^{\prime}(A;t)$ (67)

where $\sigma_{q}^{\prime}$ denotes the the q-derivative

$\sigma_{q}^{\prime}(t)$ $;=\frac{\sigma(t)-\sigma(qt)}{(1-q)t}$ (68)

with respect to $t$ . Then, one can write

$\theta(t)*\Psi_{n}=\mu((\lambda(A;-qt)\otimes\sigma_{q}(A;t))*\triangle(\Psi_{n}))$

$=\mu((\lambda(A;-qt)\otimes\sigma_{q}^{\prime}(A;t))*(1\otimes\Psi_{n}+\Psi_{n}\otimes 1))$ ,
which implies that

$\theta(t)*\Psi_{n}=(\lambda(A;-qt)*1)(\sigma_{q}^{\prime}(A;t)*\Psi_{n})=\lfloor n]_{q}\Psi_{n}t^{n-1}$

Equation (65) means that homogeneous Lie polynomials of degree $n$ are again
eigenvectors of the left q-bracketing operator, now with the q-integer $[n]_{q}$ as eigen-
value. They actually constitute the $[n]_{q}$ eigenspace. However, the q-Dynkin ele-
ment $\theta_{n}(q)$ is invertible in the group algebra for generic values of $q$ , and its other
eigenvalues are nonzero. It would therefore be of interest to investigate its spectral
decomposition. This will be done in Section 5

In the last two examples, we have been interpreting noncommutative symmetric
functions as linear operators on the free algebra $K\langle A\rangle$ , by means of the identification
of $Sym_{n}$ with $\Sigma_{n}$ and of the right action of permutations. If we extend the action
of $\sigma\in \mathfrak{S}_{n}$ to all words by deciding that $w\sigma=0$ if $w$ is not of length $n$ , we obtain
in this way a representation

$\rho$ : $Sym\rightarrow End^{gr}(K\langle A\rangle)$ (69)

where End is the algebra of degree-preserving endomorphisnl. Under the repre-
sentation $\rho$ , the internal product $*is$ mapped to the composition $\circ$ , and, as shown
by Reutenauer [96], the ordinary product becomes the convolution product $\star$ of
End $(K\{A\})$ , which is defined by

$f\star g=m\circ(f\otimes g)\circ C$ (70)

where $m$ : $ u\otimes v-\rangle$ $uv$ is the multiplication map of $K\langle A\rangle$ and $C$ is its standard
comultiplication, defined by $C(x)=x\otimes 1+1\otimes x$ for $x\in A$ and $C(uv)=C(u)C(v)$ .
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4 Representation theoretical interpretations

The noncommutative ribbon Schur functions $R_{I}$ and the quasi-symmetric func-
tions $F_{I}$ share many properties with ordinary Schur functions. In particular, the
structure constants of Sym and QSym in these bases are nonnegative integers.
This suggests the existence of representation theoretical interpretations of these
generalized symmetric functions. Such interpretations have actually been found
[20, 18, 62, 63], and turned out to be related to the specialization $q=0$ in certain
q-deformations of the classical structures related to Schur functions.

4.1 The O-Hecke algebra

The first intepretation involves the type $A$ Hecke algebras $H_{n}(q)$ at $q=0$ . Recall
that when $q$ is a generic complex number, i.e. neither zero nor a root of unity, the
$H_{n}(q)$ are semi-simple (in fact isomorphic to $\mathbb{C}\mathfrak{S}_{n}$ ) and the direct sum

$\mathcal{R}(q)=\bigoplus_{n\geq 0}R(H_{n}(q))$
(71)

where $R(H_{n}(q))$ is the vector space spanned by isomorphism classes $[M]$ of finite
dimensional $H_{n}(q)$ -modules, with addition induced by direct sum, can be identified
with $Sym$ , the simple modules $S_{\lambda}(q)$ (q-Specht modules) being represented by
Schur functions. This defines a characteristic map ch : $R(H_{n}(q))\rightarrow Sym_{n}$ . The
usual product of symmetric functions corresponds then to induction from $H_{m}\otimes H_{n}$

to $H_{m+n}$ , i.e., for $\lambda\vdash m$ and $\mu\vdash n$ ,

ch $(S_{\lambda}(q)\otimes S_{\mu}(q)\uparrow_{H,,,(q)\otimes H_{n}(q)}^{H_{7\prime\iota+n}(q)})=s_{\lambda}s_{\mu}$ . (72)

This statement summarizes a good deal about the representation theory of Hecke
algebras in the generic case.

For non generic values of the parameter, when $H_{n}(q)$ is not semi-simple, it is
a difficult task to describe $R(H_{n}(q))$ as defined above, since this would amount
to understand all the indecomposable representations up to isomorphism. The
usual strategy to investigate a non semi-simple algebra $\mathcal{A}$ is to introduce two kinds
of Grothendieck groups (cf. [11]). The first one, usually denoted by $G_{0}(\mathcal{A})$ is the
quotient of $R(\mathcal{A})$ by the relations $[M]=[M^{\prime}]+[M^{\prime}]$ whenever there is a short exact
sequence $0\rightarrow M^{\prime}\rightarrow M\rightarrow M^{\prime}\rightarrow 0$ . In $G_{0}(\mathcal{A}),$ $[M]=[N]$ whenever $\Lambda f$ and $N$ have
the same simple composition factors, occuring with the same multiplicities. The
second one, denoted by $K_{0}(\mathcal{A})$ , is the free abelian group generated by isomorphism
classes of finite dimensional projective A-modules. Here, addition corresponds to
direct sum. In the sequel, we will rather mean by $G_{0}$ and $K_{0}$ the complexified
Grothendieck groups.

A particularly interesting example of this situation occurs for $\mathcal{A}=H_{n}(\zeta)$ , where
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$\zeta$ is a primitive k-th root of unity. Then, the direct sums

$\mathcal{G}(\zeta)=\bigoplus_{n\geq 0}G_{0}(H_{n}(\zeta))$
and

$\mathcal{K}(\zeta)=\bigoplus_{n\geq 0}K_{0}(H_{\eta}(\zeta))$
(73)

can be respectively identified with a quotient and with a subalgebra of $Sym$ . Pre-
cisely, if we denote by $\mathcal{J}_{k}$ the ideal of $Sym$ generated by the power sums $p_{nk},$ $n\geq 1$ ,
and by $S_{k}$ the subalgebra generated by the $p_{m}$ such that $m\not\equiv Omod k$ , then

$\mathcal{G}(\zeta)\simeq Sym/\mathcal{J}_{k}$ and $\mathcal{K}(\zeta)\simeq S_{k}$ . (74)

The characteristic map ch : $\mathcal{G}(\zeta)\neg Sym/\mathcal{J}_{k}$ realizing the first isomorphism is
compatible with the previous one, in the sense that the specialized Specht module
$S_{\lambda}(\zeta)$ is mapped to the class $\overline{s}_{\lambda}=s_{\lambda}$ mod $\mathcal{J}_{k}$ . The induction formula remains
valid, too, but this does not tell us that much about the representation theory of
$H_{n}(\zeta)$ . This is because $S_{\lambda}(\zeta)$ is usually not irreducible, and essential information
is contained in the multiplicities $d_{\lambda\mu}$ of its simple composition factors $D_{\mu}$ . These
numbers are called the decomposition numbers, and they form the decomposition
matrix of $H_{n}(\zeta)$ . These matrices have been determined only quite recently [67,
1], the starting point being the identification of $\mathcal{G}(\zeta)$ and $\mathcal{K}(\zeta)$ with the basic
representation of the affine Lie algebra $ sl_{k}\wedge$ . In principle, these numbers could also
be obtained by Schur-Weyl duality from the Lusztig conjecture [79] proved by
Kazhdan and Lusztig $[54, 55]$ and Kashiwara and Tanisaki [53].

On the other hand, the non semi-simple Hecke algebras $H_{n}(0)$ are quite well-
understood. The representation theory of O-Hecke algebras for general type has
been worked out by Norton [88], and special combinatorial features of type $A$ have
been described by Carter [9].

There are $2^{n-1}$ simple $H_{n}(0)$-modules, which are all one-dimensional $[9, 88]$ .
To see this, one has first to observe that $(T_{i}T_{i+1}-T_{i+1}T_{i})^{2}=0$ . This is easily
shown to imply that the commutators $[T_{i}, T_{j}]$ are in the radical of $H_{n}(0)$ . But
the quotient of $H_{n}(0)$ by the ideal generated by these elements is the commutative
algebra generated by $n-1$ elements $t_{1},$

$\ldots,$
$t_{n-1}$ such that $t_{l}^{2}=-t_{i}$ . It is easy to

check that this algebra has no nilpotent elements, so that it is $H_{n}(0)/rad(H_{n}(0))$ .
The irreducible representations are obtained by sending a set of generators to $-1$

and its complement to $0$ . We shall label these representations by compositions of
$n$ rather than by subsets of generators. Let $I$ be a composition of $n$ and let Des (I)
the associated subset of $\{1, \ldots, n-1\}$ . The irreducible representation $\varphi_{I}$ of $H_{n}(0)$

is defined by

$\varphi_{I}(T_{i})=\left\{\begin{array}{ll}-1 & if i\in Des(I),\\0 & if i\not\in Des(I).\end{array}\right.$ (75)

The corresponding $H_{n}(0)$-module is denoted by $C_{I}$ . These modules (when $I$ runs
over all compositions of n) form a complete system of simple $H_{n}(0)$-modules.

The direct sum of the Grothendieck groups

$\mathcal{G}(0)=\bigoplus_{n\geq 0}G_{0}(H_{n}(0))$
(76)
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has therefore a canonical basis, the classes $[C_{I}]$ of the simple modules, which is
naturally labelled by compositions. One may then look for a characteristic map
with values in Sym or in QSym. The correct choice is to identify $\mathcal{G}(0)$ with the
algebra of quasi-symmetric functions, the characteristic map being given by

ch $([C_{I}])=F_{I}$ . (77)

This map is again compatible with the characteristic map of the generic case. One
has a decomposition map $d$ : $\mathcal{G}(q)\rightarrow \mathcal{G}(O)$ sending the class $[S_{\lambda}(q)]$ of a generic
Specht module to the class $[S_{\lambda}(O)]$ of its O-specialization, which is usually not
irreducible, nor even semi-simple. The choice (77) has the property that

ch $\circ d=ch$ (78)

that is, ch $(S_{\lambda}(O))=s_{\lambda}$ , regarded as a quasi-symmetric function.
From this, we can easily recover Carter’s combinatorial description of the de-

composition matrix of $H_{n}(0)$ . The multiplicity $d_{\lambda I}$ of the simple module $C_{I}$ as a
composition factor of $S_{\lambda}(O)$ is equal to the coefficient of $F_{I}$ in the quasi-symmetric
expansion

$s_{\lambda}=\sum_{I}d_{\lambda I}F_{I}$
(79)

so that by duality, $d_{\lambda I}=\langle s_{\lambda}$ , $R_{I}$ }, and by (44), this is equal to the ordinary scalar
product of symmetric functions $\{s_{\lambda}, r_{I}\}$ . By the Littlewood-Richardson rule, this
is the number of Yamanouchi words $y$ of weight $\lambda$ and ribbon shape $I$ , i.e., such
that Des $(y)=$ Des (I). These Yamanouchi words can be encoded by standard
tableaux of shape $\lambda$ , for example by their Q-symbols in the Robinson-Schensted
correspondence. These are exactly the tableaux obtained by Carter in [9].

The characteristic map at $q=0$ is also compatible with the induction product,
that is, once again,

ch $([M\otimes N]\uparrow_{H_{7’\iota}(0)\otimes H_{n}(0)}^{H_{\iota+n},(0)})=ch([M])ch([N])$ (80)

In particular, the composition factors of the induction product of two simple mod-
ules $C_{I}$ and $C_{J}$ are described by the product $F_{I}F_{J}$ , which is given by an interesting
combinatorial formula.

To state it, let us first define the shape composition $I=C(\sigma)$ of a permutation
$\sigma$ as the unique composition of $n$ such that Des $(\sigma)=Des(I)$ . Now, suppose that
$|I|=m$ and $|J|=n$ . Take any permutation $\alpha\in \mathfrak{S}_{m}$ such that $C(\alpha)=I$ and any
permutation $\beta\in \mathfrak{S}_{n}$ such that $C(\beta)=J$ . We consider permutations as words on
the letters 1, 2, . . ., and we denote by $\beta[m]$ the shifted word

$\beta[m]=(\beta_{1}+m)\cdot(\beta_{2}+m)\cdots(\beta_{n}+m)$ . (81)

Recall that the shuff, $e$ product on words is defined inductively by

$auU\rfloor bv=a(uU\lrcorner bv)+b(auU\rfloor v)$ , $a,$ $b\in Au,$ $v\in A^{*}$ (82)
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(where $A^{*}$ is the set of words on the alphabet $A$ ) the initial condition being that
the empty word is the unit element. The product formula is then [83]

$F_{I}F_{J}=\sum_{\sigma}$
( $\alpha$ Lu $\beta[m],$ $\sigma$ ) $F_{C(\sigma)}$ (83)

where $(\alpha\coprod\lrcorner\beta[m], \sigma)$ denotes the coefficient of $\sigma$ in $\alpha$ LLI $\beta[m]$ .
The simple modules can be realized as minimal left ideals of $H_{n}(0)$ . To describe

the generators, we associate with a composition $I$ of $n$ two permutations $\alpha(I)$ and
$\omega(I)$ of $\mathfrak{S}_{n}$ defined as follows. The permutation $\alpha(I)$ is obtained by filling the
columns of the ribbon diagram of $I$ from bottom to top and from left to right with
the numbers 1, 2, . . . , $n$ , and $\omega(I)$ is the permutation obtained by filling the rows
of the same diagram from left to right and from bottom to top with 1, 2, . . . , $n$ .

For example, with $I=$ (22113), the fillings of the diagram corresponding to
$\alpha(I)$ and $\omega(I)$ are

$\alpha(22113)$ $\omega(22113)$

Thus $\alpha(22113)=132765489$ and $\omega(22113)=896754123$ .

Let us now set $\coprod_{i}=1+T_{i}$ . These elements verify the braid relations, together
with $\coprod_{i}^{2}=\coprod_{i}$ . As the $\coprod_{i}$ satisfy the braid relations, one can as usual associate to
each permutation $\sigma\in \mathfrak{S}_{n}$ the element $\coprod_{\sigma}$ of $H_{n}(0)$ defined by $\square _{\sigma}=\coprod_{i_{1}}\ldots\coprod_{i_{f}}$

where $\sigma_{i_{1}}\ldots\sigma_{i_{r}}$ is an arbitrary reduced decomposition of $\sigma$ .
For a composition $I=(i_{1}, \ldots, i_{r})$ we denote by $\overline{I}=(i_{r}, \ldots, i_{1})$ its mirror image

$e.g.,$ $\overline{(3,2,1)}=(1,2,3)$ .
Then, the simple $H_{n}(0)$ module $C_{I}$ is isomorphic tc the minimal left ideal

$H_{n}(0)\eta_{I}$ , where
$\eta_{I}=T_{\omega(\overline{I})}\coprod_{\alpha(I^{\sim})}$ . (84)

Let us now look at the $K_{0}$ -groups of the O-Hecke $algebra\sim s$ . The indecompos-
able projective $H_{n}(0)$-modules have also been classified $b$} Norton (cf. [9, 88]).
From the general theory of finite dimensional algebras, one knows that for each
simple module $S$ , there is a unique indecomposable projective module $M$ such that
$S=M/rad(M)$ . Thus, one associates to each composition $I$ of $n$ the unique in-
decomposable projective $H_{n}(0)$-module $M_{I}$ such that $M_{I}/rad(M_{I})\simeq C_{I}$ . The
canonical duality between $G_{0}(\mathcal{A})$ and $K_{0}(\mathcal{A})$ , defined by the pairing

\langle $N,$ $M$ } $=\dim Hom_{A}(M, N)$ (85)
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tells us that the direct sum of Grothendieck groups

$\mathcal{K}(0)=\bigoplus_{n\geq 0}K_{0}(H_{n}(0))$
(86)

has to be identified with the algebra of noncommutative symmetric functions. The
functorial duality between induction and restriction implies that the characteristic
map

Ch : $\mathcal{K}(0)\rightarrow Sym$ (87)
$[M_{I}]\mapsto R_{I}$ (88)

is a ring homomorphism, i.e.,

Ch $(M_{I}\otimes M_{J}\uparrow_{H_{m}(0)\otimes H_{n}(0)}^{H_{n\iota+n}(0)})=R_{I}R_{J}=R_{I\cdot J}+R_{I\triangleright J}$ . (89)

The $M_{I}$ are the indecomposable summands of the left regular representation.
As a left ideal, $M_{I}=H_{n}(0)\nu_{I}$ where

$\nu_{I}=T_{\alpha(I)}\square _{\alpha(\overline{I}^{\sim})}$ . (90)

Since $\alpha(I^{\sim})^{-1}=\omega_{n}\omega(\overline{I})$ (where $\omega_{n}=(n,$ $n-1,$
$\ldots,$

$2,1)$ ), one gets Des $(\alpha(\overline{I}^{\sim})^{-1})=$

$[1, n-1]$ –Des (I). It follows that the generator $\nu_{I}$ of $M_{I}$ is different from $0$ and
that a basis of $M_{I}$ is

{ $T_{\sigma}\square _{\alpha(\overline{I}^{\sim})}$ , Des $(\sigma)=Des(I)$ } $=\{T_{\sigma}\square _{\alpha(\overline{I}^{\sim})}, \sigma\in[\alpha(I), \omega(I)]\}$ (91)

Hence, the dimension of $M_{I}$ is equal to the cardinality of the descent class

$[\alpha(I), \omega(I)]=\{\sigma|C(\sigma)=I\}$ .

The family $(M_{I})_{|I|=n}$ forms a complete system of indecomposable projective $H_{n}(0)-$

modules, and the decomposition of the left regular representation

$H_{n}(0)=\bigoplus_{|I|=n}M_{I}$
(92)

is multiplicity free.
As an illustration, let us take $I=(1,1,2)$ . Then $I^{\sim}=(1,3),$ $\overline{I}=(2,1,1)$ ,

$\overline{I}^{\sim}=(3,1),$ $\alpha(I)=3214$ and $\alpha(\overline{I}^{\sim})=1243$ . Hence $\nu_{112}=T_{2}T_{J}T_{2}\coprod_{3}$ . The
module $M_{112}$ is described by the following graph. An arrow labelled $T_{i}$ going from
$f$ to $g$ means that $T_{i}\cdot f=g$ , and a loop on the vertex $f$ labelled $ T_{i}|\epsilon$ (with $\epsilon=0$

or $\epsilon=-1$ ) means that $T_{i}\cdot f=\epsilon f$ .
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This is also the graph of the interval $[3214, 4312]=D_{112}$ in the permutohedron of
$\mathfrak{S}_{4}$ . The (-l)-loops at a vertex correspond to the descents of the inverse of the
permutation labelling this vertex.

Let $M$ be a finite-dimensional $H_{n}(0)$-module, and consider a composition series,
i.e. a decreasing sequence $M=M_{1}\supseteq M_{2}\supseteq\cdots\supseteq M_{k}\supseteq M_{k+1}=0$ , such that
each $M_{i}/M_{i+1}$ is simple. Then, ch $(M)=\sum_{i}$ ch $(M_{i}/M_{i+1})$ . One can refine the
characteristic ch $(M)$ into a graded version (a q-analogue), at least when $M$ is a
cyclic module i.e. when $M=H_{n}(0)e$ . In this case, the length filtration

$H_{n}(0)^{(k)}=\bigoplus_{l(\sigma)\geq k}\mathbb{C}T_{\sigma}$

of the O-Hecke algebra induces a filtration $(M^{(k)})_{k\in N}$ of $\Lambda f$ , defined by $M^{(k)}=$

$H_{n}(0)^{(k)}e$ (since $T_{i}^{2}=-T_{i},$ $H_{n}(0)^{(k)}$ is a two-sided ideal). This suggests to define
the graded chamcteristic ch $q(M)$ of $M$ by

ch
$q(M)=\sum_{k\geq 0}q^{k}$

ch $(M^{(k)}/M^{(k+1)})$ .

The ordinary characteristic ch $(M)$ is then the specialization of ch $q(M)$ at $q=1$ .
The graded characteristic is in particular defined for the modules induced by

tensor products of simple l-dimensional modules

$M_{I_{1},\ldots,I_{r}}=C_{I_{1}}\otimes\cdots\otimes C_{I_{\Gamma}}\uparrow_{H_{\iota_{1}}(0)\otimes\cdot\otimes H_{n_{\gamma}}(0)}^{H_{n_{1}+\cdot+n}.’.\cdot(0)}$ ,

whose characteristics are the products $F_{I_{1}}\cdots F_{I_{r}}$ . The induction formula can be
refined by taking into account the filtrations, and this leads to a q-analogue of
the algebra of quasi-symmetric functions. This q-analogue is defined in terms of
the q-shuffle product [18]. Let $A$ be an alphabet and let $q$ be an indeterminate
commuting with $A$ . The q-shuffle is the bilinear operation of $N[q](A)$ denoted by
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$L\perp\rfloor_{q}$ and recursively defined on words by the relations

$\left\{\begin{array}{l}1U\lrcorner_{q}u=uU\rfloor_{q}1=u,\\(au) U\rfloor_{q}(bv)=a(uL\perp\rfloor_{q}bv)+q^{|au|}b (a uu\rfloor_{q}v),\end{array}\right.$

where 1 is the empty word, $u,$ $v\in A^{*},$ $a,$ $b\in A$ and $|w|$ denotes the length of a word
$w$ . One can show that $U\rfloor_{q}$ is associative (cf. [18]).

For example, let $M_{(11),(2)}$ denote the $H_{4}$ (O)-module obtained by inducing to
$H_{4}(0)$ the $H_{2}(0)\otimes H_{2}$ (O)-module $C_{11}\otimes C_{2}$ , identifying $H_{2}(0)\otimes H_{2}(0)$ with the
subalgebra of $H_{4}(0)$ generated by $T_{1}$ and $T_{3}$ . This $H_{4}$ (O)-module is generated by
a single element $e$ on which $T_{1}$ and $T_{3}$ act by $T_{1}\cdot e=-e$ and by $T_{3}\cdot e=0$ .
The following graph gives a complete description of this module. The vertices
correspond to a basis of $M_{(11),(2)}$ formed by the images of $e$ under the action of
some elements of $H_{4}(0)$ .

The graph is graded by the distance $d(f)$ of a vertex $f$ to the origin $e$ as indicated
on the picture. This grading is precisely the one described by ch $q$ . That is, if we
associate with each vertex $f$ the composition $I(f)$ of 4 whose associated subset of
$[1, 3]$ is $D(f)=\{i\in[1,3]|T_{i}\cdot f=-f\}$ , we find

ch
$q(M_{(11,2)})=\sum_{f}q^{d(f)}F_{I(f)}=F_{13}+qF_{22}+q^{2}(F_{112}+F_{31})+q^{3}F_{121}+q^{4}F_{211}$ .
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This equality can also be read on the q-shuffle of 21 and 34:

$21U\lrcorner_{q}34=2134+q2314+q^{2}2341+q^{2}3214+q^{3}3241+q^{4}$ 3421.

One obtains the graded characteristic by replacing each permutation $\sigma$ in this
expansion by the quasi-symmetric function $F_{C(\sigma)}$ .

This example illustrates the general fact that the graded characteristic of an
induced module as above is always given by a q-shuflle. As this is an associative
operation, one obtains in this way a q-deformation of the ring of quasi-symmetric
functions [20, 18, 62, 106]. More precisely, let $I$ and $J$ be compositions of $m$ and $n$ .
Let also $\alpha\in \mathfrak{S}_{m}$ and $\beta\in \mathfrak{S}_{n}$ be such that $C(\alpha)=I$ and $C(\beta)=J$ . The $H_{m+n}(0)-$

module obtained by inducing to $H_{m+n}(0)$ the $H_{m}(0)\otimes H_{n}(0)$-module $C_{I}\otimes C_{J}$ is
cyclic, and its canonical filtration is described by its graded characteristic, given
by

ch
$q(C_{I}\otimes C_{J}\uparrow_{H_{1},(0)\otimes H_{n}(0)}^{H_{\iota+n},(0)})=\sum_{\sigma\in \mathfrak{S},1\iota+n}(\alpha\coprod\rfloor_{q}\beta[m], \sigma)F_{C(\sigma)}$

. (93)

The algebra $QSym_{q}$ of quantum quasi-symmetric functions [106] can now be
defined as the associative algebra with generators $F_{I}$ labelled by all compositions,
and multiplication rule

$F_{I}F_{J}=\sum_{\sigma}(\alpha Lu_{q}\beta[m], \sigma)F_{C(\sigma)}$ (94)

given by the natural q-analogue of (83).
This algebra is not commutative, and it is free for generic $q$ . In this case, it

is isomorphic to the algebra of noncommutative symmetric functions. The natural
isomorphism $Sym\rightarrow QSym_{q}$ , denoted by $ P-\rangle$ $\hat{P}$ , is given by $\hat{S}_{n}=F_{n}$ . Therefore,
Sym gets identified with a q-analogue of its dual. This suggest to define a scalar
product on $QSym_{q}$ by

$(F_{I}|\hat{R}_{I})=\delta_{IJ}$ . (95)

The scalar products $(\hat{R}_{I}|\hat{R}_{J})$ are then q-analogues of the Cartan invariants of $H_{n}(0)$

(i.e., the multiplicities of the simple composition factors $C_{I}$ in the indecomposable
projective modules $M_{J}$ ), and one can show that they describe, up to a shift, their
canonical filtrations.

When $q$ is a root of unity, the isomorphism breaks down, and the scalar product
degenerates. There are, however, other singular values of $q$ which are still not
understood.

The quantum quasi-symmetric functions can also be reali.$\prime_{\lrcorner}ed$ as a subalgebra of
the quantum polynomial ring $\mathbb{C}_{q}[X]$ , generated by variables $x_{\iota}$ such that $x_{j}x_{i}=$

$qx_{z}x_{j}$ for $j>i[106]$ .
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4.2 The O-quantum $GL_{n}$

We shall now look for an analogue of the interpretation of Schur functions as
characters of polynomial representations of general linear groups. Polynomial rep-
resentations are dual to comodules over the Hopf algebra $\mathbb{C}[GL_{n}]$ of polynomial
functions on the algebraic group $GL_{n}$ , and one may think of putting $q=0$ in the
quantized function algebra $GL_{q}(n)=\mathbb{C}_{q}[GL_{n}]$ . However, the standard version of
this algebra [24] involves factors such as $q-q^{-1}$ in its defining relations, and can-
not be defined at $q=0$ . One has to use a different version, introduced by Dipper
and Donkin [15], which is also a specialization of the two-parameter quantization
defined by Takeuchi [105].

Let
$V=\bigoplus_{i=1}^{n}\mathbb{C}(q)e_{i}$ (96)

be the $\mathbb{C}(q)$-vector space with basis $(e_{i})$ . The right action of $\mathfrak{S}_{N}$ on $V^{\otimes N}$ is defined
as usual by $v_{1}\otimes\cdots\otimes v_{N}\sigma=v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma(N)}$ . Let $v=e_{k_{1}}\otimes\cdots\otimes e_{k_{N}}$ . Following
$[51, 15]$ , one defines a right action of $H_{N}(q)$ on $V^{\otimes N}$ by

$\left\{\begin{array}{ll}v\cdot T_{i} & = v\sigma_{i} if k_{i}<k_{i+1},\\v\cdot T_{i} & = qv if k_{i}=k_{i+1},\\v\cdot T_{i} & = qv\sigma_{i}+(q-1)v if k_{i}>k_{i+1}.\end{array}\right.$ (97)

The quantum matrix algebra $A_{q}(n)$ is defined as the $\mathbb{C}(q)$ -algebra generated by
the $n^{2}$ elements $(x_{ij})_{1\leq i,j\leq n}$ subject to the relations

$\left\{\begin{array}{ll}x_{jk}x_{il} & = qx_{il}x_{jk} for i<j, k\leq l,\\x_{ik}x_{il} & = x_{il}x_{ik} for every i, k, l,\\x_{jl}x_{ik}-x_{ik}x_{jl} & = (q-1)x_{il}x_{jk} for i<j, k<l.\end{array}\right.$

This is the quantization of the Hopf algebra of polynomial functions on the variety
of $n\times n$ matrices introduced by Dipper and Donkin in [15]. It is not isomorphic to
the classical quantization of Faddeev-Reshetikin-Takhtadzhyan [24], and although
for generic values of $q$ both versions play essentially the same role, an essential
difference is that the Dipper-Donkin algebra is defined for $q=0$ .

$A_{q}(n)$ is a Hopf algebra with comultiplication $\Delta$ defined by

$\Delta(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj}$ .

Moreover one can define a left coaction $\delta$ of $A_{q}(n)$ on $V^{\otimes N}$ by

$\delta(e_{i})=\sum_{j=1}^{n}x_{ij}\otimes e_{j}$
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and the left coaction $\delta$ of $A_{q}(n)$ on $V^{\otimes N}$ commutes with the right action of $H_{N}(q)$

on $V^{\otimes N}$ . This property still holds for $q=0$ . Thus, for any $h\in H_{N}(0),$ $V^{\otimes N}h$

will be a $sub- A_{0}$ (n)-comodule of $V^{\otimes N}$ . For later reference, note that the defining
relations of $A_{0}(n)$ are

$\left\{\begin{array}{ll}x_{jk}x_{il} & = 0 for i<j, k\leq l,\\x_{ik}x_{il} & = x_{il}x_{ik} for every i, k, l,\\x_{jl}x_{ik} & = x_{ik}x_{jl}-x_{il}x_{jk} for i<j, k<l.\end{array}\right.$ (98)

The quantum matrix algebra $A_{q}(n)$ has an interesting subalgebra, the quantum
diagonal algebra (or quantum torus) $\triangle_{q}(n)$ , which is the subalgebra generated by
the diagonal coordinates $x_{11},$ $\ldots,$ $x_{nn}$ . It is the specialization of this subalgebra
which will provide us with the analogue of the plactic algebra for quasi-symmetric
functions.

Recall that the plactic algebm on a totally ordered alphabet $A$ is the $\mathbb{C}$-algebra
$Pl(A)$ , quotient of $\mathbb{C}(A$ } by the relations

$\left\{\begin{array}{ll}aba=baa & bba=bab for a<b,\\acb=cab & bca=bac for a<b<c.\end{array}\right.$

These relations, which were obtained by Knuth [58], generate the equivalence re-
lation identifying two words which have the same P-symbol under the Robinson-
Schensted correspondence. Though Schensted had shown that the construction of
the P-symbol is an associative operation on words, the monoid structure on the
set of tableaux has been mostly studied by Lascoux and Sch\"utzenberger [71] under
the name ‘plactic monoid’.

It turns out that the specialization of the quantum diagonal algebra at $q=0$ is
a remarkable quotient of the plactic algebra that we shall now introduce.

The hypoplactic algebm $HPl(A)$ is the quotient of the plactic algebra $Pl(A)$ by
the quartic relations

$\left\{\begin{array}{ll}baba=abab & baca=abac for a<b<c,\\cacb=acbc & cbab=bacb for a<b<c,\\badc=dbca & acbd=cdab for a<b<c<d.\end{array}\right.$ (99)

The combinatorial objects playing the role of Young tableaux are called ribbons
and quasi-ribbons. Let $I$ be a composition. A quasi-ribbon tableau of shape $I$ is
a ribbon diagram $r$ of shape $I$ filled by letters of $A$ in such a way that each row
of $r$ is nondecreasing from left to right, and each column of $r$ is strictly increasing
from top to bottom. A word is said to be a quasi-ribbon word of shape $I$ if it can
be obtained by reading from bottom to top and from left to right the columns of a
quasi-ribbon tableau of shape $I$ .

For example, the word $u=$ aacbabbac is not a quasi-ribbon word since the
planar representation of $u$ obtained by writing its decreasing factors as columns is
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not a quasi-ribbon tableau, as one can see on the picture. On the other hand, the
word $v=aacbacdcd$ is a quasi-ribbon word of shape (3, 1, 3, 2). The quasi-ribbon
tableau corresponding to $v$ is also given below.

aacbabbac aacbacdcd

In the classical case, the crucial point of the theory of the plactic monoid is that
each plactic class contains exactly one tableau. Similarly, one can show that each
hypoplactic class contains exactly one quasi-ribbon word, so that the classes of the
quasi-ribbon words form a linear basis of the hypoplactic algebra $HPl(A)[62]$ .

The ring homomorphism defined by $\varphi$ : $a_{i}\rightarrow x_{ii}$ is an isomorphism between
the hypoplactic algebra $HPl(A)$ and the specialization $\triangle_{0}(n)$ of the quantum di-
agonal algebra. One can show that the hypoplactic quasi-ribbons

$F_{I}=$ $\sum$ $w$ $\in HPl(A)$ (100)
$w\in QR(I)$

where $QR(I)$ denotes the set of quasi-ribbon word of shape $I$ , span a commutative
subalgebra of $HPl(A)$ , isomorphic to the algebra of quasi-symmetric functions.

This will be a consequence of the following representation theoretical consider-
ations. A direct combinatorial proof has also been given by Novelli [89].

In the classical case, the character $\chi(M)$ of a polynomial representation $\rho$ :
$GL_{n}\rightarrow GL(M)$ of $GL_{n}$ is usually defined as the symmetric polynomial $tr_{M}(\rho(X))$ ,
where $X=diag(x_{1}, \ldots, x_{n})$ is a generic diagonal matrix. One might also consider
the function $g\mapsto tr_{M}(\rho(g))$ as a polynomial in the matrix entries $x_{ij}$ . This is
this second notion which is best suited to deal with comodules, especially in the
quantum case, where an interesting phenomenon occurs.

Let $M$ be a finite dimensional $A_{q}(n)$-comodule with coaction $\delta$ . Let $(m_{i})_{i=1,m}$

be a basis of $M$ . There exists elements $(a(i,j))_{1\leq i,j\leq m}$ of $A_{q}(n)$ such that

$\delta(m_{i})=\sum_{j=1}^{m}a(i,j)\otimes m_{j}$

for $i\in[1, m]$ . The element

$\sum_{i=1}^{m}a(i, i)$

of $A_{q}(n)$ is independent of the choice of the basis $(m_{i})$ . It will be denoted by $\chi(M)$

and called the character of the $A_{q}(n)$-comodule $M$ . It has the standard properties
of a character:
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1. If $0\rightarrow M\rightarrow M\rightarrow M^{\prime}\rightarrow 0$ is a short exact sequence, $\chi(M)=\chi(M’)+$
$\chi(M^{\prime\prime})$ ;

2. $\chi(M\otimes N)=\chi(M)\chi(N)$ ;

3. if $M\simeq N$ , then $\chi(M)=\chi(N)$ .

The interesting quantum phenomenon, which has no classical analogue, is that
for generic values of $q$ , the character of an $A_{q}(n)$-comodule is $\iota^{\prime\iota 1ways}\Gamma$ an element
of the quantum diagonal algebra. This follows from an expression of the quantum
determinant of $A_{q}(n)$ as an iterated q-commutator in the diagonal generators [62]

$\left|\begin{array}{llll}x_{11} & x_{12} & & x_{1n}\\x_{21} & x_{22} & & x_{2n}\\| & | & \ddots & |\\x_{n1} & x_{n2} & & x_{nn}\end{array}\right|$

$def=$

$\sum_{\sigma\in \mathfrak{S}_{n}}\epsilon(\sigma)x_{1\sigma(1)}\ldots x_{n\sigma(n)}$

(101)

$=$ $\overline{(1-}\frac{1}{q)^{n-1}}[x_{nn}, [. . . , [x_{22}, x_{11}]_{q}\ldots]_{q}]_{q}$

where $[P, Q]_{q}=PQ-qQP$ .

From now on, we set $q=0$ , so that the quantum diagonal algebra becomes the
hypoplactic algebra. Recall that to a composition $I$ of $N$ , we associated the element
$\eta_{I}=T_{\omega(\overline{I})}\coprod_{\alpha(I^{\sim})}$ of $H_{N}(0)$ which generates the one-dimensional left $H_{N}$ (O)-module
$C_{I}$ . One can use it to construct the $A_{0}(n)$-comodule

$D_{I}=V^{\otimes N}\cdot\eta_{I}$ .

Denote by $F_{I}(A)$ the sum of all quasi-ribbon words of shape $I$ in the free algebra
over $A$ . According to a result of Gessel [40], the commutative image of $F_{I}(A)$ is
the quasi-symmetric function $F_{I}$ . For example, the quasi-ribbon tableaux of shape
$I=(2,1)$ over $\{a<b<c\}$ are

$B_{b}^{aa}$ $\mathfrak{B}_{c}^{aa}$ $E_{c}^{ab}$ $E_{c}^{bb}-$

Thus $F_{21}(a, b, c)=aba+aca+acb+bcb$ , and the commutative in.age of $F_{21}(a, b, c)$

is equal to $M_{21}+M_{111}=F_{21}$ .
One can prove that the hypoplactic quasi-symmetric functions are the charac-

ters of the comodules $D_{I}[62]$

$\chi(D_{I})=F_{I}(x_{11}, \ldots, x_{nn})$ . (102)

For example, with $n=3,$ $N=4$ and $I=(3,1)$ we have $\eta_{31}=T_{3}T_{2}T_{1}(1+$

$T_{2})(1+T_{3})(1+T_{2})$ and $D_{31}=V^{\otimes 4}\cdot\eta_{31}$ . By computing the $i^{\backslash }nages$ under $\eta_{31}$ of
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the basis vectors of $V^{\otimes 4}$ , one obtains

$D_{31}=\mathbb{C}a_{1}a_{2}a_{3}a_{2}\cdot\eta_{31}\oplus \mathbb{C}a_{2}a_{2}a_{3}a_{2}\cdot\eta_{31}\oplus \mathbb{C}a_{1}a_{1}a_{3}a_{2}\cdot\eta_{31}$

$\oplus \mathbb{C}a_{1}a_{1}a_{3}a_{1}$ $\eta_{31}\oplus \mathbb{C}a_{1}a_{1}a_{2}a_{1}$
$\eta_{31}$ .

Thus,

$\chi(D_{31})=x_{22}x_{11}x_{11}x_{11}+x_{33}x_{11}x_{11}x_{11}+x_{33}x_{22}x_{22}x_{22}+x_{33}x_{11}x_{11}x_{22}$

$+x_{33}x_{11}x_{22^{X}22}$

$=x_{11}x_{11}x_{22}x_{11}+x_{11^{X}11^{X}33^{X}11}+x_{22}x_{22}x_{33}x_{22}i$

$+x_{11}x_{11}x_{33}x_{22}+x_{11}x_{22^{X}33^{X}22}$ .

This last expression is exactly the sum of the quasi-ribbons words associated with
the five quasi-ribbon tableaux

Hence, $\chi(D_{31})=F_{31}(x_{11}, x_{22}, x_{33})$ .

The $D_{I}$ are irreducible, pairwise non-isomorphic $A_{0}$ (n)-comodules. and $(D_{I})_{I}$

(where $I$ runs through all compositions) is a complete system of irreducible $A_{0}(n)-$

comodules $[62, 63]$ .

Performing now the same construction, starting from the generators $\nu_{I}=$

$T_{\alpha(I)}\square _{\alpha(\overline{I}^{\sim})}$ of the indecomposable projective left $H_{n}(0)$-modules $M_{I}$ , one obtains
the $A_{0}$ (n)-comodules

$N_{I}=V^{\otimes N}\cdot\nu_{I}$ .

The $N_{I}$ are the indecomposable direct summands of $V^{\otimes N}$

$V^{\otimes N}=\sum_{|I|=N}N_{I}$
(103)

(the sum is multiplicity free), and their characters are the hypoplactic ribbon Schur
functions

$\chi(N_{I})=R_{I}(x_{11}, \ldots, x_{nn})$ , (104)

which are defined as follows. A word is said to be of ribbon shape $I$ if it can be
obtained by reading from left to right and from top to bottom the $co_{J}^{1}$ umns of a
skew Young tableau of ribbon shape $I$ . The ribbon Schur function $R_{I}(A)$ is equal
to the sum of all words of $A^{*}$ of ribbon shape $I$ .
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For example, let $n=3,$ $N=4$ and $I=(1,1,2)$ . Then $\nu_{112}=T_{1}T_{2}T_{1}(1+T_{3})$

and $N_{112}=V^{\otimes 4}\cdot\nu_{112}$ . By computing the action of $\nu_{211}$ on the standard basis of
$V^{\otimes 4}$ , one gets

$N_{112}=\mathbb{C}a_{3}a_{2}a_{1}a_{1}\cdot\nu_{112}\oplus \mathbb{C}a_{3}a_{2}a_{1}a_{2}\cdot\nu_{112}\oplus \mathbb{C}a_{3}a_{2}a_{1}a_{3}\cdot\nu_{112}$ .

Then,
$\chi(N_{112})=x_{33}x_{22}x_{11}x_{11}+x_{33}x_{22}x_{11}x_{22}+x_{33}x_{22}x_{11}x_{33}$ .

This expression is the sum of the ribbon words associated with the 3 ribbon
tableaux

and $\chi(N_{112})=R_{112}(x_{11}, x_{22}, x_{33})$ .

In the classical case $(q=1)$ , the Robinson-Schensted correspondence is the com-
binatorial counterpart of the decomposition of $V^{\otimes N}$ into $GL_{n}(\mathbb{C})\times \mathfrak{S}_{N}$ -bimodules.
On the other hand, for $q=0$ , there are two natural ways of $dec_{\iota}$)$mposingV^{\otimes N}$ into
$A_{0}(n)\times H_{N}$ (O)-bicomodules. This leads to two different Robinson-Schensted type
correspondences, involving now ribbon and quasi-ribbon tableaux.

The first one corresponds to the decomposition

$V^{\otimes N}=\bigoplus_{I\vdash N}N_{I}$ . (105)

It is essentially the identity map, since it just associates to a word $w$ its ribbon
diagram.

The second one, which is more interesting, is related to the simple composition
factors of $V^{\otimes N}$ . These are exactly the comodules $D_{I}$ for $|I|=n$ , each of them
occuring $|QR(I)|$ times (the number of quasi-ribbon words of shape $I$). But $D_{I}$

considered as a left $H_{N}$ (O)-module is isomorphic to $M_{I}$ . It follows that there exists
a basis of $V^{\otimes N}$ indexed by pairs $(Q, R)$ where $Q$ is a quasi-ribbon word of shape
$I$ and where $R$ is a standard ribbon word of the same shape. The corresponding
Robinson-Schensted type algorithm which associates to each word $w\in A^{*}$ the pair
$(Q, R)$ is described below.

Let $Q$ be a quasi-ribbon tableau and let $a\in A$ . Let $Q^{\prime}$ be the tableau obtained
from $Q$ by deleting its last row and let $x$ (resp. z) be the first (resp. last) letter of
the last row of $Q$ . The result $\mathcal{Q}$ of the insertion of $a$ in $Q$ is defined by the following
rules:

$\bullet$ if $z\leq a,$ $\mathcal{Q}$ is obtained by adding a box containing $a$ at the end of the last
row of $Q$
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$\bullet$ if $x\leq a<z$ , let $y$ be the first letter of the last row of $Q$ which is strictly
greater than $a$ . The quasi-ribbon tableau $\mathcal{Q}$ is then

$\bullet$ if $a<x,$ $\mathcal{Q}$ is obtained by inserting $a$ in $Q^{\prime}$ and glueing under the quasi-ribbon
obtained in this way the last row of $Q$ .

Let $w=a_{1}\ldots a_{n}$ be a word of length $n$ . The pair $(Q, R)$ associated with $w$

can be defined as follows. The quasi-ribbon tableau $Q$ is obtained by inserting the
letters of $w$ (from left to right), starting from an empty diagram. The standard
ribbon tableau $R$ is iteratively constructed by putting at each step $i\in[1, n]$ of the
algorithm the number $i$ in the box that contains at this moment in $Q$ the letter $a_{i}$

inserted at this step. Let us illustrate again this correspondence on $w=baccb$ .

$(\emptyset, \emptyset)\rightarrow$ $b,$ $1$

$\rightarrow\Xi_{b}^{a},$

$H_{1}^{2}\rightarrow\frac{\Pi a}{\lfloor b\perp c\lrcorner}\frac{\lceil 2\neg}{L^{1}\perp 3_{\lrcorner}}\rightarrow ffi_{cc}ba\frac{\Pi 2}{u1\perp\lrcorner}\rightarrow E_{cc}^{2}\overline{ba}b,1E_{34}^{5}$

The correspondence $w\rightarrow(Q, R)$ is clearly a bijection. In fact, the quasi-ribbon
tableau $Q$ associated with $w$ is of shape $C(\sigma^{-1})$ where $\sigma=std(w)[62]$ .

One can show that two words $u,$ $v\in A^{*}$ correspond to the same quasi-ribbon
$Q$ under the second algorithm if and only if $u\equiv v$ with respect to the hypoplactic
congruence.

This is a hypoplactic analogue of Knuth’s theorem [58]. In other words, the
hypoplactic relations play, for quasi-ribbons, the same role as the plactic relations
for Young tableaux. The hypoplactic analogue of the Robinson-Schensted-Knuth
correspondence has been worked out by Ung [109]. It provides, as in the classical
case, a combinatorial proof of the noncommutative Cauchy identity

$\sigma(XA;1)=\sum_{I}F_{I}(X)R_{I}(A)$ (106)

as well as of other analogues of various Schur function identitites, such as

$\sum_{I}F_{I}(X)=\frac{1}{2}[\prod_{i\geq 1}\frac{1+x_{i}}{1-x_{i}}+1]$ , (107)

an analogue of Schur’s identity for the sum of all Schur functions, or

$(\sum_{I}F_{I}(X))^{-1}=1+\sum_{n\geq 0}(-1)^{n+1}\sum_{|J|=2n+1}c_{J}F_{J}(X)$ (108)
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where $c_{I}$ is the number of permutations $\sigma$ such that $C(\sigma)=I$ and $C(\sigma^{-1})=(12^{n})$

[109].

4.3 The O-quantized enveloping algebra $\mathcal{U}_{0}(gl_{n})$

It remains to find an analogue of the interpretation of Schur functions as characters
of the Lie algebra $gl_{n}$ . To do this, we again need a variant of the quantized
enveloping algebra $U_{q}(gl_{n})$ which shows the same behaviour for generic $q$ , but
can also be specialized at $q=0$ . This algebra is essentially the specialization
$(r, s)=(q, 1)$ of Takeuchi’s two-parameter deformation $U_{r,s}(gl_{N})[105]$ , with some
slight modifications. To allow the specialization $q=0$ , we have to use non-invertible
generators for the Cartan part, to introduce some extra relations, and to define it
only as a bialgebra (no antipode). This algebra, as well as other multiparameter
deformations, can be realized by specialization of the difference operators of [38].

Let $q$ be an indeterminate or a complex parameter. The crystalizable quantum
analogue $\mathcal{U}_{q}(gl_{n})$ of the universal enveloping algebra of the Lie algebra $gl_{n}$ is the
algebra over $\mathbb{C}(q)$ generated by the elements $(e_{i})_{1\leq i\leq n-1},$ $(f_{i})_{1\leq i\leq n-1}$ and $(k_{i})_{1\leq i\leq n}$

with relations:
$k_{i}k_{j}$ $=$ $k_{j}k_{i}$ for $1\leq i,j\leq n$ , (109)

$\left\{\begin{array}{ll}qk_{i}e_{i-1} & = e_{i-1}k_{i}\\k_{i}e_{i} & = qe_{i}k_{i}\\k_{i}e_{j} & = e_{j}k_{2}\end{array}\right.$

$\left\{\begin{array}{ll}k_{i}f_{i-1} & = qf_{i-1}k_{i}\\qk_{i}f_{i} & = f_{t}k_{x}\\k_{\iota}f_{j} & = f_{j}k_{i}\end{array}\right.$

for $2\leq i\leq n-1$ ,

for $1\leq i\leq n-1$ , (110)

for $j\neq i-1,$ $i$ ,

for $2\leq i\leq n-1$ ,

for $1\leq i\leq n-1$ , (111)

for $j\neq i-1,$ $i$ ,

$[ei, fj]$ $=$ $\delta_{ij}\frac{k_{i}-k_{\iota+1}}{q-1}$ for $1\leq i,j\leq n$ , (112)

$\left\{\begin{array}{ll}qe_{i+1}e_{i}^{2}-(1+q)e_{i}e_{i+1}e_{i}+e_{i}^{2}e_{\iota+1} & = 0 for 1\leq i\leq n-2,\\qe_{i+1}^{2}e_{i}-(1+q)e_{i+1}e_{i}e_{i+1}+e_{i}e_{i+1}^{2} & = 0 for 1\leq i\leq n-2,\end{array}\right.$ (113)

$\left\{\begin{array}{ll}f_{i+1}f_{i}^{2}-(1+q)f_{i}f_{i+1}f_{i}+qf_{\iota}^{2}f_{i+1} & = 0 for 1\leq i\leq n-2,\\f_{i+1}^{2}f_{i}-(1+q)f_{i+1}f_{i}f_{i+1}+qf_{i}f_{i+1}^{2} & = 0 for 1\leq i\leq n-2,\end{array}\right.$ (114)

$\left\{\begin{array}{ll}[e_{i}, e_{j}] & = 0 for |i-j|>1,\\[f_{i}, f_{j}] & = 0 for |i-j|>1 ,\end{array}\right.$ (115)

$\left\{\begin{array}{ll}e_{i}e_{i+1}k_{i+1} & = k_{i+1}e_{i}e_{i+1} for 1\leq i\leq n-2,\\f_{i+1}f_{i}k_{i+1} & = k_{i+1}f_{i+1}f_{i} for 1\leq i\leq n-2.\end{array}\right.$ (116)

Relations (116) are consequences of the other relations when $q\neq 0$ and do not
play any role in the generic case. One has to add them in order to endow $\mathcal{U}_{q}(gl_{n})$
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with a bialgebra structure at $q=0$ . Note also that the q-Serre relations (113) are
those obtained by Ringel [97] in his construction of $U_{q}(\mathfrak{n}_{+})$ via the Hall algebras
associated to quivers. That is, $\mathcal{U}_{q}(\mathfrak{n}_{+})$ is the (untwisted) Hall algebra of the quiver
of type $A_{n-1}$ .

$\mathcal{U}_{q}(gl_{n})$ is a $\mathbb{C}$-bialgebra for the comultiplication $\Delta$ and the co-unit $\epsilon$ defined by

$\left\{\begin{array}{ll}\triangle(e_{i}) & = 1\otimes e_{i}+e_{i}\otimes k_{i}, \epsilon(e_{i}) = 0 for 1\leq i\leq n-1,\\\triangle(f_{i}) & = k_{i+1}\otimes f_{i}+f_{i}\otimes 1, \epsilon(f_{i}) = 0 for 1\leq i\leq n-1,\\\triangle(k_{i}) & = k_{i}\otimes k_{i}, \epsilon(k_{i}) = 1 for 1\leq i\leq n.\end{array}\right.$ (117)

Let $(\xi_{i})_{1\leq i\leq n}$ be the canonical basis of $V=\mathbb{C}^{n}$ , and let $E_{ij}$ be the endomor-
phism defined by $E_{ij}\xi_{k}=\delta_{jk}\xi_{i}$ . One can define an algebra morphism $\rho_{V}$ of $\mathcal{U}_{q}(gl_{n})$

in $End_{\mathbb{C}}(V)$ by setting

$\left\{\begin{array}{ll}\rho_{V}(e_{i}) & = E_{i,i+1} for 1\leq i\leq n-1,\\\rho_{V}(f_{i}) & = E_{i+1,i} for 1\leq i\leq n-1,\\\rho_{V}(k_{i}) & = qE_{i,i}+\sum_{j\neq i}E_{j,j} for 1\leq i\leq n.\end{array}\right.$

The pair $(\rho_{V}, V)$ is called the fundamental representation (or vector representation)
of $\mathcal{U}_{q}(gl_{n})$ . Since $\mathcal{U}_{q}(gl_{n})$ is a bialgebra, one can define its N-th tensor power
$(\rho_{N,n}, V^{\otimes N})$ by $\rho_{N,n}=\rho_{V}^{\otimes N}\circ\triangle(N)$ : $\mathcal{U}_{q}(gl_{n})\rightarrow End_{\mathbb{C}}(V^{\otimes N})$ , where $\triangle(N)$

denotes the N-fold comultiplication $\mathcal{U}_{q}(gl_{n})\rightarrow \mathcal{U}_{q}(gl_{n})^{\otimes N}$ .
We denote by $A_{q}^{\prime}(n)$ the $\mathbb{C}(q)$-algebra generated by the $n^{2}$ elements $(x_{ij})_{1\leq i,j\leq n}$

subject to the defining relations:

$\left\{\begin{array}{ll}x_{il}x_{jk} & = qx_{jk}x_{il} for 1\leq i\leq j\leq n, 1\leq k<l\leq n,\\x_{ik}x_{jk} & = x_{jk}x_{ik} for 1\leq i,j, k\leq n,\\x_{jl}x_{ik}-x_{ik}x_{jl} & = (q-1)x_{jk}x_{il} for 1\leq i<j\leq n, 1\leq k<l\leq n.\end{array}\right.$

(118)
It is the specialization $GL_{q,1}(n)$ of Takeuchi’s algebra [105]. Up to the symme-
try $x_{ij}\leftrightarrow x_{ji},$ $A_{q}^{\prime}(n)$ is the Dipper-Donkin quantization $A_{q}(n)$ introduced in the
preceding section.

The comultiplication A and counity $\eta$ of $A_{q}^{\prime}(n)$ are defined by

$\overline{\triangle}(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj}$ and $\eta(x_{ij})=\delta_{ij}$ .

The quantum diagonal algebra (or quantum torus) $\triangle_{q}(n)$ of $A_{q}^{\prime}(n)$ is defined
as the subalgebra generated by the $x_{ii}$ . For $q=1,$ $\Delta_{1}^{\prime}(N)$ is just an algebra of
commutative polynomials and for $q=0$ it is again isomorphic to the hypoplactic
algebra (in fact there is no need to consider both $A_{q}(n)$ and $A_{q}^{\prime}(n)$ , we just do it
for the sake of compatibility with the existing literature).
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For any $q\in \mathbb{C}$ , the bialgebras $A_{q}(n)$ and $\mathcal{U}_{q}(gl_{n})$ are in duality, in a sense to be
made precise below. According to the general theory, the graded dual $\mathcal{U}_{q}(gl_{n})^{*}$ of
$\mathcal{U}_{q}(gl_{n})$ has a canonical algebra structure, defined by the convolution product

$\varphi\cdot\psi=\mu\circ(\varphi\otimes\psi)\circ\triangle$ (119)

for $\varphi,$ $\psi\in \mathcal{U}_{q}(gl_{n})^{*}$ , where $\mu$ is the multiplication map $\mu(g\otimes h)=gh,$ $g,$ $h\in \mathcal{U}_{q}(gl_{n})$ .
Define linear functionals $(a_{ij})_{1\leq i,\gamma<n}\in \mathcal{U}_{q}(gl_{n})^{*}$ as the matrix coefficients of

the vector representation, i.e. $\rho_{V}(g)=\overline{(}a_{ij}(g))_{1\leq i,j\leq n}$ for $g\in \mathcal{U}_{q}(gl_{n})$ .
Then, the $n^{2}$ linear functionals $(a_{\iota_{J}})_{1\leq\iota,j\leq n}$ of $\mathcal{U}_{q}(gl_{n})^{*}$ satisfy the quantum

relations (118).
A fundamental property of the standard version of $U_{q}(gl_{n})$ is the existence of

a q-analogue of the Schur-Weyl duality involving the Hecke algebra instead of the
symmetric group [51]. Such a duality can also be worked out for $\mathcal{U}_{q}(gl_{n})$ . The
double commutant theorem will break down at $q=0$ , but one can still give a
weaker statement, which will allow us to interpret quasi-symmetric functions and
noncommutative symmetric functions as characters of $\mathcal{U}_{0}(gl_{n})$ .

We denote by $\pi_{N,n}$ the representation of $H_{N}(q)$ in $End_{\mathbb{C}}(V^{\otimes N})$ defined by (97).
One can check that $\rho_{N,n}$ commutes with $\pi_{N,n}$ . For generic $q$ , one has a stronger
property.

Let $q$ be a nonzero complex number which is not a non-trivial k-th root of
unity for some $k\leq N$ . The two subalgebras $\pi_{N,n}(H_{N}(q))$ and $\rho_{N,n}(\mathcal{U}_{q}(gl_{n}))$ of
$End_{\mathbb{C}}(V^{\otimes N})$ are then commutant of each other.

This result is well-known for the standard version of $U_{q}(gl_{N})[51]$ and can be
obtained by straightforward modifications of its standard proofs (see also [63]).

Let us now define a polynomial $\mathcal{U}_{q}(gl_{n})$-module of degree $N$ as a submodule
of $V^{\otimes N}$ . For generic $q$ , the polynomial $\mathcal{U}_{q}(gl_{n})$ modules are $j$ ust the duals of the
$A_{q}^{\prime}(n)$-comodules. We now define the character of a polynomial module in the same
way as in the preceding section.

Let $M$ be a polynomial $\mathcal{U}_{q}(gl_{n})$-module of degree $N$ and let $(m_{i})_{1\leq i\leq m}$ be
a $\mathbb{C}(q)$-linear basis of $M$ . Since $M$ is a $\mathcal{U}_{q}(gl_{n})$-module, there exists a family
$(\mu_{ij})_{1\leq i,j\leq m}$ of linear functionals of $\mathcal{U}_{q}(gl_{n})^{*}$ such that for $9\in \mathcal{U}_{q}(gl_{n})$

$g\cdot m_{i}=\sum_{j=1}^{m}\mu_{\iota j}(g)m_{g}$ .

One can check that the trace of the action of $\mathcal{U}_{q}(gl_{n})$ on $M$ , i.e. the element

$c(M)=\sum_{i_{-}^{-}1}^{m}\mu_{ii}\in \mathcal{U}_{q}(gl_{n})^{*}$

is independent on the choice of the basis. Moreover $c(M)$ belongs to the subalgebra
generated by the $(a_{ij})_{1\leq i,j\leq n}$ . It follows that there exists elements $p_{IJ}(q)$ of $\mathbb{C}(q)$

such that
$c(M)=\sum_{I,J\in[1,n]^{N}}p_{IJ}(q)a_{IJ}$

.
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Since the map $\Psi$ is injective on the linear subspace of $A_{q}^{\prime}(n)$ spanned by homo-
geneous elements of fixed length, we can lift this formula to $A_{q}^{\prime}(N)$ . Let now $x_{IJ}$

stand for the monomial $x_{i_{1}j_{1}}\ldots x_{i_{N}j_{N}}$ in $A_{q}(n)$ . The element

$\chi(M)=\sum_{I,J\in[1,n]^{N}}p_{IJ}(q)x_{IJ}$

of $A_{q}^{\prime}(N)$ will be called the character of the polynomial $\mathcal{U}_{q}(gl_{n})$-module $M$ . By
duality, $M$ is also an $A_{q}^{\prime}(N)$ comodule, and $\chi(M)$ is equal to its character in
the previous sense. Therefore, for $q\neq 1,$ $\chi(M)$ belongs to the diagonal algebra
$\triangle_{q}^{\prime}(n)$ . From now on, we set $q=0$ . The character of a polynomial $\mathcal{U}_{0}(gl_{n})$ -

module is therefore an element of the hypoplactic algebra. However, $\rho_{N,n}(\mathcal{U}_{0}(gl_{n}))$

is not semisimple, and we have to look for the simple composition factors of $V^{\otimes N}$

(the irreducible polynomial modules) and its indecomposable direct summands.
These modules can be constructed in the same way as the simple modules and
the indecomposable projective modules of the O-Hecke algebra. Since the action of
$\mathcal{U}_{0}(gl_{n})$ on $V^{\otimes N}$ commutes with the right action of $H_{N}(0)$ , one can use $\eta_{I}$ (cf. (84)
to construct the $\mathcal{U}_{0}(gl_{n})$-module

$D_{I}=V^{\otimes N}\cdot\eta_{I}$ .

Then, $D_{I}$ is an irreducible $\mathcal{U}_{0}(gl_{n})$-module. Its character is equal to the sum
$F_{I}(x_{11}, \ldots, x_{nn})$ of all quasi-ribbon words over $\{x_{11}<\ldots<x_{nn}\}$ .

Here is a sketch of the proof. For $w=w_{1}\cdots w_{N}$ a word on the alphabet
$\{1, \ldots, n\}$ , denote by $w$ the tensor $\xi_{w_{1}}\otimes\cdots\otimes\xi_{w_{n}}$ . Let $QR(I)$ be the set of quasi-
ribbon words of shape $I$ over the same alphabet. It is shown in [62] that the
$d_{w}=w\eta_{I}$ for $w\in QR(I)$ form a basis of $D_{I}$ .

Now, let $\tilde{e}_{i},\tilde{f}_{i}$ be Kashiwara’s crystal graph operators [52], acting on words
considered as vertices of the crystal graph of the N-th tensor power of the vector
representation of the standard $U_{q}(gl_{n})$ . We have

$f_{i}d_{w}=\{$ $0d_{\tilde{f}_{\iota}(w)}$

if $\tilde{f_{l}}(w)\in QR(I)$

(120)
otherwise.

and similarly
$e_{i}d_{w}=\{_{0}^{d_{\overline{e}_{\iota}(w)}}$ $otherwiseif\tilde{e}_{i}(w)\in.QR(I)$

, (121)

Let $\Gamma_{n}(I)$ be the directed graph having as vertices the quasi-ribbon words of
shape $I$ over $\{1, \ldots, n\}$ , and with arrows $w\rightarrow^{f_{\iota}}w^{\prime}$ and $w\leftarrow^{e_{\iota}}w^{\prime}$ when $d_{w^{\prime}}=f_{i}d_{w}$

(which is equivalent to $d_{w}=e_{i}d_{w^{\prime}}$ ). This graph is called the quasi-crgstal graph
of $D_{I}$ (it is actually a subgraph of a crystal graph, corresponding to a quasi-
symmetric piece of a character). It should be noted that although crystal graphs
describe in general only the combinatorial skeleton of a generic module, the quasi-
crystal graph $\Gamma_{n}(I)$ encodes the full structure of the $\mathcal{U}_{0}(gl_{n})$-module $D_{I}$ . The
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above considerations imply that $\Gamma_{n}(I)$ is strongly connected, which proves the
irreducibility of $D_{I}$ .

Finally, from the definition of $\chi(D_{I})$ and (120), (121), we obtain

$\chi(D_{I})=\sum_{w\in QR(I)}x_{ww}=F_{I}(x_{11}, \ldots, x_{nn})$
,

as required. The character of $D_{I}$ is therefore the hypoplactic quasi-symmetric
function $F_{I}(A)$ .

The indecomposable summand of $V^{\otimes N}$ labelled by the composition $I$ of $N$ is
(cf. (90))

$N_{I}=V^{\otimes N}\cdot\nu_{I}$ .

Its character is the sum $R_{I}$ $(x_{11}, \ldots , x_{NN})$ of all words of ribbon shape $I$ over
$\{x_{11}<\ldots<x_{NN}\}$ . Moreover, $N_{I}$ has a canonical filtration, whose levels are
described by the quantum quasi-symmetric functions $\hat{R}_{I}$ of [106].

Hivert’s formula (42) can now be interpreted as a Weyl character formula for
the irreducible representation $D_{I}$ . Moreover, the partial symrretrizers $\pi_{w}^{\prime}$ for all
$w\in \mathfrak{S}_{n}$ give, as in the classical case, the characters of the Demazure modules of
$\mathcal{U}_{0}(gl_{n})$ .

Let us first remark that the basis vectors $d_{w}$ are also weight vectors for the
usual action of $gl_{n}$ on $V^{\otimes N}$ . The $\mathcal{U}_{0}(gl_{n})$-weight of an element of $V^{\otimes N}$ is defined
as its $gl_{n}$-weight, and the formal character ch $(M)$ of a polynomial modules $M$ will
be the generating function $\sum_{\lambda}\dim A_{i}I_{\lambda}x^{\lambda}$ . It is the commutative image $ x_{ii}-\rangle$ $x_{i}$

of its character $\chi(M)$ is the previous sense.
The $\mathcal{U}_{0}(gl_{n})$-weights of polynomial modules are integer vectors $H\in N^{n}$ . In this

context, a weight $H$ is said to be dominant if there exists $r\leq n$ such that $h_{k}>0$

for $k\leq r$ and $h_{k}=0$ for $k\geq r$ . That is, $H$ is of the form $I\cdot 0\cdots 0$ , where $I$ is some
composition. To simplify the notation, we shall discard the final zeros and identify
$H$ with the composition $I$ .

The Weyl group action on $\mathcal{U}_{0}(gl_{7?})$-weights corresponds to the quasi-symmetrizing
action on polynomials. That is, the image $\sigma(H)$ of a weight $H$ by $\sigma\in \mathfrak{S}_{n}$ is defined
by

$x^{\sigma(H)}=\sigma^{\prime}(x^{H})$ , (122)

where $\sigma^{\prime}$ denotes the quasi-symmetrizing action (36).
The irreducible module $D_{I}$ has a unique highest weight vector $v_{I}$ , i.e., $D_{I}=$

$\mathcal{U}^{-}v_{I},$ $\mathcal{U}^{+}v_{I}=0$ , where $\mathcal{U}^{-}$ (resp $\mathcal{U}^{+}$ ) is the subalgebra generated by the $f_{i}$ (resp.
by the $e_{\iota}$ ), and the weight of $v_{I}$ is the dominant weight $I$ .

On the other hand, the indecomposable summands of $l^{r\otimes N}$ are not highest-
weight modules.

As in the classical case, let us define an extremal weight vector of a module $M$

with highest weight $H$ as a weight vector whose weight $K$ is in the Weyl group
orbit of $H$ . For a composition $I$ and a permutation $\sigma\in \mathfrak{S}_{n}$ , the Demazure module
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$D(I, \sigma)$ is the $\mathcal{U}^{+}$ module generated by an extremal weight vector of weight $\sigma(I)$

(which is unique up to a scalar factor). Then, we have the following analogue of
the classical Demazure formula $[45, 46]$

ch $D(I, \sigma)=\pi_{\sigma}^{\prime}(X^{I})$ , (123)

where $X^{I}=x_{1}^{i_{1}}\ldots x_{r}^{i_{r}}$ and $\pi_{\sigma}^{\prime}$ is the operator defined in (41).
Recall now that the classical divided difference operators $\pi_{i}$ can be used to

define an action of the Hecke algebra $H_{n}(q)$ on polynomials in $n$ variables, by
formula (10), and that the Hall-Littlewood functions are essentially the images of
monomials under the action of the full Hecke symmetrizer $s^{(n)}(12)$ . This approach
to Hall-Littlewood functions can be extended to the quasi-symmetric case, and by
duality, to the noncommutative case.

The relevant operators here are

$\overline{\pi}_{i}=\pi_{i}^{\prime}-1$ . (124)

These operators satisfy the braid relations, and $\overline{\pi}_{i}^{2}=-\overline{\pi}_{i}$ The Hecke algebra action
is defined by

$T_{i}=(1-q)\overline{\pi}_{i}+q\sigma_{l}^{\prime}$ . (125)

Then, the quasi-symmetric analogues of the Hall-Littlewood functions $P_{\lambda}$ are

$G_{I}(X;q)=\frac{1}{[r]_{q}![n-r]_{q}!}S^{(n)}(X^{I})$ (126)

where $s^{(n)}$ acts by the representation (125), and the noncommutative analogues
$H_{I}(A;q)$ of the $Q_{\lambda}^{\prime}(X;q)$ are defined as the dual basis of $G_{I}$ . The expansions of $G_{I}$

on the basis $(F_{J})$ and of $H_{I}$ on the basis $(R_{J})$ are explicitly known $[45, 46]$ . The
coefficients are just powers of $q$ , with signs in the first case. In the second case, we
see that the analogues of the Kostka-Foulkes polynomials in the noIlcommutative
theory reduce to well-understood monomials.

The multiplication rule and the specialization at roots of unity of the $H_{I}$ have
also been worked out [46]. It remains to understand the quasi-symmetric and
noncommutative analogues of the Macdonald polynomials (work in progress by F.
Hivert).
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5 Selected applications

5.1 Lie idempotents and the Hausdorff series
Let $K\langle A$ } and $L(A)$ be the free associative algebra and the free Lie algebra over
an alphabet $A=\{a_{1}, a_{2}, \ldots, a_{N}\}$ , and let $K_{n}\{A\}$ and $L_{n}(A)$ denote their homo-
geneous components of degree $n$ . Recall that elements of $K\mathfrak{S}_{n}$ can be interpreted
as endomorphisms of $K_{n}\langle A$ } via the right action of permutations on words, and
that we defined a Lie idempotent as an element of $K\mathfrak{S}_{n}$ acting as a projector onto
$L_{n}(A)$ .

Such elements arise naturally in the investigation of the Hausdorff series

$H(a_{1}, a_{2}, \ldots, a_{N})=\log(e^{a_{1}}e^{a_{2}}\cdots e^{a_{N}})=\sum_{n\geq 0}H_{n}(A)$ (127)

which is known to be a Lie series, i.e., each homogeneous component $ H_{n}(A)\in$

$L_{n}(A)$ . This is known as the Baker-Campbell-Hausdorff (BCH) theorem. It follows
immediately from the characterization of $L(A)$ as the space of primitive elements
of the standard comultiplication of $K\langle A$ } (Friedrich’s criterion).

However, there is no obvious way to expand $H_{n}$ as a linear combination of
commutators. For example, it is not immediate at first sight that

$H_{3}(a_{1}, a_{2}, a_{3})$ $=$ $\frac{1}{12}a_{1}a_{1}a_{2}+\frac{1}{12}a_{1}a_{1}a_{3}-\frac{1}{6}a_{1}a_{2}a_{1}+\frac{1}{12}a_{1}a_{2}a_{2}+\frac{1}{3}a_{1}a_{2}a_{3}$

$-\frac{1}{6}a_{1}a_{3}a_{1}+\frac{1}{12}a_{1}a_{3}a_{3}+\frac{1}{12}a_{2}a_{1}a_{1}-\frac{1}{6}a_{2}a_{1}a_{2}$

$-\frac{1}{6}a_{2}a_{1}a_{3}+\frac{1}{12}a_{2}a_{2}a_{1}+\frac{1}{12}a_{2}a_{2}a_{3}-\frac{1}{6}a_{2}a_{3}a_{1}-\frac{1}{6}a_{2}a_{3}a_{2}$

$+\frac{1}{12}a_{2}a_{3}a_{3}+\frac{1}{12}a_{3}a_{1}a_{1}-\frac{1}{6}a_{3}a_{1}a_{2}-\frac{1}{6}a_{3}a_{1}a_{3}+\frac{1}{3}a_{3}a_{2}a_{1}$

$+\frac{1}{12}a_{3}a_{2}a_{2}-\frac{1}{6}a_{3}a_{2}a_{3}+\frac{1}{12}a_{3}a_{3}a_{1}+\frac{1}{12}a_{3}a_{3}a_{2}$

can be rewritten as

$H_{3}(a_{1}, a_{2}, a_{3})$ $=$ $=\frac{1}{12}[a_{1}, [a_{1}, a_{2}]]+\frac{1}{12}[[a_{1}, a_{2}],$
$a_{2}$ ] $+\frac{1}{12}[a_{1}, [a_{1}, a_{3}]]$

$+\frac{1}{12}[[a_{1}, a_{3}],$
$a_{3}$ ] $+\frac{1}{12}[a_{2}, [a_{2}, a_{3}]]+\frac{1}{12}[[a_{2}, a_{3}],$

$a_{3}$ ]

$+\frac{1}{6}[a_{1}, [a_{2}, a_{3}]]+\frac{1}{6}[[a_{1}, a_{2}],$
$a_{3}$ ].

The first systematic procedure for expanding the Hausdorff series in terms of
commutators was found by Dynkin [21] and independently by Specht [102] and
Wever [111]. It amounts to the fact, that we already proved in Section 3, that

$\frac{1}{n}\theta_{n}=\frac{1}{n}$ $[. . . [[[1,2], 3], \ldots, ], n]$ (128)
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is a Lie idempotent. Therefore, writing $H_{n}=\frac{1}{n}H_{n}\theta_{n}$ gives the required expression.
To actually compute it, we need to know $H_{n}$ as a linear combination of words

$H_{n}(A)=\sum_{w\in A^{n}}c_{w}w$
. (129)

There is a closed formula, due to Goldberg (see [96]), for the coefficient;s $c_{w}$ . One
way to obtain it is to express the whole polynomial $H_{n}(A)$ as the image of the
homogeneous component $E_{n}(A)$ of the product of exponentials

$E(A)=e^{a_{1}}e^{a_{2}}\cdots e^{a_{N}}=\sum_{n\geq 0}E_{n}(A)$
. (130)

under an element of $K\mathfrak{S}_{n}$

$H_{n}(A)=E_{n}(A)\cdot\phi_{n}$ , (131)

where
$\phi_{n}=\frac{1}{n}\sum_{\sigma\in \mathfrak{S}_{n}}\frac{(-1)^{d(\sigma)}}{(_{d(\sigma)}^{n-1})}\sigma$ $(d(\sigma)=|Des(\sigma)|)$ . (132)

This formula is due to Solomon [100] and independently to Bialynicki-Birula, Miel-
nik and Pleba\’{n}ski [5]. It can be shown, although no one of these properties is clearly
apparent on the expression (132), that $\phi_{n}$ is a Lie idempotent. It is clearly in the
descent algebra $\Sigma_{n}$ , and one can show that the corresponding noncommutative
symmetric function is

$\alpha(\phi_{n})=\frac{1}{n}\Phi_{n}$ . (133)

We can now write the Hausdorff polynomials

$H_{n}(A)=\frac{1}{n}E_{n}(A)\phi_{n}\theta_{n}=\frac{1}{n}\sum_{w\in A^{n}}c_{\omega}\cdot w\theta_{n}$ (134)

as linear combinations of commutators $w\theta_{n}$ . However, these elements are far from
being linearly independent, and one would be interested in an expansion of $H_{n}$ on
a basis of the free Lie algebra. One way to achieve this is to use Klyachko’s basis. It
is defined by taking the images of Lyndon words (words which are lexicographically
minimal among their circular shifts) by Klyachko’s idempotent

$\kappa_{n}=\frac{1}{n}\sum_{\sigma\in \mathfrak{S}_{n}}\omega^{maj(\sigma)}\sigma$ (135)

where $\omega=e^{2i\pi/n}$ and maj $(\sigma)=\sum_{j\in Des(\sigma)}j$ is the major index of $\sigma$ . This element
is clearly in the descent algebra. It can be shown that it is a Lie idempotent [57].
Its relevance to the expansion of the Hausdorff series comes from its $co\urcorner lpatibility$

with circular permutations: $\gamma_{n}\kappa_{n}=\omega^{-1}\kappa_{n}$ , where $\gamma_{n}=(12\ldots n)$ . This allows to
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construct a basis of $L_{n}(A)$ by applying $\kappa_{n}$ to a set of representatives of circular
classes of words.

The corresponding noncommutative symmetric function can be shown to be
$\frac{1}{n}K_{n}(\omega)$ , where

$K_{n}(q)=\sum_{|I|=n}q^{maj(I)}R_{I}=(q)_{n}S_{n}(\frac{A}{1-q})$ (136)

is the natural noncommutative analogue of the Hall-Littlewood function

$\tilde{Q}_{1},$

$(X;q)=\sum_{\lambda\vdash n}\tilde{K}_{\lambda,1^{n}}(q)s_{\lambda}=(q)_{n}h_{n}(\frac{X}{1-q}I$ (137)

which describes the graded character of the representation of $\mathfrak{S}_{n}$ in the space of
coinvariants. The specialization of $\tilde{Q}_{1}^{\prime},,$ $(X;q)$ at $ q=\omega$ is known to be equal to
$p_{n}$ . This is the simplest example of a series of specialization properties of Hall-
Littlewood functions at roots of unity [66]. The other specializations of $\tilde{Q}_{1^{n}}^{\prime}(X;q)$

are related to the decomposition into irreducibles of the $\mathfrak{S}_{n}$-representations induced
by a transitive cyclic subgroup (see the next subsection).

The sequence of noncommutative symmetric functions $K_{n}(\omega_{n})$ , where $\omega_{n}=$

$\exp(2\pi i/n)$ can be regarded as a family of noncommutative power sums. Indeed,
the last equality in (136) shows that the coproduct of $K_{n}(q)$ is given by

$\triangle K_{n}(q)=\sum_{r=0}^{n}\left\{\begin{array}{l}n\\r\end{array}\right\}K_{r}(q)\otimes K_{n-r}(q)$ (138)

and under the specialization $q=\omega_{n}$ , the q-binomial coefficients vanish, except for
$r=0$ or $n$ .

To summarize, the investigation of the Hausdorff series brougllt to the fore three
Lie idempotents, all of them in the descent algebra, and being mapped to a non-
commutative symmetric function in the primitive Lie algebra, with commutative
image $\frac{1}{n}p_{n}$ .

It can be proved that these two conditions actually characterize the Lie idem-
potents of the descent algebras [33]. This is a powerful result, since it provides us
at once with a large supply of Lie idempotents, by just playing with the various
algebraic operations available in Sym. For example, consider the element

$\varphi_{n}(q)\leftrightarrow\frac{1}{n}(1-q^{n})\Psi_{n}(\frac{A}{1-q}I$ (139)

Clearly, its commutative image is $\frac{1}{n}p_{n}$ , and it is easy to check that it is a primitive
element. Therefore, it corresponds to a Lie idempotent $\varphi_{n}(q)$ of $\Sigma_{n}$ . A somewhat
lengthy calculation gives its expansion on the ribbon basis, and one obtains

$\varphi_{n}(q)=\frac{1}{n}\sum_{|I|=n}\frac{(-1)^{d(\sigma)}}{\left\{\begin{array}{l}-nl\\d(\sigma)\end{array}\right\}}q^{maj(\sigma)-()}\sigma d(\sigma_{2})+1$

(140)
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so that $\varphi_{n}(q)$ appears as a natural q-analogue of Solomon’s idempotent (132), that
is, $\phi_{n}=\varphi_{n}(1)$ . More suprising are the specializations

$\varphi_{n}(0)=\frac{1}{n}\theta_{n}$ and $\varphi_{n}(\omega_{n})=\kappa_{n}$ . (141)

Therefore, we have found a one-parameter family interpolating between the three
previous examples $[19, 61]$ . Moreover, the limit $ q\rightarrow\infty$ exists and corresponds
to the standard right bracketing. Other interesting families, with one or more
parameters, can be constructed in the same way [61].

Finally, let us explain the relevance of the power-sums $\Phi_{n}$ to the calculation of
the Hausdorff series in terms of the interpretation of Sym as an algebra of graded
endomorphisms of $K\langle A\rangle$ discussed at the end of Section 3. The identity map of
$K\langle A$ } gets identified with $\rho(\sigma(1))$ , since $\rho(S_{?1})$ is the orthogonal projector onto the
component $K_{n}\langle A\rangle$ . Then, one can write

$\log(e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}})$ $=$ $\log[\rho(\sigma(1))(e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}})]$

$=$ $\rho(\log\sigma(1))[(e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}})]$

$=$ $\rho(\sum_{n\geq 1}\frac{\Phi_{n}}{n})[e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}}]$ .

To obtain (132), it remains to express $\Phi_{n}$ on the basis of ribbon Schur functions.
Note that the product of exponentials plays no role in this calculation, and that we
have just calculated the logarithm of the identity in the convolution algebra. There-
fore, this calculation applies as well to the continuous Baker-Campbell-Hausdorff
series

$\Omega(t)=\log U(t)$ , (142)

where $U(t)$ is the unique solution of the operator evolution equation

$\frac{dU}{dt}=\mathcal{H}(t)U(t)$ (143)

satisfying $U(O)=1$ . To obtain $\Omega(t)=\sum_{n}\Omega_{n}(t)$ as a series of iterated integrals,
one first writes $U(t)$ as a Volterra series

$ U(t)=1+\int_{0}^{t}dt_{1}\mathcal{H}(t_{1})+\int_{0}^{t}dt_{1}\int_{0}^{t_{1}}dt_{2}\mathcal{H}(t_{1})\mathcal{H}(t_{2})+\cdots$ (144)

and one obtains $\Omega_{n}$ by acting on the nth term of (144) by $\phi_{n}$ , permutations acting
on the subscripts $i$ of the variables $t_{i}$ . This yields the continuous BCH formula of
[5]

$\Omega_{n}(t)=\int_{0}^{t}dt_{1}\cdots\int_{0}^{t_{n-1}}dt_{n}\sum_{\sigma\in \mathfrak{S}_{n}}\frac{(-1)^{d(\sigma)}}{n}\left(\begin{array}{l}-n1\\d(\sigma)\end{array}\right)\mathcal{H}(t_{\sigma(1)})\cdots \mathcal{H}(t_{\sigma(n)})$ (145)
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Also, in the above discussion, the logarithm plays no particular role. It could be
replaced by any function $f$ analytic in a neighbourhood of 1

$ f(1+z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (146)

Indeed, $f(U(t))$ or $f(e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}})$ can again be obtained by applying to the
Volterra series of $U(t)$ or to the power series expansion of $e^{a_{1}}a^{a_{2}}\cdots e^{a_{N}}$ the operator
$\rho(f(\sigma(1)))$ . Now,

$f(\sigma(1))$ $=$
$\sum_{n\geq 1}a_{n}(\sigma(1)-1)^{n}$

$=$ $\sum_{n\geq 1}\frac{1}{2\pi i}\oint_{z=0}\frac{dz}{z^{n+1}}f(1+z)(\sigma(1)-1)^{n}$

$=$ $\frac{1}{2\pi i}\oint_{z=0}\frac{dz}{z}\frac{f(1+z)}{1-z^{-1}(\sigma(1)-1)}$

Now, using the generating function of the noncommutative Eulerian polynomials
given in [33], one can see that

$\frac{1}{z-(\sigma(1)-1)}=\sum_{I}\frac{(1+z)^{|I|-\ell(I)+1}}{z^{|I|+1}}R$ , (147)

and obtain from this the operator $\rho(f(\sigma(1)))$ as a linear combination of permuta-
tions. For example, the Eulerian idempotents are obtained from the case $f(z)=z^{x}$ ,
by writing $\sigma(1)^{x}=\sum_{k\geq 0}x^{k}E^{[k]}$ . The Eulerian idempotent $E_{n}!k$ ] is the term of de-
gree $n$ in $E^{[k]}$ .

5.2 Noncommutative cyclic characters of symmetric groups
We have already encountered the specialization of the Hall-Littlewood function
$\tilde{Q}_{1^{n}}^{\prime}(X;q)$ at $q=\omega_{n}$ , a primitive n-th root of unity. The specializations $q=\omega_{n}^{k}$ at
other roots of unity are also known, and the result can be shown to be equivalent
to the following formula for the reduction modulo $1-q^{n}$

$\tilde{Q}_{1^{n}}(X;q)mod 1-q^{n}=\sum_{k=0}^{n-1}q^{k}\ell_{n}^{(k)}$ (148)

where the symmetric function $\ell_{n}^{(k)}$ is the Frobenius $character^{i}stic$ of the represen-
tation of $\mathfrak{S}_{n}$ induced by the character $\gamma\leftrightarrow\omega_{n}^{k}$ of the cyclic subgroup generated by
a n-cycle 7. Their expression on the basis of power-sums is $[26|$

$\ell_{n}^{(k)}=\frac{1}{n}\sum_{d|n}c(k, d)p_{d}^{n/d}$ , (149)



NONCOMMUTATIVE SYMMETRIC FUNCTIONS 85

where $c(k, d)$ is the sum of the k-th powers of the primitive d-th roots of unity (called
Ramanujan sums or von Steneck functions). Since $\tilde{Q}_{1^{n}}^{\prime}(X;q)$ is the commutative
image of $K_{n}(q)$ , we have

$\ell_{n}^{(k)}=\sum_{maj(I)\equiv kmod n}r_{I}$
, (150)

as the sum of all ribbons parametrized by compositions $I$ whose major index is
congruent to $kmod n$ . This is equivalent to the combinatorial description of these
characters given by Kraskiewicz and Weyman [59]. We will take this equation as
the starting point for defining noncommutative analogues of the $\ell_{n}^{(k)}$ in the algebra
of noncommutative symmetric functions. It will turn out that there are natural
noncommutative analogues of the power sum products $p_{d}^{n/d}$ which give an expansion
corresponding to (149).

Imitating (150) we put

$L_{n}^{(k)}$

$:=\sum_{maj(I)\equiv kmod n}R_{I}$
. (151)

The elements $L_{n}^{(k)}$ will be called noncommutative cyclic characters.
Another basis of the subspace spanned by the $L_{n}^{(k)}$ is given by

$K_{n}^{(k)}$

$:=K_{n}(\omega^{k})=\sum_{i}\omega^{ik}L_{n}^{(i)}$ , (152)

and the transition matrix $\Xi(L, K)$ from the elements $L_{n}^{(k)}$ to the $K_{n}^{(j)}$ is the char-
acter table of the cyclic group of order $n$

$\Xi(L, K)=(\omega^{ik})_{i,k}$ .

The inverse transformation is described by

$\Xi(K, L)=\Xi(L, K)^{-1}=\frac{1}{n}(\omega^{-ik})_{k,i}$ ,

$i.e$ .
$L_{n}^{(k)}=\frac{1}{n}\sum_{i}\omega^{-ik}K_{n}^{(i)}$ , (153)

When $\omega^{k}$ is a primitive n-th root of unity, $i.e$ . $n\wedge k=1$ , we have seen that
$\frac{1}{n}K_{n}^{(k)}$ is an idempotent corresponding to Klyachko’s idempotent in the descent
algebra. In particular, $K_{n}^{(k)}$ is primitive for $\triangle$ . When $\omega^{k}$ is not primitive, $K_{n}^{(k)}$ is a
product of primitive elements. More precisely, let $\zeta$ be any r-th root of unity. Let
$n=ar+b$ with $a,$ $b\in N,$ $b<r$ . Then

$K_{n}(\zeta)=K_{r}(\zeta)^{a}K_{b}(\zeta)$ . (154)
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From this, one can show that the $K_{n}^{(m)}$ span a subalgebra, with the multiplication
rule

$K_{n}^{(k)}*K_{n}^{(l)}=\left\{\begin{array}{ll}(n/d)!d‘‘/dK_{n}^{(l)} & if n\wedge k=n\wedge l=d\\0 & otherwise\end{array}\right.$ (155)

In particular,

$C_{n}$ $:=\{\{K_{n}^{(k)}|k=1, \ldots n\rangle\rangle=\{(L_{n}^{(k)}|k=1, \ldots n\}\}$ (156)

is a subalgebra of Sym with respect to the internal $product*$ . It is noncommutative
for $n\geq 3$ .

From this result the computation of $L_{n}^{(k)}*L_{n}^{(l)}$ is straightforward, and one finds

$L_{n}^{(k)}*L_{n}^{(l)}=\sum_{m=1}^{n}\{\ell_{n}^{(k)},$ $\ell_{n}^{(m-l)}$ ) $L_{n}^{(m)}$ . (157)

In particular, the commutative image

$\ell_{n}^{(k)}*\ell_{n}^{(l)}=\sum_{m=1}^{n}\{\ell_{n}^{(k)}, \ell_{n}^{(m-l)}\}\ell_{n}^{(m)}$ (158)

amounts to an identity on Ramanujan sums

$\frac{1}{d}\sum_{m=1}^{d}c(\ell-m, d)c(m, d)=c(\ell, d)$ . (159)

It gives the decomposition of the product of two cyclic characters into a sum of
characters of the same type.

5.3 Diagonalization of the left q-bracketing
We have seen that the Lie polynomials are eigenvectors of the standard left q-
bracketing $ x_{1}x_{2}\cdots x_{n}\mapsto$ $[. . . [x_{1} , x_{2}]_{q}\ldots.x_{n}]_{q}$ . It turns out that this operator is
semisimple, with $p(n)$ distinct eigenvalues, and that its spectral projectors provide
an example of a complete family of orthogonal idempotents of the descent algebra
constructed from a sequence of Lie idempotents.

Instead of $\Theta_{n}(q)$ , it will be more convenient to deal with $S_{n}((1-q)A)$ considered
as left or right operator for the internal product, i.e. with the operators

$F\rightarrow S_{n}((1-q)A)*F$ or $F\rightarrow F*S_{n}($(1– $q)A)$ (160)

where $F\in Sym_{n}$ .
The eigenvalues of both operators (left or right) are the polynomials

$p_{\lambda}(1-q)=(1-q^{\lambda_{1}})(1-q^{\lambda_{2}})\ldots(1-q^{\lambda}’$ } (161)



NONCOMMUTATIVE SYMMETRIC FUNCTIONS 87

where $\lambda=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r})$ runs over all partitions of $n$ . The algebraic tools pre-
sented in Section 3 allows one to prove the following facts [61].

First, there exists a unique family $\pi(q)=(\pi_{n}(q))_{n\geq 1})$ of Lie idempotents (with
$\pi_{n}(q)\in Sym_{n}$ for all n) characterized by the property

$\pi_{n}(q)((1-q)A)=(1-q^{n})\pi_{n}(q)(A)$ . (162)

Here are the first idempotents $\pi_{n}(q)$ for $n\leq 4$ :

$\pi_{1}(q)=\Psi_{1}$ , $\pi_{2}(q)=\frac{\Psi_{2}}{2}$ , $\pi_{3}(q)=\frac{\Psi_{3}}{3}+\frac{1}{6}\frac{1-q}{(1+2q)}[\Psi_{2}, \Psi_{1}]$ ,

$\pi_{4}(q)=\frac{\Psi_{4}}{4}+\frac{1}{12}\frac{(1-q)(2q+1)}{(1+q+2q^{2})}[\Psi_{3}, \Psi_{1}]+\frac{1}{24}\frac{(1-q)^{2}}{(1+q+2q^{2})}[[\Psi_{2}, \Psi_{1}],$ $\Psi_{1}$ ].

Next, from any sequence $(F_{n})$ of Lie idempotents such that $F_{n}\in Sym_{n}$ , one
can construct a complete set of orthogonal idempotents $E_{\lambda}(F)$ for each descent
algebra. We define as usual

$F^{I}=F_{i_{1}}F_{i_{2}}\ldots F_{i_{n}}$ (163)

for any composition $I=(i_{1}, i_{2}, \ldots, i_{n})$ . The family $(F^{I})$ is a basis of Sym and we
can write

$S_{n}=\sum_{|I|=n}p_{n,I}F^{I}$
(164)

for some scalar coefficients $(p_{n,I})$ . Then we associate to a partition $\lambda$ of $n$ the
element

$E_{\lambda}(F)=\sum_{I\in \mathfrak{S}(\lambda)}p_{n,I}F^{I}$
(165)

where $\mathfrak{S}(\lambda)$ is the set of all permutations of $\lambda$ . Hence we have the following de-
composition of the identity $S_{n}$

$S_{n}=\sum_{\lambda\vdash n}E_{\lambda}(F)$
, (166)

and one can show that the family $(E_{\lambda}(F))_{\lambda\vdash n}$ is a complete family of orthogonal
idempotents of $Sym_{n}$ . When applied to the sequence $F_{n}=\frac{1}{n}\Phi_{n}$ , this construction
gives the Garsia-Reutenauer idempotents [31].

Let now $E_{\lambda}(\pi(q))$ be the orthogonal idempotents associated with the family
$\pi(q)$ by the above process. Then, the element $E_{\lambda}(\pi(q))$ is the spectral projector of
$S_{n}((1-q)A)$ associated with the eigenvalue $p_{\lambda}(1-q)$ . Therefore, $S_{n}((1-q)A)$ is
semisimple.

The first spectral projectors of the operators $S_{n}((1-q)A)$ are

$E_{1}=\Psi_{1}$ , $E_{2}=\frac{\Psi_{2}}{2}$ , $E_{11}=\frac{\Psi^{11}}{2}$ ,
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$E_{3}=\frac{\pi_{3}(q)}{3}$ , $E_{21}=\frac{1}{2(1+2q)}(q\Psi^{21}+(1+q)\Psi^{12}),$ $E_{111}=\frac{\Psi^{111}}{6}$ ,

$E_{4}=\frac{\pi_{4}(q)}{4},$ $E_{31}=\frac{1}{1+q+2q^{2}}(q^{2}\pi^{31}(q)+(q^{2}+q+1)\pi^{13}(q)),$ $E_{22}=\frac{\Psi^{22}}{8}$ ,

$E_{211}=\frac{1}{4(1+2q)}(q\Psi^{211}+2q\Psi^{121}+(q+2)\Psi^{112}),$ $E_{\Delta}1111=\frac{\Psi^{1111}}{24}$

One can recover from the above results the character of the ieft ideal $\mathbb{C}\mathfrak{S}_{n}\theta_{n}(q)$ ,
as computed in [8], or, which amounts to the same, the character $f_{n}(q)$ of the linear
group $GL(V)$ of a vector space $V$ in $T^{n}(V)\theta_{n}(q)$ .

For $q$ not a root of unity of order $n$ or less, the element $S_{n}(A/(1-q))$ is well
defined, and invertible for the internal product, with inverse $S_{n}((1-q)A)$ . So in
this case, $f_{n}(q)=p_{1}^{n}$ .

When $ q=\omega$ is a root of unity, $W$ $:=T^{n}(V)\theta_{n}(\omega)$ is the direct sum of the
eigenspaces $W_{\lambda}$ $:=T^{n}(V)e_{\lambda}(\omega)$ corresponding to nonzero eigenvalues (here, the $e_{\lambda}$

are the elements of the group algebra of $\mathfrak{S}_{n}$ corresponding to the spectral projectors
constructed in this section). Since these eigenvalues are $t_{\lambda}=p_{\lambda}(1-\omega)$ , one finds
that the character of $GL(V)$ in the image $W=T^{n}(V)\theta_{n}(\omega)$ of the iterated q-
bracketing at a root of unity is

$f_{n}(\omega)=\sum_{w_{\lambda}(\omega)\neq 0}L_{\lambda}$
(167)

where $w_{\lambda}(q)=p_{\lambda}(1-q)/(1-q)$ and $ L_{\lambda}=h_{m_{1}}[\ell_{1}^{(1)}]h_{m_{2}}[\ell_{2}^{(1)}]\cdots$ for $\lambda=(1^{m_{1}}2^{m_{2}}\cdots)$ .
Here $f[g]$ denotes the plethysm of $g$ by $f$ , and the $\ell_{k}^{(1)}$ are the cyclic characters
of the preceding subsection. If $\omega$ is a primitive k-th root of unity, the generating
series of the characters is

$\sum_{n\geq 0}f_{n}(\omega)=\sigma_{1}[\sum_{m\not\equiv 0mod k}\ell_{m}]$
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