CHAPTER 10

On classification of exceptional complements: case $\delta \geq 1$

Now we study the case $\delta \geq 1$ in details.

10.1. The inequlity $\delta \leq 2$

In this section we show that $\delta \leq 2$. Replace (X, B) with a model $(\widetilde{X}, \widetilde{B})$. By construction, $\delta(X, B)=\delta(\widetilde{X}, \widetilde{B})$. Thus we assume that $\rho(X)=1, B \in \Phi_{\mathbf{m}}$, $K_{X}+B$ is (1/7)-lt and $-\left(K_{X}+B\right)$ is nef. Moreover, there exists a boundary D defined by (9.1) such that $K_{X}+D$ is ample and lc. Let $C:=\lfloor D\rfloor$. Then $\delta(X, B)$ is the number of components of C. Since $K_{X}+D$ is lc, C has only nodal singularities. The following is a very important ingredient in the classification.

Theorem 10.1.1 ([Sh3]). Notation as in 10. Then $p_{a}(C) \leq 1$.
Sketch of proof. Assume that $p_{a}(C) \geq 2$. Consider the following birational modifications:

where $\mu: X^{\text {min }} \rightarrow X$ be a minimal resolution and $\varphi: X^{\text {min }} \rightarrow X^{\prime}$ is a composition of contractions of -1 -curves. Since $K_{X}+C$ is lc, C has only nodal singularities. By Lemma 9.1.8, X is smooth at Sing C. Therefore $C^{\min } \simeq C$. Thus $p_{a}(C)=$ $p_{a}\left(C^{\min }\right) \geq 2, C^{\min }$ is not contracted and $p_{a}\left(C^{\prime}\right) \geq 2$. Take the crepant pull back

$$
\mu^{*}\left(K_{X}+B\right)=K_{X^{\min }}+B^{\min }, \quad \text { with } \quad \mu_{*} B^{\min }=B
$$

and put

$$
B^{\prime}:=\varphi_{*} B^{\mathrm{min}}
$$

Note that both $-\left(K_{X^{\text {min }}}+B^{\text {min }}\right)$ and $-\left(K_{X^{\prime}}+B^{\prime}\right)$ are nef and big. Since $\rho(X)=1$ and $C \simeq C^{\mathrm{min}}$, we have
$\left(^{*}\right)$ every two irreducible components of $C^{\text {min }}$ intersect each other.
If $X^{\prime} \simeq \mathbb{P}^{2}$, then $-\left(K_{X^{\prime}}+\frac{6}{7} C^{\prime}\right)$ is ample. This gives $\frac{6}{7} \operatorname{deg} C^{\prime}<3, \operatorname{deg} C^{\prime} \leq 3$ and $p_{a}\left(C^{\prime}\right) \leq 1$. Now we assume that $X^{\prime} \simeq \mathbb{F}_{n}$. We claim that $n \geq 2$. Indeed, otherwise $X^{\prime} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}, X^{\prime} \neq X^{\min }$ (because $\rho(X)=1$) and we have at least
one blowup $X^{\text {min }} \rightarrow X^{\prime \prime} \rightarrow X^{\prime}$. Contracting another -1-curve on $X^{\prime \prime}$ we get \mathbb{F}_{1} instead of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and after the next blowdown we get \mathbb{P}^{2}. Thus $n \geq 2$. Let Σ_{0} be a negative section of \mathbb{F}_{n} and F be a general fiber. Since $\frac{6}{7} C^{\prime} \cdot F \leq-K_{X^{\prime}} \cdot F=2$, we have $C^{\prime} \cdot F \leq 2$. So C^{\prime} must be generically a 2 -section of $\mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ (otherwise C^{\prime} is generically a section and $p_{a}\left(C^{\prime}\right)=0$).

First we consider the case when Σ_{0} is not a component of C^{\prime}. Then the coefficient of Σ_{0} in $C^{\prime} \leq 2-\frac{2 \cdot 6}{7}=\frac{2}{7}$. Thus

$$
0 \leq-\left(K_{X^{\prime}}+B^{\prime}\right) \cdot \Sigma_{0} \leq-\left(K_{X^{\prime}}+\frac{2}{7} \Sigma_{0}\right) \cdot \Sigma_{0}=2-n+\frac{2 n}{7}
$$

Hence $n=2, X^{\prime} \simeq \mathbb{F}_{2}$. If $X^{\min } \neq X^{\prime}$, then $X^{\text {min }} \rightarrow X^{\prime}$ contracts at least one -1-curve. But then contracting another -1-curve we obtain either $X^{\prime}=\mathbb{F}_{3}$ or $X^{\prime}=\mathbb{F}_{1}$, a contradiction with our assumptions. Therefore $X^{\min }=X^{\prime}$ and X is a quadratic cone in \mathbb{P}^{3}. Since $-\left(K_{X}+\frac{6}{7} C\right)$ is ample, $C \equiv a H$, where H is the ample generator of $\operatorname{Pic}(X)$ and $a<\frac{7}{3}$. By Adjunction we have

$$
\operatorname{deg} K_{C} \leq\left(K_{X}+C\right) \cdot C=2(a-2) a<2
$$

Hence $p_{a}(C) \leq 1$ in this case.
Finally, we consider the case when Σ_{0} is a component of C^{\prime}. Write $C^{\prime}=\Sigma_{0}+\Sigma^{\prime}$. Then Σ^{\prime} is generically a section. From $p_{a}\left(C^{\prime}\right) \geq 2$ by genus formula, we have $\Sigma_{0} \cdot \Sigma^{\prime} \geq 3$. But then

$$
0 \geq\left(K_{X^{\prime}}+B^{\prime}\right) \cdot \Sigma_{0} \geq\left(K_{X^{\prime}}+\Sigma_{0}+\frac{6}{7} \Sigma^{\prime}\right) \cdot \Sigma_{0} \geq-2+\frac{6}{7} \cdot 3 \geq \frac{4}{7}
$$

a contradiction.
Corollary 10.1.2 ([Sh3]). Notation as in 10. Then $\delta(X, B) \leq 2$.
Proof. Let $C=\sum_{i=1}^{\delta} C_{i}$. From the exact sequence

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \oplus \mathcal{O}_{C_{i}} \longrightarrow \mathcal{F} \longrightarrow 0
$$

where \mathcal{F} is a sheaf with $\operatorname{Supp} \mathcal{F}=\operatorname{Sing} C$, we have

$$
\begin{equation*}
1 \geq p_{a}(C)=1-\delta+\#\left\{C_{i} \cap C_{j} \mid i \neq j\right\}+\sum p_{a}\left(C_{i}\right) \tag{10.2}
\end{equation*}
$$

On the other hand, by $\left(^{*}\right)$ we have $\#\left\{C_{i} \cap C_{j} \mid i \neq j\right\} \geq \frac{1}{2} \delta(\delta-1)$. This yields

$$
\begin{equation*}
0 \geq \frac{1}{2} \delta(\delta-3)+\sum p_{a}\left(C_{i}\right) \tag{10.3}
\end{equation*}
$$

In particular, $\delta \leq 3$. Assume that $\delta=3$. Then C is a wheel of smooth rational curves and in (10.3) the equality holds. Let H be an ample generator of $\operatorname{Pic}(X)$. We have $-K_{X} \equiv r H, C_{i} \equiv \gamma_{i} H$ for some positive rational $r, \gamma_{1}, \gamma_{2}, \gamma_{3}$. Since every C_{i} intersects C_{j} transversally at a (unique) nonsingular point, $1=C_{i} \cdot C_{j}=\gamma_{i} \gamma_{j} H^{2}$. Hence

$$
\gamma_{1} \gamma_{2}=\gamma_{1} \gamma_{3}=\gamma_{2} \gamma_{3}=\frac{1}{H^{2}}
$$

This implies

$$
\begin{equation*}
\gamma_{1}=\gamma_{2}=\gamma_{3}=\frac{1}{\sqrt{H^{2}}} \leq 1 \tag{10.4}
\end{equation*}
$$

Since $-\left(K_{X}+B\right)$ is ample,

$$
r>\frac{6}{7} \gamma_{1}+\frac{6}{7} \gamma_{2}+\frac{6}{7} \gamma_{3}=\frac{18}{7} \gamma_{1}
$$

Therefore $K_{X}+C_{1}+C_{2}+\frac{4}{7} C_{3} \equiv-\left(r-\frac{18}{7} \gamma_{1}\right) H$ is antiample (and lc). We claim that X is smooth along C_{1}. Indeed, otherwise $\operatorname{Diff}_{C_{1}}(0) \geq \frac{1}{2} P$, where $P \notin C_{2}, C_{3}$. On the other hand, by Adjunction we have

$$
2>\operatorname{deg} \operatorname{Diff}_{C_{1}}\left(C_{2}+\frac{4}{7} C_{3}\right)=1+\frac{4}{7}+\frac{1}{2}>2
$$

The contradiction shows that X is smooth along C_{1}, and similarly X is smooth along C_{2} and C_{3}. Thus C_{1}, C_{2}, C_{3} are Cartier. In particular, $\gamma_{i} \in \mathbb{N}$. By (10.4), $\gamma_{1}=1$ and $H^{2}=1$. Since $\operatorname{Pic}(X) \simeq \mathbb{Z} \cdot H, C_{1}, C_{2}, C_{3} \in|H|$. The linear subsystem of $|H|$ generated by C_{1}, C_{2}, C_{3} is base point free and determines a morphism $X \rightarrow$ \mathbb{P}^{2} of degree one (see also Lemma 10.2 .4 below). Therefore $X \simeq \mathbb{P}^{2}$ and C_{1}, C_{2}, C_{3} are lines in the general position. Simple computations show that B has no other components. Finally, $K_{X}+C$ is an 1-complements of $K_{X}+B$, a contradiction proves the corollary.

10.2. Case $\delta=2$

Following Shokurov [Sh3] we describe the case $\delta=2$:
Theorem 10.2.1. Let (X, B) be a log surface such that $K_{X}+B$ is (1/7)-lt, $-\left(K_{X}+B\right)$ is nef, $B \in \Phi_{\mathrm{m}}, \delta(X, B)=2$ and $\rho(X)=1$. Assume that (X, B) is exceptional. Let H be a positive generator of $\operatorname{Pic}(X)$. Write

$$
\begin{aligned}
B & =b_{1} C_{1}+b_{2} C_{2}+F, \quad F=\sum\left(1-1 / m_{i}\right) F_{i} \\
b_{1}, b_{2} & \geq 6 / 7, \quad m_{i} \in\{1,2,3,4,5,6\}
\end{aligned}
$$

where C_{1} and C_{2} are irreducible curves. Then $C:=C_{1}+C_{2}$ has only normal crossings at smooth points of $X, \operatorname{Supp} F$ does not pass $C_{1} \cap C_{2}$ and $b_{1}+b_{2}<13 / 7$. We have one of the following possibilities:
$\left(\mathrm{A}_{2}^{1}\right) \quad X=\mathbb{P}^{2}, B=b_{1} C_{1}+b_{2} C_{2}+\frac{1}{2} F_{1}+\frac{2}{3} F_{2}$, where $C_{1}, C_{2}, F_{1}, F_{2}$ are lines such that no three of them intersect at a point and $b_{1}+b_{2} \leq 11 / 6$;
$\left(\mathrm{A}_{2}^{1 \prime}\right) X=\mathbb{P}^{2}, B=b_{1} C_{1}+b_{2} C_{2}+\frac{1}{2} F_{1}+\frac{3}{4} F_{2}$, where $C_{1}, C_{2}, F_{1}, F_{2}$ are lines such that no three of them intersect at a point and $b_{1}+b_{2} \leq 7 / 4$;
$\left(\mathrm{A}_{2}^{2}\right) X$ is a quadratic cone in $\mathbb{P}^{3}, B=b_{1} C_{1}+b_{2} C_{2}+\frac{2}{3} F_{1}$, where C_{1} is its generator, C_{2}, F_{1} are its smooth hyperplane sections, $b_{1}+2 b_{2} \leq 8 / 3$;
$\left(\mathrm{A}_{2}^{3}\right) X$ is a rational cubic cone in $\mathbb{P}^{4}, B=b_{1} C_{1}+b_{2} C_{2}+\frac{1}{2} F_{1}$, where C_{1} is its generator, C_{2}, F_{1} are its smooth hyperplane sections, $b_{1}+3 b_{2} \leq 7 / 2$ and $\# C_{2} \cap F_{1} \geq 2$;
$\left(\mathrm{A}_{2}^{4}\right) \quad X=\mathbb{P}(1,2,3), B=b_{1} C_{1}+b_{2} C_{2}+\frac{1}{2} F_{1}$, where $C_{1}=\left\{x_{2}=0\right\}, C_{2}=\left\{x_{3}=0\right\}$ (i.e., $3 C_{1} \sim H, 2 C_{2} \sim H$), F_{1} is a smooth rational curve $\equiv \frac{1}{2} H, F_{1} \neq C_{2}$ which is given by the equation $x_{3}=x_{1}^{3}+x_{1} x_{2}, 2 b_{1}+3 b_{2} \leq 9 / 2$;
$\left(\mathrm{A}_{2}^{5}\right) \quad X=\mathbb{P}(1,3,4), B=\frac{6}{7}\left(C_{1}+C_{2}\right)+\frac{1}{2} F_{1}$, where $C_{1}=\left\{x_{2}=0\right\}, C_{2}=\left\{x_{3}=0\right\}$ (i.e., $4 C_{1} \sim H, 3 C_{2} \sim H$), F_{1} is a smooth rational curve $\equiv \frac{1}{3} H, F_{1} \neq C_{2}$ which is given by the equation $x_{3}=x_{1}^{4}+x_{1} x_{2}$, in this case $14\left(K_{X}+B\right) \sim 0$;
$\left(\mathrm{A}_{2}^{6}\right) \quad X=\mathbb{P}(1,2,3), B=\frac{6}{7}\left(C_{1}+C_{2}\right)$, where C_{1} is a line $\left\{x_{1}=0\right\}, C_{2} \in\left|-K_{X}\right|$ (i.e., $\left.6 C_{1} \sim H, C_{2} \sim H\right)$, Sing $X \subset C_{1}$, in this case $7\left(K_{X}+B\right) \sim 0$;
$\left(\mathrm{I}_{2}^{1}\right) X$ is a quadratic cone in $\mathbb{P}^{3}, B=b_{1} C_{1}+b_{2} C_{2}+\frac{1}{2} F_{1}$, where C_{1}, C_{2} are two smooth hyperplane sections, F_{1} is a generator of the cone, $b_{1}+b_{2} \leq 7 / 4$;
$\left(\mathrm{I}_{2}^{2}\right) X=\mathbb{P}(1,2,3), B=\frac{6}{7} C_{1}+\frac{6}{7} C_{2}$, where $C_{1}=\left\{x_{3}=0\right\}, C_{2}=\left\{x_{2}^{2}=\right.$ $\left.\alpha_{1} x_{1}^{4}+\alpha_{2} x_{1}^{2} x_{2}+x_{1} x_{3}\right\}, \alpha_{1}, \alpha_{2} \in \mathbb{C},\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0), 2 C_{1} \sim H, 3 C_{2} \sim 2 H$, in this case $7\left(K_{X}+B\right) \sim 0$.
Remark. Note that in all cases $\operatorname{Weil}_{\text {lin }}(X) \simeq \mathbb{Z}$. Therefore we can verify (i) in the definition of complements 4.1.3 numerically, i.e., we need to check only that $n B^{+}$is integral and $K_{X}+B^{+} \equiv 0$. By the Inductive Theorem 8.3.1, (ii) of 4.1.3 holds automatically whenever (X, B) is exceptional.

Shokurov's proof is based on a detailed analysis of the minimal resolution, cf. (10.1). Our proof uses computations of Fano indices of X (as in the proof of Corollary 10.1.2). We use slightly 5.2 .3 . Note that one can avoid using of 5.2 .3 , but then computations become a little more complicated.

The important property is that $K_{X}+D$ is analytically dlt except for one case:
Lemma 10.2.2 ([Sh3]). Let (S эo, $B=\sum b_{i} B_{i}$) be a log surface germ, where $B \in \Phi_{\mathbf{m}}$. Assume that $K_{S}+B$ is (1/7)-lt. As in (9.1), put

$$
C:=\left\lfloor\frac{7}{6} B\right\rfloor=\sum_{b_{i} \geq 6 / 7} B_{i}, \quad F:=\sum_{b_{i}<6 / 7} b_{i} B_{i} \quad \text { and } \quad D:=C+F .
$$

Then one of the following holds:
(i) $K_{S}+D$ is analytically dlt at o;
(ii) $o \in S$ is smooth and near o we have $D=C+\frac{1}{2} L$, where $(S, C+L) \simeq_{\text {an }}$ $\left(\mathbb{C}^{2},\left\{y\left(y-x^{2}\right)=0\right\}\right)$.

Proof. Clearly, we may assume that $K_{S}+D$ is not plt (otherwise we have case (i)). By Theorem 6.0.6 there is a regular complement $K_{S}+B^{+}$. Since $B \in \Phi_{\mathbf{m}}$, $B^{+} \geq D$. In particular, $K_{S}+D$ is lc and $C=\lfloor D\rfloor$ has at most two (analytic) components passing through o (see Theorem 2.1.3). If C has exactly two components, then $S \ni o$ is smooth by Lemma 9.1.8. Obviously, $K_{S}+D$ is analytically dlt at o in this case. From now on we assume that C is analytically irreducible at o. Write $B=b C+F$, where $b \geq 6 / 7$. Recall that $F \in\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}\right\}$.

First we consider the case when $K_{S}+C$ is not plt. Then $D=C$ and (S, C, o) is such as in (ii) of 2.1.3. In particular, $2\left(K_{S}+C\right) \sim 0$ and $K_{S}+C \nsim 0$. Let $f:(\widetilde{S}, E) \rightarrow S$ be an inductive blowup of (S, D) and \widetilde{C} the proper transform of C.

Write

$$
\begin{aligned}
& f^{*}\left(K_{S}+C\right)=K_{\widetilde{S}}+\widetilde{C}+E \\
& f^{*}\left(K_{S}+b C\right)=K_{\widetilde{S}}+b \widetilde{C}+\alpha E
\end{aligned}
$$

where $\alpha<6 / 7$. Here $2\left(K_{\widetilde{S}}+\widetilde{C}+E\right) \sim 0$. By Adjunction, $K_{E}+\operatorname{Diff}_{E}(\widetilde{C})$ is not klt and $\operatorname{deg} \operatorname{Diff}_{E}(\widetilde{C})=2$. Moreover, $K_{E}+\operatorname{Diff}_{E}(\widetilde{C})$ is not 1-complementary (because neither is $K_{S}+C$). Therefore we have (cf. Lemma 6.1.1)

$$
\operatorname{Diff}_{E}(\widetilde{C})=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P_{3}, \quad \operatorname{Diff}_{E}(0)=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+\frac{m-1}{m} P_{3}
$$

for some points $P_{1}, P_{2}, P_{3} \in E$ and some $m \in \mathbb{N}$. From this we have

$$
\left(K_{\widetilde{S}}+E\right) \cdot E+b \widetilde{C} \cdot E+(-1+\alpha) E^{2}=0
$$

By Adjunction

$$
\left(K_{\widetilde{S}}+E\right) \cdot E=-2+\frac{1}{2}+\frac{1}{2}+1-\frac{1}{m}=-\frac{1}{m} .
$$

Since $\widetilde{C} \cap E$ is a point of type $\frac{1}{m}(1, q), \widetilde{C} \cdot E \geq 1 / m$. This yields

$$
\frac{1}{7}\left(-E^{2}\right)<(-1+\alpha) E^{2} \leq \frac{1}{7 m}
$$

Thus $0<-E^{2}<1 / m$ and $-1 / m<K_{\tilde{S}} \cdot E<0$. On the other hand, $m K_{\tilde{S}}$ is Cartier near E. Therefore $m K_{\tilde{S}} \cdot E \in \mathbb{Z}$, a contradiction.

Now we may assume that $K_{S}+C$ is plt. By Theorem $6.0 .6, K_{S}+D$ is 2complementary and $D^{+} \geq D$, so $2\left(K_{S}+D\right) \sim 0$ and $2 F$ is integral. We claim that ($S \ni o$) is smooth. Assume the opposite. Then

$$
(S, C) \simeq\left(\mathbb{C}^{2},\{y=0\}\right) / \mathbb{Z}_{m}(1, q), \quad \operatorname{gcd}(q, m)=1, m \geq 2,1 \leq q \leq m-1
$$

Consider the weighted blowup with weights $\frac{1}{m}(1, q)$. By Lemma 3.2 .1 we get the exceptional divisor E with

$$
a(E, D)=-1+\frac{1+q}{m}-\frac{q}{m}-\frac{\mu}{2}=-1+\frac{1}{m}-\frac{\mu}{2}
$$

where $\mu=\operatorname{mult}_{E}(2 F) \in \frac{1}{m} \mathbb{N}$. Since $2\left(K_{S}+D\right) \sim 0$, we have $a(E, D)=-1$ or $-1 / 2$. But in the second case $\mu=2 / m-1 \leq 0$, a contradiction. Therefore $a(E, C+F)=-1$ and $\mu=2 / m$. Further,

$$
-1+\frac{1}{7}<a(E, B)=-1+\frac{1+q}{m}-b \frac{q}{m}-\frac{\mu}{2}=-1+\frac{q(1-b)}{m}<-1+\frac{1}{7}
$$

The contradiction shows that $(S \ni o)$ is smooth. Now we claim that $\lceil F\rceil$ is a smooth curve. As above, consider the blowup of $o \in S$. For the exceptional divisor E, we have

$$
-1+\frac{1}{7}<a(E, B)=1-b-\frac{\mu}{2}
$$

where $\mu=\operatorname{mult}_{E}(2 F) \in \mathbb{N}$. Hence $\mu=1$ and $L=\lceil F\rceil$ is smooth. Finally, $K_{S}+C+\left(\frac{1}{2}-\varepsilon\right) L$ is plt for any $\varepsilon>0$. By Adjunction, $\left\lfloor\operatorname{Diff}_{C}\left(\left(\frac{1}{2}-\varepsilon\right) L\right)\right\rfloor \leq 0$.

Hence $\left\lfloor\operatorname{Diff}_{C}\left(\frac{1}{2} L\right)\right\rfloor$ is reduced. This means that $C \cdot L=2$, i.e., C and L have a simple tangency at o. The rest is obvious.

We need some (well known) facts about Fano indices of log del Pezzo surfaces.
Definition 10.2.3. Let (X, D) be a \log del Pezzo surface. Define the Fano index $r(X, D)$ of (X, D) by

$$
r(X, D)=\sup \left\{t \mid-\left(K_{X}+D\right) \equiv t H, \quad \text { for some } \quad H \in \operatorname{Pic}(X)\right\}
$$

If $K_{X}+D$ is klt or $K_{X}+D$ is dlt and $-\left(K_{X}+D\right)$ is ample, then by Lemma 5.1.3, $r(X, D) \in \mathbb{Q}$ and $-\left(K_{X}+D\right) \equiv r(X, D) H$ for some (primitive and ample) element $H \in \operatorname{Pic}(X)$ (recall that we consider only \mathbb{Q}-divisors). In the case $D=0$ we write $r(X)$ instead of $r(X, 0)$.

The following is an easy consequece of Riemann-Roch, Kawamata-Viehweg vanishing and [Fuj].

Lemma 10.2.4. Let X be a log del Pezzo with klt singularities of Fano index $r=r(X)$. Assume that $-K_{X}$ is ample and write $-K_{X} \equiv r H$, where H is a primitive (ample) element of $\operatorname{Pic}(X)$. Then
(i) $\operatorname{dim}|H|=\frac{1}{2}(1+r) H^{2}$, hence $r=\frac{2 l}{H^{2}}-1$, where $l:=\operatorname{dim}|H|$;
(ii) $H^{2} \geq \operatorname{dim}|H|-1$, hence $r \leq 1+\frac{2}{H^{2}}$;
(iii) if $r>1$, then

$$
\operatorname{dim}|H|=H^{2}+1, \quad \text { and } \quad r=1+\frac{2}{H^{2}}
$$

Moreover, X is one of the following $X \simeq \mathbb{P}^{2}(r=3), X \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \quad(r=2)$, $X \subset \mathbb{P}^{d+1}$ is a cone over a rational normal curve of degree $d=H^{2} \quad(r=$ $1+2 / d)$.

Proof. By Kawamata-Viehweg vanishing [KMM, 1-2-5] one has $H^{i}\left(X, \mathcal{O}_{X}(H)\right)=H^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i>0$. Therefore by Riemann-Roch we obtain

$$
\operatorname{dim}|H|=\frac{H \cdot\left(H-K_{X}\right)}{2}=\frac{(1+r) H^{2}}{2}
$$

This proves (i). Recall (see [Fuj]) that for any polarized variety (X, H) the following equality holds:

$$
\begin{equation*}
\operatorname{dim} X+H^{\operatorname{dim} X}-h^{0}\left(X, \mathcal{O}_{X}(H)\right) \geq 0 \tag{10.5}
\end{equation*}
$$

Combining this with (i) we obtain (ii). Finally, assume $r>1$. Then by (i), $\operatorname{dim}|H|>H^{2}$. From (ii) we have $H^{2}=\operatorname{dim}|H|-1$. Moreover, in (10.5) the equality holds. Such polarized varieties (of arbitrary dimension) are classified in [Fuj]. In particular, it is proved that H is very ample and $X \subset \mathbb{P}^{\text {dim }|H|}$ are varieties of minimal degree. In the two-dimensional case from [Fuj] we obtain possibilities as in (iii).

Log del Pezzo surfaces with $r(X)=1$ are special cases of the so-called Fujita varieties:

Lemma 10.2.5. Let X be a log del Pezzo with klt singularities of Fano index 1. Assume that $-K_{X}$ is ample and H an ample primitive element of $\operatorname{Pic}(X)$ such that $-K_{X} \equiv H$. Then
(i) $\operatorname{dim}|H|=H^{2}$ and $H^{2} \leq 8$;
(ii) if $H^{2} \geq 4$, then X has only DuVal singularities;
(iii) if $H^{2}=6$ and $\rho(X)=1$, then X has exactly two singular points which are Du Val of types A_{1} and A_{2}; in this case, X is isomorphic to the weighted projective plane $\mathbb{P}(1,2,3)$.

Sketch of proof. Note that by Lemma 5.4.1, X is rational. As in Lemma 10.2.4, the first part of (i) follows by Riemann-Roch and KawamataViehweg vanishing. Set $D:=H+K_{X}$. If $D \sim 0$, then X has only DuVal singularities. In this case, by Noether's formula,

$$
K_{\tilde{X}}^{2}+\rho(\widetilde{X})=K_{X}^{2}+\rho(\widetilde{X})=10
$$

where $\widetilde{X} \rightarrow X$ is the minimal resolution. This yields $K_{X}^{2}=H^{2} \leq 8$ (because $\left.X \not \approx \mathbb{P}^{2}\right)$.

If $D \nsim 0$, then by Lemma 5.1.3, $n D \sim 0$ for some $n \in \mathbb{N}$. Considering a cyclic cover trick, we get a cyclic étale in codimension one cover $\varphi: X^{\prime} \rightarrow X$. Moreover, on X^{\prime} one has $-K_{X^{\prime}} \sim H^{\prime}$, where $H^{\prime}:=\varphi^{*} H$. Therefore X^{\prime} is a del Pezzo surface with only DuVal singularities. Further, by the above arguments,

$$
K_{X^{\prime}}^{2}=(\operatorname{deg} \varphi) K_{X}^{2} \leq 9
$$

Hence $K_{X}^{2} \leq 4$. If $K_{X}^{2}=4$, then $K_{X^{\prime}}^{2}=8$ and X is a quotient of X^{\prime} by an involution τ. In this case, X^{\prime} cannot be smooth (otherwise X has only singularities of type A_{1} and $-K_{X} \sim H$). Let $\widetilde{X}^{\prime} \rightarrow X^{\prime}$ be the minimal resolution. As above, by Noether's formula, $\rho\left(\widetilde{X}^{\prime}\right)=10-K_{\widetilde{X}^{\prime}}^{2}=10-K_{X^{\prime}}^{2}=2$. Therefore, $\widetilde{X}^{\prime} \rightarrow X^{\prime}$ contracts a single -2-curve. From this, we have only one possibility: $\widetilde{X}^{\prime} \simeq \mathbb{F}_{2}$ and X^{\prime} is a quadratic cone in \mathbb{P}^{3}. Since $\operatorname{Pic}\left(X^{\prime}\right)=\mathbb{Z} \cdot \mathcal{O}_{X^{\prime}}(1)$, one has that τ acts linearly in \mathbb{P}^{3}. Recall that the quotient of the vertex of the cone is nonGorenstein. The action of τ on \mathbb{P}^{3} is free in codimension one (because so is the action of τ on X^{\prime}). Therefore in some coordinate system,

$$
\tau=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and X^{\prime} is given by

$$
q\left(x_{1}, x_{2}\right)+q^{\prime}\left(x_{3}, x_{4}\right)=0
$$

where $q\left(x_{1}, x_{2}\right)$ and $q^{\prime}\left(x_{3}, x_{4}\right)$ are quadratic forms such that $\operatorname{rk}\left(q+q^{\prime}\right)=3$. Changing coordinates we may assume that X^{\prime} is given by $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$. But then the quotient of the vertex is a complete intersection singularity $y_{1}+y_{2}+x_{3}^{2}=0$,
$y_{1} y_{2}=y_{0}^{2}$, where $y_{1}=x_{1}^{2}, y_{2}=x_{2}^{2}$ and $y_{0}=x_{1} x_{2}$. In particular, it is Gorenstein, a contradiction.

Assume now that $H^{2}=6$. Then by the above, X is Gorenstein and $\rho(\widetilde{X})=4$, where $\widetilde{X} \rightarrow X$ is the minimal resolution. Therefore $\widetilde{X} \rightarrow X$ contracts exactly three -2 -curves and the configuration of singular points on X is either A_{3} or $A_{1} A_{2}$. By [$\mathbf{F u}$] the only second case is possible. Moreover, X is unique up to isomorphism (see e.g., $[\mathbf{K e M}, 3.10])$. On the other hand, $\mathbb{P}(1,2,3)$ is a Gorenstein del Pezzo of degree 6.

Remark. There is another way to treat the case $H^{2}=6$: since $\operatorname{dim}|H|=6$, one can construct a 1-complement $K_{X}+C$ such that C has three components and then use Theorem 8.5.2.

Proof of Theorem 10.2.1. Since $B \neq 0$ and $\rho(X)=1,-K_{X}$ is ample. Hence X is rational. By Lemma 10.2.2 Then $C:=C_{1}+C_{2}$ has only normal crossings at smooth points of $X, \operatorname{Supp} F$ does not pass $C_{1} \cap C_{2}$ and $b_{1}+b_{2}<13 / 7$ (by Lemma 9.1.8).

Write

$$
C_{i} \equiv d_{i} H, \quad-K_{X} \equiv r H, \quad F \equiv q H
$$

We assume that $d_{1} \leq d_{2}$. Since $-\left(K_{X}+B\right)$ is nef,

$$
\begin{equation*}
\frac{6}{7}\left(d_{1}+d_{2}\right) \leq b_{1} d_{1}+b_{2} d_{2}+q \leq r \tag{10.6}
\end{equation*}
$$

Take b so that $K_{X}+C_{1}+b C_{2}+F \equiv 0$, i.e.

$$
d_{1}+b d_{2}+q=r .
$$

Then

$$
\begin{align*}
b=\frac{r-q-d_{1}}{d_{2}} \geq \frac{b_{1} d_{1}+b_{2} d_{2}-d_{1}}{d_{2}} & = \tag{10.7}\\
& b_{2}-\left(1-b_{1}\right) \frac{d_{1}}{d_{2}} \geq b_{1}+b_{2}-1 \geq 5 / 7
\end{align*}
$$

Since $K_{X}+C+F$ is ample, $b<1$.
Recall that $K_{X}+C+F$ is analytically dlt except for the case (ii) of Lemma 10.2.2. In particular, X is smooth at points $C_{1} \cap C_{2}$ and $C_{1} \cap C_{2} \cap \operatorname{Supp} F=$ \varnothing. By Adjunction,

$$
\begin{equation*}
K_{C_{1}}+\operatorname{Diff}_{C_{1}}\left(b C_{2}+F\right) \equiv 0 \tag{10.8}
\end{equation*}
$$

If $p_{a}\left(C_{1}\right)>0$, then $K_{C_{1}}=\operatorname{Diff}_{C_{1}}\left(b C_{2}+F\right)=0$. This is impossible because $C_{1} \cap C_{2} \neq \varnothing$. Therefore $C_{1} \simeq \mathbb{P}^{\mathbf{1}}$ and $\operatorname{deg} \operatorname{Diff}_{C_{1}}\left(b C_{2}+F\right)=2$.
10.2.6. Case: X is smooth. Then $X \simeq \mathbb{P}^{2}$ and $r=3$. From (10.6) we obtain $\left(d_{1}, d_{2}\right)=(1,2)$ or $(1,1)$. On the other hand, $K_{X}+C+F$ is ample. This gives

$$
q>3-d_{1}-d_{2} .
$$

If $\left(d_{1}, d_{2}\right)=(1,2)$, then by $(10.6), 0<q \leq 3-\frac{18}{7}=\frac{3}{7}<\frac{1}{2}$, a contradiction. Therefore C_{1}, C_{2} are lines on $X \simeq \mathbb{P}^{2}$. Then

$$
\begin{align*}
& \frac{1}{2} \sum \operatorname{deg} F_{i} \leq q= \tag{10.9}\\
& \sum\left(1-1 / m_{i}\right) \operatorname{deg} F_{i} \leq 3-12 / 7=9 / 7, \quad q>1 .
\end{align*}
$$

If $\operatorname{deg} F_{1} \geq 2$, then $F=\frac{1}{2} F_{1}, \operatorname{deg} F_{1}=2$ and $q=1$, a contradiction. Hence all the components of F are lines. From (10.9) we have only two possibilities: $F=\frac{1}{2} F_{1}+\frac{2}{3} F_{2}$ and $F=\frac{1}{2} F_{1}+\frac{3}{4} F_{2}$. These are cases $\left(\mathrm{A}_{2}^{1}\right)$ and ($\left.\mathrm{A}_{2}^{1 \prime}\right)$.

From now on we assume that X is singular. Since $p_{a}(C) \leq 1$, we have two possibilities: $\# C_{1} \cap C_{2}=2$ and $\# C_{1} \cap C_{2}=1$.
10.2.7. Case: $\# C_{1} \cap C_{2}=2$. Let $C_{1} \cap C_{2}=\left\{P_{1}, P_{2}\right\}$. Then

$$
2=C_{1} \cdot C_{2}=d_{1} d_{2} H^{2}
$$

Equality (10.8) gives

$$
\operatorname{Diff}_{C_{1}}\left(b C_{2}+F\right)=b P_{1}+b P_{2}+\operatorname{Diff}_{C_{1}}(F) .
$$

Hence

$$
\operatorname{deg} \operatorname{Diff}_{C_{1}}(F)=2-2 b \leq 4 / 7
$$

By Inversion of Adjunction, $K_{X}+C_{1}+F$ is plt near C_{1}. Assume that $\operatorname{Diff}_{C_{1}}(F)=0$. Then $F=0$ and $b=1$, a contradiction with $b<1$. Therefore $\operatorname{Diff}_{C_{1}}(F) \neq 0$.

Since $\operatorname{Diff}_{C_{1}}(F) \in \Phi_{\mathbf{s m}}$ (see Corollary 2.2 .8), we have only one possibility: $\operatorname{Diff}_{C_{1}}(F)=\frac{1}{2} Q$, where $Q \in C_{1}$ is a single point $\neq P_{1}, P_{2}$. Moreover, $b=3 / 4$ and $d_{1}+\frac{3}{4} d_{2}+q=r$.

If $Q \in X$ is smooth, then $F=\frac{1}{2} F_{1}$, where F_{1} is irreducible, $F_{1} \cap C_{1}=\{Q\}$ and $F_{1} \cdot C_{1}=1$. Thus C_{1} is Cartier (see 2.2.4), $d_{1} \in \mathbb{N}$ and $r=d_{1}+\frac{3}{4} d_{2}+q>\frac{7}{4}$. By Lemma 10.2.4 X is a cone over a rational normal curve of degree $d \geq 2$. In this case $r=(d+2) / d>7 / 4$ and $d=2$. Therefore $X \subset \mathbb{P}^{3}$ is a quadratic cone. Further, $d_{1}=d_{2}=1$, so C_{1}, C_{2} are hyperplane sections (and they do not pass through the vertex of the cone). Finally, from $F_{1} \cdot C_{1}=1$ we see that F_{1} is a generator of the cone. This is case (I_{2}^{1}).

Therefore $Q \in X$ is singular. Then it must be DuVal of type A_{1}. Moreover, $F=0$ and $2 C_{1}$ is Cartier (but C_{1} is not, because C_{1} is smooth at Q). Hence $d_{1} \in \frac{1}{2} \mathbb{N}$. Further, $d_{1}+\frac{3}{4} d_{2}=r$.

If $d_{1} \geq 1$, then $d_{2} \geq 1$ and $r \geq 7 / 4$. By Lemma 10.2 .4 and our assumption that X is singular, $r=2$ and X is a quadratic cone. But then $d_{2}=4 / 3$, a contradiction. Hence $d_{1}=1 / 2, d_{2} \geq 1 / 2$. Put $k:=C_{1} \cdot H \in \mathbb{N}$. Then $H^{2}=2 k$,
$2=C_{1} \cdot C_{2}=\frac{1}{2} d_{2} H^{2}$, so $d_{2}=2 / k \geq 1 / 2, k \leq 4$. This gives $r=\frac{1}{2}+\frac{3}{4} d_{2}=\frac{1}{2}+\frac{3}{2 k}$. On the other hand, by Lemma $10.2 .4, r=\frac{l}{k}-1$, where $l \in \mathbb{N}$. Therefore $3 k+3=2 l$ and $k \in\{1,3\}$. If $k=1$, then $l=3, r=2, d_{2}=2$. But this contradicts $\frac{6}{7}\left(d_{1}+d_{2}\right) \leq r$. We obtain $k=3, l=6, r=1, d_{2}=2 / 3, H^{2}=6$. By Lemma 10.2.5, $X \simeq \mathbb{P}(1,2,3)$. We may assume that $C_{1} \in\left|\mathcal{O}_{\mathbb{P}}(3)\right|$ and $C_{2} \in\left|\mathcal{O}_{\mathbb{P}}(4)\right|$. Then $C_{1}=\left\{x_{3}=0\right\}$ and $C_{2}=\left\{x_{2}^{2}=\alpha_{1} x_{1}^{4}+\alpha_{2} x_{1}^{2} x_{2}+\alpha_{3} x_{1} x_{3}\right\}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$. But $\alpha_{3} \neq 0$ (otherwise C_{2} is singular at $(0,0,1)$). Moreover, $\left(\alpha_{1}, \alpha_{2}\right) \neq(0,0)$, because $C_{1} \cap C_{2}$ consists of two points. This is case (I_{2}^{2}).
10.2.8. Case: $p_{a}\left(C_{2}\right)=1$. By 10.2 .7 we may assume that $C_{1} \cap C_{2}$ is a single point, say P. As in (10.7) take b^{\prime} so that $K_{X}+b^{\prime} C_{1}+C_{2}+F \equiv 0$, i.e.

$$
b^{\prime} d_{1}+d_{2}+q=r
$$

Since $K_{C_{2}}+\operatorname{Diff}_{C_{2}}\left(b^{\prime} C_{1}+F\right) \equiv 0$, we have $\operatorname{deg}\left(K_{C_{2}}+\operatorname{Diff}_{C_{2}}\left(b^{\prime} C_{1}\right)\right) \leq 0$ and $K_{C_{2}}=0, b^{\prime} \leq 0$. This yields

$$
\begin{gather*}
b^{\prime}=\frac{r-q-d_{2}}{d_{1}}=b_{1}-\left(1-b_{2}\right) \frac{d_{2}}{d_{1}} \leq 0 \\
\frac{6}{7} d_{1} \leq b_{1} d_{1} \leq\left(1-b_{2}\right) d_{2} \leq \frac{1}{7} d_{2}, \quad 6 d_{1} \leq d_{2} \tag{10.10}
\end{gather*}
$$

Assume that $r \leq 1$. Then

$$
\begin{equation*}
1 \geq r \geq b_{1} d_{1}+b_{2} d_{2}+q \geq\left(b_{1}+6 b_{2}\right) d_{1}+q \geq 6 d_{1} \tag{10.11}
\end{equation*}
$$

On the other hand, by (10.8),

$$
\operatorname{deg} \operatorname{Diff}_{C_{1}}(F)=2-b,
$$

where

$$
\begin{equation*}
1>b \geq b_{2}-\left(1-b_{1}\right) \frac{d_{1}}{d_{2}} \geq b_{2}+\frac{1}{6} b_{1}-\frac{1}{6} \geq \frac{5}{6} \tag{10.12}
\end{equation*}
$$

(see (10.7) and (10.10)). Hence

$$
1<\operatorname{deg} \operatorname{Diff}_{C_{1}}(F) \leq 7 / 6
$$

Since $\operatorname{Diff}_{C_{1}}(F) \in \boldsymbol{\Phi}_{\mathbf{s m}}$, we have only one possibility $\operatorname{Diff}_{C_{1}}(F)=\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2}$ and $b=5 / 6$. In particular, $6 C_{1}$ is Cartier (see Theorem 2.2.4), so $d_{1} \geq 1 / 6$. On the other hand, $d_{1} \leq 1 / 6$ (see (10.11)). Hence $d_{1}=1 / 6$ and $k C_{1}$ is not Cartier for $1 \leq k \leq 5$. This gives us that $F=0$. Moreover, in (10.12) equalities hold, so $1=6 d_{1}=d_{2}$ and $b_{1}=b_{2}=6 / 7$. From (10.11) we have $r \geq 6 d_{1}=1$. Hence $r=1$. Further, $C_{1} \cdot C_{2}=\frac{1}{6} H^{2}=1$, gives $H^{2}=K_{X}^{2}=6$. By Lemma 10.2.5, $X \simeq \mathbb{P}(1,2,3)$. We get case $\left(\mathrm{A}_{2}^{6}\right)$.

Now assume that $r>1$. Then X is a cone. From $2 \geq r \geq b_{1} d_{1}+b_{2} d_{2}+q \geq$ $\left(b_{1}+6 b_{2}\right) d_{1}+q \geq 6 d_{1}$ we see that $d_{1} \leq 1 / 3$ and C_{1} is not Cartier. Hence C_{1} contains the vertex and C_{2} does not. Thus C_{2} is Cartier. Finally, $C_{1} \cdot C_{2}=1$. Therefore C_{1} is a generator of the cone and C_{2} is a smooth hyperplane section. But then C_{2} is rational, a contradiction.
10.2.9. Case $C_{1} \cap C_{2}=\{P\}$ and $p_{a}\left(C_{1}\right)=p_{a}\left(C_{1}\right)=0$. Then $C_{1} \cdot C_{2}=1$. By (10.7), $1>b \geq 5 / 7$. Hence $1<\operatorname{deg}\left(\operatorname{Diff}_{C_{1}}(F)\right)=2-b \leq 9 / 7$. Using Diff $_{C_{1}}(F) \in \Phi_{\text {sm }}$ we get the following cases:

$$
\begin{equation*}
\operatorname{Diff}_{C_{1}}(F)=\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2}, \quad \frac{1}{2} Q_{1}+\frac{3}{4} Q_{2} . \tag{10.13}
\end{equation*}
$$

By Inversion of Adjunction, $K_{X}+C_{1}+F$ is plt near C_{1}. In particular, either $4 C_{1}$ or $6 C_{1}$ is Cartier (see 2.2.4) and F has at most two components. Thus $4 d_{1}$ or $6 d_{1} \in \mathbb{N}$. Note that

$$
d_{1}=\frac{1}{H \cdot C_{2}} \leq 1, \quad d_{2}=\frac{1}{H \cdot C_{1}} \leq 1
$$

10.2.9.1. Subcase $d_{2}=1$. It is easy to see $H \cdot C_{1}=d_{1} H^{2}=1$, so $d_{1}=1 / H^{2}$. We claim that $r>1$. Indeed, if $r \leq 1$, then

$$
\begin{equation*}
1 \geq r \geq \frac{6}{7}\left(1+d_{1}\right) \tag{10.14}
\end{equation*}
$$

and $d_{1} \leq 1 / 6$. Thus $m C_{1}$ is not Cartier for $m<6$. By (10.13) we have that $6 C_{1}$ is Cartier, Diff $C_{1}(F)=\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2}$ and $d_{1} \geq 1 / 6$. Therefore $d_{1}=1 / 6$ and in 10.14 the equality holds. In particular, $r=1, K_{X}^{2}=H^{2}=6 C_{1} \cdot C_{2}=6$. By Lemma $10.2 .5, X \simeq \mathbb{P}(1,2,3)$ and $\operatorname{Weil}_{\text {lin }}(X) \simeq \mathbb{Z}$. But then $C_{2} \sim-K_{X} \sim H$ is Cartier and $p_{a}\left(C_{2}\right)=1$, a contradiction.

Thus $r>1$ and $X \subset \mathbb{P}^{d+1}$ is a cone of degree $d:=H^{2}$ (see 10.2.4). Hence C_{2} is a smooth hyperplane section and C_{1} is a generator of the cone (i.e., $d_{2}=1, d_{1}=1 / d$). Write $F_{i} \equiv \frac{q_{i}}{d} H$. (Note that $q_{i} \in \mathbb{N}$ and $F_{i} \sim q_{i} C_{1}$ because Weil $\operatorname{lin}^{(X)} \simeq \mathbb{Z} \cdot C_{1}$ in our case). We have

$$
\begin{align*}
& 1+\frac{1}{d}+\sum\left(1-\frac{1}{m_{i}}\right) \frac{q_{i}}{d}>r= \tag{10.15}\\
& \frac{d+2}{d} \geq b_{2}+\frac{1}{d} b_{1}+\sum\left(1-\frac{1}{m_{i}}\right) \frac{q_{i}}{d} \\
& q_{i} \in \mathbb{N}, \quad m_{i}
\end{align*}=\{0,2,3,4,5,6\} \text {. }
$$

Assume that F has a component F_{1} which does not pass through the vertex. Then $q_{1} \geq d$, so

$$
\begin{gathered}
1+\frac{2}{d} \geq b_{2}+\frac{1}{d} b_{1}+1-\frac{1}{m_{1}} \geq \frac{6}{7}\left(1+\frac{1}{d}\right)+1-\frac{1}{m_{1}} \\
8 \geq d\left(6-\frac{7}{m_{1}}\right) \geq \frac{5}{2} d
\end{gathered}
$$

This gives $d=2$ or $d=3$. If $d=3$, then $m_{1}=2$. From (10.15) we get $F=\frac{1}{2} F_{1}$, i.e., case $\left(\mathrm{A}_{2}^{3}\right)$. If $d=2$, then $m_{1}=2$ or $m_{1}=3$. In both cases by (10.15) we
have $F=\left(1-\frac{1}{m_{1}}\right) F_{1}$. For $m_{1}=2$ we derive a contradiction with the left side of (10.15). We obtain case (A_{2}^{2}).

Now we assume that all components of F pass through the vertex v of the cone (in particular, $F \neq 0$). Since $K_{X}+C+F$ is plt at v (see Lemma 10.2.2), there is at most one such a component and $F=\left(1-\frac{1}{m_{1}}\right) F_{1}$. We claim that either $q_{1}=1$ or $q_{1} \geq d+1$. Indeed, assume that $1<q_{1} \leq d$. Then

$$
F_{1} \cdot C_{1}=\frac{q_{1}}{d^{2}} H^{2}=\frac{q_{1}}{d} \leq 1
$$

Since X is smooth outside of $v, F_{1} \cap C_{1}=\{v\}$. By Adjunction, $\left\lfloor\mathrm{Diff}_{C_{1}}(F)\right\rfloor=0$ at v. On the other hand, by 2.2 .8 , the coefficient of $\operatorname{Diff}_{C_{1}}(F)$ at v is

$$
1-\frac{1}{d}+\left(1-\frac{1}{m_{1}}\right)\left(F_{1} \cdot C_{1}\right)=1-\frac{1}{d}+\left(1-\frac{1}{m_{1}}\right) \frac{q_{1}}{d} .
$$

We obtain

$$
\frac{1}{d}-\left(1-\frac{1}{m_{1}}\right) \frac{q_{1}}{d}>0, \quad 1>\left(1-\frac{1}{m_{1}}\right) q_{1} \quad \text { and } \quad q_{1}<\frac{m_{1}}{m_{1}-1} \leq 2
$$

a contradiction. Therefore $q_{1}=1$ or $q_{1} \geq d+1$. But the second case is impossible by the right side of (10.15). Hence $q_{1}=1$. But this contradicts to the left side of (10.15).

From now on we assume that $d_{1} \leq d_{2}<1$.
REmark 10.2.10. If $r>1$, then X is a cone and contains exactly one singular point, say P, and $P \notin C_{1} \cap C_{2}$. Hence we may assume that $P \notin C_{1}$ and C_{1} is Cartier. Thus we may assume that $r \leq 1$ and C_{1}, C_{2} are not Cartier.
10.2.10.1. Subcase $d_{1}=1 / 2$. Then we have

$$
1=C_{1} \cdot C_{2}=d_{1} H \cdot C_{2}, \quad H \cdot C_{2}=2, \quad d_{2} H^{2}=2
$$

Since $1>d_{2}=\frac{2}{H^{2}} \geq d_{1}=\frac{1}{2}, H^{2}=3$ or $H^{2}=4$. On the other hand, $H \cdot C_{1}=$ $\frac{1}{2} H^{2} \in \mathbb{N}$. Hence $H^{2}=4, d_{2}=1 / 2$ and $\mathbb{N} \ni-K_{X} \cdot H=r H^{2}=4 r$. By symmetry, taking into account $d_{1}=d_{2}=1 / 2$, one can see that (10.13) holds also for C_{2} :

$$
\operatorname{Diff}_{C_{2}}(F)=\frac{1}{2} Q_{1}^{\prime}+\frac{2}{3} Q_{2}^{\prime}, \quad \text { or } \quad \frac{1}{2} Q_{1}^{\prime}+\frac{3}{4} Q_{2}^{\prime}
$$

From $r \geq \frac{6}{7}\left(d_{1}+d_{2}\right)=\frac{6}{7}$ we get $r \geq 1$. Thus $r=1$ and X is Gorenstein by 10.2.10 and Lemma 10.2.5. By Theorem 5.2.3 all singular points are contained in C. Since $K_{X}+C$ is dlt (see Lemma 10.2.2), we obtain that X has only DuVal points of types $A_{n_{i}}, i=1, \ldots, s$. Since $\rho(X)=1, \sum_{i=1}^{s} n_{i}=10-4-\rho(X)=5$. By (10.13), $n_{i} \leq 3$ and $\left(n_{1}, \ldots, n_{s}\right) \neq(1,1,1,1,1)$. Now we can use the classification of Gorenstein del Pezzo surfaces with $\rho=1$ (see e.g., [Fu]). The configuration of singular points on X is $\left\{2 A_{1} A_{3}\right\}$. We may assume that C_{1} contains the point of type A_{3}. Hence $\operatorname{Diff}_{C_{1}}(F)=\frac{1}{2} Q_{1}+\frac{3}{4} Q_{2}$ (see (10.13)). At least one of points Q_{1}, $Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime}$ is smooth. Hence $F \neq 0$ and $\operatorname{Supp} F \cap C_{1}=Q_{1}$. Thus $F=\frac{1}{2} F_{1}$, where $F_{1} \cap C_{1}=Q_{1}$ and $F_{1} \cdot C_{1}=1$. This implies $F_{1} \equiv C_{2} \equiv \frac{1}{2} H$. But then $1=r<\frac{6}{7}\left(d_{1}+d_{2}\right)+q=\frac{6}{7}+\frac{1}{4}$, a contradiction.
10.2.10.2. Subcase $d_{1}=1 / 3$. Since $4 C_{1}$ is not Cartier, Diff $_{C_{1}}(F)=\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2}$ and $Q_{2} \in X$ is singular (of type A_{2} or $\frac{1}{3}(1,1)$). Moreover, no components of F pass through Q_{2}. Further,

$$
1=C_{1} \cdot C_{2}=d_{1} H \cdot C_{2}, \quad H \cdot C_{2}=3, \quad d_{2} H^{2}=3 .
$$

Since $1>d_{2}=\frac{3}{H^{2}} \geq d_{1}=\frac{1}{3}, 9 \geq H^{2} \geq 4$. On the other hand, $H \cdot C_{1}=$ $\frac{1}{3} H^{2} \in \mathbb{N}$. Thus $H^{2}=6$ or 9 . Further, by Lemma $10.2 .4, r=\frac{2 l}{H^{2}}-1$, where $l \in \mathbb{N}$ and $l \leq H^{2}+1$.

If $H^{2}=6$, then $d_{2}=1 / 2$ and

$$
1 \geq r=\frac{l}{3}-1 \geq \frac{6}{7}\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{5}{7}
$$

This gives $l=6$ and $r=1$. By Lemma $10.2 .5, X \simeq \mathbb{P}(1,2,3)$. In particular, $\operatorname{Weil}_{\text {lin }}(X) \simeq \mathbb{Z}$. Since $-\left(K_{X}+C\right) \equiv(1-1 / 3-1 / 2) H$ is ample, $F \neq 0$. Therefore $Q_{1}=\operatorname{Supp} F \cap C_{1}$ and moreover $Q_{1} \in X$ is smooth, $F=\frac{1}{2} F_{1}$ and the intersection of F_{1} and C_{1} is transverse. Thus $1=F_{1} \cdot C_{1}=\frac{1}{3} F_{1} \cdot H$ and $F_{1} \equiv \frac{1}{2} H$. We may assume that $C_{1}=\left\{x_{2}=0\right\}, C_{2}=\left\{x_{3}=0\right\}$, and $F_{1}=\left\{x_{3}=\alpha_{1} x_{1}^{3}+\alpha_{2} x_{1} x_{2}\right\}$, $\alpha_{1}, \alpha_{2} \in \mathbb{C}$. But if $F_{1}=\left\{x_{3}=x_{1}^{3}\right\}$, then $K_{X}+C+F$ is not lc at $(0,1,0)$. On the other hand, if $F_{1}=\left\{x_{3}=x_{1} x_{2}\right\}$, then F_{1} passes through the point $C_{1} \cap C_{2}$, a contradiction. Therefore $\alpha_{1}, \alpha_{2} \neq 0$ and we may put $F_{1}=\left\{x_{3}=x_{1}^{3}+x_{1} x_{2}\right\}$. This is case (A_{2}^{4}).

If $H^{2}=9$, then $d_{2}=1 / 3$ and

$$
1 \geq r=\frac{2 l}{9}-1 \geq \frac{6}{7}\left(\frac{1}{3}+\frac{1}{3}\right)=\frac{4}{7}, \quad l \in \mathbb{Z}
$$

This gives $l=9$ or $l=8$. But in the first case $r=1$ which is a contradiction with $H^{2}=9$ (see 10.2.5). Hence $l=8$ and $r=7 / 9$. Since $d_{1}=d_{2}$, similar to 10.13 we have $\operatorname{Diff}_{C_{2}}(F)=\frac{1}{2} Q_{1}^{\prime}+\frac{2}{3} Q_{2}^{\prime}$. In particular, this means that C contains no points of index >3. But $X \backslash(C)$ contains such a point (because $r=7 / 9$), a contradiction with 5.2.3.
10.2.10.3. Subcase $d_{1}=1 / 4$. Since $m C_{1}$ is not Cartier for $m<4$, Diff $C_{C_{1}}(F)=$ $\frac{1}{2} Q_{1}+\frac{3}{4} Q_{2} \geq \operatorname{Diff}_{C_{1}}(0)$ and $Q_{2} \in X$ is a singular point of type A_{3} or $\frac{1}{4}(1,1)$. By Theorem 5.2.3, $Q_{1} \in X$ is smooth. Thus $F=\frac{1}{2} F_{1}$, where $F_{1} \cap C_{1}=Q_{1}$ and $C_{1} \cdot F_{1}=1$. Put $k:=H \cdot C_{1}$. Then $H^{2}=4 k, d_{2}=1 / k$. Since $d_{2} \geq d_{1}, k \leq 4$. If $F_{1} \equiv q_{1} H$, then $1=C_{1} \cdot F_{1}=\frac{1}{4} q_{1} H^{2}=q_{1} k$. Hence $F_{1} \equiv \frac{1}{k} H$. Further, by Lemma 10.2.4,

$$
r=\frac{l}{2 k}-1 \geq \frac{6}{7}\left(d_{1}+d_{2}\right)+\frac{1}{2} q_{1}=\frac{6}{7}\left(\frac{1}{4}+\frac{1}{k}\right)+\frac{1}{2 k}, \quad l-2 k-2 \geq \frac{3 k+5}{7} .
$$

On the other hand, $K_{X}+C+\frac{1}{2} F_{1}$ is ample, so $0<-r+d_{1}+d_{2}+\frac{1}{2} q_{1}$. This gives

$$
0<-\frac{l}{2 k}+1+\frac{1}{4}+\frac{1}{k}+\frac{1}{2 k}=\frac{-l+2 k+k / 2+2+1}{2 k}, \quad l-2 k-2<k / 2+1 .
$$

We get the following case:

$$
k=3, \quad l=10, \quad r=2 / 3, \quad d_{2}=1 / 3, \quad F_{1} \equiv \frac{1}{3} H, \quad H^{2}=12
$$

We claim that $K_{X}+C$ is 1-complementary. Note that $-\left(K_{X}+C\right) \equiv\left(\frac{2}{3}-\frac{1}{4}-\frac{1}{3}\right) H$ is ample. By Theorem 5.2 .3 and because $r=2 / 3, C_{2}$ contains exactly one singular point of X, say Q^{\prime}. Therefore $\operatorname{Diff}_{C}(0)$ is supported at two points Q^{\prime} and Q_{2}. It is easy to verify that $K_{C}+\dot{Q}^{\prime}+Q_{2}$ is an 1-complement. By Proposition 4.4.3 this complement gives an 1 -complement $K_{X}+C+\Theta$, where Θ is reduced and $\Theta \cap C=\left\{Q^{\prime}, Q_{2}\right\}$. By Theorem 8.5.2, $(X, C+\Theta)$ is a toric pair. Such X is defined by a fan Δ in $\mathbb{R}^{2}=\mathbb{Z}^{2} \otimes \mathbb{R}$. Let v_{1}, v_{2}, v_{3} be generators of one-dimensional cones in Δ. Since $X \backslash C$ is smooth, we may assume that v_{1} and v_{2} generate \mathbb{Z}^{2}. Thus we can put $v_{1}=(1,0,0)$ and $v_{2}=(0,1,0)$. Therefore X is a weighted projective space $\mathbb{P}\left(1, a_{2}, a_{3}\right), C_{1} \sim \mathcal{O}_{\mathbb{P}}\left(a_{2}\right), C_{2} \sim \mathcal{O}_{\mathbb{P}}\left(a_{3}\right)$ and $-K_{X} \sim \mathcal{O}_{\mathbb{P}}\left(1+a_{2}+a_{3}\right)$. Since $X \ni Q_{2}$ is singular of type $\frac{1}{4}(1, s)$, where $s=1$ or 3 and $Q_{2} \in C_{1}$, we can take $a_{3}=4$. Finally, from

$$
K_{X}^{2}=\left(\frac{2}{3} H\right)^{2}=\frac{16}{3}, \quad K_{X}^{2}=\frac{\left(a_{1}+a_{2}+a_{3}\right)^{2}}{a_{1} a_{2} a_{3}}=\frac{\left(5+a_{2}\right)^{2}}{4 a_{2}}
$$

we obtain $a_{2}=3$. This is case (A_{2}^{5}).
10.2.10.4. Subcase $d_{1}=1 / 6$. Since $m C_{1}$ is not Cartier for $m<6$, Diff $C_{C_{1}}(F)=$ $\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2} \geq \operatorname{Diff}_{C_{1}}(0)$ and Diff $_{C_{1}}(0)=\operatorname{Diff}_{C_{1}}(F)=\frac{1}{2} Q_{1}+\frac{2}{3} Q_{2}$. Hence $F=0$ and points $Q_{1}, Q_{2} \in X$ are singular. This contradicts to Theorem 5.2.3.

Theorem 10.2.1 is proved.
Theorem 10.2.1 completes the classification of \log pairs with $\delta(X, B)=2$. The case $\delta(X, B)=1$ was studied by Abe [Ab]. In particular, he completely described so called "elliptic curve case", i.e., the case $p_{a}(C)=1$. A different approach to the classification of exceptional complements was given in [KeM].

10.3. Examples

Example 10.3.1. Let $X=\mathbb{P}^{2}$ and $B=\sum d_{i} B_{i}$, where all B_{i} are lines on \mathbb{P}^{2} such that no three of them pass through one point, and $d_{i}=1-1 / m_{i}$. Assume that $-\left(K_{X}+B\right)$ is ample. By definition, $K_{X}+B$ is n-complementary if and only if $\operatorname{deg}\left(-n K_{X}-\lfloor(n+1) B\rfloor\right) \geq 0$ (i.e., $\left.\sum\left\lfloor(n+1)\left(1-1 / m_{i}\right)\right\rfloor \leq 3 n\right)$. We give the list of all possibilities for $\left(m_{1}, \ldots, m_{r}\right)$ (with $m_{1} \leq \cdots \leq m_{r}$). These were found by means of a computer program. Here $n=\operatorname{compl}(X, B)$.

Nonexceptional pairs

```
n=1:(m),(m, m},\mp@subsup{m}{2}{}),(\mp@subsup{m}{1}{},\mp@subsup{m}{2}{},\mp@subsup{m}{3}{})(type \mathbb{A 1
n=2:(2,2, m},\mp@subsup{m}{2}{}),(2,2,2,2,m) (types \mathbb{D}22 and \mathbb{E}210, respectively)
n=3: (2,3,3,m),(3,3,3,m) (type \mathbb{E 30});
n=4: (2,3,4,m),(2,4,4,m)(type \mathbb{E 40}}\mp@subsup{0}{0}{1}\mathrm{ ;
n=5:(2,3,5,5) (there is also a regular 6-complement of type \mathbb{E}}\mp@subsup{6}{0}{1})
n=6:(2,3,5,m),m\geq6,(2,3,6,m) (type E }\mp@subsup{6}{0}{1}\mathrm{ ).
```


ExCEPTIONAL PAIRS

```
\(n=4:(3,3,4,4),(3,4,4,4),(2,2,2,3,3),(2,2,2,3,4)\);
\(n=5:(2,4,5,5), \quad(2,5,5,5) \quad\) (in these cases there are also regular 6-
        complements);
\(n=6:(2,4,5,6), \quad(2,4,6,6), \quad(2,5,5,6), \quad(2,5,6,6), \quad(3,3,4,5), \quad(3,3,5,5)\),
        \((3,3,5,6),(3,3,4,6),(2,2,2,3,5)\);
\(n=7:(2,3,7,7) ;\)
\(n=8:(2,3,7,8), \quad(2,3,8,8), \quad(2,4,5,7), \quad(2,4,5,8), \quad(2,4,6,7), \quad(2,4,6,8)\),
    \((2,4,7,7),(2,4,7,8)\);
\(n=9:(2,3,7,9),(2,3,8,9),(2,3,9,9),(3,3,4,7),(3,3,4,8),(3,3,4,9)\);
\(n=10:(2,3,7,10), \quad(2,3,8,10), \quad(2,3,9,10), \quad(2,3,10,10), \quad(2,4,5,9)\),
    \((2,4,5,10),(2,5,5,7),(2,5,5,8),(2,5,5,9)\);
\(n=12:(2,3,7,11), \quad(2,3,7,12), \quad(2,3,8,11), \quad(2,3,8,12), \quad(2,3,9,11)\),
    \((2,3,9,12),(2,3,10,11),(2,3,10,12),(2,3,11,11),(2,3,11,12),(2,4,5,11)\),
    \((2,4,5,12), \quad(2,4,6,9), \quad(2,4,6,10), \quad(2,4,6,11), \quad(3,3,4,10), \quad(3,3,4,11)\),
    \((3,4,4,5)\);
\(n=14:(2,3,7,13),(2,3,7,14)\);
\(n=15:(3,3,5,7),(2,3,7,15)\);
\(n=16:(2,3,7,16), \quad(2,3,8,13), \quad(2,3,8,14), \quad(2,3,8,15), \quad(2,3,8,16)\),
    \((2,4,5,13),(2,4,5,14),(2,4,5,15),(2,4,5,16)\);
\(n=18:(2,3,7,17), \quad(2,3,7,18), \quad(2,3,8,17), \quad(2,3,8,18), \quad(2,3,9,13)\),
    \((2,3,9,14),(2,3,9,15),(2,3,9,16),(2,3,9,17)\);
\(n=20:(2,4,5,17),(2,4,5,18),(2,4,5,19)\);
\(n=21:(2,3,7,19),(2,3,7,20),(2,3,7,21)\);
\(n=22:(2,3,7,22)\);
\(n=24:(2,3,7,23), \quad(2,3,7,24), \quad(2,3,8,19), \quad(2,3,8,20), \quad(2,3,8,21)\),
    \((2,3,8,22),(2,3,8,23)\);
\(n=28:(2,3,7,25),(2,3,7,26),(2,3,7,27),(2,3,7,28),(2,4,7,9)\);
\(n=30:(2,3,7,29),(2,3,7,30),(2,3,10,13),(2,3,10,14),(2,5,6,7)\);
\(n=36:(2,3,7,31), \quad(2,3,7,32), \quad(2,3,7,33), \quad(2,3,7,34), \quad(2,3,7,35)\),
    \((2,3,7,36)\);
\(n=42:(2,3,7,37),(2,3,7,38),(2,3,7,39),(2,3,7,40),(2,3,7,41)\);
\(n=66:(2,3,11,13)\).
```

Thus the set of all compl (X, B) in this case is

$$
\{1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21
$$

$22,24,28,30,36,42,66\}$.
It is easy to see that this set is contained in $\{n \in \mathbb{N} \mid \varphi(n) \leq 20, n \neq 60\}$, which is related to automorphisms of $K 3$ surfaces [\mathbf{I}] (see also [Ts, Sect. 2]).

Example 10.3.2. Replace the condition of the ampleness of $-\left(K_{X}+B\right)$ in Example 10.3.1 with numerical triviality. We obtain only exceptional cases:

$$
n=2:(2,2,2,2,2,2)
$$

$$
\begin{aligned}
& n=4:(4,4,4,4),(2,2,2,4,4) ; \\
& n=6:(2,6,6,6),(3,3,6,6),(2,2,2,3,6),(2,2,3,3,3) \\
& n=8:(2,4,8,8) \\
& n=10:(2,5,5,10) \\
& n=12:(2,3,12,12),(2,4,6,12),(3,3,4,12),(3,4,4,6) ; \\
& n=18:(2,3,9,18) \\
& n=20:(2,4,5,20) \\
& n=24:(2,3,8,24) \\
& n=30:(2,3,10,15) \\
& n=42:(2,3,7,42)
\end{aligned}
$$

In these cases (X, B) is a \log Enriques surface and $n\left(K_{X}+B\right) \sim 0$. Construction 1.3 gives a ramified cyclic cover $\varphi: X^{\prime} \rightarrow \mathbb{P}^{2}$ such that $K_{X^{\prime}}=\varphi^{*}\left(K_{X}+B\right)$. Then $K_{X^{\prime}} \sim 0$ and is plt, so X^{\prime} is a surface with Du Val singularities and $K_{X^{\prime}} \sim 0$. Note that if we replace the condition $B \in \Phi_{\mathbf{s m}}$ with $B \in \Phi_{m}$, we can get bigger values of $\operatorname{compl}(X, B)$. For example, take $B=\frac{1}{2} B_{1}+\frac{2}{3} B_{2}+\frac{18}{19} B_{3}+\frac{101}{114} B_{4}$, where, as above, $B_{i} \subset \mathbb{P}^{2}$ are lines such that no three of them pass through one point. Then $\operatorname{compl}(X, B)=78$.

Example 10.3.3. Let $G \subset \mathrm{PGL}_{3}(\mathbb{C})$ be a finite subgroup, $X:=\mathbb{P}^{2} / G$, and $f: \mathbb{P}^{2} \rightarrow X$ the quotient morphism. Define the boundary B on X by $K_{\mathbb{P}^{2}}=$ $f^{*}\left(K_{X}+B\right)$ (see (1.4) and (1.5)). Then (X, B) is exceptional if and only if G has no semiinvariants of degree ≤ 3 (see [MP]). There are only four types of such groups up to conjugation in $\mathrm{PGL}_{3}(\mathbb{C})$.

Example 10.3.4 ([Ab]). Let $X:=\mathbb{P}(1,2,3)$. Take a general member $E \in$ $\left|-K_{X}\right|$ (a smooth elliptic curve) and let L be a line on X (with respect to $-K_{X}$). Then $E \sim 6 L$. Since (X, L) is toric, $K_{X}+L$ is plt. Hence $(X, \alpha E+\beta L)$ is a log del Pezzo if and only if $6 \alpha+\beta<6, \alpha \leq 1, \beta \leq 1$. Moreover, if $\alpha \geq 6 / 7$ and $\beta \in \Phi_{\mathrm{m}}$, then $(X, \alpha E+\beta L)$ is exceptional. Indeed, by Corollary 8.4.2 it is sufficient to show that there are no regular nonklt complements. If $K_{X}+B^{+}$is such a complement, then $B^{+} \geq E+\beta L$, a contradiction. This gives the following exceptional cases with $\delta=1$:

$$
\begin{array}{ll}
\beta=1 / 2 & 6 / 7 \leq \alpha<11 / 12 \\
\beta=2 / 3 & 6 / 7 \leq \alpha<8 / 9 \\
\beta=3 / 4 & 6 / 7 \leq \alpha<7 / 8 \\
\beta=4 / 5 & 6 / 7 \leq \alpha<13 / 15 \\
\beta=5 / 6 & 6 / 7 \leq \alpha<31 / 36
\end{array}
$$

Example 10.3.5 ([Ab]). Let $X \subset \mathbb{P}^{3}$ be a quadratic cone, $E \in\left|-K_{X}\right|$ a smooth elliptic curve, and L a generator of the cone. Then $\left(X, \frac{6}{7} E+\frac{1}{2} L\right)$ is an exceptional \log del Pezzo with $\delta=1$ and $K_{X}+\frac{6}{7} E+\frac{4}{7} L$ is a 7 -complement.

Exercise 10.3.6. Let $C \subset \mathbb{P}^{2}$ be a smooth curve of degree d. Assume that $-\left(K_{X}+(1-1 / m) C\right)$ is nef. Prove that $K_{X}+(1-1 / m) C$ is exceptional only if and only if $(d, m) \in\{(4,3),(4,4),(5,2),(6,2)\}$. For $(d, m)=(4,3),(5,2)$ such log Del

Pezzos can appear as exceptional divisors of plt blowups of canonical singularities (see [P1]). Hint. The nontrivial part is to prove that $K_{X}+(1-1 / m) C$ is exceptional in these cases. Assuming the opposite we have a regular nonklt complement $K_{X}+B$. Then we can use the following simple fact: if $\sum d_{i} B_{i}$ is a boundary on \mathbb{C}^{2} such that all the B_{i} are smooth curves and $\sum d_{i} \leq 1$, then $\left(\mathbb{C}^{2}, B\right)$ is canonical.

Example 10.3.7. Let $(X \ni o)$ be a three-dimensional klt singularity and D an effective reduced Weil divisor on X. Assume that D is \mathbb{Q}-Cartier. Let $c_{o}(X, D)$ be the \log canonical threshold. Assume that $1>c:=c_{o}(X, D)>6 / 7$. Let $f: Y \rightarrow X$ be a plt blowup of (X, D). Write $K_{Y}+S+c B=f^{*}\left(K_{X}+c D\right)$, where B is the proper transform of D. Then (S, Diff ${ }_{S}(c B)$) is a log Enriques surface with $\delta \geq 1$. We claim that $K_{S}+\operatorname{Diff}_{S}(c B)$ is klt. Indeed, if $K_{S}+\mathrm{Diff}_{S}(c B)$ is not klt, then by the Inductive Theorem 8.3.1 there is a regular complement $K_{S}+\operatorname{Diff} S_{S}(c B)^{+}$. Since $-\left(K_{Y}+S+(c-\varepsilon) B\right)$ is f-ample for $\varepsilon>0$, by Proposition 4.4.1 we have a regular complement $K_{Y}+S+(c-\varepsilon) B$. This gives a regular complement $K_{X}+A$ of $K_{X}+(c-\varepsilon) D$. We can take ε so that $c-\varepsilon>6 / 7$. Then A is reduced and $A=D$. Hence $c=1$, a contradiction. This method can help to describe the set of all lc thresholds in the interval $[6 / 7,1]$ (cf. $[\mathbf{K u}]$). For example, take $X=\mathbb{C}^{3}$ and $D=\{\psi(x, y, z)=0\}$, where $\psi(x, y, z)=x^{3}+y z^{2}+x^{2} y^{2}+x^{5} z$ (see $[\mathbf{K} \mathbf{u}]$). Then $c_{o}\left(\mathbb{C}^{3}, D\right)=11 / 12$ and $f: Y \rightarrow \mathbb{C}^{3}$ is the weighted blowup with weights $(4,2,5)$. So $S=\mathbb{P}(4,2,5)$. It is easy to compute that $\operatorname{Diff}_{S}(c D)=\frac{11}{12} C+\frac{1}{2} L$, where $C:=\left\{x^{3}+y z^{2}+x^{2} y^{2}=0\right\}$ and $L:=\{z=0\}$. Both C and L are smooth rational curves which intersect each other twice at smooth points of S. Such complements were studied in [Ab, Sect. 2] and called there "sesqui rational curve" complements.

