
CHAPTER 10

On classification of exceptional complements: case
$\delta\geq 1$

Now we study the case $\delta\geq 1$ in details.

10.1. The inequlity $\delta\leq 2$

In this section we show that $\delta\leq 2$ . Replace (X, $B$ ) with a model $(\tilde{X},\tilde{B})$ .
By construction, $\delta(X, B)=\delta(\overline{X},\tilde{B})$ . Thus we assume that $\rho(X)=1,$ $B\in\Phi_{m}$ ,
$K_{X}+B$ is $(1/7)- 1t$ and $-(K_{X}+B)$ is nef. Moreover, there exists a boundary $D$

defined by (9.1) such that $K_{X}+D$ is ample and lc. Let $ C:=\lfloor D\rfloor$ . Then $\delta(X, B)$ is
the number of components of $C$ . Since $K_{X}+D$ is lc, $C$ has only nodal singularities.
The following is a very important ingredient in the classification.

THEOREM 10.1.1 ([Sh3]). Notation as in 10. Then $p_{a}(C)\leq 1$ .
SKETCH OF PROOF. Assume that $p_{a}(C)\geq 2$ . Consider the following birational

modifications:
$X^{\min}$

(10.1) ’ $\times$

X $X^{\prime}$

where $\mu:X^{\min}\rightarrow X$ be a minimal resolution and $\varphi:X^{\min}\rightarrow X^{\prime}$ is a composition
of contractions of-l-curves. Since $K_{X}+C$ is lc, $C$ has only nodal singularities.
By Lemma 9.1.8, $X$ is smooth at SingC. Therefore $C^{\min}\simeq C$ . Thus $p_{a}(C)=$

$p_{a}(C^{\min})\geq 2,$ $C^{\min}$ is not contracted and $p_{a}(C^{\prime})\geq 2$ . Take the crepant pull back
$\mu^{*}(K_{X}+B)=K_{X^{\min}}+B^{\min}$ , with $\mu.B^{\min}=B$

and put
$B^{\prime}$ $:=\varphi_{*}B^{\min}$ .

Note that $both-(K_{X^{\min}}+B^{\min})and-(K_{X}+B^{\prime})$ are nef and big. Since $\rho(X)=1$

and $C\simeq C^{\min}$ , we have
$(^{*})$ every two irreducible components of $C^{\min}$ intersect each other.

If $X^{\prime}\simeq \mathbb{P}^{2}$ , then $-(K_{X}+\frac{6}{7}C‘)$ is ample. This gives $\frac{6}{7}\deg C^{\prime}<3,$ $\deg C^{\prime}\leq 3$

and $p_{a}$ $(C$
‘

$)$ $\leq 1$ . Now we assume that $X^{\prime}\simeq F_{n}$ . We claim that $n\geq 2$ . Indeed,
otherwise $X^{\prime}\simeq \mathbb{P}^{1}\times \mathbb{P}^{1},$ $X^{\prime}\neq X^{\min}$ (because $\rho(X)=1$ ) and we have at least
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106 10. ON CLASSIFICATION OF EXCEPTIONAL COMPLEMENTS

one blowup $X^{\min}\rightarrow X^{\prime\prime}\rightarrow X^{\prime}$ . Contracting another $-1$-curve on $X$ we get $F_{1}$

instead of $\mathbb{P}^{1}\times \mathbb{P}^{1}$ and after the next blowdown we get $\mathbb{P}^{2}$ . Thus $n\geq 2$ . Let $\Sigma_{0}$ be
a negative section of $F_{n}$ and $F$ be a general fiber. Since $\frac{6}{7}C^{\prime}\cdot F\leq-K_{X}\cdot F=2$ ,
we have $C’\cdot F\leq 2$ . So $C^{\prime}$ must be generically a 2-section of $F_{n}\rightarrow \mathbb{P}^{1}$ (otherwise
$C^{\prime}$ is generically a section and $p_{a}(C)=0)$ .

First we consider the case when $\Sigma_{0}$ is not a component of $C$‘. Then the
coefficient of $\Sigma_{0}$ in $C^{\prime}\leq 2-\frac{2\cdot 6}{7}=\frac{2}{7}$ Thus

$0\leq-(K_{X}+B^{\prime})\cdot\Sigma_{0}\leq-(K_{X’}+\frac{2}{7}\Sigma_{0})\cdot\Sigma_{0}=2-n+\frac{2n}{7}$ .

Hence $n=2,$ $X\simeq F_{2}$ . If $X^{\min}\neq X^{\prime}$ , then $X^{\min}\rightarrow X$ ‘ contracts at least one
$-1$-curve. But then contracting another $-1$-curve we obtain either $X^{\prime}=$ F3 or
$X^{\prime}=F_{1}$ , a contradiction with our assumptions. Therefore $X^{\min}=X^{\prime}$ and $X$ is a
quadratic cone in $\mathbb{P}^{3}$ . $Since-(K_{X}+\frac{6}{7}C)$ is ample, $C\equiv aH$ , where $H$ is the ample
generator of Pic(X) and $a<\frac{7}{3}$ By Adjunction we have

$\deg K_{C}\leq(K_{X}+C)\cdot C=2(a-2)a<2$ .

Hence $p_{a}(C)\leq 1$ in this case.
Finally, we consider the case when $\Sigma_{0}$ is a component of $C^{\prime}$ . Write $C^{\prime}=\Sigma_{0}+\Sigma^{\prime}$ .

Then $\Sigma^{\prime}$ is generically a section. From $p_{a}(C^{\prime})\geq 2$ by genus formula, we have
$\Sigma_{0}\cdot\Sigma\geq 3$ . But then

$0\geq(K_{X}+B)\cdot\Sigma_{0}\geq(K_{X^{\prime}}+\Sigma_{0}+\frac{6}{7}\Sigma^{\prime})\cdot\Sigma_{0}\geq-2+\frac{6}{7}\cdot 3\geq\frac{4}{7}$

a contradiction. $\square $

COROLLARY 10.1.2 ([Sh3]). Notation as in 10. Then $\delta(X, B)\leq 2$ .

PROOF. Let $C=\sum_{i=1}^{\delta}C_{i}$ . From the exact sequence
$0\rightarrow \mathcal{O}_{C}\rightarrow\oplus \mathcal{O}_{C}$ . $\rightarrow \mathcal{F}\rightarrow 0$ ,

where $\mathcal{F}$ is a sheaf with $Supp\mathcal{F}=SingC$ , we have

(10.2) $1\geq p_{a}(C)=1-\delta+\#\{C_{\iota}\cap C_{j}|i\neq j\}+\sum p_{a}(C_{i})$ .

On the other hand, by $(^{*})$ we have $\#\{C_{i}\cap C_{j}|i\neq j\}\geq\frac{1}{2}\delta(\delta-1)$ . This yields

(10.3) $0\geq\frac{1}{2}\delta(\delta-3)+\sum p_{a}(C_{i})$ .

In particular, $\delta\leq 3$ . Assume that $\delta=3$ . Then $C$ is a wheel of smooth rational
curves and in (10.3) the equality holds. Let $H$ be an ample generator of Pic(X). We
$have-K_{X}\equiv rH,$ $C_{i}\equiv\gamma_{l}H$ for some positive rational $r,$ $\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$ . Since every $C_{i}$

intersects $C_{j}$ transversally at a (unique) nonsingular point, $1=C_{i}\cdot C_{j}=\gamma_{i}\gamma_{j}H^{2}$ .
Hence

$\gamma_{1}\gamma_{2}=\gamma_{1}\gamma_{3}=\gamma_{2}\gamma_{3}=\frac{1}{H^{2}}$
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This implies

(10.4) $\gamma_{1}=\gamma_{2}=\gamma_{3}=\frac{1}{\sqrt{H^{2}}}\leq 1$ .

$Since-(K_{X}+B)$ is ample,

$r>\frac{6}{7}\gamma_{1}+\frac{6}{7}\gamma_{2}+\frac{6}{7}\gamma_{3}=\frac{18}{7}\gamma_{1}$ .

Therefore $K_{X}+C_{1}+C_{2}+\frac{4}{7}C_{3}\equiv-(r-\frac{18}{7}\gamma_{1})H$ is antiample (and lc). We claim
that $X$ is smooth along $C_{1}$ . Indeed, otherwise $Diff_{C_{1}}(0)\geq\frac{1}{2}P$ , where $P\not\in C_{2},$ $C_{3}$ .
On the other hand, by Adjunction we have

$2>\deg Diff_{C_{1}}(C_{2}+\frac{4}{7}C_{3})=1+\frac{4}{7}+\frac{1}{2}>2$ .

The contradiction shows that $X$ is smooth along $C_{1}$ , and similarly $X$ is smooth
along $C_{2}$ and $C_{3}$ . Thus $C_{1},$ $C_{2},$ $C_{3}$ are Cartier. In particular, $\gamma_{i}\in N$ . By (10.4),
$\gamma_{1}=1$ and $H^{2}=1$ . Since $Pic(X)\simeq \mathbb{Z}\cdot H,$ $C_{1},$ $C_{2},$ $C_{3}\in|H|$ . The linear subsystem
of $|H|$ generated by $C_{1},$ $C_{2},$ $C_{3}$ is base point free and determines a morphism $ X\rightarrow$

$\mathbb{P}^{2}$ of degree one (see also Lemma 10.2.4 below). Therefore $X\simeq \mathbb{P}^{2}$ and $C_{1},$ $C_{2},$ $C_{3}$

are lines in the general position. Simple computations show that $B$ has no other
components. Finally, $K_{X}+C$ is an l-complements of $K_{X}+B$ , a contradiction
proves the corollary. $\square $

10.2. Case $\delta=2$

Following Shokurov [Sh3] we describe the case $\delta=2$ :

THEOREM 10.2.1. Let (X, $B$ ) be a $log$ surface such that $K_{X}+B$ is $(1/7)- lt$,
$-(K_{X}+B)$ is $nef,$ $B\in\Phi_{m},$ $\delta(X, B)=2$ and $\rho(X)=1$ . Assume that (X, $B$ ) is
exceptional. Let $H$ be a positive generator of Pic(X). Write

$B$ $=$ $b_{1}C_{1}+b_{2}C_{2}+F$, $F=\sum(1-1/m_{i})F_{i}$ ,
$b_{1},$ $b_{2}$ $\geq$ 6/7, $m_{i}\in\{1,2,3,4,5,6\}$ ,

where $C_{1}$ and $C_{2}$ are irreducible curves. Then $C$ $:=C_{1}+C_{2}$ has only normal
crossings at smooth points of $X,$ $SuppF$ does not pass $C_{1}\cap C_{2}$ and $b_{1}+b_{2}<13/7$ .
We have one of the following possibilities:
(A) $X=\mathbb{P}^{2},$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{1}{2}F_{1}+\frac{2}{3}F_{2}$ , where $C_{1},$ $C_{2},$ $F_{1},$ $F_{2}$ are lines such

that no three of them intersect at a point and $b_{1}+b_{2}\leq 11/6$ ;
$(A_{2}^{1\prime})X=\mathbb{P}^{2},$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{1}{2}F_{1}+\frac{3}{4}F_{2}$ , where $C_{1},$ $C_{2},$ $F_{1},$ $F_{2}$ are lines such

that no three of them intersect at a point and $b_{1}+b_{2}\leq 7/4$ ;
(A) $X$ is a quadratic cone in $\mathbb{P}^{3},$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{2}{3}F_{1}$ , where $C_{1}$ is its

generator, $C_{2},$ $F_{1}$ are its smooth hyperplane sections, $b_{1}+2b_{2}\leq 8/3$ ;
(A) $X$ is a rational cubic cone in $\mathbb{P}^{4},$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{1}{2}F_{1}$ , where $C_{1}$ is its

generator, $C_{2},$ $F_{1}$ are its smooth hyperplane sections, $b_{1}+3b_{2}\leq 7/2$ and
$\# C_{2}\cap F_{1}\geq 2$ ;
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(A) $X=\mathbb{P}(1,2,3),$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{1}{2}F_{1}$ , where $C_{1}=\{x_{2}=0\},$ $C_{2}=\{x_{3}=0\}$

$(i.e., 3C_{1}\sim H, 2C_{2}\sim H),$ $F_{1}$ is a smooth rational curve $\equiv\frac{1}{2}H,$ $F_{1}\neq C_{2}$

which is given by the equation $x_{3}=x_{1}^{3}+x_{1}x_{2},2b_{1}+3b_{2}\leq 9/2$ ;
(A) $X=\mathbb{P}(1,3,4),$ $B=\frac{6}{7}(C_{1}+C_{2})+\frac{1}{2}F_{1}$ , where $C_{1}=\{x_{2}=0\},$ $C_{2}=\{x_{3}=0\}$

$(i.e., 4C_{1}\sim H, 3C_{2}\sim H),$ $F_{1}$ is a smooth rational curve $\equiv\frac{1}{3}H,$ $F_{1}\neq C_{2}$

which is given by the equation $x_{3}=x_{1}^{4}+x_{1}x_{2}$ , in this case $14(K_{X}+B)\sim 0$ ;
(A) $X=\mathbb{P}(1,2,3),$ $B=\frac{6}{7}(C_{1}+C_{2})$ , where $C_{1}$ is a line $\{x_{1}=0\},$ $C_{2}\in|-K_{X}|$

$(i.e., 6C_{1}\sim H, C_{2}\sim H),$ $SingX\subset C_{1}$ , in this case $7(K_{X}+B)\sim 0$ ;
(I) $X$ is a quadratic cone in $\mathbb{P}^{3},$ $B=b_{1}C_{1}+b_{2}C_{2}+\frac{1}{2}F_{1}$ , where $C_{1},$ $C_{2}$ are two

smooth hyperplane sections, $F_{1}$ is a generator of the cone, $b_{1}+b_{2}\leq 7/4$ ;
(I) $X=\mathbb{P}(1,2,3),$ $B=\frac{6}{7}C_{1}+\frac{6}{7}C_{2}$ , where $C_{1}=\{x_{3}=0\},$ $C_{2}=\{x_{2}^{2}=$

$\alpha_{1}x_{1}^{4}+\alpha_{2}x_{1}^{2}x_{2}+x_{1}x_{3}\},$
$\alpha_{1},$

$\alpha_{2}\in \mathbb{C},$ $(\alpha_{1}, \alpha_{2})\neq(0,0),$ $2C_{1}\sim H,$ $3C_{2}\sim 2H$ ,
in this case $7(K_{X}+B)\sim 0$ .

REMARK. Note that in all cases $Wei1_{1in}(X)\simeq \mathbb{Z}$ . Therefore we can verify (i)
in the definition of complements 4.1.3 numerically, i.e., we need to check only that
$nB^{+}$ is integral and $K_{X}+B^{+}\equiv 0$ . By the Inductive Theorem 8.3.1, (ii) of 4.1.3
holds automatically whenever (X, $B$ ) is exceptional.

Shokurov’s proof is based on a detailed analysis of the minimal resolution,
cf. (10.1). Our proof uses computations of Fano indices of $X$ (as in the proof of
Corollary 10.1.2). We use slightly 5.2.3. Note that one can avoid using of 5.2.3,
but then computations become a little more complicated.

The important property is that $K_{X}+D$ is analytically dlt except for one case:
LEMMA 10.2.2 ([Sh3]). Let $(S\ni 0, B=\sum b_{i}B_{i})$ be a $log$ surface germ, where

$B\in\Phi_{m}$ . Assume that $K_{S}+B$ is $(1/7)- lt$ . As in (9.1), put

$C:=\lfloor\frac{7}{6}B\rfloor=\sum_{b.\geq 6/7}B_{i}$ ,
$F:=\sum_{b.<6/7}b_{i}B_{i}$

and $D:=C+F$.

Then one of the following holds:
(i) $K_{S}+D$ is analytically dlt at $0$ ;
(ii) $0\in S$ is smooth and near $0$ we have $D=C+\frac{1}{2}L$ , where $(S, C+L)\simeq_{an}$

$(\mathbb{C}^{2}, \{y(y-x^{2})=0\})$ .

PROOF. Clearly, we may assume that $K_{S}+D$ is not plt (otherwise we have
case $(i))$ . By Theorem 6.0.6 there is a regular complement $K_{S}+B^{+}$ . Since $B\in\Phi_{m}$ ,
$B^{+}\geq D$ . In particular, $K_{S}+D$ is lc and $ C=\lfloor D\rfloor$ has at most two (analytic) com-
ponents passing through $0$ (see Theorem 2.1.3). If $C$ has exactly two components,
then $S\ni 0$ is smooth by Lemma 9.1.8. Obviously, $K_{S}+D$ is analytically dlt at $0$

in this case. From now on we assume that $C$ is analytically irreducible at $0$ . Write
$B=bC+F$ , where $b\geq 6/7$ . Recall that $F\in\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}\}$ .

First we consider the case when $K_{S}+C$ is not plt. Then $D=C$ and $(S, C, 0)$

is such as in (ii) of 2.1.3. In particular, $2(K_{S}+C)_{-}\sim 0$ and $K_{S}+C$ di $0$ . Let
$f:(\tilde{S}, E)\rightarrow S$ be an inductive blowup of $(S, D)$ and $C$ the proper transform of $C$ .
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Write
$f^{*}(K_{S}+C)=K_{\tilde{S}}+\tilde{C}+E$ ,
$f^{*}(K_{S}+bC)=K_{\tilde{S}}+b\tilde{C}+\alpha E$ ,

where $\alpha<6/7$ . Here 2 $(K_{\tilde{S}}+\tilde{C}+E)\sim 0$ . By Adjunction, $K_{E}+Diff_{E}(\tilde{C})$ is

not klt and $\deg Diff_{E}(\tilde{C})=2$ . Moreover, $K_{E}+Diff_{E}(\tilde{C})$ is not l-complementary
(because neither is $K_{S}+C$ ). Therefore we have (cf. Lemma 6.1.1)

$Diff_{E}(\overline{C})=\frac{1}{2}P_{1}+\frac{1}{2}P_{2}+P_{3}$ , $Diff_{E}(0)=\frac{1}{2}P_{1}+\frac{1}{2}P_{2}+\frac{m-1}{m}P_{3}$

for some points $P_{1},$ $P_{2},$ $P_{3}\in E$ and some $m\in N$ . From this we have
$(K_{\overline{S}}+E)\cdot E+b\overline{C}\cdot E+(-1+\alpha)E^{2}=0$ .

By Adjunction

$(K_{\overline{S}}+E)\cdot E=-2+\frac{1}{2}+\frac{1}{2}+1-\frac{1}{m}=-\frac{1}{m}$ .

Since $\tilde{C}\cap E$ is a point of type $\frac{1}{m}(1, q),\overline{C}\cdot E\geq 1/m$ . This yields

$\frac{1}{7}(-E^{2})<(-1+\alpha)E^{2}\leq\frac{1}{7m}$

Thus $0<-E^{2}<1/m$ and $-1/m<K_{\tilde{S}}\cdot E<0$ . On the other hand, $mK_{\tilde{S}}$ is
Cartier near $E$ . Therefore $mK_{\overline{S}}\cdot E\in \mathbb{Z}$ , a contradiction.

Now we may assume that $K_{S}+C$ is plt. By Theorem 6.0.6, $K_{S}+D$ is 2-
complementary and $D^{+}\geq D$ , so $2(K_{S}+D)\sim 0$ and $2F$ is integral. We claim that
$(S\ni 0)$ is smooth. Assume the opposite. Then

$(S, C)\simeq(\mathbb{C}^{2}, \{y=0\})/\mathbb{Z}_{m}(1, q)$ , $gcd(q, m)=1,$ $m\geq 2,1\leq q\leq m-1$ .

Consider the weighted blowup with weights $\frac{1}{m}(1, q)$ . By Lemma 3.2.1 we get the
exceptional divisor $E$ with

$a(E, D)=-1+\frac{1+q}{m}-\frac{q}{m}-\frac{\mu}{2}=-1+\frac{1}{m}-\frac{\mu}{2}$ ,

where $\mu=mult_{E}(2F)\in\frac{1}{m}$N. Since $2(K_{S}+D)\sim 0$ , we have $a(E, D)=-1$
or $-1/2$ . But in the second case $\mu=2/m-1\leq 0$ , a contradiction. Therefore
$a(E, C+F)=-1$ and $\mu=2/m$ . Further,

$-1+\frac{1}{7}<a(E, B)=-1+\frac{1+q}{m}-b\frac{q}{m}-\frac{\mu}{2}=\leftarrow 1+\frac{q(1-b)}{m}<-1+\frac{1}{7}$ .

The contradiction shows that $(S\ni 0)$ is smooth. Now we claim that $\lceil F\rceil$ is a
smooth curve. As above, consider the blowup of $0\in S$ . For the exceptional divisor
$E$ , we have

$-1+\frac{1}{7}<a(E, B)=1-b-\frac{\mu}{2}$ ,

where $\mu=mult_{E}(2F)\in$ N. Hence $\mu=1$ and $ L=\lceil F\rceil$ is smooth. Finally,
$K_{S}+C+(\frac{1}{2}-\epsilon)L$ is plt for any $\epsilon>0$ . By Adjunction, $\lfloor Diff_{C}((\frac{1}{2}-\epsilon)L)\rfloor\leq 0$ .
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Hence $\lfloor Diff_{C}(\frac{1}{2}L)\rfloor$ is reduced. This means that $C\cdot L=2$ , i.e., $C$ and $L$ have a
simple tangency at $0$ . The rest is obvious. $\square $

We need some (well known) facts about Fano indices of $\log$ del Pezzo surfaces.

DEFINITION 10.2.3. Let (X, $D$ ) be a $\log$ del Pezzo surface. Define the Fano
index $r(X, D)$ of (X, $D$ ) by

$ r(X, D)=\sup$ { $t|-(K_{X}+D)\equiv tH$ , for some $H\in Pic(X)$ }.
If $K_{X}+D$ is klt or $K_{X}+D$ is dlt $and-(K_{X}+D)$ is ample, then by Lemma 5.1.3,

$r(X, D)\in \mathbb{Q}and-(K_{X}+D)\equiv r(X, D)H$ for some (primitive and ample) element
$H\in Pic(X)$ (recall that we consider only $\mathbb{Q}$-divisors). In the case $D=0$ we write
$r(X)$ instead of $r(X, 0)$ .

The following is an easy consequece of Riemann-Roch, Kawamata-Viehweg
vanishing and [Fuj].

LEMMA 10.2.4. Let $X$ be a $logdel$ Pezzo with $klt$ singularities of Fano index
$r=r(X)$ . Assume that $-K_{X}$ is ample and write $-K_{X}\equiv rH$ , where $H$ is a
primitive (ample) element of Pic(X). Then

(i) $\dim|H|=\frac{1}{2}(1+r)H^{2}$ , hence $r=\frac{2l}{H}\tau-1$ , where $l:=\dim|H|$ ;
(ii) $H^{2}\geq\dim|H|-1$ , hence $r\leq 1+\overline{H}^{7;}2$

(iii) if $r>1$ , then

$\dim|H|=H^{2}+1$ , and $r=1+\frac{2}{H^{2}}$ .

Moreover, $X$ is one of the following $X\simeq \mathbb{P}^{2}(r=3),$ $X\simeq \mathbb{P}^{1}\times \mathbb{P}^{1}(r=2)$ ,
$X\subset \mathbb{P}^{d+1}$ is a cone over a rational normal curve of degree $d=H^{2}(r=$
$1+2/d)$ .

PROOF. By Kawamata-Viehweg vanishing [KMM, 1-2-5] one has
$H^{i}(X, \mathcal{O}_{X}(H))=H^{i}(X, \mathcal{O}_{X})=0$ for $i>0$ . Therefore by Riemann-Roch
we obtain

$\dim|H|=\frac{H\cdot(H-K_{X})}{2}=\frac{(1+r)H^{2}}{2}$

This proves (i). Recall (see [Fuj]) that for any polarized variety (X, $H$) the following
equality holds:
(10.5) $\dim X+H^{\dim X}-h^{0}(X, \mathcal{O}_{X}(H))\geq 0$ .
Combining this with (i) we obtain (ii). Finally, assume $r>1$ . Then by (i),
$\dim|H|>H^{2}$ . From (ii) we have $H^{2}=\dim|H|-1$ . Moreover, in (10.5) the
equality holds. Such polarized varieties (of arbitrary dimension) are classified in
[Fuj]. In particular, it is proved that $H$ is very ample and $X\subset \mathbb{P}^{\dim|H|}$ are varieties
of minimal degree. In the two-dimensional case from [Fuj] we obtain possibilities
as in (iii). $\square $

${\rm Log}$ del Pezzo surfaces with $r(X)=1$ are special cases of the so-called Fujita
varieties:
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LEMMA 10.2.5. Let $X$ be a $logdel$ Pezzo with $klt$ singularities of Fano index
1. Assume $that-K_{X}$ is ample and $H$ an ample primitive element of Pic(X) such
$that-K_{X}\equiv H$ . Then

(i) $\dim|H|=H^{2}$ and $H^{2}\leq 8$ ;
(ii) if $H^{2}\geq 4$ , then $X$ has only $DuVal$ singularities;
(iii) if $H^{2}=6$ and $\rho(X)=1$ , then $X$ has exactly two singular points which are

$DuVal$ of types $A_{1}$ and $A_{2}$ ; in this case, $X$ is isomorphic to the weighted
projective plane $\mathbb{P}(1,2,3)$ .

SKETCH OF PROOF. Note that by Lemma 5.4.1, $X$ is rational. As in
Lemma 10.2.4, the first part of (i) follows by Riemann-Roch and Kawamata-
Viehweg vanishing. Set $D$ $:=H+K_{X}$ . If $D\sim 0$ , then $X$ has only DuVal sin-
gularities. In this case, by Noether’s formula,

$K\frac{2}{X}+\rho(\overline{X})=K_{X}^{2}+\rho(\tilde{X})=10$ ,

where $\overline{X}\rightarrow X$ is the minimal resolution. This yields $K_{X}^{2}=H^{2}\leq 8$ (because
$X\not\simeq \mathbb{P}^{2})$ .

If $D\oint 0$ , then by Lemma 5.1.3, $nD\sim 0$ for some $n\in N$ . Considering a cyclic
cover trick, we get a cyclic \’etale in codimension one cover $\varphi:X^{\prime}\rightarrow X$ . Moreover,
on $X^{\prime}$ one $has-K_{X^{\prime}}\sim H^{\prime}$ , where $H^{\prime}$ $:=\varphi^{*}H$ . Therefore $X^{\prime}$ is a del Pezzo surface
with only DuVal singularities. Further, by the above arguments,

$K_{X^{\prime}}^{2}=(\deg\varphi)K_{X}^{2}\leq 9$ .

Hence $K_{X}^{2}\leq 4$ . If $K_{X}^{2}=4$ , then $K_{X}^{2},$ $=8$ and $X$ is a quotient of $X$ ‘ by an involution
$\tau$ . In this case, $X$ ‘ cannot be smooth (otherwise $X$ has only singularities of type $A_{1}$

and $-K_{X}\sim H$). Let $\overline{X}\rightarrow X^{\prime}$ be the minimal resolution. As above, by Noether’s
formula, $\rho(\overline{X}’)=10-K\frac{2}{X},$ $=10-K_{X}^{2},$ $=2$ . Therefore, $\overline{X}^{\prime}\rightarrow X$ ‘ contracts a single
$-2$-curve. From this, we have only one possibility: $\tilde{X}^{\prime}\simeq F_{2}$ and $X^{\prime}$ is a quadratic
cone in $\mathbb{P}^{3}$ . Since Pic(X’) $=\mathbb{Z}\cdot \mathcal{O}_{X}(1)$ , one has that $\tau$ acts linearly in $\mathbb{P}^{3}$ . Recall
that the quotient of the vertex of the cone is nonGorenstein. The action of $\tau$ on
$\mathbb{P}^{3}$ is free in codimension one (because so is the action of $\tau$ on $X$ ‘). Therefore in
some coordinate system,

$\tau=\left(\begin{array}{llll}-1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & l & 0\\0 & 0 & 0 & 1\end{array}\right)$

and $X^{\prime}$ is given by

$q(x_{1}, x_{2})+q^{\prime}(x_{3}, x_{4})=0$ ,

where $q(x_{1}, x_{2})$ and $q^{\prime}(x_{3}, x_{4})$ are quadratic forms such that $rk(q+q^{\prime})=3$ . Chang-
ing coordinates we may assume that $X^{\prime}$ is given by $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$ . But then
the quotient of the vertex is a complete intersection singularity $y_{1}+y_{2}+x_{3}^{2}=0$ ,
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$y_{1}y_{2}=y_{0}^{2}$ , where $y_{1}=x_{1}^{2},$ $y_{2}=x_{2}^{2}$ and $y_{0}=x_{1}x_{2}$ . In particular, it is Gorenstein,
a contradiction.

Assume now that $H^{2}=6$ . Then by the above, $X$ is Gorenstein and $\rho(\tilde{X})=4$ ,
where $\tilde{X}\rightarrow X$ is the minimal resolution. Therefore $\tilde{X}\rightarrow X$ contracts exactly three
$-2$-curves and the configuration of singular points on $X$ is either $A_{3}$ or $A_{1}A_{2}$ . By
[Fu] the only second case is possible. Moreover, $X$ is unique up to isomorphism
(see e.g., $[KeM,$ $3.10]$ ). On the other hand, $\mathbb{P}(1,2,3)$ is a Gorenstein del Pezzo of
degree 6. $\square $

REMARK. There is another way to treat the case $H^{2}=6$ : since $\dim|H|=6$ ,
one can construct a l-complement $K_{X}+C$ such that $C$ has three components and
then use Theorem 8.5.2.

PROOF OF THEOREM 10.2.1. Since $B\neq 0$ and $\rho(X)=1,$ $-K_{X}$ is ample.
Hence $X$ is rational. By Lemma 10.2.2 Then $C$ $:=C_{1}+C_{2}$ has only normal
crossings at smooth points of $X,$ $SuppF$ does not pass $C_{1}\cap C_{2}$ and $b_{1}+b_{2}<13/7$

(by Lemma 9.1.8).
Write

$C_{i}\equiv d_{i}H$ , $-K_{X}\equiv rH$ , $F\equiv qH$ .

We assume that $d_{1}\leq d_{2}$ . $Since-(K_{X}+B)$ is nef,

(10.6) $\frac{6}{7}(d_{1}+d_{2})\leq b_{1}d_{1}+b_{2}d_{2}+q\leq r$ .

Take $b$ so that $K_{X}+C_{1}+bC_{2}+F\equiv 0$ , i.e.

$d_{1}+bd_{2}+q=r$ .

Then

(10.7) $b=\frac{r-q-d_{1}}{d_{2}}\geq\frac{b_{1}d_{1}+b_{2}d_{2}-d_{1}}{d_{2}}=$

$b_{2}-(1-b_{1})\frac{d_{1}}{d_{2}}\geq b_{1}+b_{2}-1\geq 5/7$ .

Since $K_{X}+C+F$ is ample, $b<1$ .
Recall that $K_{X}+C+F$ is analytically dlt except for the case (ii) of

Lemma 10.2.2. In particular, $X$ is smooth at points $C_{1}\cap C_{2}$ and $C_{1}\cap C_{2}\cap SuppF=$

$\emptyset$ . By Adjunction,

(10.8) $K_{C_{1}}+Diff_{C_{1}}(bC_{2}+F)\equiv 0$ .

If $p_{a}(C_{1})>0$ , then $K_{C_{1}}=Diff_{C_{1}}(bC_{2}+F)=0$ . This is impossible because
$ C_{1}\cap C_{2}\neq\emptyset$ . Therefore $C_{1}\simeq \mathbb{P}^{1}$ and $\deg Diff_{C_{1}}(bC_{2}+F)=2$ .
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10.2.6. Case: $X$ is smooth. Then $X\simeq \mathbb{P}^{2}$ and $r=3$ . From (10.6) we
obtain $(d_{1}, d_{2})=(1,2)$ or $(1, 1)$ . On the other hand, $K_{X}+C+F$ is ample. This
gives

$q>3-d_{1}-d_{2}$ .

If $(d_{1}, d_{2})=(1,2)$ , then by (10.6), $0<q\leq 3-\frac{18}{7}=\frac{3}{7}<\frac{1}{2}$ a contradiction.
Therefore $C_{1},$ $C_{2}$ are lines on $X\simeq \mathbb{P}^{2}$ . Then

(10.9) $\frac{1}{2}\sum\deg F_{i}\leq q=$

$\sum(1-1/m_{i})\deg F_{i}\leq 3-12/7=9/7$ , $q>1$ .

If $\deg F_{1}\geq 2$ , then $F=\frac{1}{2}F_{1},$ $\deg F_{1}=2$ and $q=1$ , a contradiction. Hence
all the components of $F$ are lines. From (10.9) we have only two possibilities:
$F=\frac{1}{2}F_{1}+\frac{2}{3}F_{2}$ and $F=\frac{1}{2}F_{1}+\frac{3}{4}F_{2}$ . These are cases $(A_{2}^{1})$ and $(A_{2}^{1;})$ .

From now on we assume that $X$ is singular. Since $p_{a}(C)\leq 1$ , we have two
possibilities: $\# C_{1}\cap C_{2}=2$ and $\# C_{1}\cap C_{2}=1$ .

10.2.7. Case: $\# C_{1}\cap C_{2}=2$ . Let $C_{1}\cap C_{2}=\{P_{1}, P_{2}\}$ . Then
$2=C_{1}\cdot C_{2}=d_{1}d_{2}H^{2}$ .

Equality (10.8) gives

$Diff_{C_{1}}(bC_{2}+F)=bP_{1}+bP_{2}+Diff_{C_{1}}(F)$ .
Hence

$\deg Diff_{C_{1}}(F)=2-2b\leq 4/7$ .
By Inversion of Adjunction, $K_{X}+C_{1}+F$ is plt near $C_{1}$ . Assume that

$Diff_{C_{1}}(F)=0$ . Then $F=0$ and $b=1$ , a contradiction with $b<1$ . Therefore
$Diff_{C_{1}}(F)\neq 0$ .

Since $Diff_{C_{1}}(F)\in\Phi_{sm}$ (see Corollary 2.2.8), we have only one possibility:
$Diff_{C_{1}}(F)=\frac{1}{2}Q$ , where $Q\in C_{1}$ is a single point $\neq P_{1},$ $P_{2}$ . Moreover, $b=3/4$ and
$d_{1}+\frac{3}{4}d_{2}+q=r$ .

If $Q\in X$ is smooth, then $F=\frac{1}{2}F_{1}$ , where $F_{1}$ is irreducible, $F_{1}\cap C_{1}=\{Q\}$ and
$F_{1}\cdot C_{1}=1$ . Thus $C_{1}$ is Cartier (see 2.2.4), $d_{1}\in N$ and $r=d_{1}+\frac{3}{4}d_{2}+q>\frac{7}{4}$ By
Lemma 10.2.4 $X$ is a cone over a rational normal curve of degree $d\geq 2$ . In this case
$r=(d+2)/d>7/4$ and $d=2$ . Therefore $X\subset \mathbb{P}^{3}$ is a quadratic cone. Further,
$d_{1}=d_{2}=1$ , so $C_{1},$ $C_{2}$ are hyperplane sections (and they do not pass through the
vertex of the cone). Finally, from $F_{1}\cdot C_{1}=1$ we see that $F_{1}$ is a generator of the
cone. This is case $(I_{2}^{1})$ .

Therefore $Q\in X$ is singular. Then it must be DuVal of type $A_{1}$ . Moreover,
$F=0$ and 2 $C_{1}$ is Cartier (but $C_{1}$ is not, because $C_{1}$ is smooth at $Q$ ). Hence
$d_{1}\in\frac{1}{2}$ N. Further, $d_{1}+\frac{3}{4}d_{2}=r$ .

If $d_{1}\geq 1$ , then $d_{2}\geq 1$ and $r\geq 7/4$ . By Lemma 10.2.4 and our assumption
that $X$ is singular, $r=2$ and $X$ is a quadratic cone. But then $d_{2}=4/3$ , a
contradiction. Hence $d_{1}=1/2,$ $d_{2}\geq 1/2$ . Put $k$ $:=C_{1}\cdot H\in$ N. Then $H^{2}=2k$ ,
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$2=C_{1}\cdot C_{2}=\frac{1}{2}d_{2}H^{2}$ , so $d_{2}=2/k\geq 1/2,$ $k\leq 4$ . This gives $r=\frac{1}{2}+\frac{3}{4}d_{2}=\frac{1}{2}+\frac{3}{2k}$ .
On the other hand, by Lemma 10.2.4, $r=\frac{l}{k}-1$ , where $l\in N$ . Therefore $3k+3=2l$
and $k\in\{1,3\}$ . If $k=1$ , then $l=3,$ $r=2,$ $d_{2}=2$ . But this contradicts
$\frac{6}{7}(d_{1}+d_{2})\leq r$ . We obtain $k=3,$ $l=6,$ $r=1,$ $d_{2}=2/3,$ $H^{2}=6$ . By
Lemma 10.2.5, $X\simeq \mathbb{P}(1,2,3)$ . We may assume that $C_{1}\in|\mathcal{O}_{\mathbb{P}}(3)|$ and $C_{2}\in|\mathcal{O}_{\mathbb{P}}(4)|$ .
Then $C_{1}=\{x_{3}=0\}$ and $C_{2}=\{x_{2}^{2}=\alpha_{1}x_{1}^{4}+\alpha_{2}x_{1}^{2}x_{2}+\alpha_{3}x_{1}x_{3}\},$

$\alpha_{1},$ $\alpha_{2},$
$\alpha_{3}\in \mathbb{C}$ .

But $\alpha_{3}\neq 0$ (otherwise $C_{2}$ is singular at $(0,0,1)$ ). Moreover, $(\alpha_{1}, \alpha_{2})\neq(0,0)$ ,
because $C_{1}\cap C_{2}$ consists of two points. This is case $(I_{2}^{2})$ .

10.2.8. Case: $p_{a}(C_{2})=1$ . By 10.2.7 we may assume that $C_{1}\cap C_{2}$ is a single
point, say $P$ . As in (10.7) take $b^{\prime}$ so that $K_{X}+b^{\prime}C_{1}+C_{2}+F\equiv 0$ , i.e.

$b^{\prime}d_{1}+d_{2}+q=r$ .

Since $K_{C_{2}}+Diff_{C_{2}}(b^{\prime}C_{1}+F)\equiv 0$ , we have $\deg(K_{C_{2}}+Diff_{C_{2}}(bC_{1}))\leq 0$ and
$K_{C_{2}}=0,$ $b^{\prime}\leq 0$ . This yields

$b=\frac{r-q-d_{2}}{d_{1}}=b_{1}-(1-b_{2})\frac{d_{2}}{d_{1}}\leq 0$ ,

(10.10) $\frac{6}{7}d_{1}\leq b_{1}d_{1}\leq(1-b_{2})d_{2}\leq\frac{1}{7}d_{2}$ , $6d_{1}\leq d_{2}$ .

Assume that $r\leq 1$ . Then

(10.11) $1\geq r\geq b_{1}d_{1}+b_{2}d_{2}+q\geq(b_{1}+6b_{2})d_{1}+q\geq 6d_{1}$ .

On the other hand, by (10.8),

$\deg Diff_{C_{1}}(F)=2-b$ ,

where

(10.12) $1>b\geq b_{2}-(1-b_{1})\frac{d_{1}}{d_{2}}\geq b_{2}+\frac{1}{6}b_{1}-\frac{1}{6}\geq\frac{5}{6}$

(see (10.7) and (10.10)). Hence
$1<\deg Diff_{C_{1}}(F)\leq 7/6$ .

Since $Diff_{C_{1}}(F)\in\Phi_{sm}$ , we have only one possibility $Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}$ and
$b=5/6$ . In particular, $6C_{1}$ is Cartier (see Theorem 2.2.4), so $d_{1}\geq 1/6$ . On the
other hand, $d_{1}\leq 1/6$ (see (10.11)). Hence $d_{1}=1/6$ and $kC_{1}$ is not Cartier for
$1\leq k\leq 5$ . This gives us that $F=0$ . Moreover, in (10.12) equalities hold, so
$1=6d_{1}=d_{2}$ and $b_{1}=b_{2}=6/7$ . From (10.11) we have $r\geq 6d_{1}=1$ . Hence
$r=1$ . Further, $C_{1}\cdot C_{2}=\frac{1}{6}H^{2}=1$ , gives $H^{2}=K_{X}^{2}=6$ . By Lemma 10.2.5,
$X\simeq \mathbb{P}(1,2,3)$ . We get case $(A_{2}^{6})$ .

Now assume that $r>1$ . Then $X$ is a cone. From $ 2\geq r\geq b_{1}d_{1}+b_{2}d_{2}+q\geq$

$(b_{1}+6b_{2})d_{1}+q\geq 6d_{1}$ we see that $d_{1}\leq 1/3$ and $C_{1}$ is not Cartier. Hence $C_{1}$

contains the vertex and $C_{2}$ does not. Thus $C_{2}$ is Cartier. Finally, $C_{1}\cdot C_{2}=1$ .
Therefore $C_{1}$ is a generator of the cone and $C_{2}$ is a smooth hyperplane section.
But then $C_{2}$ is rational, a contradiction.
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10.2.9. Case $C_{1}\cap C_{2}=\{P\}$ and $p_{a}(C_{1})=p_{a}(C_{1})=0$ . Then $C_{1}\cdot C_{2}=1$ .
By (10.7), 1 $>b\geq 5/7$ . Hence 1 $<\deg(Diff_{C_{1}}(F))=2-b\leq 9/7$ . Using
$Diff_{C_{1}}(F)\in\Phi_{sm}$ we get the following cases:

(10.13) $Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}$ , $\frac{1}{2}Q_{1}+\frac{3}{4}Q_{2}$ .

By Inversion of Adjunction, $K_{X}+C_{1}+F$ is plt near $C_{1}$ . In particular, either
4 $C_{1}$ or 6 $C_{1}$ is Cartier (see 2.2.4) and $F$ has at most two components. Thus $4d_{1}$ or
$6d_{1}\in N$ . Note that

$d_{1}=\frac{1}{H\cdot C_{2}}\leq 1$ , $d_{2}=\frac{1}{H\cdot C_{1}}\leq 1$ .

10.2.9.1. Subcase $d_{2}=1$ . It is easy to see $H\cdot C_{1}=d_{1}H^{2}=1$ , so $d_{1}=1/H^{2}$ .
We claim that $r>1$ . Indeed, if $r\leq 1$ , then

(10.14) $1\geq r\geq\frac{6}{7}(1+d_{1})$

and $d_{1}\leq 1/6$ . Thus $mC_{1}$ is not Cartier for $m<6$ . By (10.13) we have that
6 $C_{1}$ is Cartier, $Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}$ and $d_{1}\geq 1/6$ . Therefore $d_{1}=1/6$ and
in 10.14 the equality holds. In particular, $r=1,$ $K_{X}^{2}=H^{2}=6C_{1}\cdot C_{2}=6$ . By
Lemma 10.2.5, $X\simeq \mathbb{P}(1,2,3)$ and $Wei1_{1in}(X)\simeq \mathbb{Z}$ . But then $C_{2}\sim-K_{X}\sim H$ is
Cartier and $p_{a}(C_{2})=1$ , a contradiction.

Thus $r>1$ and $X\subset \mathbb{P}^{d+1}$ is a cone of degree $d:=H^{2}$ (see 10.2.4). Hence $C_{2}$ is a
smooth hyperplane section and $C_{1}$ is a generator of the cone (i.e., $d_{2}=1,$ $d_{1}=1/d$).
Write $F_{i}\equiv Lld$ H. (Note that $q_{i}\in N$ and $F_{i}\sim q_{i}C_{1}$ because $Wei1_{1in}(X)\simeq \mathbb{Z}\cdot C_{1}$ in
our case). We have

(10.15) $1+\frac{1}{d}+\sum(1-\frac{1}{m_{i}})\frac{q_{i}}{d}>r=$

$\frac{d+2}{d}\geq b_{2}+\frac{1}{d}b_{1}+\sum(1-\frac{1}{m_{i}})\frac{q_{i}}{d}$

$q_{i}\in N$ , $m_{i}\in\{0,2,3,4,5,6\}$

Assume that $F$ has a component $F_{1}$ which does not pass through the vertex. Then
$q_{1}\geq d$ , so

$1+\frac{2}{d}\geq b_{2}+\frac{1}{d}b_{1}+1-\frac{1}{m_{1}}\geq\frac{6}{7}(1+\frac{1}{d})+1-\frac{1}{m_{1}}$ ,

$8\geq d(6-\frac{7}{m_{1}})\geq\frac{5}{2}d$ .

This gives $d=2$ or $d=3$ . If $d=3$ , then $m_{1}=2$ . From (10.15) we get $F=\frac{1}{2}F_{1}$ ,
i.e., case $(A_{2}^{3})$ . If $d=2$ , then $m_{1}=2$ or $m_{1}=3$ . In both cases by (10.15) we
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have $F=(1-\frac{1}{m_{1}})F_{1}$ . For $m_{1}=2$ we derive a contradiction with the left side of
(10.15). We obtain case $(A_{2}^{2})$ .

Now we assume that all components of $F$ pass through the vertex $v$ of the cone
(in particular, $F\neq 0$ ). Since $K_{X}+C+F$ is plt at $v$ (see Lemma 10.2.2), there is
at most one such a component and $F=(1-\frac{1}{m_{1}})F_{1}$ . We claim that either $q_{1}=1$

or $q_{1}\geq d+1$ . Indeed, assume that $1<q_{1}\leq d$ . Then

$F_{1}\cdot C_{1}=\frac{q_{1}}{d^{2}}H^{2}=\frac{q_{1}}{d}\leq 1$ .

Since $X$ is smooth outside of $v,$ $F_{1}\cap C_{1}=\{v\}$ . By Adjunction, $\lfloor Diff_{C_{1}}(F)\rfloor=0$

at $v$ . On the other hand, by 2.2.8, the coefficient of $Diff_{C_{1}}(F)$ at $v$ is

$1-\frac{1}{d}+(1-\frac{1}{m_{1}})(F_{1}\cdot C_{1})=1-\frac{1}{d}+(1-\frac{1}{m_{1}})\frac{q_{1}}{d}$

We obtain

$\frac{1}{d}-(1-\frac{1}{m_{1}})\frac{q_{1}}{d}>0$ , $1>(1-\frac{1}{m_{1}})q_{1}$ and $q_{1}<\frac{m_{1}}{m_{1}-1}\leq 2$ ,

a contradiction. Therefore $q_{1}=1$ or $q_{1}\geq d+1$ . But the second case is impossible
by the right side of (10.15). Hence $q_{1}=1$ . But this contradicts to the left side of
(10.15).

From now on we assume that $d_{1}\leq d_{2}<1$ .

REMARK 10.2.10. If $r>1$ , then $X$ is a cone and contains exactly one singular
point, say $P$ , and $P\not\in C_{1}\cap C_{2}$ . Hence we may assume that $P\not\in C_{1}$ and $C_{1}$ is
Cartier. Thus we may assume that $r\leq 1$ and $C_{1},$ $C_{2}$ are not Cartier.

10.2.10.1. Subcase $d_{1}=1/2$ . Then we have
$1=C_{1}\cdot C_{2}=d_{1}H\cdot C_{2}$ , $H\cdot C_{2}=2$ , $d_{2}H^{2}=2$ .

Since $1>d_{2}=\overline{H}^{T}2\geq d_{1}=\frac{1}{2}H^{2}=3$ or $H^{2}=4$ . On the other hand, $H\cdot C_{1}=$

$\frac{1}{2}H^{2}\in N$ . Hence $H^{2}=4,$ $d_{2}=1/2$ and $N\ni-K_{X}\cdot H=rH^{2}=4r$ . By symmetry,
taking into account $d_{1}=d_{2}=1/2$ , one can see that (10.13) holds also for $C_{2}$ :

$Diff_{C_{2}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}^{\prime}$ , or $\frac{1}{2}Q_{1}+\frac{3}{4}Q_{2}^{\prime}$ .

From $r\geq\frac{6}{7}(d_{1}+d_{2})=\frac{6}{7}$ we get $r\geq 1$ . Thus $r=1$ and $X$ is Gorenstein by
10.2.10 and Lemma 10.2.5. By Theorem 5.2.3 all singular points are contained in
$C$ . Since $K_{X}+C$ is dlt (see Lemma 10.2.2), we obtain that $X$ has only DuVal
points of types $A_{n}.,$ $i=1,$ $\ldots,$

$s$ . Since $\rho(X)=1,$ $\sum_{i=1}^{s}n_{i}=10-4-\rho(X)=5$ . By
(10.13), $n_{i}\leq 3$ and $(n_{1}, \ldots , n_{s})\neq(1,1,1,1,1)$ . Now we can use the classification
of Gorenstein del Pezzo surfaces with $\rho=1$ (see e.g., [Fu]). The configuration of
singular points on $X$ is $\{2A_{1}A_{3}\}$ . We may assume that $C_{1}$ contains the point of
type $A_{3}$ . Hence $Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{3}{4}Q_{2}$ (see (10.13)). At least one of points $Q_{1}$ ,
$Q_{2},$ $Q_{1}^{\prime},$ $Q_{2}^{\prime}$ is smooth. Hence $F\neq 0$ and $SuppF\cap C_{1}=Q_{1}$ . Thus $F=\frac{1}{2}F_{1}$ ,
where $F_{1}\cap C_{1}=Q_{1}$ and $F_{1}\cdot C_{1}=1$ . This implies $F_{1}\equiv C_{2}\equiv\frac{1}{2}H$ . But then
$1=r<\frac{6}{7}(d_{1}+d_{2})+q=\frac{6}{7}+\frac{1}{4}$ , a contradiction.
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10.2.10.2. Subcase $d_{1}=1/3$ . Since $4C_{1}$ is not Cartier, $Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}$

and $Q_{2}\in X$ is singular (of type $A_{2}$ or $\frac{1}{3}(1,1)$ ). Moreover, no components of $F$

pass through $Q_{2}$ . Further,

$1=C_{1}\cdot C_{2}=d_{1}H\cdot C_{2}$ , $H\cdot C_{2}=3$ , $d_{2}H^{2}=3$ .

Since $1>d_{2}=\frac{3}{H}\tau\geq d_{1}=\frac{1}{3}9\geq H^{2}\geq 4$ . On the other hand, $H\cdot C_{1}=$

$\frac{1}{3}H^{2}\in N$ . Thus $H^{2}=6$ or 9. Further, by Lemma 10.2.4, $r=\frac{2}{H}l\tau-1$ , where $l\in N$

and $l\leq H^{2}+1$ .
If $H^{2}=6$ , then $d_{2}=1/2$ and

$1\geq r=\frac{l}{3}-1\geq\frac{6}{7}(\frac{1}{3}+\frac{1}{2})=\frac{5}{7}$

This gives $l=6$ and $r=1$ . By Lemma 10.2.5, $X\simeq \mathbb{P}(1,2,3)$ . In particular,
$Wei1_{1in}(X)\simeq \mathbb{Z}$ . $Since-(K_{X}+C)\equiv(1-1/3-1/2)H$ is ample, $F\neq 0$ . Therefore
$Q_{1}=SuppF\cap C_{1}$ and moreover $Q_{1}\in X$ is smooth, $F=\frac{1}{2}F_{1}$ and the intersection
of $F_{1}$ and $C_{1}$ is transverse. Thus $1=F_{1}\cdot C_{1}=\frac{1}{3}F_{1}\cdot H$ and $F_{1}\equiv\frac{1}{2}H$ . We may
assume that $C_{1}=\{x_{2}=0\},$ $C_{2}=\{x_{3}=0\}$ , and $F_{1}=\{x_{3}=\alpha_{1}x_{1}^{3}+\alpha_{2}x_{1}x_{2}\}$ ,
$\alpha_{1},$

$\alpha_{2}\in \mathbb{C}$ . But if $F_{1}=\{x_{3}=x_{1}^{3}\}$ , then $K_{X}+C+F$ is not lc at $(0,1,0)$ . On
the other hand, if $F_{1}=\{x_{3}=x_{1}x_{2}\}$ , then $F_{1}$ passes through the point $C_{1}\cap C_{2}$ , a
contradiction. Therefore $\alpha_{1},$ $\alpha_{2}\neq 0$ and we may put $F_{1}=\{x_{3}=x_{1}^{3}+x_{1}x_{2}\}$ . This
is case $(A_{2}^{4})$ .

If $H^{2}=9$ , then $d_{2}=1/3$ and

$1\geq r=\frac{2l}{9}-1\geq\frac{6}{7}(\frac{1}{3}+\frac{1}{3})=\frac{4}{7}$ , $l\in \mathbb{Z}$ .

This gives $l=9$ or $l=8$ . But in the first case $r=1$ which is a contradiction with
$H^{2}=9$ (see 10.2.5). Hence $l=8$ and $r=7/9$ . Since $d_{1}=d_{2}$ , similar to 10.13 we
have Diff $c_{2}(F)=\frac{1}{2}Q_{1}^{\prime}+\frac{2}{3}Q_{2}^{\prime}$ . In particular, this means that $C$ contains no points
of index $>3$ . But $X\backslash (C)$ contains such a point (because $r=7/9$), a contradiction
with 5.2.3.

10.2.10.3. Subcase $d_{1}=1/4$ . Since $mC_{1}$ is not Cartier for $m<4,$ $Diff_{C_{1}}(F)=$

$\frac{1}{2}Q_{1}+\frac{3}{4}Q_{2}\geq Diff_{C_{1}}(0)$ and $Q_{2}\in X$ is a singular point of type $A_{3}$ or $\frac{1}{4}(1,1)$ .
By Theorem 5.2.3, $Q_{1}\in X$ is smooth. Thus $F=\frac{1}{2}F_{1}$ , where $F_{1}\cap C_{1}=Q_{1}$ and
$C_{1}\cdot F_{1}=1$ . Put $k$ $:=H\cdot C_{1}$ . Then $H^{2}=4k,$ $d_{2}=1/k$ . Since $d_{2}\geq d_{1},$ $k\leq 4$ .
If $F_{1}\equiv q_{1}H$ , then $1=C_{1}\cdot F_{1}=\frac{1}{4}q_{1}H^{2}=q_{1}k$ . Hence $F_{1}\equiv\frac{1}{k}H$ . Further, by
Lemma 10.2.4,

$r=\frac{l}{2k}-1\geq\frac{6}{7}(d_{1}+d_{2})+\frac{1}{2}q_{1}=\frac{6}{7}(\frac{1}{4}+\frac{1}{k})+\frac{1}{2k}$ , $l-2k-2\geq\frac{3k+5}{7}$

On the other hand, $K_{X}+C+\frac{1}{2}F_{1}$ is ample, so $0<-r+d_{1}+d_{2}+\frac{1}{2}q_{1}$ . This gives

$0<-\frac{l}{2k}+1+\frac{1}{4}+\frac{1}{k}+\frac{1}{2k}=\frac{-l+2k+k/2+2+1}{2k}$ $l-2k-2<k/2+1$ .
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We get the following case:

$k=3$ , $l=10$ , $r=2/3$ , $d_{2}=1/3$ , $F_{1}\equiv\frac{1}{3}H$, $H^{2}=12$ .

We claim that $K_{X}+C$ is l-complementary. Note that $-(K_{X}+C)\equiv(\frac{2}{3}-\frac{1}{4}-\frac{1}{3})H$

is ample. By Theorem 5.2.3 and because $r=2/3,$ $C_{2}$ contains exactly one singular
point of $X$ , say $Q^{\prime}$ . Therefore Diff$c(0)$ is supported at two points $Q^{\prime}$ and $Q_{2}$ . It
is easy to verify that $K_{C}+Q^{\prime}+Q_{2}$ is an l-complement. By Proposition 4.4.3
this complement gives an l-complement $ K_{X}+C+\Theta$ , where $\Theta$ is reduced and
$\Theta\cap C=\{Q^{\prime}, Q_{2}\}$ . By Theorem 8.5.2, (X, $ C+\Theta$ ) is a toric pair. Such $X$ is defined
by a fan $\Delta$ in $R^{2}=\mathbb{Z}^{2}\otimes R$ . Let $v_{1},$ $v_{2},$ $v_{3}$ be generators of one-dimensional cones
in $\Delta$ . Since $X\backslash C$ is smooth, we may assume that $v_{1}$ and $v_{2}$ generate $\mathbb{Z}^{2}$ . Thus
we can put $v_{1}=(1,0,0)$ and $v_{2}=(0,1,0)$ . Therefore $X$ is a weighted projective
space $\mathbb{P}(1, a_{2}, a_{3}),$ $C_{1}\sim \mathcal{O}_{\mathbb{P}}(a_{2}),$ $C_{2}\sim \mathcal{O}_{Q}(a_{3})$ and $-K_{X}\sim \mathcal{O}_{P}(1+a_{2}+a_{3})$ . Since
$X\ni Q_{2}$ is singular of type $\frac{1}{4}(1, s)$ , where $s=1$ or 3 and $Q_{2}\in C_{1}$ , we can take
$a_{3}=4$ . Finally, from

$K_{X}^{2}=(\frac{2}{3}H)^{2}=\frac{16}{3}$ $K_{X}^{2}=\frac{(a_{1}+a_{2}+a_{3})^{2}}{a_{1}a_{2}a_{3}}=\frac{(5+a_{2})^{2}}{4a_{2}}$

we obtain $a_{2}=3$ . This is case $(A_{2}^{5})$ .
10.2.10.4. Subcase $d_{1}=1/6$ . Since $mC_{1}$ is not Cartier for $m<6,$ $Diff_{C_{1}}(F)=$

$\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}\geq Diff_{C_{1}}(0)$ and $Diff_{C_{1}}(0)=Diff_{C_{1}}(F)=\frac{1}{2}Q_{1}+\frac{2}{3}Q_{2}$ . Hence $F=0$
and points $Q_{1},$ $Q_{2}\in X$ are singular. This contradicts to Theorem 5.2.3.

Theorem 10.2.1 is proved. $\square $

Theorem 10.2.1 completes the classification of $\log$ pairs with $\delta(X, B)=2$ . The
case $\delta(X, B)=1$ was studied by Abe [Ab]. In particular, he completely described
so called “elliptic curve case”, i.e., the case $p_{a}(C)=1$ . A different approach to the
classification of exceptional complements was given in $[KeM]$ .

10.3. Examples

EXAMPLE 10.3.1. Let $X=\mathbb{P}^{2}$ and $B=\sum d_{i}B_{i}$ , where all $B_{i}$ are lines on $\mathbb{P}^{2}$

such that no three of them pass through one point, and $d_{i}=1-1/m_{i}$ . Assume
that $-(K_{X}+B)$ is ample. By definition, $K_{X}+B$ is n-complementary if and only
if $\deg(-nK_{X}-\lfloor(n+1)B\rfloor)\geq 0$ (i.e., $\sum\lfloor(n+1)(1-1/m_{i})\rfloor\leq 3n$ ). We give the
list of all possibilities for $(m_{1}, \ldots, m_{r})$ (with $m_{1}\leq\cdots\leq m_{r}$ ). These were found
by means of a computer program. Here $n=comp1(X, B)$ .

NONEXCEPTIONAL PAIRS

$n=1:(m),$ $(m_{1}, m_{2}),$ $(m_{1}, m_{2}, m_{3})$ (type $A1_{0}^{3}$ , see 5.3.7);
$n=2:(2,2, m_{1}, m_{2}),$ $(2,2,2,2, m)$ (types $D2_{0}^{2}$ and $E2_{0}^{1}$ , respectively);
$n=3:(2,3,3, m),$ $(3,3,3, m)$ (type $E3_{0}^{1}$ );
$n=4:(2,3,4, m),$ $(2,4,4, m)$ (type $E4_{0}^{1}$ );
$n=5:(2,3,5,5)$ (there is also a regular 6-complement of type $E6_{0}^{1}$ );
$n=6:(2,3,5, m),$ $m\geq 6,$ $(2,3,6, m)$ (type $E6_{0}^{1}$ ).
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EXCEPTIONAL PAIRS

$n=4:(3,3,4,4),$ $(3,4,4,4),$ $(2,2,2,3,3),$ $(2,2,2,3,4)$ ;
$n=5:(2,4,5,5)$ , (2, 5, 5, 5) (in these cases there are also regular 6-

complements);
$n=6$ : (2,4,5,6), (2,4,6,6), (2,5,5,6), (2,5,6,6), (3,3,4,5), (3,3,5,5),

(3, 3, 5, 6), (3, 3, 4, 6), (2, 2, 2, 3, 5);
$n=7$ : (2,3,7,7);
$n=8$ : (2,3,7,8), (2,3,8,8), (2,4,5,7), (2,4,5,8), (2,4,6,7), (2,4,6,8),

(2, 4, 7, 7), (2, 4, 7, 8);
$n=9:(2,3,7,9),$ $(2,3,8,9),$ $(2,3,9,9),$ $(3,3,4,7),$ $(3,3,4,8),$ $(3,3,4,9)$ ;
$n=10:(2,3,7,10)$ , (2, 3, 8, 10), (2, 3, 9, 10), (2, 3, 10, 10), (2, 4, 5, 9),

(2, 4, 5, 10), (2, 5, 5, 7), (2, 5, 5, 8), (2, 5, 5, 9);
$n=12:(2,3,7,11)$ , (2, 3, 7, 12), (2, 3, 8, 11), (2, 3, 8, 12), (2, 3, 9, 11),

(2, 3, 9, 12), (2, 3, 10, 11), (2, 3, 10, 12), (2, 3, 11, 11), (2, 3, 11, 12), (2, 4, 5, 11),
(2,4,5,12), (2,4,6,9), (2,4,6,10), (2,4,6,11), (3,3,4,10), (3,3,4,11),
(3, 4, 4, 5);

$n=14:(2,3,7,13),$ $(2,3,7,14)$ ;
$n=15:(3,3,5,7),$ $(2,3,7,15)$ ;
$n=16:(2,3,7,16)$ , (2, 3, 8, 13), (2, 3, 8, 14), (2, 3, 8, 15), (2, 3, 8, 16),

(2, 4, 5, 13), (2, 4, 5, 14), (2, 4, 5, 15), (2, 4, 5, 16);
$n=18:(2,3,7,17)$ , (2, 3, 7, 18), (2, 3, 8, 17), (2, 3, 8, 18), (2, 3, 9, 13),

(2, 3, 9, 14), (2, 3, 9, 15), (2, 3, 9, 16), (2, 3, 9, 17);
$n=20:(2,4,5,17),$ $(2,4,5,18),$ $(2,4,5,19)$ ;
$n=21:(2,3,7,19),$ $(2,3,7,20),$ $(2,3,7,21)$ ;
$n=22:(2,3,7,22)$ ;
$n=24:(2,3,7,23)$ , (2, 3, 7, 24), (2, 3, 8, 19), (2, 3, 8, 20), (2, 3, 8, 21),

(2, 3, 8, 22), (2, 3, 8, 23);
$n=28:(2,3,7,25),$ $(2,3,7,26),$ $(2,3,7,27),$ $(2,3,7,28),$ $(2,4,7,9)$ ;
$n=30:(2,3,7,29),$ $(2,3,7,30),$ $(2,3,10,13),$ $(2,3,10,14),$ $(2,5,6,7)$ ;
$n=36:(2,3,7,31)$ , (2, 3, 7, 32), (2, 3, 7, 33), (2, 3, 7, 34), (2, 3, 7, 35),

(2, 3, 7, 36);
$n=42:(2,3,7,37),$ $(2,3,7,38),$ $(2,3,7,39),$ $(2,3,7,40),$ $(2,3,7,41)$ ;
$n=66:(2,3,11,13)$ .

Thus the set of all compl(X, $B$ ) in this case is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21,
22, 24, 28, 30, 36, 42, 66}.

It is easy to see that this set is contained in $\{n\in N|\varphi(n)\leq 20, n\neq 60\}$ , which is
related to automorphisms of $K3$ surfaces [I] (see also [Ts, Sect. 2]).

EXAMPLE 10.3.2. Replace the condition of the ampleness of $-(K_{X}+B)$ in
Example 10.3.1 with numerical triviality. We obtain only exceptional cases:

$n=2$ : (2,2,2,2,2,2);
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$n=4:(4,4,4,4),$ $(2,2,2,4,4)$ ;
$n=6:(2,6,6,6),$ $(3,3,6,6),$ $(2,2,2,3,6),$ $(2,2,3,3,3)$ ;
$n=8$ : (2,4,8,8);
$n=10:(2,5,5,10)$ ;
$n=12:(2,3,12,12),$ $(2,4,6,12),$ $(3,3,4,12),$ $(3,4,4,6)$ ;
$n=18:(2,3,9,18)$ ;
$n=20:(2,4,5,20)$ ;
$n=24:(2,3,8,24)$ ;
$n=30:(2,3,10,15)$ ;
$n=42:(2,3,7,42)$

In these cases (X, $B$ ) is alog Enriques surface and $n(K_{X}+B)\sim 0$ . Construction 1.3
gives a ramified cyclic cover $\varphi:X^{\prime}\rightarrow \mathbb{P}^{2}$ such that $K_{X^{\prime}}=\varphi^{*}(K_{X}+B)$ . Then
$K_{X^{\prime}}\sim 0$ and is plt, so $X^{\prime}$ is a surface with Du Val singularities and $K_{X^{\prime}}\sim 0$ . Note
that if we replace the condition $B\in\Phi_{sm}$ with $B\in\Phi_{m}$ , we can get bigger values
of compl(X, $B$ ). For example, take $B=\frac{1}{2}B_{1}+\frac{2}{3}B_{2}+\frac{18}{19}B_{3}+\frac{101}{114}B_{4}$ , where, as
above, $B_{i}\subset \mathbb{P}^{2}$ are lines such that no three of them pass through one point. Then
compl(X, $B$ ) $=78$ .

EXAMPLE 10.3.3. Let $G\subset PGL_{3}(\mathbb{C})$ be a finite subgroup, $X$ $:=\mathbb{P}^{2}/G$ , and
$f:\mathbb{P}^{2}\rightarrow X$ the quotient morphism. Define the boundary $B$ on $X$ by $K_{\mathbb{P}^{2}}=$

$f^{*}(K_{X}+B)$ (see (1.4) and (1.5)). Then (X, $B$ ) is exceptional if and only if $G$ has
no semiinvariants of degree $\leq 3$ (see [MP]). There are only four types of such
groups up to conjugation in $PGL_{3}(\mathbb{C})$ .

EXAMPLE 10.3.4 ([Ab]). Let $X$ $:=\mathbb{P}(1,2,3)$ . Take a general member $ E\in$

$|-K_{X}|$ (a smooth elliptic curve) and let $L$ be a line on $X$ (with respect to $-K_{X}$ ).
Then $E\sim 6L$ . Since (X, $L$ ) is toric, $K_{X}+L$ is plt. Hence (X, $\alpha E+\beta L$ ) is a $\log$ del
Pezzo if and only if $6\alpha+\beta<6,$ $\alpha\leq 1,$ $\beta\leq 1$ . Moreover, if $\alpha\geq 6/7$ and $\beta\in\Phi_{m}$ ,
then (X, $\alpha E+\beta L$ ) is exceptional. Indeed, by Corollary 8.4.2 it is sufficient to show
that there are no regular nonklt complements. If $K_{X}+B^{+}$ is such a complement,
then $B^{+}\geq E+\beta L$ , a contradiction. This gives the following exceptional cases
with $\delta=1$ :

$\beta=1/2$

$\beta=2/3$

$\beta=3/4$

$\beta=4/5$

$\beta=5/6$

$6/7\leq\alpha<$ 11/12
$6/7\leq\alpha<8/9$

$6/7\leq\alpha<7/8$

$6/7\leq\alpha<$ 13/15
$6/7\leq\alpha<31/36$ .

$smoothellipticcurve,andLEXAMPLEl0.3.5([Ab])$
.

$ageneratorofthecone.Then(X,\frac{6}{7}E+LetX\subset \mathbb{P}^{3}beaquadraticcone,E\in\frac{11}{2}L)isan-K_{X}|a$

exceptional $\log$ del Pezzo with $\delta=1$ and $K_{X}+\frac{6}{7}E+\frac{4}{7}L$ is a 7-complement.

EXERCISE 10.3.6. Let $C\subset \mathbb{P}^{2}$ be a smooth curve of degree $d$ . Assume that
$-(K_{X}+(1-1/m)C)$ is nef. Prove that $K_{X}+(1-1/m)C$ is exceptional only if and
only if $(d, m)\in\{(4,3), (4,4), (5,2), (6,2)\}$ . For $(d, m)=(4,3),$ $(5,2)$ such $\log$ Del
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Pezzos can appear as exceptional divisors of plt blowups of canonical singularities
(see[Pl]). Hint. $ThenontrivialpartistoprovethatK_{X}+(1-1/m)Cisexcep-$
tional in these cases. Assuming the opposite we have a regular nonklt complement
$K_{X}+B$ . Then we can use the following simple fact: if $\sum d_{i}B_{i}$ is a boundary on
$\mathbb{C}^{2}$ such that all the $B_{i}$ are smooth curves and $\sum d_{i}\leq 1$ , then $(\mathbb{C}^{2}, B)$ is canonical.

EXAMPLE 10.3.7. Let $(X\ni 0)$ be a three-dimensional klt singularity and $D$ an
effective reduced Weil divisor on $X$ . Assume that $D$ is $\mathbb{Q}$-Cartier. Let $c_{o}(X, D)$ be
the $\log$ canonical threshold. Assume that $1>c:=c_{o}(X, D)>6/7$ . Let $f:Y\rightarrow X$

be a plt blowup of (X, $D$ ). Write $K_{Y}+S+cB=f^{*}(K_{X}+cD)$ , where $B$ is the
proper transform of $D$ . Then $(S, Diff_{S}(cB))$ is a $\log$ Enriques surface with $\delta\geq 1$ .
We claim that $K_{S}+Diff_{S}(cB)$ is klt. Indeed, if $K_{S}+Diff_{S}(cB)$ is not klt, then
by the Inductive Theorem 8.3.1 there is a regular complement $K_{S}+Diff_{S}(cB)^{+}$ .
Since $-(K_{Y}+S+(c-\epsilon)B)$ is $f$-ample for $\epsilon>0$ , by Proposition 4.4.1 we have a
regular complement $K_{Y}+S+(c-\epsilon)B$ . This gives a regular complement $K_{X}+A$

of $K_{X}+(c-\epsilon)D$ . We can take $\epsilon$ so that $c-\epsilon>6/7$ . Then $A$ is reduced and
$A=D$ . Hence $c=1$ , a contradiction. This method can help to describe the set of
all lc thresholds in the interval [6/7, 1] (cf. [Ku]). For example, take $X=\mathbb{C}^{3}$ and
$D=\{\psi(x, y, z)=0\}$ , where $\psi(x, y, z)=x^{3}+yz^{2}+x^{2}y^{2}+x^{5}z$ (see [Ku]). Then
$c_{o}(\mathbb{C}^{3}, D)=$ 11/12 and $f:Y\rightarrow \mathbb{C}^{3}$ is the weighted blowup with weights (4, 2, 5).
So $S=\mathbb{P}(4,2,5)$ . It is easy to compute that $Diff_{S}(cD)=\frac{11}{12}C+\frac{1}{2}L$ , where
$C:=\{x^{3}+yz^{2}+x^{2}y^{2}=0\}$ and $L:=\{z=0\}$ . Both $C$ and $L$ are smooth rational
curves which intersect each other twice at smooth points of $S$ . Such complements
were studied in [Ab, Sect. 2] and called there “sesqui rational curve” complements.


