CHAPTER 7

Contractions onto curves

In this chapter we discuss complements on log surfaces over curves. The main result is Theorem 7.2.11. From Theorem 6.0.6 we have

Corollary 7.0.10. Let $f: X \rightarrow Z \ni o$ be a contraction from a normal surface X onto a smooth curve Z. Let D be a boundary on X. Assume that $K_{X}+D$ is lc and $-\left(K_{X}+D\right)$ is f-nef and f-big. Then there exists a nonklt 1, 2, 3, 4, or 6-complement of $K_{X}+D$ near $f^{-1}(o)$. Moreover, if there are no nonklt 1 or 2-complements of $K_{X}+D$, then $f: X \rightarrow Z \ni$ o is exceptional.

Below we give generalization of this result for the case when $K_{X}+D \equiv 0$ and classify two-dimensional log conic bundles.

7.1. Log conic bundles

7.1.1. Assumptions. Let $(X \supset C)$ be a germ of normal surface X with only klt singularities along a reduced curve C, and ($Z \ni o$) a smooth curve germ. Let $f:(X, C) \rightarrow(Z, o)$ be a K_{X}-negative contraction such that $f^{-1}(o)_{\text {red }}=C$. Then it is easy to prove that $p_{a}(C)=0$ and each irreducible component of C is isomorphic to \mathbb{P}^{1}. Everywhere in this paragraph if we do not specify the opposite, we assume that C is irreducible (or, equivalently, $\rho(X / Z)=1$, i.e., f is extremal). Let $X_{\min } \rightarrow$ X be the minimal resolution. Since the composition map $f_{\min }: X_{\min } \rightarrow Z$ is flat, the fiber of $f_{\min }^{-1}(o)$ is a tree of rational curves. Therefore it is possible to define the dual graph of $f_{\min }^{-1}(o)$. We draw it in the following way: denotes the proper transform of C, while \bigcirc denotes the exceptional curve. We attach the selfintersection number to the corresponding vertex. By construction, the proper transform of C is the only -1-curve in $f_{0}^{-1}(o)$, so we usually omit -1 over

Example 7.1.2. Let $\mathbb{P}^{1} \times \mathbb{C}^{1} \rightarrow \mathbb{C}^{1}$ be the natural projection. Consider the following action of \mathbb{Z}_{m} on $\mathbb{P}_{x, y}^{1} \times \mathbb{C}_{u}^{1}$:

$$
(x, y ; u) \longrightarrow\left(x, \varepsilon^{q} y ; \varepsilon u\right), \quad \varepsilon=\exp 2 \pi i / m, \quad \operatorname{gcd}(m, q)=1
$$

Then the morphism $f: X=\left(\mathbb{P}^{1} \times \mathbb{C}^{1}\right) / \mathbb{Z}_{m} \rightarrow \mathbb{C}^{1} / \mathbb{Z}_{m}$ satisfies the conditions above. The surface X has exactly two singular points which are of types $\frac{1}{m}(1, q)$ and $\frac{1}{m}(1,-q)$. The morphism f is toric, so K_{X} is 1-complementary. One can check
that the minimal resolution of X has the dual graph

$$
\begin{gathered}
-b_{1} \\
\bigcirc
\end{gathered} \cdots \quad \bigcirc^{-b_{s}}-\bigcirc^{-} \quad \bigcirc^{-a_{r}} \quad \ldots \quad-\quad \begin{gathered}
-a_{1} \\
\bigcirc
\end{gathered}
$$

where $\left(b_{1}, \ldots, b_{s}\right)$ and (a_{r}, \ldots, a_{1}) are defined by (2.1).
Proposition 7.1.3 (see also [KeM, (11.5.12)]). Let $f:(X, C) \rightarrow(Z, o)$ be a contraction as in 7.1.1, but not necessarily extremal (i.e., C may be reducible). Assume that X singular and has only $D u$ Val singularities. Then X is analytically isomorphic to a surface in $\mathbb{P}_{x, y, z}^{2} \times \mathbb{C}_{t}^{1}$ which is given by one of the following equations:
(i) $x^{2}+y^{2}+t^{n} z^{2}=0$, then the central fiber is a reducible conic and X has only one singular point, which is of type A_{n-1};
(ii) $x^{2}+t y^{2}+t z^{2}=0$, then the central fiber is a nonreduced conic and X has exactly two singular points, which are of type A_{1};
(iii) $x^{2}+t y^{2}+t^{2} z^{2}=0$, then the central fiber is a nonreduced conic and X has only one singular point, which is of type A_{3};
(iv) $x^{2}+t y^{2}+t^{n} z^{2}=0, t \geq 3$ then the central fiber is a nonreduced conic and X has only one singular point, which is of type D_{n+1}.

Sketch of proof. One can show that the linear system $\left|-K_{X}\right|$ is very ample and determines an embedding $X \subset \mathbb{P}^{2} \times Z$. Then X must be given by the equation $x^{2}+t^{k} y^{2}+t^{n} z^{2}=0$.
7.1.4. Construction. Notation and assumptions as in 7.1.1. Let d be the index of C on X, i. e. the smallest positive integer such that $d C \sim 0$. If $d=1$, then C is a Cartier divisor and X must be smooth along C, because so is C. If $d>1$, then there exists the following commutative diagram:

where $\widehat{X} \rightarrow X$ is a cyclic étale outside $\operatorname{Sing} X$ cover of degree d defined by C and $\widehat{X} \rightarrow \widehat{Z} \rightarrow Z$ is the Stein factorization. Then $\widehat{f}: \widehat{X} \rightarrow \widehat{Z}$ is also a $K_{\widehat{X}^{-}}$ negative contraction but not necessarily extremal. By construction, the central fiber $\widehat{C}:=\widehat{f}^{-1}(\widehat{o})$ is a reducible Cartier divisor. Note that $p_{a}(\widehat{C})=0$. Therefore \widehat{X} is smooth outside $\operatorname{Sing} \widehat{C}$. We distinguish two cases.
7.1.5. Case: \widehat{C} is irreducible. Then \widehat{X} is smooth and $\widehat{X} \simeq \mathbb{P}^{1} \times \widehat{Z}$. Thus $f: X \rightarrow Z$ is analytically isomorphic to the contraction from Example 7.1.2.
7.1.6. Case: \widehat{C} is reducible. Then the group \mathbb{Z}_{d} permutes components of \widehat{C} transitively. Since $p_{a}(\widehat{C})=0$, this gives that all the components of \widehat{C} passes through one point, say \widehat{P}, and they do not intersect each other elsewhere. The surface \widehat{X} is smooth outside \widehat{P}. Note that in this case $K_{X}+C$ is not plt, because neither is $K_{\widehat{X}}+\widehat{C}$.

Corollary 7.1.7. Notation as in 7.1.4. Then X has at most two singular points on C.

Proof. In Case 7.1.6 any nontrivial element $a \in \mathbb{Z}_{d}$ have \widehat{P} as a fixed point. It can have at most one more fixed point \widehat{P}_{i} on each component $\widehat{C}_{i} \subset \widehat{C}$. Moreover, \mathbb{Z}_{d} permutes points \widehat{P}_{1}, \ldots. Then X can be singular only at images of \widehat{P} and \widehat{P}_{1}, \ldots.
7.1.8. Additional notation. In Case 7.1.6 we denote $P:=g(\widehat{P})$. If X has two singular points, let Q be another singular point. To distinguish exceptional divisors over P and Q in the corresponding Dynkin graph we reserve the notation \bigcirc for exceptional divisors over P and \ominus for exceptional divisors over Q.

Corollary 7.1.9. In the above conditions, $K_{X}+C$ is plt outside of P.
Lemma 7.1.10. Notation as in 7.1.1, 7.1.4 and 7.1.8. Let $X^{\prime} \rightarrow X$ be a finite étale in codimension one cover. Then there exists the decomposition $\widehat{X} \rightarrow X^{\prime} \rightarrow X$. In particular, $X^{\prime} \rightarrow X$ is cyclic and the preimage of P on X^{\prime} consists of one point.

Proof. Let $X^{\prime \prime}$ be the normalization of $X^{\prime} \times_{X} \widehat{X}$. Consider the Stein factorization $X^{\prime \prime} \rightarrow Z^{\prime \prime} \rightarrow Z$. Then $X^{\prime \prime} \rightarrow Z^{\prime \prime}$ is flat and a generically \mathbb{P}^{1}-bundle. Therefore for the central fiber $C^{\prime \prime}$ one has $\left(-K_{X^{\prime \prime}} \cdot C^{\prime \prime}\right)=2$, where $C^{\prime \prime}$ is reduced and it is the preimage of \widehat{C}. On the other hand,

$$
\left(-K_{X^{\prime \prime}} \cdot C^{\prime \prime}\right)=n\left(-K_{\widehat{X}} \cdot \widehat{C}\right)=2 n
$$

where n is the degree of $X^{\prime \prime} \rightarrow \widehat{X}$. Whence $n=1, X^{\prime \prime} \simeq \widehat{X}$. This proves the assertion.

Lemma 7.1.11. Let $f: X \rightarrow(Z \ni o)$ be an extremal contraction as in 7.1.1 (with irreducible C). Assume that $K_{X}+C$ is plt. Then
(i) $f: X \rightarrow(Z \ni o)$ is analytically isomorphic to the contraction from Example 7.1.2 (so it is toroidal). In particular, X has exactly two singular points on C which are of types $\frac{1}{m}(1, q)$ and $\frac{1}{m}(1,-q)$;
(ii) $K_{X}+C$ is 1 -complementary.

Proof. In the construction 7.1.4 we have Case 7.1.5. Then

$$
\operatorname{Diff}_{C}(0)=(1-1 / d) P_{1}+(1-1 / d) P_{2}
$$

where P_{1}, P_{2} are singular points of X and d is the index of C. By Corollary 4.1.11 and by Proposition 4.4.3, $K_{X}+C$ is 1-complementary.

The following result gives the classification of surface log terminal contractions of relative dimension one. For applications to three-dimensional case and generalizations we refer to [P2], [P3].

Theorem 7.1.12 ([P3]). Let $f:(X \supset C) \rightarrow(Z \ni o)$ be an extremal contraction as in 7.1 .1 (with irreducible C). Then K_{X} is 1, 2 or 3-complementary. Moreover, there are the following cases:

Case $A^{*}: K_{X}+C$ is plt, then $K_{X}+C$ is 1-complementary and f is toroidal (see Example 7.1.2, cf. Conjecture 2.2.18);
Case $D^{*}: K_{X}+C$ is lc, but not plt, then $K_{X}+C$ is 2-complementary and f is a quotient of a conic bundle of type (i) of Proposition 7.1.3 by a cyclic group $\mathbb{Z}_{2 m}$ which permutes components of the central fiber and acts on X freely in codimension one. The minimal resolution of X is

where $s, r \geq 0$ (recall that X can be smooth outside P, so $r=0$ is also possible).
Case $A^{* *}: K_{X}$ is 1-complementary, but $K_{X}+C$ is not lc. The minimal resolution of X is

where $r \geq 4, i \neq 1, r$.

Case $D^{* *}: K_{X}$ is 2-complementary, but not 1-complementary and $K_{X}+C$ is not lc. The minimal resolution of X is

where $r \geq 2, i \neq r$.
Case E_{6}^{*} (exceptional case): K_{X} is 3-complementary, but not 1- or 2complementary. The minimal resolution of X is

Here the number of \ominus-vertices is $b-2$ (it is possible that $b=2$ and $Q \in X$ is smooth).

REmark 7.1.13. (i) In the case D^{*} the canonical divisor K_{X} can be 1complementary:
a) if $P \in X$ is Du Val (see 7.1.3 (ii)), or
b) if $s=0, a_{1}=\cdots=a_{r}=2, b=r+2$.
(ii) In cases $D^{*}, A^{* *}$ and $D^{* *}$ there are additional restrictions on the graph of the minimal resolution. For example, in the case $A^{* *}$ one easily can check that

$$
\left(\sum_{j=1}^{i-1} a_{j}\right)-(i-1)=\left(\sum_{j=i+1}^{r} a_{j}\right)-(r-i)
$$

and

$$
a_{i}=(\text { number } \Theta \text {-vertices })+2
$$

Proof. If $K_{X}+C$ is plt, then by Lemma 7.1 .11 we have Case A^{*}. Thus we may assume that $K_{X}+C$ is not plt.

We claim that K_{X} is 1, 2 or 3 -complementary. Assume that K_{X} is not 1complementary. For some $\alpha \leq 1$ the \log divisor $K_{X}+\alpha C$ is lc, but not plt (so, $K_{X}+\alpha C$ is maximally lc). Consider a minimal log terminal modification $\varphi:\left(\check{X}, \sum E_{i}+\alpha \check{C}\right) \rightarrow(X, \alpha C)$, where $\sum E_{i}$ is the reduced exceptional divisor, \check{C} is the proper transform of C and $K_{\check{X}}+\sum E_{i}+\alpha \check{C}=\varphi^{*}\left(K_{X}+\alpha C\right)$ is dlt. As in 3.1.4, applying the ($K_{\check{X}}+\sum E_{i}$)-MMP to \check{X} at the last step we obtain the blowup $\sigma: \widetilde{X} \rightarrow X$ with irreducible exceptional divisor E. Moreover, $\sigma^{*}\left(K_{X}+\alpha C\right)=$ $K_{\widetilde{X}}+E+\alpha \widetilde{C}$ is lc, where \widetilde{C} is the proper transform of C and $K_{\tilde{X}}+E$ is plt and negative over X. Since $K_{\tilde{X}}+E+(\alpha-\varepsilon) \widetilde{C}$ is antiample for $0<\varepsilon \ll 1$, the curve \widetilde{C} can be contracted in the appropriate \log MMP over Z and this gives a contraction $(\bar{X}, \bar{E}) \rightarrow Z$ with purely \log terminal $K_{\bar{X}}+\bar{E}$. By Lemma 7.1.11 $(\bar{X}, \bar{E}) \rightarrow Z$ is as in Example 7.1.2. If $K_{\tilde{X}}+E$ in nonnegative on \widetilde{C}, then by Proposition 4.3 .2 we can pull back 1-complements from \bar{X} on \widetilde{X} and then push-down them on X (see 4.3.1). Thus we obtain 1-complement of K_{X}, a contradiction. From now on we assume that $-\left(K_{\tilde{X}}+E\right)$ is ample over Z. Then by Proposition 4.4.3 complements for $K_{E}+\operatorname{Diff}_{E}(0)$ can be extended on \widetilde{X}. According to 4.1.11, $\operatorname{Diff}_{E}(0)=\sum_{i=1}^{3}(1-$ $\left.1 / m_{i}\right) P_{i}$, where for (m_{1}, m_{2}, m_{3}) there are the following possibilities:

$$
(2,2, m),(2,3,3),(2,3,4),(2,3,5)
$$

Further, \bar{X} has exactly two singular points and these are of type $\frac{1}{m}(1, q)$ and $\frac{1}{m}(1,-q)$, respectively (see Lemma 7.1.11). Since \widetilde{C} intersects E at only one point, this point must be singular and there are two more points with $m_{i}=m_{j}$. We get two cases:
7.1.14. $\quad(2,2, m), \widetilde{C} \cap E=\left\{P_{3}\right\}$, there is a 2-complement;
7.1.15. $(2,3,3), \widetilde{C} \cap E=\left\{P_{1}\right\}$, there is a 3-complement.

This proves the claim.
If $K_{X}+C$ is lc (but not plt), then in Construction 7.1.4 $K_{\widehat{X}}+\widehat{C}$ is also lc but not plt (see Proposition 1.2.1). Since \widehat{C} is a Cartier divisor, $K_{\widehat{X}}$ is canonical. Hence \widehat{f} is as in Proposition 7.1.3, (i). We get the case D^{*}.

To prove that note that $\alpha=1$ and $K_{\tilde{X}}+E+\widetilde{C}$ is lc. Hence $f: X \rightarrow Z$ is not exceptional and K_{X} is 1- or 2-complementary by Corollary 7.0.10.

Assume that K_{X} is 1-complementary, but $K_{X}+C$ is not lc. Then there exists a reduced divisor D such that $K_{X}+D$ is lc and linearly trivial. By our assumption and by Propositions 2.1.2 and 2.1.3, $C \not \subset D$. Let $P \in X$ be a point of index $>$ 1. Then $P \in C \cap D$ and again by Propositions 2.1.2 and 2.1.3 there are two components $D_{1}, D_{2} \subset D$ passing through P. But since $D \cdot L=2$, where L is a generic fiber of $f, D=D_{1}+D_{2}, P \in D_{1} \cap D_{2}$ and P is the only point of index >1 on X.

Now assume that K_{X} is 2-complementary, but not 1-complementary and $K_{X}+$ C is not lc. Then we are in the case 7.1.14. Therefore

$$
\begin{gathered}
\left(\tilde{X} \ni P_{1}\right) \simeq\left(\tilde{X} \ni P_{2}\right) \simeq\left(\mathbb{C}^{2}, 0\right) / \mathbb{Z}_{2}(1,1), \\
\left(\tilde{X} \ni P_{3}\right) \simeq\left(\mathbb{C}^{2}, 0\right) / \mathbb{Z}_{m}(1, q), \quad \operatorname{gcd}(m, q)=1
\end{gathered}
$$

Take the minimal resolution $X_{\min } \rightarrow \tilde{X}$ of $P_{1}, P_{2}, P_{3} \in \tilde{X}$. Over P_{1} and P_{2} we have only single -2-curves and over P_{3} we have a chain which must intersect the proper transform of \widetilde{C}, because \widetilde{C} passes through P_{3}. Since the fiber of $\widetilde{X}_{\text {min }} \rightarrow Z$ over o is a tree of rational curves, there are no three of them passing through one point. Whence proper transforms of E and \widetilde{C} on $\widetilde{X}_{\text {min }}$ are disjoint. Moreover, the proper transform of E cannot be a -1-curve. Indeed, otherwise contracting it we get three components of the fiber over $o \in Z$ passing through one point. It gives that $\widetilde{X}_{\text {min }}$ coincides with the minimal resolution $X_{\min }$ of X. Therefore configuration of curves on $X_{\min }$ looks like that in Case $D^{* *}$. We have to show only that all the curves in the down part have selfintersections -2 . Indeed, contracting -1 -curves over Z we obtain a \mathbb{P}^{1}-bundle. Each time, we contract a - 1 -curve, we have the configuration of the same type. If there is a vertex with selfintersection <-2, then at some step we get the configuration

It is easy to see that this configuration cannot be contracted to a smooth point over $o \in Z$, because contraction of the central-1-curve gives configuration curves which is not a tree. This completes Case $D^{* *}$.

Case E_{6}^{*} is very similar to $D^{* *}$. We omit it.
From Corollary 6.1.4 we have
Corollary 7.1.16 (cf. [P2]). Fix $\varepsilon>0$. There is only a finite number of exceptional (i.e., of type E_{6}^{*}) log conic bundles $f: X \rightarrow Z$ as in Theorem 7.1.12 with ε-lt X.

Exercise 7.1.17 (cf. 2.2.18, 6.2.9). Let $f: X \rightarrow Z \ni o$ be a contraction from a surface onto a curve and $D=\sum d_{i} D_{i}$ a boundary on X such that $K_{X}+D$ is lc and $-\left(K_{X}+D\right)$ is nef over Z. Prove that

$$
\rho_{\text {num }}(X / Z)+2 \geq \sum d_{i}
$$

Moreover, the equality holds only if $(X / Z \ni o,\lfloor D\rfloor)$ is a toric pair.

7.2. Elliptic fibrations

As an application of complements we obtain Kodaira's classification of degenerate of elliptic fibers (see [Sh3]).

Definition 7.2.1. An elliptic fibration is a contraction from a surface to a curve such that its general fiber is a smooth elliptic curve. An elliptic fibration $f: X \rightarrow Z$ is said to be minimal if X is smooth and $K_{X} \equiv 0$ over Z.

Remark 7.2 .2 . (i) Note that any elliptic fibration obtained from minimal one by contracting curves in fibers has only Du Val singularities.
(ii) Let $K_{X}+B$ be a \mathbb{Q}-complement on an elliptic fibration $f: X \rightarrow Z \ni o$ with $K_{X} \equiv 0$. Then $B \equiv 0$. By Zariski's lemma, $p B \sim q f^{*} o$ for some $p, q \in \mathbb{N}$. In particular, there exists exactly one complement $K_{X}+B$ which is not klt.

Recall also that a minimal model is unique up to isomorphisms.
Proposition-Definition 7.2.3. Let $f: X \rightarrow Z \ni o$ be a minimal elliptic fibration. Then there exists a birational model $\bar{f}: \bar{X} \rightarrow Z$ such that $K_{\bar{X}}+\bar{F}$ is dlt and numerically trivial near $\bar{f}^{-1}(o)$, where $\bar{F}:=\bar{f}^{-1}(o)_{\text {red }}$. Such a model is called a dlt model of f. Moreover, if $K_{\bar{X}}+\bar{F}$ is n-complementary, then K_{X} is n-complementary. More precisely, $\operatorname{compl}^{\prime}(X) \leq \operatorname{compl}(\bar{X}, \bar{F})$. If $(X / Z \ni o)$ is exceptional, then \bar{F} is irreducible, $K_{\bar{X}}+\bar{F}$ is plt and a dlt model is unique.

Proof. First take the maximal $c \in \mathbb{Q}$ such that $K_{X}+c f^{*} o$ is lc. Put $B:=$ $c f^{*} o$. Next we consider a minimal log terminal modification $g: Y \rightarrow X$ of (X, B) (if $K_{X}+B$ is dlt, we put $\left.Y=X\right)$. Thus we can write $g^{*}\left(K_{X}+B\right)=K_{Y}+C+B_{Y} \equiv 0$, where C is reduced and nonempty, $\left\lfloor B_{Y}\right\rfloor=0$ and $\operatorname{Supp}\left(C+B_{Y}\right)$ is contained in the fiber over o. Run $\left(K_{Y}+C+(1+\varepsilon) B_{Y}\right)$-MMP over Z :

If $B_{Y} \neq 0$, then $B_{Y}^{2}<0$ and we can contract a component of B_{Y}. At the end we get the situation when $B_{Y}=0$. Taking $\bar{F}:=\bar{g}(C)$ we see the first part of the proposition. The second part follows by 4.3.2 and the fact that all contractions $Y \rightarrow \bar{X}$ are positive with respect to $K+C$.

Finally, assume that ($X / Z \ni o$) is exceptional. Then by Remark 7.2.2, there is exactly one nonklt complement $K_{X}+B$ (where $B=c f^{*} o$). Clearly, C is irreducible in this case. Contractions g and \bar{g} are crepant with respect to $K_{Y}+C+B_{Y}$. By Proposition 1.1.6 $K_{\bar{X}}+\bar{F}$ is plt. Assume that there are two dlt models ($\bar{X} / Z \ni o, \bar{F}$)
and $\left(\bar{X}^{\prime} / Z \ni o, \bar{F}^{\prime}\right)$. Consider the diagram

where $\bar{h}: X_{\min } \rightarrow \bar{X}$ is the minimal resolution and $h: X_{\min } \rightarrow X$ is a composition of contractions of -1 -curves. Let $K_{\bar{X}}+\bar{F}+\bar{D}$ be a \mathbb{Q}-complement and

$$
K_{X_{\min }}+F_{\min }+D_{\min }=\bar{h}^{*}\left(K_{\bar{X}}+\bar{F}+\bar{D}\right)
$$

the crepant pull back, where $F_{\min }$ is the proper transform of \bar{F} and $D_{\min }$ is a boundary. Clearly,

$$
-1=a\left(F_{\min }^{i}, F_{\min }+D_{\min }\right)=a\left(F_{\min }^{i}, h_{*}\left(F_{\min }+D_{\min }\right)\right)
$$

for any irreducible component $F_{\min }^{i}$ of $F_{\min }$. Hence $K_{X}+h_{*}\left(F_{\min }+D_{\min }\right)$ is a nonklt \mathbb{Q}-complement, so $h_{*}\left(F_{\min }+D_{\min }\right)=B$ and $a\left(\bar{F}^{i}, B\right)=-1$. Similarly, we get $a\left({\overline{F^{\prime}}}^{j}, B\right)=-1$. By exceptionality, \bar{F} and \bar{F}^{\prime} are irreducible and $\bar{F} \approx \bar{F}^{\prime}$ (as discrete valuations of $\mathcal{K}(X)$). Then $\bar{X} \rightarrow \bar{X}^{\prime}$ is an isomorphism in codimension one, hence it is an isomorphism.

Remark 7.2.4. Let $\bar{f}:(\bar{X}, \bar{F}) \rightarrow Z \ni o$ be a dlt model of an elliptic fibration and $K_{\bar{X}}+\bar{F}+\bar{B}$ a \mathbb{Q}-complement. As in Remark 7.2 .2 we have $\operatorname{Supp} \bar{B} \subset \bar{F}$, hence $\bar{B}=0$.

Corollary 7.2.5. Under notation of 7.2 .3 the following are equivalent:
(i) $(X / Z \ni o)$ is exceptional;
(ii) $(\bar{X} / Z \ni o, \bar{F})$ is exceptional;
(iii) $K_{\bar{X}}+\bar{F}$ is plt.

Proof. The implication (ii) \Longrightarrow (iii) is obvious (because \bar{F} is reduced, see 2.2.6). If $K_{\bar{X}}+\bar{F}$ is plt, then by Remark $7.2 .4 K_{\bar{X}}+\bar{F}$ is the only nonklt complement and \bar{F} is the only divisor with $a(\bar{F}, \bar{F})=-1$. This shows (iii) \Longrightarrow (ii). (i) \Longrightarrow (ii) follows by 7.2.3.

Let us prove the implication (ii) \Longrightarrow (i). Assume that $(X / Z \ni o)$ is nonexceptional. By Remark 7.2 .2 there are two different divisors E_{1}, E_{2} such that $a\left(E_{1}, B\right)=a\left(E_{2}, B\right)=-1$. Then in (7.1) we have $a\left(E_{1}, C+B_{Y}\right)=a\left(E_{2}, C+B_{Y}\right)=$ -1 . Since $K_{Y}+C+B_{Y} \equiv 0, a\left(E_{1}, \bar{F}\right)=a\left(E_{2}, \bar{F}\right)=-1$, i.e., $(\bar{X} / Z \ni o, \bar{F})$ is nonexceptional.

Similar to Theorem 6.1.6 we have the following
Proposition 7.2.6. Let $\bar{f}: \bar{X} \rightarrow Z \ni o$ be dlt model of an elliptic fibration and $\bar{F}:=\bar{f}^{-1}(o)_{\text {red }}$. Then one of the following holds:

Ell- $\widetilde{A}_{n}: p_{a}(\bar{F})=1, \bar{X}$ is smooth and \bar{F} is either
Ell: a smooth elliptic curve, or
\widetilde{A}_{n} : a wheel of smooth rational curves;
$\widetilde{D}_{n}, n \geq 5: \bar{F}$ is a chain of smooth rational curves, and it is as in Lemma 6.1.9 and Fig. 6.6 (here $n-3$ is the number of components of \bar{F});
Exc: $K_{\bar{X}}+\bar{F}$ is plt (therefore it is exceptional), then $\operatorname{Diff} \bar{F}(0)=\sum_{i=1}^{r}(1-$ $\left.1 / m_{i}\right)$ where for $\left(m_{1}, \ldots, m_{r}\right)$ there are possibilities as in 4.1.12:
$\widetilde{D}_{4}:(2,2,2,2) ;$
${\widetilde{\tilde{E}_{6}}}_{6}:(3,3,3)$;
$\widetilde{E}_{7}:(2,4,4)$;
$\widetilde{E}_{8}:(2,3,6)$.
Proof. Follows by 6.1.7 and 6.1.9.
Corollary 7.2.7. Notation as in Proposition 7.2.6. Then the index of $K_{\bar{X}}+\bar{F}$ is equal to $1,2,3,4$, or 6 , in cases \widetilde{A}_{n} (and Ell), $\widetilde{D}_{n}(n \geq 4), \widetilde{E}_{6}, \widetilde{E}_{7}$ and \widetilde{E}_{8}, respectively.

Sketch of proof. Applying Zariski's lemma on the minimal resolution we get $\bar{F} \sim_{Q} 0$. Let r be the index of \bar{F}, i.e., the smallest positive integer such that $r \bar{F} \sim 0$. By taking the corresponding cyclic cover (cf. 1.3)

$$
X^{\prime}:=\operatorname{Spec}\left(\bigoplus_{i=0}^{r-1} \mathcal{O}_{\bar{X}}(-i \bar{F})\right) \rightarrow \bar{X}
$$

we obtain an elliptic fibration $f^{\prime}: X^{\prime} \rightarrow Z^{\prime} \ni o^{\prime}$ such that F^{\prime} is linearly trivial and \log canonical. Since \bar{X} is smooth at singular points of \bar{F}, we have that $K_{X^{\prime}}+F^{\prime}$ is dlt (see Theorem 2.1.3 or [$\mathbf{S z}]$). Again by Theorem 2.1.3 X^{\prime} is smooth along F^{\prime} (because F^{\prime} is Cartier). Hence the elliptic fibration $f^{\prime}: X^{\prime} \rightarrow Z^{\prime} \ni o^{\prime}$ must be of type $E l l$ or \widetilde{A}_{k}. By the canonical bundle formula, $K_{X^{\prime}}+F^{\prime} \sim 0$ (see e.g. [BPV, Ch. V, §12]). Therefore, $m\left(K_{\bar{X}}+\bar{F}\right) \sim 0$ for some m. Again let m be the index of $K_{\bar{X}}+\bar{F}$. Now we consider the log canonical cover (see 1.3)

$$
X^{\prime \prime}:=\operatorname{Spec}\left(\bigoplus_{i=0}^{m-1} \mathcal{O}_{\bar{X}}\left(-i K_{\bar{X}}-i \bar{F}\right)\right) \rightarrow \bar{X}
$$

As above, $K_{X^{\prime \prime}}+F^{\prime \prime}$ is dlt and the elliptic fibration $f^{\prime \prime}: X^{\prime \prime} \rightarrow Z^{\prime \prime} \ni o^{\prime \prime}$ is of type Ell or \widetilde{A}_{k}.

If $f^{\prime \prime}$ is of type \widetilde{A}_{k}, then the group $\operatorname{Gal}\left(X^{\prime \prime} / \bar{X}\right)$ acts on $F^{\prime \prime}$ so that the stabilazer of every singular point is trivial. If $m>1$, then the only possibility is $m=2$ and f is of type $\widetilde{D}_{n}, n \geq 5$.

Assume that $f^{\prime \prime}$ is of type Ell. Note that $\operatorname{Gal}\left(X^{\prime \prime} / \bar{X}\right)$ contains no subgroups G acting freely on $F^{\prime \prime}$ (otherwise the quotient $X^{\prime \prime} / G \rightarrow Z^{\prime \prime} / G$ is again of type $E l l$). In particular, $\operatorname{Gal}\left(X^{\prime \prime} / \bar{X}\right) \subset \operatorname{Aut}\left(F^{\prime \prime}\right)$ and this group contains no translations of the elliptic curve $F^{\prime \prime}$. It is well known (see e.g., [Ha]) that, in this situation, the order
of $\operatorname{Gal}\left(X^{\prime \prime} / \bar{X}\right)$ can be $2,3,4$ or 6 . Moreover, it is easy to see that the ramification indices are such as in $\widetilde{D}_{4}, \widetilde{E}_{6}, \widetilde{E}_{7}$, or \widetilde{E}_{8} of 4.1.12.

Corollary 7.2.8. Notation as in Proposition 7.2.6. Assume that \bar{f} is exceptional and not of type Ell. Then \bar{f} is a quotient of a smooth elliptic fibration of type Ell by a cyclic group of order $2,3,4,6$ in cases $\widetilde{D}_{4}, \widetilde{E}_{6}, \widetilde{E}_{7}$, and \widetilde{E}_{8}, respectively.

Corollary 7.2.9. Let $f: X \rightarrow Z \ni$ o be a minimal elliptic fibration. Then there exists a regular complement of K_{X}.

For convenience we recall Kodaira's classification of singular elliptic fibers and give a new proof of it using birational techniques (cf. e.g. [BPV, Ch. V, §7]).

Theorem 7.2.10. Let $f: X \rightarrow Z \ni$ o be a minimal elliptic fibration (X is smooth) and $F=\left(f^{*} o\right)_{\text {red }}$, o $\in Z$ the special fiber. Then there is one of the following possibilities for F (in the graphs all vertices correspond to -2-curves which are components of F):
$I_{b}: \quad$ a smooth elliptic curve $(b=0) ;$

a rational curve with one node $(b=1) ;$
a wheel of smooth rational curves $(b \geq 2) ;$
${ }_{m} I_{b}:$ multiple I_{b};
II: a rational curve with a simple cusp;
III: $F=F_{1}+F_{2}$ is a pair of smooth rational, tangent each other curves;
$I V: F=F_{1}+F_{2}+F_{3}$ is a union of three smooth rational curves passing through one point;
I_{b}^{*} :

$I I^{*}$:

The proof is very similar to that of Theorem 6.1.6.
Proof. We are going to apply Proposition 7.2.6. So we consider a dlt model $\bar{f}: \bar{X} \rightarrow Z \ni o$ and $\widetilde{h}: \widetilde{X} \rightarrow \bar{X}$ the minimal resolution of singularities of \bar{X}. Then we have the following diagram:

where $h: \widetilde{X} \rightarrow X$ is a sequence of contractions of -1 -curves. If $p_{a}(\bar{C})=1$, then $\bar{X}=\widetilde{X}$ and C is a smooth elliptic curve or a wheel of smooth rational curves. Contracting, if necessary, -1-curves we obtain case m_{m}. Further, we assume that $p_{a}(\bar{C})=0$. Then \bar{X} is singular, so $\widetilde{X} \neq \bar{X}$. Consider the crepant pull back

$$
\widetilde{h}^{*}\left(K_{\bar{X}}+\bar{C}\right)=K_{\tilde{X}}+\widetilde{C}+\widetilde{B}
$$

where \widetilde{C} is the proper transform of $\bar{C}, \widetilde{h}_{*} \widetilde{B}=0$, and $\widetilde{B} \geq 0$. Since $K_{\bar{X}}+\bar{C}$, it is easy to see that $|\widetilde{B}|=0$. It is clear also that the set $\operatorname{Supp}(\bar{C}+\widetilde{B})$ coincides with the fiber over o. By construction, Supp \widetilde{B} contains no -1 -curves.

First we consider the case when $\operatorname{Supp} \widetilde{C}$ also contains no -1-curves. Then $X=\widetilde{X}$ is exactly the minimal resolution of \bar{X}. By 7.2 .2 singular points of \bar{X} are Du Val. Cases $\widetilde{D}_{n}(n \geq 5), \widetilde{D}_{4}, \widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$ of Proposition 7.2 .6 gives cases I_{b}^{*} (with $b \geq 1), I_{0}^{*}, I V^{*}, I I I^{*}$, and $I I^{*}$, respectively. For example, if \bar{C} is irreducible and

Figure 7.1
there are exactly three singular points of \bar{X}, then similar to 6.1 the graph of the minimal resolution $\widetilde{h}: \widetilde{X} \rightarrow \bar{X}$ must be as in Fig. 7.1.

By 4.1.12 we have the following possibilities for (m_{1}, m_{2}, m_{3}):

$$
\begin{array}{llll}
\widetilde{E}_{6}: & \left(m_{1}, m_{2}, m_{3}\right)=(3,3,3) & \Longrightarrow & \text { case } I V^{*}, \\
\widetilde{E}_{7}: & \left(m_{1}, m_{2}, m_{3}\right)=(2,4,4) & \Longrightarrow & \text { case } I I I^{*}, \\
\widetilde{E}_{8}: & \left(m_{1}, m_{2}, m_{3}\right)=(2,3,6) & \Longrightarrow & \text { case } I I^{*}
\end{array}
$$

Now, we consider the case when $\operatorname{Supp} \widetilde{C}$ contains a - 1 -curve. Since $\widetilde{h}: \widetilde{X} \rightarrow \bar{X}$ is a minimal resolution, all-1-curves are contained in \widetilde{C}, the proper transform of \bar{C}. Using the negative semidefiniteness for the fiber $\widetilde{F} \subset \widetilde{X}$ over o one can show that the dual graph of \widetilde{F} cannot contain proper subgraphs of the form

Figure 7.2

Suppose that \bar{C} is irreducible. Then $K_{\bar{X}}+\bar{C}$ is plt and \widetilde{C} is the only a -1-curve. Thus in the case \widetilde{D}_{4} we obtain the dual graph for a fiber of $\widetilde{X} \rightarrow Z$ as below

By the above this is impossible. In other cases we have the dual graphs as in Fig. 7.2. For $\left(m_{1}, m_{2}, m_{3}\right)=(3,3,3),(2,4,4)$ and $(2,3,6)$ we obtain cases $I V, I I I$ and $I I$, respectively. Similarly Case $\widetilde{D}_{n}, n \geq 5$ of Proposition 7.2 .6 gives Case I_{b}^{*}.

Non-simply connected fibers are only of type I_{b}, so only they can be multiple. This proves the theorem.

The following table shows correspondence between fibers of minimal smooth elliptic fibrations and their dlt models:

\bar{X}	Ell	$\widetilde{A}_{n}, n \geq 1$	\widetilde{D}_{4}	$\widetilde{D}_{n}, n \geq 5$	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{E}_{8}
$\widetilde{X}=X$							
$\tilde{X} \neq X$	m	$I_{n}, n \geq 2$	I_{0}^{*}	I_{n-4}^{*}	$I V^{*}$	$I I I^{*}$	$I I^{*}$
$\operatorname{compl}(\bar{X}, \bar{F})$	-	m	1	$I_{b}, b \leq n-1$	-	$I_{b}^{*}, b \leq n-5$	$I V$
$I I I$	$I I$						
		2	2	3	4	6	

Theorem 7.2.11 ([Sh3], cf. Theorem 6.0.6). Let $f: X \rightarrow Z \ni$ o be a contraction from a normal surface X onto a smooth curve Z. Let $D=\sum d_{i} D_{i}$ be a boundary on X. Assume that $K_{X}+D$ is lc and $-\left(K_{X}+D\right)$ is f-nef. Then there exists a regular complement of $K_{X}+D$. This complement $K_{X}+D^{+}$can be taken so that $a(E, D)=-1$ implies $a\left(E, D^{+}\right)=-1$ for any divisor E of $\mathcal{K}(X)$. Moreover, if there are no 1 , or 2-complements, then $(X / Z \ni o, D)$ is exceptional.

Proof. By Corollaries 7.0 .10 and 7.2 .9 we may assume that $K_{X}+D \equiv 0$ over Z and a general fiber of f is rational. First, as in the proof of Theorem 6.0.6, we replace the boundary D with $D+\alpha f^{*} o$ so that $K_{X}+D+\alpha f^{*} o$ is maximally lc. Replacing X with its \log terminal modification, we may assume that X is smooth and the reduced part $C:=\lfloor D\rfloor$ of the boundary is nonempty. Next we blow up a sufficiently general point on $C:=\lfloor D\rfloor$. We get a new model such that some component E of $F=f^{-1}(o)$ is -1 -curve and it is not contained in $\operatorname{Supp} D$. Moreover, $E \cap\lfloor D\rfloor$ is a point which is nonsingular for $\operatorname{Supp} D$. Let $C_{1} \subset\lfloor D\rfloor$ be a (unique) component passing through $E \cap \operatorname{Supp} D$. Then the curve $\operatorname{Supp} F \backslash E$ can be contracted to a point, say Q :

$$
f: X \xrightarrow{g} Y \rightarrow Z .
$$

The central fiber $g(E)$ of $Y \rightarrow Z$ is irreducible. Since $K_{X}+D \equiv 0 / Y$, the point $Q \in Y$ is lc. Apply Theorem 6.0.6 to the birational contraction $g: X \rightarrow Y$. We get a regular n-complement $K_{X}+D^{+}$in a neighborhood of $g^{-1}(Q)=\operatorname{Supp}(F-E)$. We claim that this complement extends to a complement in a neighborhood of the whole fiber F. We need to check only that $n D^{+} \sim-n K_{X}$ in a neighborhood of F. But in our situation the numerical equivalence over Z coincides with linear one. Therefore the last is equivalent to $D^{+} \equiv-K_{X}$. Obviously, both sides have the same intersection numbers with all components of F different from E. For E we have $1=-K_{X} \cdot E, E \cdot D^{+}=E \cdot C_{1}=1$ (because the coefficients of C_{1} in D and D^{+}are equal to 1). This proves the theorem.

