
CHAPTER 5

${\rm Log}$ del Pezzo surfaces

In the present chapter we discuss some properties of $\log$ del Pezzo surfaces.

5.1. Definitions and examples

DEFINITION 5.1.1. A projective $\log$ surface $(X, D)$ is called
$\bullet$ a $logdel$ Pezzo surface if $K_{X}+D$ is lc and $-(K_{X}+D)$ is nef and big;
$\bullet$ a $logEnr^{t}iques$ surface if $K_{X}+D$ is lc and $K_{X}+D\equiv 0$ .

Higher dimensional analogs of these are called $log$ Fano and $log$ Calabi-Yau vari-
eties, respectively. Usually we omit $D$ if $D=0$ .

If (X, $D$ ) is a $\log$ del Pezzo, then by Proposition 11.1.1 there exists some $\mathbb{Q}-$

complement $K_{X}+D^{+}$ of $K_{X}+D$ . The pair $(X, D^{+})$ is a $\log$ Enriques surface.
Examples of $\log$ del Pezzo surfaces are the classical ones, weighted projective

planes $\mathbb{P}(a_{1}, a_{2}, a_{3})$ with boundary $D=\sum d_{i}D_{i}$ , where $D_{i}$ $:=\{x_{i}=0\}$ and $\sum d_{i}<$

$3$ , Hirzebruch surfaces $F_{n}$ with boundary $\alpha\Sigma_{0}$ , where $\Sigma_{0}$ is the negative section
and $(n-2)/n\leq\alpha\leq 1$ .

Let $f:(X^{\prime}, D^{\prime})\rightarrow(X, D)$ be a birational $\log$ crepant morphism; that is,

$K_{X^{\prime}}+D^{\prime}=f^{*}(K_{X}+D)$ , with $f_{*}D^{\prime}=D$ .
Then (X, $D$ ) is a $\log$ del Pezzo if and only if so is (X’, $D^{\prime}$ ) (see 1.1.5). Conversely,
if $f:X^{\prime}\rightarrow X$ is a birational morphism and (X’, $D^{\prime}$ ) is a $\log$ del Pezzo then so is
(X, $f_{*}D^{\prime}$ ). Many examples can also be obtained by taking finite quotients; see 1.2.

EXAMPLE 5.1.2. Let $G\subset PGL_{2}(\mathbb{C})$ be a finite subgroup, $X$ $:=\mathbb{P}^{2}/G$ and
$f:\mathbb{P}^{2}\rightarrow X$ the natural projection. As in 1.2, we define a boundary $D$ on $X$ by
the condition $K_{\mathbb{P}^{2}}=f^{*}(K_{X}+D)$ , where $D=\sum(1-1/r_{i})D_{i}$ , all the $D_{i}$ are
images of lines on $\mathbb{P}^{2}$ , and $r_{i}$ is the ramification index over $D_{i}$ . For example, if
$G$ is the symmetric group $\mathfrak{S}_{3}$ , acting on $\mathbb{P}^{2}$ by permutations of coordinates, $X$

is the weighted projective plane $\mathbb{P}(1,2,3)=Proj\mathbb{C}[\sigma_{1}, \sigma_{2}, \sigma_{3}]$ , where the $\sigma_{i}$ are
the symmetric functions on coordinates on $\mathbb{P}^{2}$ . The divisor $D$ has exactly one
component $D_{1}$ with coefficient 1/2, where $D_{1}$ is determined by the equation

$\sigma_{1}^{2}\sigma_{2}^{2}-4\sigma_{2}^{3}-4\sigma_{1}^{3}\sigma_{3}-27\sigma_{3}^{2}+18\sigma_{1}\sigma_{2}\sigma_{3}=0$

(the equation of the discriminant). The surface $X$ has exactly two singular points
which are Du Val of types $A_{1}$ and $A_{2}$ . Therefore $X$ is a Gorenstein del Pezzo

40



5.2. BOUNDEDNESS OF LOG DEL PEZZOS 41

surface of degree $K_{X}^{2}=6$ . The curve $D_{1}$ is contained in the smooth locus and has
a unique singularity at (1, 1/3, 1/27), which is a cusp.

LEMMA 5.1.3. Let (X, $D$ ) be a $logdel$ Pezzo surface. Assume additionally ei-
ther $K_{X}+D$ is $klt$ or $K_{X}+D$ is $dltand-(K_{X}+D)$ is ample. Then

(i) Pic(X) is a finitely generated free abelian group;
(ii) the numerical equivalence in Pic(X) coincides with linear one;
(iii) group of classes of Weil divisors $Wei1_{1in}(X)$ is finitely generated.

Recall that two-dimensional $\log$ terminal singularities are automatically $\mathbb{Q}-$

factorial.

SKETCH OF PROOF. From the exponential sequence and Kawamata-Viehweg
vanishing we have Pic(X) $\simeq H^{2}(X, \mathbb{Z})$ . Assume that $D\in Pic(X)$ is n-torsion.
Then again Kawamata-Viehweg vanishing and by Riemann-Roch, $|D|\neq\emptyset$ . There-
fore $D\sim 0$ . (iii) follows by [$K$ , Lemma 1.1]. $\square $

5.2. Boundedness of $\log$ del Pezzos

It is well known that the degree $K_{X}^{2}$ of classical del Pezzo surfaces is bounded
by 9. This however is not true for $\log$ del Pezzo surfaces. Indeed, we can take
$(F_{n}, (1-2/n)\Sigma_{0})$ , where $F_{n}$ is the Hirzebruch surface and $\Sigma_{0}$ is the negative section.
Then $-(K+(1-2/n)\Sigma_{0})$ is nef and big. It is easy to compute that

$(K+(1-2/n)\Sigma_{0})^{2}=n+4+4/n$ ,

so it is unbounded. However, results of Alexeev and Nikulin (see [A]) show that
the degree $(K_{X}+D)^{2}$ of $\log$ del Pezzo surfaces is bounded by a constant Const $(\epsilon)$

if $K_{X}+D$ is $\epsilon- 1t$ . More precisely we have

THEOREM 5.2.1 ([A], see also $[KeM$ , Sect. 9]). Fix $\epsilon$ $>$ $0$ . Let (X, $D$ $=$

$\sum d_{i}D_{i})$ be a projective $log$ surface such that $-(K_{X}+D)$ is $nef,$ $K_{X}+D$ is $\epsilon-$

$lt$ and $ d_{i}<1-\epsilon$ . Then the class {X} is bounded in the algebraic moduli sense
except for the case when $D=0$ and $K_{X}\sim 0$ .

In the case when $D=0$ and $-K_{X}$ is ample we have more effective Nikulin’s
results.

THEOREM 5.2.2 ([N2]). Let $X$ be a projective surface with only $klt$ singularities
such $that-K_{X}$ is ample and $X^{\min}\rightarrow X$ a minimal resolution. Then

$\rho(X^{\min})<\left\{\begin{array}{ll}3141 & if e=2,\\5317 & if e=3,\\17735 & if e=4,\\\frac{192e(e-3)(6e-27)}{\epsilon(e)}+1536e^{2}(e-3)+1820e+69 & if e\geq 5,\end{array}\right.$

where $e$ is the maximal multiplicity of the singularities of $X$ and $\epsilon(e)$ is some
function of $e$ .
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Nikulin [N1] obtained also a better bound (linear in e)

$\rho(X^{\min})\leq 352e+1284$

in the case when all the discrepancies of $X$ satisfy the inequalities

$a(E, 0)\leq-1/2$ or $a(E, 0)\geq 0$ .
Proofs of theorems 5.2.1, 5.2.2 use weighted graph technique and Nikulin’s dia-
gram method. In the case $\rho(X)=1$ Theorem 5.2.2 was proved also in $[KeM$ ,
Sect. 9] by using nonnegativity of $\hat{c}_{2}(\hat{\Omega}_{X}^{1}(\log D))$ and Bogomolov type inequality
$\hat{c}_{1}^{2}(\hat{\Omega}_{X}^{1}(\log D))\leq 3\hat{c}_{2}(\hat{\Omega}_{X}^{1}(\log D))$ (see also [Ut, Ch. 10] and [K1]). As an easy
consequence of this theory we have the following

THEOREM 5.2.3 $([KeM, 9.2])$ . Let (X, $C$ ) be a $log$ surface with $\rho(X)=1$ such
that $K_{X}+C$ is $lc,$ $K_{X}$ is $klt$ and $C=\sum C_{i}$ is reduced. Then

$\sum_{P\in(X\backslash C)}\frac{m_{P}-1}{m_{P}}\leq\chi_{top}(X)-\chi_{top}(C)$

where $m_{P}$ is the order of the local fundamental group $\pi_{1}(U_{P}\backslash \{P\})(U_{P}$ is a suffi-
ciently small neighborhood of $P$). If $X$ is rational and $p_{a}(C)=0$ , then

(5.1) $\sum_{P\in(X\backslash C)}\frac{m_{P}-1}{m_{P}}\left\{\begin{array}{ll}\leq 3 & if C=0\\\leq 1 if & \#\{C_{i}\}=1\\=0 if & \#\{C_{i}\}=2.\end{array}\right.$

Using this fact one can easily show the following:

COROLLARY 5.2.4. Let $X$ be a $logdel$ Pezzo surface with $\rho(X)=1$ such that
$K_{X}$ is $klt$ . Then the number of singular points of $X$ is at most 5.

PROOF. By Theorem 5.2.3 the number of singular points is $\leq 6$ . Assume that
$X$ has exactly six singular points $P_{1},$

$\ldots,$
$P_{6}$ . Then by inequality (5.1) we have

$m_{P_{1}}=\cdots=m_{P_{6}}=2$ . This means that $P_{1},$
$\ldots,$

$P_{6}$ are ordinary double points. In
particular, $K_{X}$ is Cartier. Applying Noether’s formula to the minimal resolution $\tilde{X}$

of $X$ , we obtain $K_{X}^{2}=K_{\overline{X}}^{2}=10-\rho(\tilde{X})=10-1-6=3$ . Let $\tilde{L}\subset\tilde{X}$ be $a-1$-curve
and $L\subset X$ its image. Then $-K_{X}\cdot L=-K_{\overline{X}}\cdot\tilde{L}=1$ . Since $\rho(X)=1$ , we have
$L\equiv-\frac{1}{3}K_{X}$ , so $L^{2}=\frac{1}{3}$ On the other hand, $2L$ is Cartier, a contradiction. $\square $

5.3. On the existence of regular complements

PROPOSITION 5.3.1 (Inductive Theorem, Weak Form [Sh3]). Let (X, $D$ ) be a
$logdel$ Pezzo surface. If $K_{X}+D$ is not $klt$, then there exists a regular complement
of $K_{X}+D$ ($i.e$ . n-complement with $n\in \mathfrak{R}_{2}$ ). Moreover, if $K_{X}+D$ is not 1
or 2-complementary, then there is at most one divisor of $9C(X)$ with discrepancy
$a(\cdot, D)=-1$ .

In $[KeM]$ such a $\log$ divisor $K_{X}+D$ was called a tiger. This is a sort of
antithesis to Reid’s general elephant (see 4.1.1).
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PROOF. Replacing (X, $D$ ) with a $\log$ terminal modification, we may assume
that $K_{X}+D$ is dlt. Then $\lfloor D\rfloor\neq 0$ . In this situation we can apply Proposition 4.4.3
and 4.1.10. The last statement follows by Connectedness Lemma. $\square $

COROLLARY 5.3.2. Let (X, $D$ ) be a $logdel$ Pezzo surface with $D\in\Phi_{m}$ . Write,
as usual, $D=C+B$ , where $C$ $:=\lfloor D\rfloor,$ $B$ $:=\{D\}$ . Assume that $|-nK_{X}-nC-$
$\lfloor(n+1)B\rfloor|\neq\emptyset$ for some $n\in R_{2}$ . Then $K_{X}+D$ has a regular complement.

Note that the inverse implication follows by (4.1).

DEFINITION 5.3.3 ([Ut, 18.2]). A $\log$ divisor $K_{X}+D+\sum b_{i}B_{i}$ is said to be
maximally $log$ canonical if $K_{X}+D+\sum b_{i}^{\prime}B_{i}$ is not lc, where $b_{i}^{\prime}\geq b_{i}$ with in-
equality holding for at least one index $i$ . Note that this definition depends on the
decomposition $D+\sum b_{i}B_{i}$ , not only on the sum $D+\sum b_{i}B_{i}$ .

PROOF. If $K_{X}+D$ is not klt, the assertion follows by Proposition 5.3.1. Thus
we may assume that $K_{X}+D$ is klt (in particular, $C=0$). Let

$\overline{D}\in|-nK_{X}-\lfloor(n+1)B\rfloor|$

As in (4.1) and (4.2) put

$D^{\prime}$ $:=\frac{1}{n}(\lfloor(n+1)B\rfloor+\overline{D})$ .

Note that $D^{\prime}\geq D$ (because $D\in\Phi_{m}$ , see 4.2.8). If $K_{X}+D^{\prime}$ is lc, then this is a
regular complement. Assume that $K_{X}+D^{\prime}$ is not lc. Take $\alpha$ so that $K_{X}+D+$
$\alpha(D^{\prime}-D)$ is maximally lc. It is clear that $0<\alpha<1and-(K_{X}+D+\alpha(D-D))$
is nef and big. Now we can apply Proposition 5.3.1 to $K_{X}+D+\alpha(D^{\prime}-D)$ to get
the desired regular complement. $\square $

COROLLARY 5.3.4 ([Sh3], cf. Corollary 8.4.3). Let (X, $D$ ) be a $logdel$ Pezzo
surface. If $(K_{X}+D)^{2}>4$ , then it is nonexceptional. In this case, there exists a
regular complement of $K_{X}+D$ . Moreover, there exists such a complement which
is not $klt$ .

PROOF. Riemann-Roch gives that $\dim|-n(K_{X}+D)|$ is sufficiently large,
where $n$ is divisible enough and $n\gg 0$ . Then standard arguments show that
$K_{X}+D+\alpha H$ is not klt for some $H\in|-n(K_{X}+D)|$ and $\alpha<1/n$ (see e.g. [Ko2,
Lemma 6.1] or the proof of Corollary 8.4.3). $\square $

COROLLARY 5.3.5. Let $X$ be a $logdel$ Pezzo surface. Assume that $K_{X}^{2}>4$ .
Then $|-nK_{X}|\neq\emptyset$ for some $n\in R_{2}$ .

EXERCISE 5.3.6. Let $G\subset PGL_{2}(\mathbb{C})$ be a finite subgroup. Then $G$ acts natu-
rally on $\mathbb{P}^{1}\times \mathbb{P}^{1}$ so that the action is free in codimension one. Prove that the quotient
$X$ $:=(\mathbb{P}^{1}\times \mathbb{P}^{1})/G$ is a $\log$ del Pezzo and $K_{X}$ is 1, 2, 3, 4, or 6-complementary.
Hint. Apply Proposition 5.3.1 to $ K_{X}+\Delta$ , where $\Delta$ is the image of the diagonal.
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5.3.7. ${\rm Log}$ del Pezzo surfaces can be classified in terms of complements. A
$\log$ del Pezzo (or $\log$ Enriques) surface (X, $D$ ) is said to be regular if $K_{X}+D$ is
r-complementary for some $r\in \mathfrak{R}_{2}$ . Shokurov [Sh3] proposed the following rough
classification of them.

Let (X, $D$ ) be a $\log$ surface having a regular r-complement $K_{X}+G$ (i.e., with
$r\in R_{2})$ . Let $A(X, G)$ be the set of divisors with discrepancy $a(\cdot, G)=-1$ .

We say that $K_{X}+G$ is of type
$A_{m}^{n}$ : if $r=1$ and $A(X, G)$ is infinite;
$E1_{m}^{n}$ : if $r=1$ and $A(X, G)$ is finite;
$D_{m}^{n}$ : if $r=2$ and $A(X, G)$ is infinite;
$E2_{m}^{n}$ : if $r=2$ and $A(X, G)$ is finite;
$E3_{m}^{n},$ $E4_{m}^{n},$ $E6_{m}^{n}$ : if $r=3,4,6$ , respectively,

where $n$ is the number of components of $\lfloor G\rfloor$ and $m$ is the number of exceptional
divisors with $a(\cdot, G)=-1$ on a minimal $\log$ terminal modification. Thus $n+m=0$
if and only if $K_{X}+G$ is klt. In cases $E1- 6_{m}^{n}$ we always have $n+m\leq 2$ . Moreover,
$n+m=2$ only in the dipole case. For example, a weighted projective plane
$\mathbb{P}(a, b, c)$ has a natural structure of toric l-complement of type $A_{m}^{3}$ . More general,
any toric surface has a complement of type $A_{m}^{n}$ . Note that this division into cases
gives is very rough classification, more delicate invariant of a nonexceptional $\log$

variety is the simplicial topological space introduced in [Sh3, Sect. 7], see also [I].
EXERCISE 5.3.8 ([Sh3], cf. 2.2.18). Let (X, $D$ ) be a $\log$ del Pezzo surface such

that $K_{X}+D$ is dlt and $-(K_{X}+D)$ is ample. Prove that $\lfloor D\rfloor$ has at most two
components. Moreover, if $\lfloor D\rfloor$ has exactly two components, then $K_{X}+D$ is 1 or
2-complementary. If $K_{X}+D$ is l-complementary, then (X, $\lfloor D^{+}\rfloor$ ) is a toric pair
(see 2.2.18). Hint. Use Adjunction and 4.4.3.

5.4. Nonrational $\log$ del Pezzo surfaces

Of course we cannot expect to get a reasonable classification of all log del Pez-
zos. Below we describe nonrational ones. Results of Ch. 9.3 shows that exceptional
$\log$ del Pezzos (see 4.5.1) at least in principle can be classified. By Kawamata-
Viehweg vanishing we have

LEMMA 5.4.1. Let (X, $D$ ) be a $logdel$ Pezzo surface. Assume that $K_{X}+D$ is
$dlt$ . Then $X$ is rational if and only if $H^{1}(X, \mathcal{O}_{X})=0$ . Moreover, $X$ is rational if
either $K_{X}+D$ is $kltor-(K_{X}+D)$ is ample.

PROPOSITION 5.4.2. Let (X, $D$ ) be a $logdel$ Pezzo surface such that $K_{X}+D$

is $dlt$ . Put $ C:=\lfloor D\rfloor$ and $B:=\{D\}$ . Assume that $X$ is nonrational. Then
(i) $\rho(X)\geq 2$ ;
(ii) if $\rho(X)=2$ , then $X$ is smooth, $X\simeq \mathbb{P}(\mathcal{E})$ , where $\mathcal{E}$ is a rank two vector

bundle on an elliptic curve, all components of $D$ are horizontal and $C=\Sigma_{0}$

is the negative section, which does not intersect other components of $D$ ;
(iii) if $\rho(X)\geq 3$ , then there exists a contraction with rational fibers $g:X\rightarrow X^{\prime}$

onto a $logdel$ Pezzo (X’, $D^{\prime}=C^{\prime}+B’$ ) with $\rho(X^{\prime})=2$ . Moreover, $C^{\prime}$ is a
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smooth elliptic curve contained in the smooth locus of $X$ (and then it is a
section of the composition map $f:X\rightarrow X^{\prime}\rightarrow Z$ and it does not intersects
other components of $D$);

(iv) $H^{1}(X, \mathcal{O}_{X})\simeq \mathbb{C}$ .

PROOF. First note that $C\neq 0$ , because $K_{X}+D$ is not klt and $C$ is connected
by 2.3.1.

The assertion (i) follows by Lemma 5.4.1.
To prove (ii) we note that there exists an extremal $(K_{X}+D)$-negative contrac-

tion $f:X\rightarrow Z$ . By (i), $f$ is not birational. Hence $Z$ is a curve of genus $g(Z)\geq 1$

and fibers of $f$ are irreducible. If $C$ is contained in fibers of $f,$ $then-(K_{X}+D-\epsilon C)$

is nef and big. By Lemma 5.4.1, $X$ is rational in this case. So we assume that
there is a component $C^{\prime}\subset C$ such that $f(C^{\prime})=Z$ . Thus $p_{a}(C^{\prime})\geq 1$ . Let $F$ be a
general fiber. Then $C’\cdot F\leq D\cdot F<2$ . It follows that $C^{\prime}\cdot F=1$ . Further,

$0\leq 2p_{a}(C^{\prime})-2+\deg Diff_{C^{\prime}}(0)=(K_{X}+C^{\prime})$ . C’
$\leq(K_{X}+D)\cdot C’\leq 0$ .

From this we have that $C^{\prime}$ is smooth elliptic curve, $g(Z)=1,$ $C^{\prime}$ is contained in
the smooth part of $X$ and does not intersect other components of $D$ . In particular,
$C’=C$ . Since $C$ is the section, $f:X\rightarrow Z$ has no multiple fibers. Therefore $X$ is
smooth and $X\simeq \mathbb{P}(\mathcal{E})$ , where $\mathcal{E}$ is a rank two vector bundle on $Z$ . From $K_{X}^{2}=0$

and $(K_{X}+C)^{2}>0$ we have $C^{2}<0$ .
As for (iii), run $(K_{X}+D)$ -MMP $g:X\rightarrow X^{\prime}$ . At the end we obtain (X’, $D^{\prime}$ )

with an extremal contraction $X^{\prime}\rightarrow Z$ as in (ii). By Lemma 5.4.1 C’ $:=g(C)\neq 0$

cannot be contracted to a point on $X^{\prime}$ . As in (ii), by Adjunction we have
$0\geq(K_{X}+D)\cdot C\geq(K_{X}+C)\cdot C=2p_{a}(C)-2+\deg Diff_{C}(0)\geq 0$ .

This yields $p_{a}(C)=p_{a}(Z)=1$ and $Diff_{C}(0)=0$ . Hence $C$ is a smooth elliptic
curve, $X$ is smooth along $C$ and $C$ does not intersect other components of $D$ .

Finally, (iv) follows by (iii) because $R^{1}f_{*}\mathcal{O}_{X}=0$ . $\square $

COROLLARY 5.4.3. Let (X, $D$ ) be a $logdel$ Pezzo surface. Then $X$ is rational
or is birationally isomorphic to a ruled surface over an elliptic curve.

COROLLARY 5.4.4. Let (X, $D=C+B$ ) be a $logdel$ Pezzo surface. Assume
that $X$ is nonrational. If $\rho(X)=1$ , then $X$ is a generalized cone over an elliptic
curve (the contraction of the negative section on $\mathbb{P}(\mathcal{E})$ ; see Proposition 5.4.2).

EXERCISE 5.4.5. Let (X, $D$ ) be alog del Pezzo surface. Assume that $X$ is non-
rational. Prove that $K_{X}+D$ is l-complementary. Hint. Apply Proposition 4.4.3.


