
CHAPTER 4

Definition of complements and elementary
properties

4.1. Introduction

The following conjecture is called Reid’s general elephant conjecture

CONJECTURE 4.1.1. Let $f:X\rightarrow Z\ni 0$ be a $K_{X}$ -negative contraction from
a threefold with only $te$rminal singularzties. Then near the fiber over $0$ the linear
$system-K_{X}$ contains a divisor having only $DuVal$ singulamties.

At the moment it is known that this conjecture is true (only in analytic situa-
tion) in the following cases:

$\bullet$ $X=Z\ni 0$ is an isolated singularity [RY], moreover, this is equivalent to
the classification of three-dimensional terminal singularities;

$\bullet$ $f:X\rightarrow Z$ is an extremal flipping or divisorial small contraction [Mo],
$[KoM]$ , this is a sufficient condition for the existence of flips [K].

Some particular results are known in the case when $f:X\rightarrow Z$ is an extremal
contraction to a surface [P]. This case is interesting for applications to rationality
problem of conic bundles.

However, at the moment it is not so clear how one can prove Reid’s conjec-
ture in the algebraic situation. Moreover, it fails for the case $Z=$ pt (there are
examples of $\mathbb{Q}$-Fano threefolds with empty $|-K_{X}|$ ). Shokurov proposed the notion
of complements, which is weaker then “general elephant” but much more easier to
work with.

DEFINITION 4.1.2. Let (X, $D$ ) be a $\log$ pair, where $D$ is a subboundary. Then
a $\mathbb{Q}$ -complement of $K_{X}+D$ is a $\log$ divisor $K_{X}+D^{\prime}$ such that $D^{\prime}\geq D,$ $K_{X}+D^{\prime}$

is lc and $n(K_{X}+D)\sim 0$ for some $n\in N$ .

DEFINITION 4.1.3 ([Sh2]). Let $X$ be a normal variety and $D=S+B$ a sub-
boundary on $X$ , such that $B$ and $S$ have no common components, $S$ is an effective
integral divisor and $\lfloor B\rfloor\leq 0$ . Then we say that $K_{X}+D$ is n-complementary, if
there is a $\mathbb{Q}$-divisor $D^{+}$ such that

(i) $n(K_{X}+D^{+})\sim 0$ (in particular, $nD^{+}$ is integral divisor);
(ii) $K_{X}+D^{+}$ is lc;
(iii) $ nD^{+}\geq nS+\lfloor(n+1)B\rfloor$ .
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In this situation the n-complement of $K_{X}+D$ is $K_{X}+D^{+}$ . If moreover $K_{X}+D^{+}$

is plt, then we say that $K_{X}+D$ is strongly n-complementary.

Note that an n-complement is not necessarily a $\mathbb{Q}$-complement because of con-
dition (iii). We need this condition for technical reasons (see 4.4.1). If $B=0$ , then
(iii) holds automatically. In applications this is the most interesting case. We give
also a generalization of this definition for the case of nodal curves.

DEFINITION 4.1.4. Let $X$ be a reduced (not necessarily irreducible) curve.
Then $X$ is said to be nodal if all its singularities are normal crossing points. A
subboundary $D=\sum d_{i}D_{i}$ on a nodal curve is said to be semilog canonical $(slc)$ if
$SuppD\cap SingX=\emptyset$ and $d_{i}\leq 1$ for all $i$ .

Let $X$ be a nodal curve and $D=S+B$ a subboundary on $X$ , such that $B$

and $S$ have no common components, $S$ is an effective integral divisor and $\lfloor B\rfloor\leq 0$ .
Assume that $SuppD\cap SingX=\emptyset$ . Then an n-semicomplement of $K_{X}+D$ is a
$\log$ divisor $K_{X}+D^{+}$ such that conditions (i), (iii) of 4.1.3 and the following (ii’)
below holds.

(ii’) $K_{X}+D^{+}$ is slc.

The last definition can be generalized to the higher dimensional case (see [Ut]).

REMARK 4.1.5. Assume that on a variety $X$ the canonical divisor $K_{X}$ is
strongly l-complementary. Let $K_{X}+B$ be this complement. Then $B$ is an integral
divisor, $B\in|-K_{X}|$ and $K_{X}+B$ is plt (and even canonical because $K_{X}+B\sim 0$).
By 2.2.4, $Diff_{B}(0)=0$ and by Inversion of Adjunction, $K_{B}$ is klt. Since $K_{B}\sim 0$ ,
$B$ has only canonical Gorenstein singularities. This shows that $K_{X}$ is strongly
l-complementary if and only if Reid’s general elephant conjecture holds for $X/Z$ .

The following conjecture seems to be more realistic than Conjecture 4.1.1:

CONJECTURE 4.1.6. Let $f:X\rightarrow Z\ni 0$ be a contmction from a threefold with
only terminal singularities such $that-K_{X}$ is f-nef and f-big. Then near the fiber
over $0$ the canonical divisor $K_{X}$ is 1, 2, 3, 4, or 6-complementary.

Note that the condition that $K_{X}+D$ is n-complementary implies the existence
of an integral effective divisor

(4.1) $\overline{D}\in|-nK_{X}-nS-\lfloor(n+1)B\rfloor|$

related to $D^{+}$ by the equality

(4.2) $D^{+}$ $:=S+\frac{1}{n}(\lfloor(n+1)B\rfloor+\overline{D})$ .

It is also easy to see that if $D$ is a boundary, then so is $D^{+}$ . As an immediate
consequence of the definition we have

PROPOSITION 4.1.7. Let $X$ be a normal variety.
(i) Fix $n\in N$ . Let $D=\sum d_{i}D_{i}$ and $D=\sum d_{i}^{\prime}D_{i}$ be subboundaries on $X$ such

that the following conditions hold
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a) $ d_{i}^{\prime}\geq d_{i}-\epsilon$ for $0<\epsilon\ll 1$ ;
b) $d_{i}^{\prime}\geq d_{i}$ whenever $(n+1)d_{i}$ is an integer $\leq n$ .

Assume that $K_{X}+D^{\prime}$ is n-complementary. Then $K_{X}+D$ is n-
complementary.

(ii) Fix $ n\in$ N. Let $D=\sum d_{i}D_{\iota}$ be a subboundary. Assume that $K_{X}+D$ is

$aryD=\sum^{n- complementary}d_{i}^{\prime}D_{i}suchthatThenK_{X}|d_{i}^{\prime}-d_{i}|<\frac{mp_{1}l}{(n+1)q},\forall i,whereq_{i}\geq 1isthe+D^{\prime}isn- coementaryforanysubbound$

denominator of $d_{i}$ .

SKETCH OF PROOF. We show, for example, (i). Let $D^{+}=\sum d_{i}^{+}D_{i}$ be an
n-complement of $K_{X}+D^{\prime}$ . Put $D^{+}$ $:=D^{\prime+}$ . It is sufficient to verify (iii) of 4.1.3,
i.e.

(4.3) $d_{i^{+}}^{\prime}\geq\left\{\begin{array}{ll}\frac{1}{n}\lfloor(n+1)d_{i}\rfloor & if d_{i}<1\\1 & otherwise.\end{array}\right.$

On the other hand, we have

$d_{i^{+}}^{\prime}\geq\left\{\begin{array}{ll}\frac{1}{n}\lfloor(n+1)d_{i}^{\prime}\rfloor & if d_{i}<1\\1 & otherwise.\end{array}\right.$

If $n+1$ is a denominator of $d_{i}$ , then $d_{i}\leq d_{i}^{\prime}$ and (4.3) is obvious. If $n+1$ is not a
denominator of $d_{i}$ , then $ d_{i}^{\prime}\geq d_{i}-\epsilon$ . Hence $\lfloor(n+1)d_{i}\rfloor=\lfloor(n+1)d_{i}^{\prime}\rfloor$ for small pos-
itive $\epsilon$ . Again we obtain (4.3). Finally, if $d_{i}=1$ , then $d_{i^{+}}^{\prime}\geq\frac{1}{n}\lfloor(n+1)(1-\epsilon)\rfloor=1$

for $\epsilon<1/(n+1)$ . $\square $

COROLLARY 4.1.8. Let $X$ be a normal variety and $D=\sum d_{i}D_{i}$ a subboundary
on X. Fix $ n\in$ N. Let $D^{\prime}=\sum d_{i}^{\prime}D_{i}$ , where $d_{i}^{\prime}\geq\min\{d_{i}, \frac{n}{n+1}\}$ . Assume that
$K_{X}+D^{\prime}$ is n-complementary. Then so is $K_{X}+D$ .

EXAMPLE 4.1.9. (i) Let $X$ be a toric variety and $S=\sum S_{i}$ be the toric
boundary. Then $K_{X}+S\sim 0$ and $K_{X}+S$ is lc. Hence $K_{X}+S$ is 1-
complementary.

(ii) Let (X $\ni P$) be an analytic germ of a three-dimensional terminal sin-
gularity. Then $K_{X}$ is strongly l-complementary (see 2.2.12). Con-
versely, if there is a strong nontrivial l-complement near an isolated three-
dimensional $\mathbb{Q}$-Gorenstein singularity (X $\ni P$), then (X $\ni P$) is termi-
nal. A three-dimensional Gorenstein canonical singularity is (nontrivially)
l-complementary if and only if it is $cDV$ (see 2.2.14).

(iii) Consider the cyclic quotient singularity $X$ $:=\mathbb{C}^{3}/\mathbb{Z}_{9}(1,4,7)$ . By 1.2.4 it is
canonical. Since $X$ is not terminal, $K_{X}$ is not strongly l-complementary.
However, $K_{X}$ is strongly 2-complementary. Indeed, $(x^{2}y+y^{2}z+z^{2}x)(dx\wedge$

$dy\wedge dz)^{-2}$ is an invariant form. Hence this gives us a member of $|-2K_{X}|$ . It
is easy to check that $x^{2}y+y^{2}z+z^{2}x=0$ defines a $\log$ canonical singularity
$F\subset \mathbb{C}^{3}$ . Let $F^{\prime}$

$:=F/\mathbb{Z}_{9}\subset X$ . By Corollary 1.2.2 $K_{X}+\frac{1}{2}F^{\prime}$ is klt. Note
that $K_{X}$ is l-complementary in this case (see $(i)$ ).
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(iv) According to [MMM] there are four-dimensional terminal cyclic quotient
singularities which have no strong 1 or 2-complements. However, it is ex-
pected that there are only a finite number of such exceptions. For example,
the singularity $\mathbb{C}^{4}/\mathbb{Z}_{83}(3,14,23,44)$ has no strong 1 or 2-complements. As
above, the invariant $(dx\wedge dy\wedge dz)^{-3}$ gives us a strong 3-complement.

(v) Let $f:X\rightarrow Z\ni o$ be an analytic germ of a three-dimensional flipping
extremal contraction. Then $K_{X}$ is strongly l-complementary [Mo], $[KoM]$ .

(vi) Let $X$ be a Fano threefold with Gorenstein canonical singularities. Then
$K_{X}$ is strongly l-complementary [Sh], [R].

(vii) Let $X$ be a variety with $\log$ canonical singularities and numerically trivial
canonical divisor $K_{X}$ . Then $K_{X}$ is n-complementary if and only if there
exists $n$ such that $nK_{X}\sim 0$ . For example, in the case of a smooth sur-
face of Kodaira dimension $0$ the canonical divisor is either 1, 2, 3, 4 or
6-complementary (see e.g. [BPV]).

(viii) Let $g:X\rightarrow \mathbb{P}^{1}$ be a relatively minimal elliptic fibration, where $X$ is
a smooth surface of Kodaira dimension $\kappa(X)$ $\leq$ $0$ . Then $X$ is n-
complementary for some $n\in\{1,2,3,4,6\}$ . Indeed, we have the canonical
bundle formula (see e.g. [BPV, Ch. V, \S 12])

$K_{X}\sim(\chi(\mathcal{O}_{X})-2)L+\sum_{i=1}^{s}(r_{i}-1)E_{i}$ ,

where $E_{i}$ are multiple fibers of multiplicities $r_{i}$ and $L$ is a general fiber.
Consider, for example, case $\kappa(X)=-\infty$ . Then $X$ is a ruled surface over an
elliptic curve. Let $F$ be a general fiber of the rulling and denote $\delta$ $:=L\cdot F$ .
Clearly, $K_{X}\cdot F=-2$ and $E_{i}\cdot F=\delta/r_{i}$ . This gives us

$-2=-2\delta+\sum_{i=1}^{s}(r_{i}-1)\delta/r_{i}$ , $2-2/\delta=\sum_{i=1}^{s}(1-1/r_{i})$ .

It is easy to see that $2\leq s\leq 3$ and $K_{X}\sim(s-1)L+\sum E_{i}$ . There are only
the following possibilities:

This shows that $n\in\{1,2,3,4,6\}$ .
Further, in the two-dimensional case 1, 2, 3, 4 and 6-complement we call regular

and define
$R_{2}$ $:=\{1,2,3,4,6\}$ .

In the higher-dimensional case we should replace the set $\mathfrak{R}_{2}$ with bigger one $\mathfrak{R}_{n}$

(see [PSh]).
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A very important question is:
when does some n-complement of $K_{X}+D$ exist?

Obviously, these exist for some $n\gg 0$ when $-(K_{X}+D)$ is ample (or even
semiample) [Sh2, 5.5]. By Base Point Free Theorem (see [KMM, 3-12]), n-
complements exist for some $n\gg 0$ if $K_{X}+D$ is klt and $-(K_{X}+D)$ is nef and
big. It is expected also that we can remove klt condition on lc and $D\in\Phi_{m}$ (see
Proposition 11.1.1).

In general, only the nef condition is not sufficient for the existence of comple-
ments (see Example 8.1.1).

THEOREM 4.1.10 (see [Sh2, 5.2], [Ut, 19.4]). Let $X$ be a nodal connected (but
not necessarely compact) curve. Let $D$ be a boundary on $X$ contained in the smooth
and compact part of X. Assume that the degree $of-(K_{X}+D)$ is nonnegative (on
each compact component of $X$). Then

(i) $K_{X}+D$ is n-semicomplementary for $n\in R_{2}$ ;
(ii) if $K_{X}+D$ is not 1 or 2-semicomplementary, then $X\simeq \mathbb{P}^{1}$ and $\lfloor D\rfloor=$

$\lfloor D^{+}\rfloor=0$ ;
(iii) if $X$ contains a noncomplete component and $K_{X}+D$ is not 1-

semicomplementary, then the compact components of $X$ form a chain
$\sum_{i=1}^{r}X_{i},$ $a$ (unique) noncomplete component $X$ ’ intersect an end $X_{1}$ of
$\sum X_{i},$ $SuppD$ is contained in another one $X_{r}$ and $D=1/2P_{1}+1/2P_{2}$ (the
case $r=1,$ $X_{1}=X_{r}$ is also possible).

For each $\log$ pair $(X/Z\ni 0, D)$ we define the minimal complementary number
by

(4.4) compl(X, $D$ ) $:=\min$ {$m|K_{X}+D$ is m-complementary}.
This is an invariant to “measure” how singular a $\log$ pair is. We also define
(4.5) compl’ $(X, D)$ $:=\min$ { $ m|\exists$ m-complement of $K_{X}+D$ which is not klt}.

By definition, compl(X, $D$ ), compl’ $(X, D)\in N\cup\{\infty\}$ . Take a subset $\Phi\subset[0,1]$ .
For example, consider cases $\Phi=\Phi_{sm}$ (see 2.2.5), $\Phi=[0,1]$ , or $\Phi=\Phi_{m}$ . For a
$\mathbb{Q}$-divisor $D$ we write simply $ D\in\Phi$ if all the coefficients of $D$ belong to $\Phi$ .

Define the set of natural numbers $N_{n}(\Phi)$ by

$N_{n}(\Phi)$ $:=\{m\in N|\exists$ a $\log$ Fano variety (X, $D$ ) of dimension $n$

such that $ D\in\Phi$ and compl(X, $D$ ) $=m$}.
Thus Theorem 4.1.10 and Corollary 4.1.11 below give us $N_{1}([0,1])=\mathfrak{R}_{2};=$

{1,2,3,4,6}. Obviously, $N_{n}(\Phi^{\prime})\subset N_{n}(\Phi^{\prime})$ if $\Phi^{\prime}\subset\Phi^{\prime\prime}$ . Theorem 4.1.10 and
Corollary 4.1.11 show that $N_{1}(\Phi_{sm})=N_{1}([0,1])=\mathfrak{R}_{2}$ . We will see below that
$N_{2}(\Phi_{sm})$ is bounded (Theorem 9.1.12).

COROLLARY 4.1.11. Notation as in Theorem 4.1.10. Assume that $X\simeq \mathbb{P}^{1}$ ,
$\lfloor D\rfloor=0,$ $-(K_{X}+D)$ is ample and $D\in\Phi_{sm}$ . Then $D=\sum_{i=1}^{r}(1-1/m_{i})D_{i}$ , where
for $(m_{1}, \ldots, m_{r})$ there is only one of the following possibilities (up to permutations):
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$A_{n}$ : $(m),$ $(m_{1}, m_{2}),$ $K_{X}+D$ is l-complementary;
$D_{n}$ : $(2, 2, m),$ $K_{X}+D$ is 2-complementary;
$E_{6}$ : (2, 3, 3), $K_{X}+D$ is 3-complementary;
$E_{7}$ : (2, 3, 4), $K_{X}+D$ is 4-complementary;
$E_{8}$ : (2, 3, 5), $K_{X}+D$ is 6-complementary.

Relations between our notation $A_{n},$ $D_{n},$ $E_{6},$ $E_{7},$ $E_{8}$ and two-dimensional Du
Val singularities will be explained in Ch. 6.

EXERCISE 4.1.12. Let $X\simeq \mathbb{P}^{1}$ and $D\in\Phi_{sm}\cap[0,1$ ). Assume also that $\deg D=$

2. Show that $D=\sum_{i=1}^{r}(1-1/m_{i})D_{i}$ , where for $(m_{1}, \ldots , m_{r})$ there is only one of
the following possibilities:

$\tilde{D}_{4}$ : (2, 2, 2, 2), $K_{X}+D$ is 2-complementary;
$\overline{E}_{6}$ : (3, 3, 3), $K_{X}+D$ is 3-complementary;
$\overline{E}_{7}$ : (2, 4, 4), $K_{X}+D$ is 4-complementary;
$\overline{E}_{8}$ : (2, 3, 6), $K_{X}+D$ is 6-complementary.

4.2. Monotonicity

We noticed that the inequality $D^{+}\geq D$ does not hold in general. However,
under some additional restrictions on coefficients we can expect $D^{+}\geq D$ to be
true.

4.2.1. Fix $n\in N$ and define the set $J_{n}^{)}$ by
$\alpha\in\prime y_{n}$ $\Leftrightarrow$ $0\leq\alpha\leq 1$ and $\lfloor(n+1)\alpha\rfloor\geq n\alpha$ .

COROLLARY 4.2.2. Let (X, $D$ ) be a $log$ pair such that $D\in y_{n}$ and $K_{X}+D^{+}$

any n-complement. Then $D^{+}\geq D$ .
LEMMA 4.2.3 (Monotonicity of the integral part). (i) Let $r\in \mathbb{Q}$ such that

$r<1$ and $nr\in \mathbb{Z}$ . Then
$\lfloor(n+1)r\rfloor\leq nr$ .

(ii) Let $r=1-1/m,$ $n\in N$ . Then for any $n\in N$

$\lfloor(n+1)r\rfloor\geq nr$ .

PROOF. Let us proof, for example, (ii). Write $nr=q+k/m$ , where $ q=\lfloor nr\rfloor$

and $k/m=\{nr\},$ $k\in \mathbb{Z},$ $0\leq k\leq m-1$ . Then

$\lfloor(n+1)r\rfloor=\lfloor q+k/m+1-1/m\rfloor=\left\{\begin{array}{ll}q & if k=0,\\q+1 & otherwise.\end{array}\right.$

In both cases $\lfloor(n+1)r\rfloor\geq q+k/m=nr$ . $\square $

By Monotonicity Lemma, $\varphi_{n}\supset\Phi_{sm}$ for any $n\in N$ . Moreover, we have

COROLLARY 4.2.4.

$\Phi_{sm}=\bigcap_{n\in N}\mathcal{P}_{n}$
.
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PROOF. Let $\alpha\not\in\Phi_{sm}$ . Then $1-1/m<\alpha<1-1/(m+1)$ for some $m\in N$ .
This yields $\lfloor(m+1)\alpha\rfloor\leq m-1$ and $m\alpha>m-1$ . Hence $\alpha\not\in\prime y_{m}$ . $\square $

EXAMPLE 4.2.5. Let (X, $D$ ) be a $\log$ variety with a standard boundary (i.e.
$D\in\Phi_{sm})$ . Assume that $K_{X}+D$ is numerically trivial. Let $K_{X}+D+$ be some
n-complement. Then $D^{+}\geq D$ and $D^{+}\equiv D$ . If $X$ is projective, then this yields
$D^{+}=D$ . In this case, $n$ is any natural such that $nD$ is an integral divisor. In
general case, we say that a complement $K_{X}+D^{+}$ of $K_{X}+D$ is trivial if $D=D^{+}$ .

It is easy to check that

$\prime y_{n}=\{0\}\cup[\frac{1}{n+1}\frac{1}{n}]\cup[\frac{2}{n+1}\frac{2}{n}]\cup\cdots$

$\cup[\frac{k}{n+1}\frac{k}{n}]\cup\cdots\cup[\frac{n}{n+1},1]$ .

This gives

LEMMA 4.2.6. (i) If $\alpha_{1},$
$\alpha_{2}\in\varphi_{n}$ then either $\alpha_{1}+\alpha_{2}\in\prime y_{n}$ or $\alpha_{1}+\alpha_{2}>1$ .

(ii) Let $m\in N,$ $k_{j}\in N\cup\{0\}$ and $b_{j}\in\varphi_{n}j=1,$
$\ldots,$

$r$ . Assume that

$\alpha$ $:=\frac{m-1}{m}+\frac{1}{m}\sum_{j=1}^{r}k_{j}b_{j}\leq 1$ .

Then $\alpha\in\varphi_{n}$ .

PROOF. (i) is trivial. As for (ii) we notice that $\sum k_{j}b_{j}\leq 1$ . Hence by (i),
$\sum k_{j}b_{j}\in\varphi_{n}$ and we may assume that $r=1$ and $k_{1}=1$ . Put $b$ $:=b_{1}$ . It is
sufficient to show that there exists $q\in N$ such that

$\frac{q}{n+1}\leq\frac{m-1+b}{m}\leq\frac{q}{n}$

This is equivalent to

$n(m-1+b)\leq mq\leq(n+1)(m-1+b)$ .
Taking into account that $b\in\varphi_{n}$ we have $l/(n+1)\leq b\leq l/n$ for some $ l\in$ N. So
there exists $q\in N$ such that

$ n(m-1+b)\leq n(m-1)+l\leq mq\leq$

$(n+1)(m-1)+l\leq(n+1)(m-1+b)$ .
This proves the lemma. $\square $

From Corollary 2.2.8 we have

COROLLARY 4.2.7. Let (X, $S+B$ ) be a $log$ variety, where $S$ is reduced and $B$

is effective. Assume that $K_{X}+S+B$ is $plt$ and $B\in\varphi_{n}$ . Then $Diff_{S}(B)\in\prime y_{n}$ .
REMARK 4.2.8. It is easy to see that $\Phi_{m}\subset\varphi_{1}\cup\varphi_{2}\cup\varphi_{3}\cup\varphi_{4}\cup \mathcal{P}_{6}$ . Therefore if

$D\in\Phi_{m}$ and $K_{X}+D^{+}$ is an 1, 2, 3, 4 or 6-complement of $K_{X}+D$ , then $D^{+}\geq D$ .
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4.3. Birational properties of complements

Now we will see that complements have good birational properties.

PROPOSITION 4.3.1 ([Sh2]). Let $f:X\rightarrow Y$ be a birational contraction and $D$

a subboundary on X. Assume that $K_{X}+D$ is n-complementary for some $n\in N$ .
Then $K_{Y}+f(D)$ is also n-complementary.

PROOF. Take $f(D)^{+}$ $;=f_{*}(D^{+})$ and apply 1.1.6. $\square $

Under additional assumptions we have the inverse implication:

PROPOSITION 4.3.2 ([Sh3, 2.13]). Fix $ n\in$ N. Let $f:Y\rightarrow X$ be a birational
contraction and $D$ a subboundary on $Y$ such that

(i) $K_{Y}+D$ is $nef$ over $X$ ;
(ii) $f(D)\in\varphi_{n}$ (in particular, $f(D)$ is a boundary).

Assume that $K_{X}+f(D)$ is n-complementary. Then $K_{Y}+D$ is also n-
complementary.

PROOF. Consider the crepant pull back
$K_{Y}+D^{\prime}=f^{*}(K_{X}+f(D)^{+})$ , with $f_{*}D^{\prime}=f(D)^{+}$ .

Write $D^{\prime}=S^{\prime}+B^{\prime}$ , where $S^{\prime}$ is reduced, $S^{\prime},$ $B$ have no common components, and
$\lfloor B^{\prime}\rfloor\leq 0$ . We claim that $K_{Y}+D$ is an n-complement of $K_{Y}+D$ . The only thing
we need to check is that $ nB\geq\lfloor(n+1)\{D\}\rfloor$ . From (ii) we have $f(D)^{+}\geq f(D)$ .
This gives that $D^{\prime}\geq D$ (because $D-D^{\prime}$ is $f$-nef; see [Sh2, 1.1] or [KM, 3.39]).
Finally, by Monotonicity Lemma 4.2.3 and because $nD^{\prime}$ is an integral divisor, we
have

$ nD^{\prime}\geq nS^{\prime}+\lfloor(n+1)B\rfloor\geq n\lfloor D\rfloor+\lfloor(n+1)\{D\}\rfloor$ .
$\square $

REMARK 4.3.3. (i) By Monotonicity Lemma 4.2.3, the condition (ii) holds
if all the coefficients of $f(D)$ are standard, i.e., $f(D)\in\Phi_{sm}$ . By 4.2.8 (ii)
also holds if $n\in R_{2}$ and $f(D)\in\Phi_{m}$ .

(ii) The above proof shows that the proposition holds under the following weaker
assumption instead of (ii):

(ii)’ for each nonexceptional component $D_{i}$ of $D=\sum d_{i}D_{i}$ meeting the excep-
tional divisor of $f$ we have $d_{i}\in y_{n}$ .

4.4. Inductive properties of complements

PROPOSITION 4.4.1 (cf. [Sh2, Proof of 5.6], [Ut, 19.6]). Let $(X/Z\ni 0,$ $D=$
$S+B)$ be a $log$ variety. Set $ S:=\lfloor D\rfloor$ and $B:=\{D\}$ . Assume that

(i) $K_{X}+D$ is $plt$;
(ii) $-(K_{X}+D)$ is $nef$ and big over $Z$ ;
(iii) $S\neq 0$ near $f^{-1}(0)$ ;
(iv) $D\in y_{n}$ for some $n\in N$ .
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Further, assume that near $f^{-1}(0)\cap S$ there $e$ zzsts an n-complement $K_{S}+Diff_{S}(B)^{+}$

of $K_{S}+Diff_{S}(B)$ . Then near $f^{-1}(0)$ there exists an n-complement $K_{X}+S+B+$
of $K_{X}+S+B$ such that $Diff_{S}(B)^{+}=Diff_{S}(B^{+})$ .

This proposition should be true in the case when $K_{X}+D$ is dlt. We need only
good definitions of complements on nonnormal varieties (see [Ut]).

PROOF. Let $g:Y\rightarrow X$ be a $\log$ resolution. Write $K_{Y}+S_{Y}+A=g^{*}(K_{X}+$

$S+B)$ , where $S_{Y}$ is the proper transform of $S$ on $Y$ and $\lfloor A\rfloor\leq 0$ . By Inversion of
Adjunction, $S$ is normal and $K_{S}+Diff_{S}(B)$ is plt. In particular, $gs:S_{Y}\rightarrow S$ is a
birational contraction. Therefore we have

$K_{S_{Y}}+Diff_{S_{Y}}(A)=g_{S}^{*}(K_{S}+Diff_{S}(B))$ .

Note that $Diff_{S_{Y}}(A)=A|_{S_{Y}}$ , because $Y$ is smooth. By Corollary 4.2.7 we see that
$Diff_{S}(B)\in y_{n}$ . So we can apply Proposition 4.3.2 to $g_{S}$ . We get an n-complement
$K_{S_{Y}}+Diff_{S_{Y}}(A)^{+}$ of $K_{S_{Y}}+Diff_{S_{Y}}(A)$ . In particular, by (4.1), there exists

$\Theta\in|-nK_{S_{Y}}-\lfloor(n+1)Diff_{S_{Y}}(A)\rfloor|$

such that
$ nDiff_{S_{Y}}(A)^{+}=\lfloor(n+1)Diff_{S_{Y}}(A)\rfloor+\Theta$ .

By Kawamata-Viehweg Vanishing,

$R^{1}h_{*}(\mathcal{O}_{Y}(-nK_{Y}-(n+1)S_{Y}-\lfloor(n+1)A\rfloor))=$

$R^{1}h_{*}(\mathcal{O}_{Y}(K_{Y}+\lceil-(n+1)(K_{Y}+S_{Y}+A)\rceil))=0$ .
From the exact sequence

$0\rightarrow \mathcal{O}_{Y}(-nK_{Y}-(n+1)S_{Y}-\lfloor(n+1)A\rfloor)$

$\rightarrow \mathcal{O}_{Y}(-nK_{Y}-nS_{Y}-\lfloor(n+1)A\rfloor)$

$\rightarrow \mathcal{O}_{S_{Y}}(-nK_{S_{Y}}-\lfloor(n+1)A\rfloor|_{S_{Y}})\rightarrow 0$

we get surjectivity of the restriction map

$ H^{0}(Y, \mathcal{O}_{Y}(-nK_{Y}-nS_{Y}-\lfloor(n+1)A\rfloor))\rightarrow$

$H^{0}(S_{Y}, \mathcal{O}_{S_{Y}}(-nK_{S_{Y}}-\lfloor(n+1)A\rfloor|_{S_{Y}}))$ .
Therefore there exists a divisor

$\Xi\in|-nK_{Y}-nS_{Y}-\lfloor(n+1)A\rfloor|$

such that $\Xi|_{S_{Y}}=\Theta$ . Set

$A^{+}$ $:=\frac{1}{n}(\lfloor(n+1)A\rfloor+\Xi)$ .

Then $n(K_{Y}+S_{Y}+A^{+})\sim 0$ and $(K_{Y}+S_{Y}+A^{+})|_{S_{Y}}=K_{S_{Y}}+Diff_{S_{Y}}(A)^{+}$ . Note
that we cannot apply Inversion of Adjunction on $Y$ because $A^{+}$ can have negative
coefficients. So we put $B^{+}$ $:=g_{*}A^{+}$ . Again we have $n(K_{X}+S+B^{+})\sim 0$ and
$(K_{X}+S+B^{+})|s=K_{S}+Diff_{S}(B)^{+}$ . We have to show only that $K_{X}+S+B^{+}$ is
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lc. Assume that $K_{X}+S+B^{+}$ is not lc. Then $K_{X}+S+B+\alpha(B^{+}-B)$ is also not
lc for some $\alpha<1$ . It is clear that $-(K_{X}+S+B+\alpha(B^{+}-B))$ is nef and big over
$Z$ . By Inversion of Adjunction, $K_{X}+S+B+\alpha(B^{+}-B)$ is plt near $S\cap f^{-1}(0)$ .
Hence LCS(X, $B+\alpha(B^{+}-B)$ ) $=S$ near $S\cap f^{-1}(0)$ . On the other hand, by
Connectedness Lemma, LCS(X, $B+\alpha(B^{+}-B)$ ) is connected near $f^{-1}(0)$ . Thus
$K_{X}+S+B+\alpha(B^{+}-B)$ is plt. This contradiction proves the proposition. $\square $

REMARK 4.4.2. It follows from the proof that we can replace (iv) in Proposi-
tion 4.4.1 with

(iv)’ $Diff_{S}(B)\in\prime y_{n}$ for some $n$ .

In the two-dimensional case we have a stronger result.

PROPOSITION 4.4.3 (cf. [Sh2, Proof of 5.6], [Ut, 19.6]). Let $(X/Z\ni 0,$ $D=$
$S+B)$ be a $log$ surface such that

(i) $K_{X}+D$ is $dlt$;
(ii) $-(K_{X}+D)$ is $nef$ and big over $Z$ ;
(iii) $S:=\lfloor D\rfloor\neq 0$ near $f^{-1}(0)$ .

Assume that near $f^{-1}(0)\cap S$ there exists an n-semicomplement $K_{S}+Diff_{S}(B)^{+}$

of $K_{S}+Diff_{S}(B)$ . Then near $f^{-1}(0)$ there exists an n-complement $K_{X}+S+B^{+}$

of $K_{X}+S+B$ such that $Diff_{S}(B)^{+}=Diff_{S}(B^{+})$ .

PROOF. Similar to the proof of 4.4.1. By Propositions 2.1.2 and 2.1.3, the curve
$S$ is nodal. Further, we can take a $\log$ resolution $g:Y\rightarrow X$ so that $S_{Y}\simeq S$ . $\square $

EXERCISE 4.4.4 ([Sh3]). Let $(X\ni P)$ be a germ of a two-dimensional normal
singularity, let $C\neq 0$ be a reduced divisor on $X$ , and $B=\sum b_{i}B_{i}\neq 0$ a boundary
on $X$ such that $K_{X}+C+B$ is plt. Assume that $b_{i}\geq 1/2$ for all $i$ . Show that
$ K_{X}+C+\lceil B\rceil$ is lc and $SuppB$ is irreducible. Moreover,

$Diff_{C}(B)=(1-\frac{1}{n}+\frac{b_{1}}{n})P$, where $(X\ni P)\simeq \mathbb{C}^{2}/\mathbb{Z}_{n}(1, q)$ .

If $B\in\Phi_{sm}$ (i.e., $B=(1-1/m_{1})B_{1},$ $m_{1}\in N$ ), then

$(K_{X}+C+B)|c=(1-1/m)P$, $m=m_{1}n$ .
Hint. Show that $K_{X}+C+B$ is l-complementary (using 4.1.10 and 4.4.3).

4.5. Exceptionality

DEFINITION 4.5.1. Let $(X/Z\ni 0, D)$ be a $\log$ variety such that there is at least
one $\mathbb{Q}$-complement of $K_{X}+D$ near the fiber over $0$ .

$\bullet$ Assume that $Z$ is not a point (local case). Then $(X/Z\ni 0, D)$ is said to be
exceptional over $0$ if for any $\mathbb{Q}$-complement of $K_{X}+D$ near the fiber over
$o$ there exists at most one (not necessarily exceptional) divisor $S$ such that
$a(S, D)=-1$ .

$\bullet$ Assume that $Z$ is a point (global case). Then (X, $D$ ) is said to be exceptional
if every $\mathbb{Q}$-complement of $K_{X}+D$ is klt.
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The main advantage of this definition is Shokurov’s conjecture that exceptional
$\log$ varieties are bounded in some sense (see 4.5.2, 6.1.4, 6.1.10 (ii), 7.1.16, 7.2.6,
9.1.7, 9.1.11, [Sh3, \S 7], $[KeM]$ , [P2]). On the contrary, nonexceptional ones has
“regular” complements (i.e., n-complements with small $n$ ). This phenomena was
discovered by Shokurov [Sh3]. In $[KeM]$ exceptional $\log$ del Pezzo surfaces are
called $del$ Pezzo surfaces without tiger. Studying of such surfaces is closely related
to the uniruledness of affine surfaces $[KeM, 6.1]$ .

EXAMPLE 4.5.2. Let $D$ be a boundary on a curve $X$ . If (X, $D$ ) is nonexcep-
tional, then by Theorem 4.1.10, $K_{X}+D$ is 1 or 2-complementary. Assume addi-
tionally that $D\in\Phi_{sm}$ and $X=\mathbb{P}^{1}$ . By 4.1.11 and 4.1.12, (X, $D$ ) is exceptional
only in the following cases: $E_{6},$ $E_{7},$ $E_{8},\tilde{D}_{4},\tilde{E}_{6},\tilde{E}_{7},\tilde{E}_{8}$ .

We discuss $tw(\succ dimensional$ generalizations of this fact in Ch. 8 and 9.

EXAMPLE 4.5.3. A $\log$ canonical singularity (X, o) is exceptional if and only
if for every boundary $B$ such that $K_{X}+B$ is lc there exists at most one divisor
$S$ (not necessarily exceptional) such that $a(S, B)=-1$ . We see in Ch. 6 that a
two-dimensional klt singularity is exceptional if and only if it is of type $E_{6}$ , E7
or $E_{8}$ . Note that they are bounded. In contrary, nonexceptional klt singularities
belong to two infinite series $A_{n}$ and $D_{n}$ . Refer to [I], [MP], [IP] for generalizations
of this observation.

An isolated $\log$ canonical nonklt singularity (X, o) is exceptional if and only if
there is exactly one divisor with discrepancy $a(\cdot, 0)=-1$ . Under the assumption
that $X$ is Gorenstein such singularities are called simple elliptic in dimension two
and simple $K3$ in higher dimensions [IW].

EXAMPLE 4.5.4. Let $C\subset \mathbb{C}^{2}$ be a curve given by $x^{2}=y^{3}$ . Then $K_{\mathbb{C}^{2}}+\frac{5}{6}C$ is
lc and not klt. Simple computations show that there exists only one divisor with
discrepancy $-1$ . Therefore $(\mathbb{C}^{2}, \frac{5}{6}C)$ is exceptional.

The following proposition gives a nice relationship between local and global
exceptional objects.

PROPOSITION 4.5.5 ([Pl, Theorem 5]). Let $(X\ni P)$ be a $klt$ singularity and
$f:(Y, S)\rightarrow X$ a $plt$ blowup of P. Then the following are equivalent:

(i) $(X\ni P)$ is exceptional;
(ii) $f(S)=P$ and $(S, Diff_{S}(0))$ is exceptional;
(iii) $(S, Diff_{S}(0))$ is exceptional.

PROPOSITION 4.5.6 ([PSh], see also [MP], [IP], [P2]). Let $(X/Z\ni 0, D)$ be
an exceptional $log$ variety of local type. Then there exists a divisor $S$ of $:\mathcal{K}(X)$ such
that $a(S, D^{+})=-1$ for any nonklt $\mathbb{Q}$ -complement of $K_{X}+D(i.e.$ $S$ does not
depend on the choice of $D^{+}$ ).

COROLLARY 4.5.7 ([P1]). Let $(X\ni P)$ be a $\mathbb{Q}$ -factorial exceptional $lc$ singu-
larity. Then a $plt$ blowup is unique up to isomorphisms.
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EXAMPLE 4.5.8 ([MP], cf. [Pl, Theorem 5]). Let $G$ be a finite group acting
on $\mathbb{C}^{n}$ freely in codimension one. Then the quotient singularity $\mathbb{C}^{n}/G$ is exceptional
if and only if so is the $\log$ Fano $(\mathbb{P}^{n-1}/G, D)$ , where $D$ is given by the formula (1.4).
In dimension two there are exactly three types of exceptional groups: tetrahedral,
octahedral and icosahedral (up to conjugation and scalar multiplication). In di-
mension three there are four types of them: $F,$ $G,$ $I,$ $J$ , in the classical notation.


