
CHAPTER 2

Inversion of adjunction

2.1. Two-dimensional toric singularities and $\log$ canonical singularities
with a reduced boundary

2.1.1. If the cyclic group $\mathbb{Z}_{m}$ acts linearly on $\mathbb{C}^{n}$ by

$x_{1}\rightarrow\epsilon^{a_{1}}x_{1}$ , $x_{2}\rightarrow\epsilon^{a_{2}}x_{2},$

$\ldots,$
$x_{n}\rightarrow\epsilon^{a_{n}}x_{n}$ ,

where $\epsilon$ is a chosen primitive root of degree $m$ of unity, we call the integers
$a_{1},$ $\ldots,$

$a_{n}$ the weights of the action. In this case, the quotient is denoted by
$\mathbb{C}^{n}/\mathbb{Z}_{m}(a_{1}, \ldots, a_{n})$ . It is clear that the weights are defined modulo $m$ and also
depend on the choice of the primitive root $\epsilon$ .

Let $(Z, Q)$ be a two-dimensional quotient singularity $\mathbb{C}^{2}/\mathbb{Z}_{m}(1, q)$ , where
$gcd(q, m)=1$ (in particular, this means that $\mathbb{Z}_{m}$ acts on $\mathbb{C}^{2}$ freely in codimen-
sion one). Then this singularity is toric, hence it is klt. The minimal resolution is
obtained as a sequence of weighted blowups (see 3.2). The dual graph is a chain

$-a_{1}$ $-a_{2}$ $-a_{r-1}$ $-a_{r}$ with $a_{i}\geq 2$ ,
$O$ – $O$ – – $O$ – $O$ ,

where the sequence $a_{1},$ $a_{2},$
$\ldots,$

$a_{r}$ is obtained from the continued fraction decom-
position of $m/q$ (see [Hi] or [Br]):

(2.1)
$\frac{m}{q}=a_{1}-\frac{}{a_{2}-\frac{11}{1}}$

.

$a_{r}$

Now we give the classification of two-dimensional $\log$ canonical singularities
with nonempty reduced boundary, following Kawamata [K]. Note that this is much
easier than the classification of all two-dimensional $\log$ canonical singularities.

THEOREM 2.1.2 ( $[K,$ $9.6]$ , [Ut, ch. 3]). Let $X\ni P$ be an analytic $ gem\iota$ of a
two-dimensional normal singularity and $X\supset C$ a (possibly reducible) reduced
curve. Assume that $K_{X}+C$ is $plt$ . Then

(X, $C$ ) $\simeq(\mathbb{C}^{2}, \{x=0\})/\mathbb{Z}_{m}(1, a)$ , with $gcd(a, m)=1$ .

12



2.1. TWO-DIMENSIONAL TORIC SINGULARITIES 13

In particular, $C$ is irreducible and smooth. In this case, $K_{X}+C$ has index $m$ and
the graph of the minimal resolution of $(X\supset C\ni P)$ is of type

$-a_{1}$ $-a_{2}$ $-a_{r-1}$ $-a_{r}$

$\bullet-O-O$ –... $-O-$ O.
where the black vertex $\bullet$ corresponds to the proper transform of $C$ , and the white
ones $O$ correspond to exceptional divisors. The numbers attached to white vertices
are self-intersection numbers.

SKETCH OF PROOF. Let $m$ be the index of $C$ (i.e., $mC\sim O$ ) and $\psi:X^{\prime}\rightarrow X$

the corresponding cyclic m-cover. Then C’ $:=\psi^{-1}(C)_{rcd}$ is a Cartier divisor and
$K_{X^{\prime}}+C^{\prime}$ is plt. This gives that $X$ ‘ and C’ are smooth and $X^{\prime}\simeq \mathbb{C}^{2}$ up to analytic
isomorphism. $\square $

THEOREM 2.1.3 ( $[K,$ $9.6]$ , [Ut, ch. 3]). Let $X\ni P$ be an analytic germ of a
two-dimensional normal singularity and $X\supset C$ a (possibly reducible) reduced
curve. Assume that $K_{X}+C$ is $lc$ but not $plt$ . Then just one of the following
two possibilities holds:

(i) $C$ has two smooth components,

(X, $C$ ) $\simeq(\mathbb{C}^{2}, \{xy=0\})/\mathbb{Z}_{m}(1, a)$ , with $gcd(a, m)=1$ .

The index of $K_{X}+C$ is equal to 1 $(i.e., K_{X}+C\sim 0)$ . The gmph of the
minimal resolution of $(X\supset C\ni P)$ is of the form

$-a_{1}$ $-a_{2}$ $-a_{r-1}$ $-a_{r}$

$\bullet-O-O$ –... $-O-O-\bullet$ .
In this case, $K_{X}+C$ is not $dlt$ for $m>1$ and $dlt$ for $m=1$ .

(ii) The curve $C$ is smooth and irreducible,

(X, $C$ ) $\simeq(\mathbb{C}^{2}, \{xy=0\})/D_{m}$ ,

where $D_{m}\subset GL_{2}(\mathbb{C})$ is a subgroup of dihedral type without reflections (see
[Br] for precise description of $D_{m}$ ). In this case, $K_{X}+C$ is not $dlt$ and is
of index two $(i.e., 2(K_{X}+C)\sim 0)$ , the $log$ canonical cover is the singularity
from (i) and the graph of the minimal resolution of $(X\supset C\ni P)$ is of type

$-a_{1}$ $-a_{2}$ $-a_{r}$ $-2$

$\bullet-O-O$ –... $-O-O$ .
$1$

$o_{2}-$

The degenemte case $r=1$ is included here (then $D_{m}$ is a cyclic group).
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COROLLARY 2.1.4. Let (X, $D$ ) be a $log$ variety. Assume that $K_{X}+D$ is $lc$

and $W\subset X$ an irreducible subvamety of codimension two. Assume that $ W\subset$

$\lfloor D\rfloor$ . Then near a general point $w\in W$ there is an analytic isomorphism between
(X, $\lfloor D\rfloor,$ $W$ ) and the product of a surface singularity from 2.1.2 or $(i)-(ii)$ of 2.1.3
by $\mathbb{C}^{\dim X-2}$ .

EXERCISE 2.1.5 (cf. 2.1.7). Assume that in the conditions of the theorem
above $C$ is a Cartier divisor. Show without using the theorem that then (X, $C$) $\simeq$

$(\mathbb{C}^{2}, \mathbb{C}^{1})$ or $X$ is a Du Val point of type $A_{n}$ , and $C$ is its general hyperplane section.

EXERCISE 2.1.6. Express in the form $\mathbb{C}^{2}/\mathbb{Z}_{m}(1, q)$ the singularity with the min-
imal resolution

$-2$ $-a$ $-2$

$O$ $O-O$
$1$

$\bullet$

EXAMPLE 2.1.7. Let $(Z, Q)$ be a Du Val singularity of type $A_{n}$ given by the
equation $x^{2}+y^{2}+z^{n+1}$ and $C$ the hyperplane section given by $z=0$ . Then $(Z, C)$

is a lc pair as in (i) of Theorem 2.1.3. Similarly, for the case (ii) of Theorem 2.1.3
we can take $(Z, Q)$ of type $D_{n}$ given by the equation $x^{2}+y^{2}z+z^{n-1},$ $n\geq 4$ and
$C$ as $\{z=0\}_{red}$ .

2.2. Adjunction

EXAMPLE 2.2.1. Let $X=X_{n}\subset \mathbb{P}^{n+1}$ be a two-dimensional projective cone
over a rational normal curve $C_{n}\subset \mathbb{P}^{n}$ and $L\subset X$ its generator. The group of
classes of Weil divisors modulo linear equivalence is generated by the class of $L$ :
$Wei1_{1in}(X)\simeq \mathbb{Z}\cdot L$ and $nL$ is the class of the hyperplane section of $X$ . Thus we have
$L|_{L}=\frac{1}{n}P$ , where $P$ is the class of a point on $L\simeq \mathbb{P}^{1}$ . It is also easy to compute
that $K_{X}\sim-(n+2)L$ . This yields

$(K_{X}+L)|_{L}-K_{L}=-(n+1)L|_{L}+2P=(1-1/n)P$.
This is one instance where the standard coefficients (see 2.2.5) arise naturally.

This example shows that adjunction formula in its usual form fails for the
case of Weil divisors. This phenomenon was first observed by M. Reid and is
called also subadjunction. Shokurov [Sh2, \S 3] introduced the notion of different
for the difference $(K_{X}+L)|_{L}-K_{L}$ (see also [KMM, 5-1-9], [Ut, ch. 16]). The
corresponding ideal sheaf sometimes is called the conductor ideal.

The following construction is a codimension two construction, i.e. the variety
$X$ may always be replaced with any open subset $X\backslash Z$ , where $co\dim_{X}Z\geq 3$ .

PROPOSITION-DEFINITION 2.2.2. Let $X$ be a normal variety and $S\subset X$ a
reduced subscheme of pure codimension one. For simplicity we assume that $K_{X}+S$
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is lc in codimension two. Then by Theorem 2.1.2 and Theorem 2.1.3, $S$ has only
normal crossings in codimension one. In particular, the scheme $S$ is Gorenstein in
codimension one. Then there exists naturally defined an effective $\mathbb{Q}$-Weil divisor
$Diff_{S}(0)$ , called the different, such that

$(K_{X}+S)|s=K_{S}+Diff_{S}(0)$ .
Now let $B$ be a $\mathbb{Q}$-divisor, which is $\mathbb{Q}$-Cartier in codimension two. Then the different
for $K_{X}+S+B$ is defined by the formula

$(K_{X}+S+B)|s=K_{S}+Diff_{S}(B)$ .
In particular, if $B$ is a boundary and $K_{X}+S+B$ is lc in codimension two, then
by 2.1.2 and 2.1.3, $B$ is $\mathbb{Q}$-Cartier in codimension two. Moreover, none of the
components of $Diff_{S}(B)$ are contained in the singular locus of $S$ .

EXAMPLE 2.2.3. Let $Q\subset \mathbb{P}^{4}$ be a quadratic cone over $xy=zt$ and $S\subset Q$

a plane. Then $S|s=0$ modulo codimension two subsets and $(K_{Q}+S)|s=K_{S}$ .
Therefore Diff$s(0)=0$ . This shows that codimension three singularities are not
essential for 2.2.2.

The following theorem allows us to compute coefficients of the different and
shows that computations in Example 2.2.1 are very general.

THEOREM 2.2.4 ([Sh2, 3.9], [Ut, 16.6]). In the conditions of Theorem 2.1.2
and Theorem 2.1.3 for the different $Diff_{C}(0)$ at $P$ we have

(i) If $K_{X}+C$ is $plt$, then $Diff_{C}(0)=(1-1/m)P$ , where $m$ is the index of
$K_{X}+C$ (see Theorem 2.1.2).

(ii) If $(X\supset C\ni P)$ is as in (i) of Theorem 2.1.3, then $Diff_{C}(0)=0$ .
(iii) If $(X\supset C\ni P)$ is as in (ii) of Theorem 2.1.3, then $Diff_{C}(0)=P$ .

2.2.5. Notation. Put
$\Phi_{sm}$ $:=\{1-1/m|m\in N\cup\{\infty\}\}$ .

We distinguish this set because it naturally appears in the Adjunction Formula.
Latter we will see that the class of boundaries with coefficients $\in\Phi_{sm}$ is closed
under finite Galois morphisms (see 1.2) and Adjunction Formula (Corollary 2.2.9,
cf. [Kol]). We say that the boundary $D=\sum d_{i}D_{i}$ has standard coefficients, if
$d_{i}\in\Phi_{sm}$ for all $i$ . Unfortunately the property $\in\Phi_{sm}$ is not closed under crepant
birational transformations (see 1.1.6) to avoid this difficulty Shokurov considered
the class of boundaries with coefficients from the set

$\Phi_{m}$ $:=\Phi_{sm}\cup[6/7,1]$ .
The following result is very important for applications and is called Inversion

of Adjunction.

THEOREM 2.2.6 ([Sh2, 3.3, 3.12, 5.13], [Ut, 17.6]). Notation as in 2.2.2. Let
$B$ be an effective $\mathbb{Q}$ -divisor on $X$ such that $S$ and $B$ have no common components
and $\lfloor B\rfloor=0$ . Assume that $K_{X}+S+B$ is $\mathbb{Q}$ -Cartier. Then $K_{X}+S+B$ is $plt$

near $S$ if and only if $S$ is normal and $K_{S}+Diff_{S}(B)$ is $klt$ .
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COROLLARY 2.2.7 ([Ut, 17.7]). Let $X$ be a normal variety, $S$ an irreducible
divisor and let $B,$ $B^{\prime}$ be effective $\mathbb{Q}$ -divisors such that $S$ and $B+B^{\prime}$ have no
common components and $\lfloor B\rfloor=0$ . Assume that $K_{X}+S+B$ and $B^{\prime}$ are $\mathbb{Q}$-Cartier
and $K_{X}+S+B$ is $plt$ . Then $K_{X}+S+B+B^{\prime}$ is $lc$ near $S$ if and only if so is
$K_{S}+Diff_{S}(B+B)$ .

COROLLARY 2.2.8 ([Sh2, 3.10]). Let $X$ be a normal variety, $S$ a reduced Weil
divisor on $X$ and $B=\sum b_{i}B_{i}$ a boundary on $X$ such that $S$ and $B$ have no common
components. Assume that $K_{X}+S+B$ is $plt$ . Then $Diff_{S}(B)$ has the form

$Diff_{S}(B)=\sum_{P}(\frac{m_{i}-1}{m_{i}}+\sum_{j}\frac{b_{j}n_{i,j}}{m_{i}})P_{i}$ ,

where each $P_{i}$ is a prime divisor on $S,$ $m_{i}$ is the index of $S$ at a geneml point of
$P_{i}$ , and $n_{i,j}\in N$ . Moreover, assume that $B$ has only standard coefficients. Then so
has $Diff_{S}(B)$ . More precisely, if $B=\sum(1-1/r_{i})B_{i}$ and $P$ is a pmme divisor on
$S$ , then $P$ is contained in at most one component, say $B_{i}$ , of $B$ and the coefficient
of $Diff_{S}(B)$ along $P$ is equal to $1-\frac{1}{m.r}$ .

COROLLARY 2.2.9. Notation as in 2.2.8. Then
$B\in\Phi_{sm}$ $\Rightarrow$ $Diff_{S}(B)\in\Phi_{sm}$ ,
$B\in\Phi_{m}$ $\Rightarrow$ $Diff_{S}(B)\in\Phi_{m}$ .

The example below shows that Inversion of Adjunction fails in the case of
noneffective divisors.

EXAMPLE 2.2.10. Consider the following smooth curves on $\mathbb{C}^{2}$ : $C:=\{x=0\}$ ,
$B_{1}$ $:=\{y=x^{2}\},$ $B_{2}$ $:=\{y=2x^{2}\},$ $B_{3}$ $:=\{y=x\}$ and consider the subboundary
$B$ $:=bB_{1}+bB_{2}+(\frac{3}{2}-3b)B_{3}$ , where $\frac{1}{2}<b<1$ . Then $Diff_{C}(B)=(\frac{3}{2}-b)(pt)$

because $C$ intersects transversally $B_{1},$ $B_{2},$ $B_{3}$ . Hence $K_{C}+Diff_{C}(B)$ is klt. On
the other hand $K_{\mathbb{C}^{2}}+C+B$ is not lc. Indeed, a $\log$ resolution of $(\mathbb{C}^{2}, C+B)$ can
be obtained by two blowing ups:

$\tilde{B}_{1}$
$\tilde{C}$

$\bullet$ $\bullet$

$|$ $|$

$\bullet\tilde{B}_{2}$ $OE_{2}$ $OE_{1}$ $\bullet\tilde{B}_{3}’$

,

where $E_{1}$ is $a-2$-curve and $E_{2}$ is a-l-curve. It is easy to compute

$a(E_{1}, C+B)=-\frac{3}{2}+b>-1$ , $a(E_{2}, C+B)=-\frac{1}{2}-b<-1$ .

Therefore $K_{\mathbb{C}^{2}}+C+B$ is not lc at the origin.
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For dlt singularities there are only weaker results, which use generalizations of
the definition of dlt singularities to the case of nonnormal varieties (cf. [Sh2, 3.2.3,
3.6, 3.8], [Ut, 17.5, 16.9]):

PROPOSITION 2.2.11 ([Sz]). Let (X, $S+B$ ) be a $log$ variety, where $S$ is reduced,
$\lfloor B\rfloor=0$ and $S,$ $B$ have no common components. Assume that $K_{X}+S+B$ is $dlt$ .
Then $K_{S}+Diff_{S}(B)$ is generalized divisorial $log$ terminal.

EXAMPLE 2.2.12. Let $(X\ni P)$ be a germ of three-dimensional terminal singu-
larity. Then by [RY] a general divisor $F\in|-K_{X}|$ has only Du Val singularity at
$P$ . Hence by Theorem 2.2.6, $K_{X}+F$ is plt (and even canonical, because $K_{X}+F$

is Cartier).

EXERCISE 2.2.13. Let $H$ be a general hyperplane section of the canonical quo-
tient singularity $X$ $:=\mathbb{C}^{3}/\mathbb{Z}_{3}(1,1,1)$ . Show that $K_{X}+H$ is not plt.

EXAMPLE 2.2.14 (cf. [Rl, Sect. 1]). Let (X $\ni$ $P$) be a normal three-
dimensional $\mathbb{Q}$-Gorenstein singularity and $H\ni P$ a hyperplane section. Assume
that the singularity $(H\ni P)$ is Du Val. Then by Inversion of Adjunction, $(X\ni P)$

is canonical. Moreover, if $(X\ni P)$ is isolated, then it is terminal.

EXERCISE 2.2.15. Let $(X\ni 0, D)$ be a germ of a normal singularity. Assume
that $K_{X}+D$ is lc and each component of $\lfloor D\rfloor$ is $\mathbb{Q}$-Cartier. Prove that $\lfloor D\rfloor$ has
at most $\dim X$ components.

We also have a more general results:

EXAMPLE 2.2.16. Let $(X\ni 0, D=\sum d_{i}D_{i})$ be a germ of a normal singularity
of dimension $\leq 3$ . Assume that $K_{X}+D$ is lc and each component of $D$ is $\mathbb{Q}$-Cartier.
Then $\sum d_{i}\leq\dim X$ . Indeed, by taking cyclic covers \’etale in codimension one we
obtain $(X’\ni 0^{\prime}, D^{\prime}=\sum d_{i}^{\prime}D_{i}^{\prime})$ such that $K_{X^{\prime}}+D^{\prime}$ is lc and each component of
$D^{\prime}$ is Cartier. Obviously, $\sum d_{i}^{\prime}\geq\sum d_{i}$ . It is known that in dimension $\leq 3$ there
exists a divisor $E$ over $X^{\prime}\ni 0$’ such that $a(E, 0)\leq\dim X-1$ (see Kawamata’s
appendix to [Sh2] and [M]). Then $-1\leq a(E, D^{\prime})\leq a(E, 0)-\sum d_{i}$ . This yields
$\sum d_{i}\leq\dim X$ . Moreover, if the equality holds, then $X$ ’ is smooth. In this case,
$X^{\prime}\rightarrow X$ gives the universal cover of the smooth locus of $X$ . Therefore $X^{\prime}\rightarrow X$

is a quotient by a finite group, say $G$ , which acts freely in codimension one. Then
we have also $\sum d_{i}=\sum d_{i}$ . Hence $G$ does not permute components of $D^{\prime}$ . So
$G$ must be abelian. This shows that the equality $\sum d_{i}=\dim X$ implies that $X$

is analytically isomorphic to a toric singularity and $\lfloor D\rfloor$ is contained in the toric
boundary.

Actually, the above result can be proved in any dimension without using [M]:

THEOREM 2.2.17 ([Ut, 18.22], [A1]). Let $(X\ni 0, D=\sum d_{i}D_{i})$ be a germ of
a $log$ variety such that $K_{X}+D$ is $lc$ . Assume that all the $D_{i}$ are $\mathbb{Q}$-Cartier at $0$ .
Then $\sum d_{i}\leq\dim$ X. Moreover, the equality holds only if $X\ni 0$ is a cyclic quotient
singularity.
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Let $(X/Z\ni 0, D)$ be a $\log$ variety. Then $(X/Z\ni 0, \lfloor D\rfloor)$ is said to be a toric
pair if there are analytic isomorphisms $\pi:X\rightarrow X^{T},$ $Z\rightarrow Z^{T}$ and the commutative
diagram

$X\rightarrow^{\pi}X^{T}$

$\downarrow$ $\downarrow$

$Z\rightarrow Z^{T}$

where $X^{T}\rightarrow Z^{T}$ is an algebraic toric contraction and $\lfloor\pi(D)\rfloor$ is the toric boundary
(i.e., $\lfloor\pi(D)\rfloor$ is contained in the set $X^{T}\backslash \{open$ orbit}).

Shokurov proposed the following generalization of 2.2.17.

CONJECTURE 2.2.18 ([Sh3]). Let $(X/Z\ni 0, D=\sum d_{i}D_{i})$ be a $log$ variety
such that $K_{X}+D$ is $lcand-(K_{X}+D)$ is $nef$ over Z. Then*

(2.2) $rkWei1_{alg}(X)\geq\sum d_{i}-\dim X$ .

If $X$ is $\mathbb{Q}$ -factorial, then

(2.3) $\rho(X/Z)\geq\sum d_{i}-\dim X$ .

Moreover, equalities hold only if $(X/Z\ni 0, \lfloor D\rfloor)$ is a toric pair.

In the case when $Z$ is a point and $\rho(X)=1$ the inequality (2.3) was proved
in [Ut, 18.24], see also [A1]. Shokurov [Sh3] proved this conjecture in dimension
two; see theorems 8.5.1 and 8.5.2.

Note that inequality (2.3) is stronger than (2.2):

PROPOSITION 2.2.19. Notation as in 2.2.18. Assume that the pair (X, $D$ ) has
at least one minimal $log$ terminal ($\mathbb{Q}$ -factorial) modification $ f:(\tilde{X},\tilde{D}=\sum\tilde{d}_{i}\tilde{D}_{i})\rightarrow$

(X, $D$ ) (see 3.1.3). Then

$rkWei1_{alg}(X)-\sum d_{i}+\dim X\geq$

$rkWei1_{alg}(\tilde{X})-\sum\tilde{d}_{i}+\dim\tilde{X}\geq\rho(\tilde{X}/Z)-\sum\tilde{d}_{i}+\dim\tilde{X}$ .

PROOF. Let us prove, for example, the first inequality. Write $\tilde{D}=\sum d_{i}B_{i}+$

$\sum_{j=1}^{r}E_{j}$ , where each $B_{t}$ is the proper transform of $D_{i}$ and $\sum_{j=1}^{r}E_{j}$ is the (reduced)
exceptional divisor. Then $\sum\tilde{d}_{i}=r+\sum d_{i}$ . From the exact sequence

$\bigoplus_{i=1}^{r}\mathbb{Z}\cdot E_{i}\rightarrow Wei1_{alg}(\tilde{X})\rightarrow Wei1_{alg}(\tilde{X}\backslash \sum E_{i})\rightarrow 0$

(cf. [Ha, Ch. II, 6.5]) we have

*Shokurov pointed out that the stronger version of inequality (2.2) should be
Weil$(X)/Weil0\geq\sum d_{i}-\dim X$ , where Weilo $\subset Wei1(X)$ is the subgroup of all numerically
trivial over $Z$ (and QCartier) divisors.
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$rkWei1_{alg}(\tilde{X})\leq Wei1_{alg}(\tilde{X}\backslash \sum E_{i})+r=rkWei1_{alg}(X)+r$ .
$\square $

EXAMPLE 2.2.20. Let $X=Z$ be the hypersurface singularity given in $\mathbb{C}^{4}$ by the
equation $xy=zt$ . Consider four planes $D_{1}$ $:=\{x=z=0\},$ $D_{2}$ $:=\{x=z=0\}$ ,
$D_{3}$ $:=\{y=z=0\},$ $D_{4}$ $:=\{y=t=0\}$ . Let $D$ $:=\sum D_{i}$ . It is easy to check
that $K_{X}+D$ is lc. The group $Wei1_{alg}(X)$ is generated by $D_{1}$ and $D_{2}$ . However,
$D_{1}+D_{2}\sim 0$ (because it is Cartier). Thus $rkWei1_{alg}(X)=1$ and $\sum d_{i}=4$ . We
have equality in (2.2) and the pair (X, $D$ ) is toric.

2.3. Connectedness Lemma

The most essential part of the proof of Theorem 2.2.6 is the following result
which was proved firstly by Shokurov [Sh2, 5.7] in dimension two and latter by
Koll\’ar [Ut, 17.4], [Ko2, 7.4] in arbitrary dimension.

THEOREM 2.3.1 (Connectedness Lemma). Let $f:X\rightarrow Z$ be a contmction and
$D=\sum d_{i}D_{i}$ an effective $\mathbb{Q}$ -divisor on $X$ such that $K_{X}+D$ is $\mathbb{Q}$ -Cartier. Assume
$that-(K_{X}+D)$ is f-nef and f-big. Let

$h:Y\rightarrow^{g}X\rightarrow^{f}Z$

be a $log$ resolution. Write
$K_{Y}=g^{*}(K_{X}+D)+E^{(+)}-E^{(-)}$ ,

where $E^{(-)}\geq 0$ and the coefficients of $E^{(+)}$ $are>-1$ , and the coefficients of $E^{(-)}$

$are\geq 1$ . Then $SuppE^{(-)}$ is connected in a neighborhood of any fiber of $h$ .

Note that in the case when $f$ is birational, the big condition holds automati-
cally.

PROOF. We have
$\lceil E^{(+)}\rceil-\lfloor E^{(-)}\rfloor=K_{X}-g^{*}(K_{X}+D)+\{-E^{(+)}\}+\{E^{(-)}\}$ .

From this by Kawamata-Viehweg Vanishing Theorem [KMM, 1-2-3],

$R^{1}f_{*}\mathcal{O}_{Y}(\lceil E^{(+)}\rceil-\lfloor E^{(-)}\rfloor)=0$ .

Applying $f_{*}$ to an exact sequence

$0\rightarrow \mathcal{O}_{Y}(\lceil E^{(+)}\rceil-\lfloor E^{(-)}\rfloor)\rightarrow \mathcal{O}_{Y}(\lceil E^{(+)}\rceil)$

$\rightarrow \mathcal{O}_{\lfloor E^{(-)}\rfloor}(\lceil E^{(+)}\rceil)\rightarrow 0$

we get the surjectivity of the map

$h_{*}\mathcal{O}_{Y}(\lceil E^{(+)}\rceil)\rightarrow h_{*}\mathcal{O}L^{E^{(-)}\rfloor}(\lceil E^{(+)}\rceil)$ .
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Let $E_{i}$ be a component $\lceil E^{(+)}\rceil$ . Then either $E_{i}$ is g-exceptional or $E_{i}$ is the proper
transform of some $D_{i}$ whose coefficient $d_{i}<1$ . Thus $\lceil E^{(+)}\rceil$ is g-exceptional and

$h_{*}\mathcal{O}_{Y}(\lceil E^{(+)}\rceil)=f_{*}(\mathcal{O}_{X}(g_{*}(\lceil E^{(+)}\rceil)))=\mathcal{O}_{Z}$ .

Assume that in a neighborhood of some fiber $h^{-1}(z),$ $z\in Z$ the set $\lfloor E^{(-)}\rfloor$ has two
connected components $F_{1}$ and $F_{2}$ . Then

$h_{*}\mathcal{O}L^{E^{(-)}}\rfloor(\lceil E^{(+)}\rceil)_{(z)}=h_{*}\mathcal{O}_{F_{1}}(\lceil E^{(+)}\rceil)_{(z)}+h_{*}\mathcal{O}_{F_{2}}(\lceil E^{(+)}\rceil)_{(z)}$ ,

and both terms do not vanish. Hence $h_{*}\mathcal{O}_{\lfloor E^{(-)}}\rfloor(\lceil E^{(+)}\rceil)_{(z)}$ cannot be a quotient
of the cyclic module $\mathcal{O}_{z,Z}\simeq h_{*}\mathcal{O}_{Y}(\lceil E^{(+)}\rceil)_{(z)}$ . $\square $

DEFINITION 2.3.2 ([Sh2, 3.14]). Let $X$ be a normal variety and $D=\sum d_{i}D_{i}$ a
$\mathbb{Q}$-divisor on $X$ such that $K_{X}+D$ is $\mathbb{Q}$-Cartier. We say that a subvariety $W\subset X$ is a
center of $log$ canonical singularities, if there exists a birational contraction $ f:Y\rightarrow$

$X$ and a divisor $E$ (not necessarily $f$-exceptional) with discrepancy $ a(E, D, X)\leq$

$-1$ such that $f(E)=W$ . The union of all centers of lc singularities is called the
locus of $log$ canonical singularities of (X, $D$ ) and is denoted by LCS(X, $D$ ).

COROLLARY 2.3.3. Notation as in Theorem 2.3.1. Then the set LCS(X, $D$ ) is
connected in a neighborhood of any fiber of $f$ .


