CHAPTER 2

Inversion of adjunction

2.1. Two-dimensional toric singularities and \log canonical singularities with a reduced boundary

2.1.1. If the cyclic group \mathbb{Z}_{m} acts linearly on \mathbb{C}^{n} by

$$
x_{1} \rightarrow \varepsilon^{a_{1}} x_{1}, \quad x_{2} \rightarrow \varepsilon^{a_{2}} x_{2}, \ldots, x_{n} \rightarrow \varepsilon^{a_{n}} x_{n},
$$

where ε is a chosen primitive root of degree m of unity, we call the integers a_{1}, \ldots, a_{n} the weights of the action. In this case, the quotient is denoted by $\mathbb{C}^{n} / \mathbb{Z}_{m}\left(a_{1}, \ldots, a_{n}\right)$. It is clear that the weights are defined modulo m and also depend on the choice of the primitive root ε.

Let (Z, Q) be a two-dimensional quotient singularity $\mathbb{C}^{2} / \mathbb{Z}_{m}(1, q)$, where $\operatorname{gcd}(q, m)=1$ (in particular, this means that \mathbb{Z}_{m} acts on \mathbb{C}^{2} freely in codimension one). Then this singularity is toric, hence it is klt. The minimal resolution is obtained as a sequence of weighted blowups (see 3.2). The dual graph is a chain

where the sequence $a_{1}, a_{2}, \ldots, a_{r}$ is obtained from the continued fraction decomposition of m / q (see $[\mathbf{H i}]$ or $[\mathbf{B r}]$):

$$
\begin{equation*}
\frac{m}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\cdots \frac{1}{a_{r}}}} \tag{2.1}
\end{equation*}
$$

Now we give the classification of two-dimensional log canonical singularities with nonempty reduced boundary, following Kawamata [K]. Note that this is much easier than the classification of all two-dimensional log canonical singularities.

Theorem 2.1.2 ([K, 9.6], [Ut, ch. 3]). Let $X \ni P$ be an analytic germ of a two-dimensional normal singularity and $X \supset C$ a (possibly reducible) reduced curve. Assume that $K_{X}+C$ is plt. Then

$$
(X, C) \simeq\left(\mathbb{C}^{2},\{x=0\}\right) / \mathbb{Z}_{m}(1, a), \quad \text { with } \quad \operatorname{gcd}(a, m)=1
$$

In particular, C is irreducible and smooth. In this case, $K_{X}+C$ has index m and the graph of the minimal resolution of $(X \supset C \ni P)$ is of type

where the black vertex corresponds to the proper transform of C, and the white ones \bigcirc correspond to exceptional divisors. The numbers attached to white vertices are self-intersection numbers.

Sketch of proof. Let m be the index of C (i.e., $m C \sim 0$) and $\psi: X^{\prime} \rightarrow X$ the corresponding cyclic m-cover. Then $C^{\prime}:=\psi^{-1}(C)_{\text {red }}$ is a Cartier divisor and $K_{X^{\prime}}+C^{\prime}$ is plt. This gives that X^{\prime} and C^{\prime} are smooth and $X^{\prime} \simeq \mathbb{C}^{2}$ up to analytic isomorphism.

Theorem 2.1.3 ([K, 9.6], [Ut, ch. 3]). Let $X \ni P$ be an analytic germ of a two-dimensional normal singularity and $X \supset C$ a (possibly reducible) reduced curve. Assume that $K_{X}+C$ is lc but not plt. Then just one of the following two possibilities holds:
(i) C has two smooth components,

$$
(X, C) \simeq\left(\mathbb{C}^{2},\{x y=0\}\right) / \mathbb{Z}_{m}(1, a), \quad \text { with } \quad \operatorname{gcd}(a, m)=1
$$

The index of $K_{X}+C$ is equal to 1 (i.e., $K_{X}+C \sim 0$). The graph of the minimal resolution of $(X \supset C \ni P)$ is of the form

In this case, $K_{X}+C$ is not dlt for $m>1$ and dlt for $m=1$.
(ii) The curve C is smooth and irreducible,

$$
(X, C) \simeq\left(\mathbb{C}^{2},\{x y=0\}\right) / \mathbb{D}_{m}
$$

where $\mathbb{D}_{m} \subset \mathrm{GL}_{2}(\mathbb{C})$ is a subgroup of dihedral type without reflections (see $[\mathbf{B r}]$ for precise description of \mathbb{D}_{m}). In this case, $K_{X}+C$ is not dlt and is of index two (i.e., $2\left(K_{X}+C\right) \sim 0$), the log canonical cover is the singularity from (i) and the graph of the minimal resolution of $(X \supset C \ni P)$ is of type

The degenerate case $r=1$ is included here (then \mathbb{D}_{m} is a cyclic group).

Corollary 2.1.4. Let (X, D) be a log variety. Assume that $K_{X}+D$ is lc and $W \subset X$ an irreducible subvariety of codimension two. Assume that $W \subset$ $\lfloor D\rfloor$. Then near a general point $w \in W$ there is an analytic isomorphism between $(X,\lfloor D\rfloor, W)$ and the product of a surface singularity from 2.1.2 or (i)-(ii) of 2.1.3 by $\mathbb{C}^{\operatorname{dim} X-2}$.

Exercise 2.1.5 (cf. 2.1.7). Assume that in the conditions of the theorem above C is a Cartier divisor. Show without using the theorem that then $(X, C) \simeq$ ($\mathbb{C}^{2}, \mathbb{C}^{1}$) or X is a Du Val point of type A_{n}, and C is its general hyperplane section.

Exercise 2.1.6. Express in the form $\mathbb{C}^{2} / \mathbb{Z}_{m}(1, q)$ the singularity with the minimal resolution

Example 2.1.7. Let (Z, Q) be a Du Val singularity of type A_{n} given by the equation $x^{2}+y^{2}+z^{n+1}$ and C the hyperplane section given by $z=0$. Then (Z, C) is a lc pair as in (i) of Theorem 2.1.3. Similarly, for the case (ii) of Theorem 2.1.3 we can take (Z, Q) of type D_{n} given by the equation $x^{2}+y^{2} z+z^{n-1}, n \geq 4$ and C as $\{z=0\}_{\text {red }}$.

2.2. Adjunction

Example 2.2.1. Let $X=X_{n} \subset \mathbb{P}^{n+1}$ be a two-dimensional projective cone over a rational normal curve $C_{n} \subset \mathbb{P}^{n}$ and $L \subset X$ its generator. The group of classes of Weil divisors modulo linear equivalence is generated by the class of L : $\operatorname{Weil}_{\text {lin }}(X) \simeq \mathbb{Z} \cdot L$ and $n L$ is the class of the hyperplane section of X. Thus we have $\left.L\right|_{L}=\frac{1}{n} P$, where P is the class of a point on $L \simeq \mathbb{P}^{1}$. It is also easy to compute that $K_{X} \sim-(n+2) L$. This yields

$$
\left.\left(K_{X}+L\right)\right|_{L}-K_{L}=-\left.(n+1) L\right|_{L}+2 P=(1-1 / n) P
$$

This is one instance where the standard coefficients (see 2.2.5) arise naturally.
This example shows that adjunction formula in its usual form fails for the case of Weil divisors. This phenomenon was first observed by M. Reid and is called also subadjunction. Shokurov [Sh2, §3] introduced the notion of different for the difference $\left.\left(K_{X}+L\right)\right|_{L}-K_{L}$ (see also [KMM, 5-1-9], [Ut, ch. 16]). The corresponding ideal sheaf sometimes is called the conductor ideal.

The following construction is a codimension two construction, i.e. the variety X may always be replaced with any open subset $X \backslash Z$, where $\operatorname{codim}_{X} Z \geq 3$.

Proposition-Definition 2.2.2. Let X be a normal variety and $S \subset X$ a reduced subscheme of pure codimension one. For simplicity we assume that $K_{X}+S$
is lc in codimension two. Then by Theorem 2.1.2 and Theorem 2.1.3, S has only normal crossings in codimension one. In particular, the scheme S is Gorenstein in codimension one. Then there exists naturally defined an effective \mathbb{Q}-Weil divisor Diff $_{S}(0)$, called the different, such that

$$
\left.\left(K_{X}+S\right)\right|_{S}=K_{S}+\operatorname{Diff}_{S}(0)
$$

Now let B be a \mathbb{Q}-divisor, which is \mathbb{Q}-Cartier in codimension two. Then the different for $K_{X}+S+B$ is defined by the formula

$$
\left.\left(K_{X}+S+B\right)\right|_{S}=K_{S}+\operatorname{Diff}_{S}(B)
$$

In particular, if B is a boundary and $K_{X}+S+B$ is lc in codimension two, then by 2.1.2 and 2.1.3, B is \mathbb{Q}-Cartier in codimension two. Moreover, none of the components of $\operatorname{Diff}_{S}(B)$ are contained in the singular locus of S.

Example 2.2.3. Let $Q \subset \mathbb{P}^{4}$ be a quadratic cone over $x y=z t$ and $S \subset Q$ a plane. Then $\left.S\right|_{S}=0$ modulo codimension two subsets and $\left.\left(K_{Q}+S\right)\right|_{S}=K_{S}$. Therefore $\operatorname{Diff}_{S}(0)=0$. This shows that codimension three singularities are not essential for 2.2.2.

The following theorem allows us to compute coefficients of the different and shows that computations in Example 2.2.1 are very general.

Theorem 2.2.4 ([Sh2, 3.9], [$\mathbf{U t}, 16.6]$). In the conditions of Theorem 2.1.2 and Theorem 2.1.3 for the different $\operatorname{Diff}_{C}(0)$ at P we have
(i) If $K_{X}+C$ is $p l t$, then $\operatorname{Diff}_{C}(0)=(1-1 / m) P$, where m is the index of $K_{X}+C$ (see Theorem 2.1.2).
(ii) If $(X \supset C \ni P)$ is as in (i) of Theorem 2.1.3, then $\mathrm{Diff}_{C}(0)=0$.
(iii) If $(X \supset C \ni P)$ is as in (ii) of Theorem 2.1.3, then $\mathrm{Diff}_{C}(0)=P$.
2.2.5. Notation. Put

$$
\Phi_{\mathrm{sm}}:=\{1-1 / m \mid m \in \mathbb{N} \cup\{\infty\}\}
$$

We distinguish this set because it naturally appears in the Adjunction Formula. Latter we will see that the class of boundaries with coefficients $\in \boldsymbol{\Phi}_{\mathbf{s m}}$ is closed under finite Galois morphisms (see 1.2) and Adjunction Formula (Corollary 2.2.9, cf. [Ko1]). We say that the boundary $D=\sum d_{i} D_{i}$ has standard coefficients, if $d_{i} \in \Phi_{\mathrm{sm}}$ for all i. Unfortunately the property $\in \Phi_{\mathrm{sm}}$ is not closed under crepant birational transformations (see 1.1.6) to avoid this difficulty Shokurov considered the class of boundaries with coefficients from the set

$$
\Phi_{\mathrm{m}}:=\Phi_{\mathrm{sm}} \cup[6 / 7,1] .
$$

The following result is very important for applications and is called Inversion of Adjunction.

Theorem 2.2.6 ([Sh2, 3.3, 3.12, 5.13], [Ut, 17.6]). Notation as in 2.2.2. Let B be an effective \mathbb{Q}-divisor on X such that S and B have no common components and $\lfloor B\rfloor=0$. Assume that $K_{X}+S+B$ is \mathbb{Q}-Cartier. Then $K_{X}+S+B$ is plt near S if and only if S is normal and $K_{S}+\operatorname{Diff}_{S}(B)$ is klt.

Corollary 2.2.7 ([Ut, 17.7]). Let X be a normal variety, S an irreducible divisor and let B, B^{\prime} be effective \mathbb{Q}-divisors such that S and $B+B^{\prime}$ have no common components and $\lfloor B\rfloor=0$. Assume that $K_{X}+S+B$ and B^{\prime} are \mathbb{Q}-Cartier and $K_{X}+S+B$ is plt. Then $K_{X}+S+B+B^{\prime}$ is lc near S if and only if so is $K_{S}+\operatorname{Diff}_{S}\left(B+B^{\prime}\right)$.

Corollary 2.2.8 ([Sh2, 3.10]). Let X be a normal variety, S a reduced Weil divisor on X and $B=\sum b_{i} B_{i}$ a boundary on X such that S and B have no common components. Assume that $K_{X}+S+B$ is plt. Then Diff ${ }_{S}(B)$ has the form

$$
\operatorname{Diff}_{S}(B)=\sum_{P_{i}}\left(\frac{m_{i}-1}{m_{i}}+\sum_{j} \frac{b_{j} n_{i, j}}{m_{i}}\right) P_{i}
$$

where each P_{i} is a prime divisor on S, m_{i} is the index of S at a general point of P_{i}, and $n_{i, j} \in \mathbb{N}$. Moreover, assume that B has only standard coefficients. Then so has Diff $_{S}(B)$. More precisely, if $B=\sum\left(1-1 / r_{i}\right) B_{i}$ and P is a prime divisor on S, then P is contained in at most one component, say B_{i}, of B and the coefficient of Diff $_{S}(B)$ along P is equal to $1-\frac{1}{m_{i} r_{i}}$.

Corollary 2.2.9. Notation as in 2.2.8. Then

$$
\begin{array}{lll}
B \in \Phi_{\mathbf{s m}} & \Longrightarrow & \operatorname{Diff}_{S}(B) \in \Phi_{\mathbf{s m}} \\
B \in \Phi_{\mathbf{m}} & \Longrightarrow & \operatorname{Diff}_{S}(B) \in \Phi_{\mathbf{m}}
\end{array}
$$

The example below shows that Inversion of Adjunction fails in the case of noneffective divisors.

Example 2.2.10. Consider the following smooth curves on $\mathbb{C}^{2}: C:=\{x=0\}$, $B_{1}:=\left\{y=x^{2}\right\}, B_{2}:=\left\{y=2 x^{2}\right\}, B_{3}:=\{y=x\}$ and consider the subboundary $B:=b B_{1}+b B_{2}+\left(\frac{3}{2}-3 b\right) B_{3}$, where $\frac{1}{2}<b<1$. Then $\operatorname{Diff}_{C}(B)=\left(\frac{3}{2}-b\right)(\mathrm{pt})$ because C intersects transversally B_{1}, B_{2}, B_{3}. Hence $K_{C}+\operatorname{Diff}_{C}(B)$ is klt. On the other hand $K_{\mathbb{C}^{2}}+C+B$ is not lc. Indeed, a \log resolution of $\left(\mathbb{C}^{2}, C+B\right)$ can be obtained by two blowing ups:

where E_{1} is a - 2 -curve and E_{2} is a - 1 -curve. It is easy to compute

$$
a\left(E_{1}, C+B\right)=-\frac{3}{2}+b>-1, \quad a\left(E_{2}, C+B\right)=-\frac{1}{2}-b<-1 .
$$

Therefore $K_{\mathbb{C}^{2}}+C+B$ is not lc at the origin.

For dlt singularities there are only weaker results, which use generalizations of the definition of dlt singularities to the case of nonnormal varieties (cf. [Sh2, 3.2.3, 3.6, 3.8], [Ut, 17.5, 16.9]):

Proposition 2.2.11 ([Sz]). Let $(X, S+B)$ be a log variety, where S is reduced, $\lfloor B\rfloor=0$ and S, B have no common components. Assume that $K_{X}+S+B$ is dlt. Then $K_{S}+\operatorname{Diff}_{S}(B)$ is generalized divisorial log terminal.

Example 2.2.12. Let $(X \ni P)$ be a germ of three-dimensional terminal singularity. Then by $[\mathbf{R Y}]$ a general divisor $F \in\left|-K_{X}\right|$ has only Du Val singularity at P. Hence by Theorem 2.2.6, $K_{X}+F$ is plt (and even canonical, because $K_{X}+F$ is Cartier).

Exercise 2.2.13. Let H be a general hyperplane section of the canonical quotient singularity $X:=\mathbb{C}^{3} / \mathbb{Z}_{3}(1,1,1)$. Show that $K_{X}+H$ is not plt.

Example 2.2.14 (cf. [R1, Sect. 1]). Let $\left(\begin{array}{lll}X & \ni & P\end{array}\right)$ be a normal threedimensional \mathbb{Q}-Gorenstein singularity and $H \ni P$ a hyperplane section. Assume that the singularity $(H \ni P)$ is Du Val. Then by Inversion of Adjunction, $(X \ni P)$ is canonical. Moreover, if $(X \ni P)$ is isolated, then it is terminal.

Exercise 2.2.15. Let ($X \ni o, D$) be a germ of a normal singularity. Assume that $K_{X}+D$ is lc and each component of $\lfloor D\rfloor$ is \mathbb{Q}-Cartier. Prove that $\lfloor D\rfloor$ has at most $\operatorname{dim} X$ components.

We also have a more general results:
Example 2.2.16. Let ($X \ni o, D=\sum d_{i} D_{i}$) be a germ of a normal singularity of dimension ≤ 3. Assume that $K_{X}+D$ is lc and each component of D is \mathbb{Q}-Cartier. Then $\sum d_{i} \leq \operatorname{dim} X$. Indeed, by taking cyclic covers étale in codimension one we obtain ($X^{\prime} \ni o^{\prime}, D^{\prime}=\sum d_{i}^{\prime} D_{i}^{\prime}$) such that $K_{X^{\prime}}+D^{\prime}$ is lc and each component of D^{\prime} is Cartier. Obviously, $\sum d_{i}^{\prime} \geq \sum d_{i}$. It is known that in dimension ≤ 3 there exists a divisor E over $X^{\prime} \ni o^{\prime}$ such that $a(E, 0) \leq \operatorname{dim} X-1$ (see Kawamata's appendix to [Sh2] and [M]). Then $-1 \leq a\left(E, D^{\prime}\right) \leq a(E, 0)-\sum d_{i}^{\prime}$. This yields $\sum d_{i} \leq \operatorname{dim} X$. Moreover, if the equality holds, then X^{\prime} is smooth. In this case, $X^{\prime} \rightarrow X$ gives the universal cover of the smooth locus of X. Therefore $X^{\prime} \rightarrow X$ is a quotient by a finite group, say G, which acts freely in codimension one. Then we have also $\sum d_{i}^{\prime}=\sum d_{i}$. Hence G does not permute components of D^{\prime}. So G must be abelian. This shows that the equality $\sum d_{i}=\operatorname{dim} X$ implies that X is analytically isomorphic to a toric singularity and $\lfloor D\rfloor$ is contained in the toric boundary.

Actually, the above result can be proved in any dimension without using [$\mathbf{M}]$:
Theorem 2.2.17 ([Ut, 18.22], [A1]). Let ($X \ni o, D=\sum d_{i} D_{i}$) be a germ of a log variety such that $K_{X}+D$ is lc. Assume that all the D_{i} are \mathbb{Q}-Cartier at o. Then $\sum d_{i} \leq \operatorname{dim} X$. Moreover, the equality holds only if $X \ni$ o is a cyclic quotient singularity.

Let $(X / Z \ni o, D)$ be a log variety. Then $(X / Z \ni o,\lfloor D\rfloor)$ is said to be a toric pair if there are analytic isomorphisms $\pi: X \rightarrow X^{T}, Z \rightarrow Z^{T}$ and the commutative diagram

where $X^{T} \rightarrow Z^{T}$ is an algebraic toric contraction and $\lfloor\pi(D)\rfloor$ is the toric boundary (i.e., $\lfloor\pi(D)\rfloor$ is contained in the set $X^{T} \backslash$ \{open orbit\}).

Shokurov proposed the following generalization of 2.2.17.
Conjecture 2.2.18 ([Sh3]). Let $\left(X / Z \ni o, D=\sum d_{i} D_{i}\right)$ be a \log variety such that $K_{X}+D$ is lc and $-\left(K_{X}+D\right)$ is nef over Z. Then*

$$
\begin{equation*}
\operatorname{rkWeil}_{\mathrm{alg}}(X) \geq \sum d_{i}-\operatorname{dim} X \tag{2.2}
\end{equation*}
$$

If X is \mathbb{Q}-factorial, then

$$
\begin{equation*}
\rho(X / Z) \geq \sum d_{i}-\operatorname{dim} X \tag{2.3}
\end{equation*}
$$

Moreover, equalities hold only if $(X / Z \ni o,\lfloor D\rfloor)$ is a toric pair.
In the case when Z is a point and $\rho(X)=1$ the inequality (2.3) was proved in [Ut, 18.24], see also [A1]. Shokurov [Sh3] proved this conjecture in dimension two; see theorems 8.5.1 and 8.5.2.

Note that inequality (2.3) is stronger than (2.2):
Proposition 2.2.19. Notation as in 2.2.18. Assume that the pair (X, D) has at least one minimal log terminal $\left(\mathbb{Q}\right.$-factorial) modification $f:\left(\tilde{X}, \tilde{D}=\sum \tilde{d}_{i} \tilde{D}_{i}\right) \rightarrow$ (X, D) (see 3.1.3). Then

$$
\begin{aligned}
& \operatorname{rkWeil}_{\operatorname{alg}}(X)-\sum d_{i}+\operatorname{dim} X \geq \\
& \quad \operatorname{rkWeil}_{\text {alg }}(\tilde{X})-\sum \tilde{d}_{i}+\operatorname{dim} \tilde{X} \geq \rho(\tilde{X} / Z)-\sum \tilde{d}_{i}+\operatorname{dim} \tilde{X} .
\end{aligned}
$$

Proof. Let us prove, for example, the first inequality. Write $\tilde{D}=\sum d_{i} B_{i}+$ $\sum_{j=1}^{r} E_{j}$, where each B_{i} is the proper transform of D_{i} and $\sum_{j=1}^{r} E_{j}$ is the (reduced) exceptional divisor. Then $\sum \tilde{d}_{i}=r+\sum d_{i}$. From the exact sequence

$$
\bigoplus_{i=1}^{r} \mathbb{Z} \cdot E_{i} \longrightarrow \operatorname{Weil}_{\mathrm{alg}}(\tilde{X}) \longrightarrow \operatorname{Weil}_{\mathrm{alg}}\left(\tilde{X} \backslash \sum E_{i}\right) \longrightarrow 0
$$

(cf. [Ha, Ch. II, 6.5]) we have

[^0]$$
\operatorname{rkWeil}_{\mathrm{alg}}(\tilde{X}) \leq \operatorname{Weil}_{\mathrm{alg}}\left(\tilde{X} \backslash \sum E_{i}\right)+r=\operatorname{rkWeil}_{\mathrm{alg}^{\prime}(X)}(X
$$

Example 2.2.20. Let $X=Z$ be the hypersurface singularity given in \mathbb{C}^{4} by the equation $x y=z t$. Consider four planes $D_{1}:=\{x=z=0\}, D_{2}:=\{x=z=0\}$, $D_{3}:=\{y=z=0\}, D_{4}:=\{y=t=0\}$. Let $D:=\sum D_{i}$. It is easy to check that $K_{X}+D$ is lc. The group $\mathrm{Weil}_{\text {alg }}(X)$ is generated by D_{1} and D_{2}. However, $D_{1}+D_{2} \sim 0$ (because it is Cartier). Thus $\operatorname{rkWeil}_{\text {alg }}(X)=1$ and $\sum d_{i}=4$. We have equality in (2.2) and the pair (X, D) is toric.

2.3. Connectedness Lemma

The most essential part of the proof of Theorem 2.2.6 is the following result which was proved firstly by Shokurov [Sh2, 5.7] in dimension two and latter by Kollár [Ut, 17.4], [Ko2, 7.4] in arbitrary dimension.

Theorem 2.3.1 (Connectedness Lemma). Let $f: X \rightarrow Z$ be a contraction and $D=\sum d_{i} D_{i}$ an effective \mathbb{Q}-divisor on X such that $K_{X}+D$ is \mathbb{Q}-Cartier. Assume that $-\left(K_{X}+D\right)$ is f-nef and f-big. Let

$$
h: Y \xrightarrow{g} X \xrightarrow{f} Z
$$

be a log resolution. Write

$$
K_{Y}=g^{*}\left(K_{X}+D\right)+E^{(+)}-E^{(-)}
$$

where $E^{(-)} \geq 0$ and the coefficients of $E^{(+)}$are >-1, and the coefficients of $E^{(-)}$ are ≥ 1. Then $\operatorname{Supp} E^{(-)}$is connected in a neighborhood of any fiber of h.

Note that in the case when f is birational, the big condition holds automatically.

Proof. We have

$$
\left\lceil E^{(+)}\right\rceil-\left\lfloor E^{(-)}\right\rfloor=K_{X}-g^{*}\left(K_{X}+D\right)+\left\{-E^{(+)}\right\}+\left\{E^{(-)}\right\}
$$

From this by Kawamata-Viehweg Vanishing Theorem [KMM, 1-2-3],

$$
R^{1} f_{*} \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil-\left\lfloor E^{(-)}\right\rfloor\right)=0
$$

Applying f_{*} to an exact sequence

$$
0 \longrightarrow \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil-\left\lfloor E^{(-)}\right\rfloor\right) \longrightarrow \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil\right)
$$

$$
\longrightarrow \mathcal{O}_{\left\lfloor E^{(-)}\right\rfloor}\left(\left\lceil E^{(+)}\right\rceil\right) \longrightarrow 0
$$

we get the surjectivity of the map

$$
h_{*} \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil\right) \longrightarrow h_{*} \mathcal{O}_{\left\lfloor E^{(-)}\right\rfloor}\left(\left\lceil E^{(+)}\right\rceil\right)
$$

Let E_{i} be a component $\left\lceil E^{(+)}\right\rceil$. Then either E_{i} is g-exceptional or E_{i} is the proper transform of some D_{i} whose coefficient $d_{i}<1$. Thus $\left\lceil E^{(+)}\right\rceil$is g-exceptional and

$$
h_{*} \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil\right)=f_{*}\left(\mathcal{O}_{X}\left(g_{*}\left(\left\lceil E^{(+)}\right\rceil\right)\right)\right)=\mathcal{O}_{Z}
$$

Assume that in a neighborhood of some fiber $h^{-1}(z), z \in Z$ the set $\left\lfloor E^{(-)}\right\rfloor$has two connected components F_{1} and F_{2}. Then

$$
h_{*} \mathcal{O}_{\left\lfloor E^{(-)}\right\rfloor}\left(\left\lceil E^{(+)}\right\rceil\right)_{(z)}=h_{*} \mathcal{O}_{F_{1}}\left(\left\lceil E^{(+)}\right\rceil\right)_{(z)}+h_{*} \mathcal{O}_{F_{2}}\left(\left\lceil E^{(+)}\right\rceil\right)_{(z)}
$$

and both terms do not vanish. Hence $h_{*} \mathcal{O}_{\left\lfloor E^{(-)}\right\rfloor}\left(\left[E^{(+)}\right\rceil\right)_{(z)}$ cannot be a quotient of the cyclic module $\mathcal{O}_{z, Z} \simeq h_{*} \mathcal{O}_{Y}\left(\left\lceil E^{(+)}\right\rceil\right)_{(z)}$.

Definition 2.3.2 ([Sh2, 3.14]). Let X be a normal variety and $D=\sum d_{i} D_{i}$ a \mathbb{Q}-divisor on X such that $K_{X}+D$ is \mathbb{Q}-Cartier. We say that a subvariety $W \subset X$ is a center of \log canonical singularities, if there exists a birational contraction $f: Y \rightarrow$ X and a divisor E (not necessarily f-exceptional) with discrepancy $a(E, D, X) \leq$ -1 such that $f(E)=W$. The union of all centers of lc singularities is called the locus of log canonical singularities of (X, D) and is denoted by $\operatorname{LCS}(X, D)$.

Corollary 2.3.3. Notation as in Theorem 2.3.1. Then the set $\operatorname{LCS}(X, D)$ is connected in a neighborhood of any fiber of f.

[^0]: *Shokurov pointed out that the stronger version of inequality (2.2) should be $\operatorname{Weil}(X) /$ Weil $_{0} \geq \sum d_{i}-\operatorname{dim} X$, where Weil $_{0} \subset \operatorname{Weil}(X)$ is the subgroup of all numerically trivial over Z (and \mathbb{Q}-Cartier) divisors.

