
CHAPTER 1

Preliminary results

1.1. Singularities of pairs

List of notations.
$\equiv$ numerical equivalence
$\sim$ linear equivalence
$\sim_{Q}$

$\mathbb{Q}$-linear equivalence
SC(X) function field of $X$

$D\approx D^{\prime}$ $D$ and $D^{\prime}$ gives the same valuation of $5K(X)$

$\rho(X)$ Picard number of $X$ , rank of the N\’eron-Severi group
$Z_{1}(X/Z)$ group of l-cycles on $X$ over $Z$ (see [KMM])
$N_{1}(X/Z)$ quotient of $Z_{1}(X/Z)$ modulo numerical equivalence (cf. )
$\overline{NE}(X/Z)$ Mori cone (see [KMM])
Weil(X) group of Weil divisors, $i$ .e., the free abelian group

generated by prime divisors on $X$

$Wei1_{1in}(X)$ quotients of Weil(X) modulo linear and algebraic
$Wei1_{alg}(X)$ equivalence respectively.

All varieties are assumed to be algebraic varieties defined over the field $\mathbb{C}$ . By a
contraction we mean a projective morphism $f:X\rightarrow Z$ of normal varieties such
that $f_{*}\mathcal{O}_{X}=\mathcal{O}_{Z}$ (i.e., having connected fibers). We call a birational contraction a
blowdown or blowup, depending on our choice of initial variety.

A boundary on a variety $X$ is a $\mathbb{Q}$-Weil divisor $D=\sum d_{i}D_{i}$ with coefficients
$0\leq d_{i}\leq 1$ . If we have only $d_{i}\leq 1$ , we say that $D$ is a subboundary. All varieties
are usually considered supplied with boundary (or subboundary) as an additional
structure. If $D$ is a boundary, then we say that (X, $D$ ) is a $log$ variety or $log$ pair.
Moreover, if we have a contraction $f:X\rightarrow Z$ , then we say that (X, $D$ ) is a $log$

variety over $Z$ and denote it simply by $(X/Z, D)$ . If $\dim Z>0$ , we often consider
$Z$ as a germ near some point $0\in Z$ . To specify this we denote the corresponding
$\log$ variety by $(X/Z\ni 0, D)$ .

Given a birational morphism $f:X\rightarrow Y$ , the boundary $D_{Y}$ on $Y$ is usually
considered as the image of the boundary $D_{X}$ on $X:D_{Y}=f_{*}D_{X}$ . The integral part
of a $\mathbb{Q}$-divisor $D=\sum d_{i}D_{i}$ is defined in the usual way: $\lfloor D\rfloor$ $:=\sum\lfloor d_{i}\rfloor D_{i}$ , where

$\lfloor d_{i}\rfloor$ is the greatest integer such that $\lfloor d_{i}\rfloor\leq d_{i}$ . The (round up) upper integral part
$\lceil D\rceil$ and the fractional part $\{D\}$ are similarly defined.
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A $log$ resolution is a resolution $f:\tilde{X}\rightarrow X$ of singularities of $X$ such that the
union $(\cup\overline{D}_{i})\cup Exc(f)$ of proper transforms* of all the $D_{i}$ and the exceptional
locus the exceptional locus $Exc(f)$ is a divisor with simple normal crossings.

Let $X$ be a normal variety, $D$ a $\mathbb{Q}$-divisor on $X$ , and $f:\overline{X}\rightarrow X$ any projective
birational morphism, where $X$ and $\tilde{X}$ are normal. Assume that $K_{X}+D$ is $\mathbb{Q}-$

Cartier. Then we can write

(1.1) $K_{\overline{X}}+\tilde{D}=f^{*}(K_{X}+D)+\sum_{E}a(E, D)E$ ,

where $\overline{D}$ is the proper transform $D$ and $a(E, D)\in \mathbb{Q}$ . The numbers $a(E, D)$

depends only on $X,$ $D$ and the discrete valuation of the field $i\mathcal{K}(X)$ corresponding
to $E$ (i.e., they do not depend on $f$ ). They are called discrepancies or discrepancy
coefficients. Define

discrep(X, $D$ ) $:=\inf_{E}$ { $a(E,$ $D)|E$ is an exceptional divisor over $X$ }.
We also put for nonexceptional divisors

$a(E, D)$ $;=\left\{\begin{array}{ll}-d_{i} & if E=D_{i} ;\\0 & otherwise.\end{array}\right.$

Let us say that the pair (X, $D$ ) has
terminal singularities, if discrep(X, $D$ ) $>0$ ;
canonical singularities, if discrep(X, $D$ ) $\geq 0$ ;
Kawamata $log$ terminal $(klt)$ singularities, if discrep(X, $D$ ) $>-1$ and $\lfloor D\rfloor\leq$

$0$ ;
purely $log$ terminal $(plt)$ singularities, if discrep(X, $D$ ) $>-1$ ;
$log$ canonical $(lc)$ singularities, if discrep(X, $D$ ) $\geq-1$ ;
e-log terminal $(\epsilon- lt)$ singularities, \dagger if discrep(X, $D$ ) $>-1+\epsilon$ ;
e-log canonical $(\epsilon- lc)$ singularities, if discrep(X, $D$ ) $\geq-1+\epsilon$ ;
divisorial $log$ terminal $(dlt)$ singularities, if $a(E_{i}, D)>-1$ for all exceptional
divisors $E_{i}$ of some $\log$ resolution $f$ whose exceptional locus consists of
divisors (or it is empty).

In these cases we also say simply that $K_{X}+D$ is lc (resp. klt, etc.) We usually
omit $D$ if it is trivial.

1.1.1. For the klt and lc properties the inequalities $a(E, D)>-1(\geq-1)$
can be checked for exceptional divisors of some $\log$ resolution (see [KMM, 0-2-
$12])_{-}$ The plt property of (X, $D$ ) is equivalent to the existence of a $\log$ resolution
$f:X\rightarrow X$ such that $a(E, D)>-1$ for all exceptional divisors of $f$ and the proper
transform $\overline{\lfloor D\rfloor}$ of $\lfloor D\rfloor$ on $\tilde{X}$ is smooth. It is easy to see that if $K_{X}+D$ is lc, then
$D$ is a subboundary. In the $tw\infty dimensional$ case we can use Mumford’s numerical

*The proper transform is sometimes also called the birational or strict transform.
\dagger Note that our definition of e-lt pairs is weaker than that given by Alexeev [A]: we do not

claim that $-d_{i}>-1+\epsilon$ .
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pull back of any Weil divisor, so all the above definitions can be given in this
situation numerically, without the $\mathbb{Q}$-Cartier assumption (see e.g., [S1] and 11.2).

EXAMPLE 1.1.2. Let $X$ be a smooth surface and $D=D_{1}+D_{2}$ a pair of
smooth curves intersecting transversally at one point. The identity map is a $\log$

resolution, so (X, $D$ ) is dlt. However, the blowup of the point of intersection gives
an exceptional divisor $E$ with discrepancy $a(E, D)=-1$ . Hence (X, $D$ ) is not plt.
IfD is an irreducible curve witha node onanonsingular surface X, then the pair
(X, $D$ ) is not dlt. This shows that the dlt condition is not local.

EXAMPLE 1.1.3. Let $Q\subset \mathbb{C}^{4}$ be a quadratic cone given by $xy=zt$ and $D$ its
hyperplane section $\{x=0\}$ . Then $D=D_{1}+D_{2}$ , where $D_{1}$ and $D_{2}$ are planes
in $\mathbb{C}^{4}$ . There is a small resolution $f:\tilde{Q}\rightarrow Q$ with exceptional locus $\mathbb{P}^{1}$ . The
intersection of the proper transforms of the planes $D_{1}$ and $D_{2}$ is a line on $\tilde{Q}$ . So $f$

is a $\log$ resolution. However, $(Q, D)$ is not dlt because $f$ is small.

In [Ut] the notion of weakly Kawamata $\log$ terminal singularity was introduced.
Later it was proved that this is equivalent to the dlt property [Sz]. The very close
(but wider) class of weakly $\log$ terminal pairs was considered in [KMM] and [Sh2].

${\rm Log}$ varieties with dlt singularities form a convenient class of varieties in which
the $\log$ Minimal Model Program ( $\log$ MMP) works [KMM]. In particular, these
singularities are rational [KMM, 1-3-1], [KM, 5.22] and the Cone Theorem and
Contraction Theorem hold for these varieties [KMM, 4.2.1, 3-2-1]. ${\rm Log}$ canonical
singularities are not necessarily rational. However, it was shown in [Sh4] that
reasonable $\log$ MMP also works in this category.

More precisely, the property of a $\mathbb{Q}$-factorial $\log$ variety to have klt (resp.
dlt) singularities is preserved under contractions of extremal rays and flips, i.e.,
they form classes of $\log$ varieties closed under the $\log$ MMP. We refer to [KMM]
for technical details of this theory; see also [Sh4] and (for two dimensional case)
Appendix 11.2, [A], [KK]. Note also that all distinctions between different notions
of $\log$ terminal singularities arise only if $D$ has components with coefficient 1.

The following property can be obtained directly from the definitions.

PROPOSITION 1.1.4 ([Sh2], [Ut, 2.17]). Let $X$ be a normal variety and $D=$
$\sum d_{i}D_{i}$ a subboundary on $X$ such that $K_{X}+D$ is a $\mathbb{Q}$ -Cartier divisor.

(i) If $D^{\prime}\leq D$ and $K_{X}+D$ is $lc$ (resp. e-lt, $dlt,$ $plt$ or $klt$) and $K_{X}+D^{\prime}$ is
$\mathbb{Q}$ -Cartier, then $K_{X}+D^{\prime}$ also is $lc$ (resp. $\epsilon- lt,$ $dlt,$ $plt$ or $klt$);

(ii) If $K_{X}+D$ is $dlt$, then there exists $\epsilon>0$ such that all $\mathbb{Q}$ -Cartier divisors
$K_{X}+D^{\prime}$ also are $dlt$ for all $D^{\prime}=\sum d_{i}D_{i}$ with $d_{i}^{\prime}\leq\min\{d_{i}+e, 1\}$ ;

(iii) If $K_{X}+D$ is $plt$ (resp. $klt$). and $K_{X}+D+D$ is $lc$ , then $K_{X}+D+tD^{\prime}$ is
$plt$ (resp. $klt$) for all $t<1$ .

REMARK 1.1.5. The formula (1.1) can be written as

(1.2) $K_{\tilde{X}}+D^{\prime}=f^{*}(K_{X}+D)$ ,
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where $D^{\prime}$ $:=\tilde{D}+\sum a_{i}E_{i}$ . In particular, $D=f_{*}D^{\prime}$ . Then the lc property of
$K_{X}+D$ is equivalent to that $D$ is a subboundary. In this case, $K_{\tilde{X}}+D$

’ is called
the crepant pull back of $K_{X}+D$ .

This trivial remark has the following useful generalization

PROPOSITION 1.1.6 ([Ko2]). Let $f:Y\rightarrow X$ be a birational contmction and $D$

a subboundary on $X$ such that $K_{X}+D$ is $\mathbb{Q}$ -Cartier. As in (1.2) take the crepant
pull back

(1.3) $K_{Y}+D_{Y}=f^{*}(K_{X}+D)$ , with $D=f_{*}D_{Y}$ .
Then

(i) $K_{X}+D$ is lc (resp. $klt$ ) $\Leftrightarrow K_{Y}+D_{Y}$ is lc (resp. klt);
(ii) $K_{X}+D$ is plt (resp. $dlt$ ) $\Leftrightarrow K_{Y}+D_{Y}$ is plt (resp. dlt) and $f$ does not

contract components of $D_{Y}$ with coefficient 1;
(iii) $K_{X}+D$ is $e- 1t\Leftrightarrow K_{Y}+D_{Y}$ is e-lt and $f$ does not contract components

of $D_{Y}$ with coefficient $\geq 1-\epsilon$ .
COROLLARY 1.1.7 ([Ut, 2.18]). Let $f:(Y, D_{Y})\rightarrow(X, D)$ be a birational con-

tmction, where $D=f_{*}D_{Y}$ . Assume that $K_{X}+D$ is $\mathbb{Q}$-Cartier. If $K_{Y}+D_{Y}$ is $lc$

(resp. $klt$) and $f-(nume\tau\dot{Y}cally)$ nonpositive, then $K_{X}+D$ is $lc$ (resp. $klt$).

EXAMPLE 1.1.8. Let $X$ be a normal toric variety and $D$ the reduced toric
boundary on $X$ . Then $K_{X}+D$ is lc. This follows by 1.1.6, from the fact that
$K_{X}+D\sim 0$ and from the existence of toric resolutions.

1.2. Finite morphisms and singularities of pairs

Let $f:Y\rightarrow X$ be a finite surjective morphism of normal varieties and $D=$
$\sum d_{i}D_{i}$ a subboundary on $X$ . We assume that the ramification divisor is contained
in $SuppD$ (we allow $D$ to have coefficients $=0$). Define a $\mathbb{Q}$-divisor $B$ on $Y$ by the
condition

(1.4) $K_{Y}+B=f^{*}(K_{X}+D)$ .

Write $B$ as $B=\sum b_{i,j}B_{i,j}$ , where $f(B_{i,j})=D_{i}$ , and $r_{i,j}$ the ramification index
along $B_{i,j}$ (i.e., at the general point of $B_{i,j}$ ). By the Hurwitz formula we have

(1.5) $b_{i,j}=1-r_{i,j}(1-d_{i})$ .

Hence $B$ is also subboundary. Note however that $B$ may not be a boundary even
if $D$ is.

PROPOSITION 1.2.1 ([Sh2, \S 2], [Ut, 20.3], [Ko2]). Notation as above. Then
$K_{X}+D$ is $lc$ (resp. $plt,$ $klt$) if and only if $K_{Y}+B$ is $lc$ (resp. is $plt,$ $klt$).

Propositions 1.1.6 and 1.2.1 show that the classes of klt, plt and lc singularities
of pairs are very natural and are closed under birational and finite morphisms. The
$implication\Rightarrow also$ holds for dlt pairs if $f$ is \’etale in codimension one [Sz].



1.2. FINITE MORPHISMS AND SINGULARITIES OF PAIRS 9

SKETCH OF PROOF. Let $g:X^{\prime}\rightarrow X$ be a birational morphism. Consider the
base change

$Y$
$\rightarrow^{f^{\prime}}X^{\prime}$

$ h\downarrow$ $ g\downarrow$

$Y\rightarrow^{f}X$

where $Y^{\prime}$ is a dominant component of the normalization of $Y\times xX$ . As in (1.3),
write

$K_{X^{\prime}}+D^{\prime}=g^{*}(K_{X}+D)$ and $K_{Y}+B=h^{*}(K_{Y}+B)$ ,
and similar to (1.4) we can write

$K_{Y^{\prime}}+B=f^{\prime}*(K_{X^{\prime}}+D^{\prime})$ ,

where by (1.5) the coefficients of $B$ are
$b_{i,j}^{\prime}=1-r_{i,j}^{\prime}(1-d_{i}^{\prime})$ .

Let $E:=B_{i,j}$ be an h-exceptional divisor and $F:=f^{\prime}(E)$ . Then this formula can
be rewritten as
(1.6) $a(E, B)+1=r_{i,j}^{\prime}(a(F, D)+1)$ , $r_{i,j}^{\prime}\leq\deg f$ .
This yields $a(E, B)\geq a(F, D)$ and all the $implications\Rightarrow$ . The $implications\Leftarrow$

follow by (1.6) and from the (nontrivial) fact that each exceptional divisor $E$ over
$Y$ can be obtained in the way specified above (see [Ko2, 3.17]). $\square $

Note that we have shown more:
(1.7) $1+discrep(X, D)\leq 1+discrep(Y, B)\leq(\deg f)(1+discrep(X, D))$ .

The following particular case of Proposition 1.2.1 is very interesting for appli-
cations.

COROLLARY 1.2.2. If a morphism $f:Y\rightarrow X$ is \’etale in codimension one, then
$K_{X}+D$ is $lc$ (resp. $plt,$ $klt$) if and only if $K_{Y}+f^{*}D$ is $lc$ (resp. $plt,$ $klt$).

From Proposition 1.2.1 it is easy also to obtain the following
COROLLARY 1.2.3. Let $Y$ be a variety with at worst $klt$ (resp. $lc$) singularities

and $Y\rightarrow X$ a finite surjective morphism. Then $X$ also has at worst $klt$ (resp. $lc$)
singularities.

In particular, all quotient singularities are klt. However, the converse is true
only in dimension two.

REMARK 1.2.4 ([R2, 3.1]). Let $G\subset GL_{n}(\mathbb{C})$ be a finite subgroup without
quasi-reflections. Then $\mathbb{C}^{n}/G$ has only canonical singularities if and only if for
every element $g\in G$ of order $r$ and for any primitive rth root of unity $e$ , the
diagonal form of the action of $g$ is

$g:x_{i}\rightarrow e^{a}\cdot x_{i}$ with $0\leq a_{i}<r$ , and $\sum a_{i}\geq r$ .
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EXAMPLE 1.2.5 ([Ca]). Let $(Y\ni 0)$ be a Du Val singularity and $ f:(Y\ni 0)\rightarrow$

$(X\ni P)$ a quotient by an involution. Write $K_{Y}=f^{*}(K_{X}+\frac{1}{2}\Delta)$ , where $\Delta$ is the
ramification divisor. Then (X, $\frac{1}{2}\triangle$ ) is $(1/2)- 1t$ . There is an explicit list of all such
involutions and quotients [Ca].

EXAMPLE 1.2.6 ([K], [Mo, 7.2]). Let $X\ni P$ be a germ of a three-dimensional
terminal singularity. By [RY], a general divisor $F\in|-K_{X}|$ has only Du Val
singularities. Then according to Inversion of Adjunction 2.2.6 (see Example 2.2.12)
$K_{X}+F$ is plt. From this, for general $S\in|-2K_{X}|$ the divisor $K_{X}+\frac{1}{2}S$ is also
plt. Consider the double cover $f:Y\rightarrow X$ with ramification divisor $S$ . Then $Y$ has
only klt singularities and $K_{Y}\sim 0$ . Hence the singularities of $Y$ are canonical of
index one.

The existence of a good divisor $S\in|-2K_{X}|$ in the global case or for extremal
contractions $X\rightarrow Z$ is a much more difficult problem. For example, it is sufficient
for the existence of three-dimensional flips [K].

1.3. ${\rm Log}$ canonical covers

The following construction is well known (see e.g., [Sh2, 2.4], [K3], $[K, 8.5]$ ,
[Kol]). Let $X$ be a normal variety and $D=\sum d_{i}D_{i}$ a boundary such that $m(K_{X}+$

$D)\sim 0$ . We take $m$ to be the least positive integer satisfying this condition.
Such $m$ is called the index of $K_{X}+D$ . Assume that $K_{X}+D$ is lc and $ d_{i}\in$

$\{1-1/k|k\in N\cup\{\infty\}\}$ for all $i$ (i.e. all the $d_{i}$ are standard, see 2.2.5). Then
the natural map $\mathcal{O}_{X}(-m(K_{X}+D))\rightarrow \mathcal{O}_{X}$ defines an $\mathcal{O}_{X}$ -algebra structure on
$\sum_{i=0}^{m1}\mathcal{O}_{X}(\lfloor-iK_{X}-iD\rfloor)$ . Put

$Y:=Spec(\sum_{i=0}^{m-1}\mathcal{O}_{X}(\lfloor-iK_{X}-iD\rfloor))$

and $\varphi:Y\rightarrow X$ the projection. Then $Y$ is irreducible, $\varphi$ is a cyclic Galois $\mathbb{Z}_{m^{-}}$

cover. Put $B$ $:=\varphi^{*}(\lfloor D\rfloor)$ . Then the ramification divisor (i.e. codimension one
ramification locus) of $\varphi$ is $Supp(D-\lfloor D\rfloor)$ . Further, the ramification index along
$D_{i}$ is $r_{i}$ , where $d_{i}=1-1/r_{i}$ . Therefore,

$\varphi^{*}(K_{X}+D)=K_{Y}+B\sim 0$ .

By 1.2.1, $K_{Y}+B$ is lc. Moreover, $K_{X}+D$ is plt (resp. klt) if and only if $K_{Y}+B$

is plt (resp. klt).

EXERCISE 1.3.1. Let $(X\ni P)$ be a Du Val singularity of type $D_{n}$ (given by
the equation $x^{2}+y^{2}z+z^{n-1}=0$ ) and $H$ be a general hyperplane section. Show
that the double cover ramified along $H$ is a lc singularity of index one. Write down
the equation of this singularity.

Finally, we present some Bertini’s type results.

PROPOSITION 1.3.2. Let $X$ be a normal variety and $D$ a $\mathbb{Q}$ -divisor on X. Let
$\mathcal{H}$ be a base point free linear system and $H\in \mathcal{H}$ a general member.
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(i) Then $K_{X}+D$ is $lc$ if and only if $K_{X}+D+H$ is $lc$ .
(ii) Assume additionally that $\lfloor D\rfloor=0$ . Then $K_{X}+D$ is $klt$ if and only if

$K_{X}+D+H$ is $plt$ .
PROOF. It is sufficient to show only the $implications\Rightarrow$ . Let $f:Y\rightarrow X$

be a $\log$ resolution of (X, $D$ ), $E_{1},$
$\ldots,$

$E_{r}$ exceptional divisors and $D_{Y},$ $H_{Y}$ proper
transforms of $D$ and $H$ , respectively. By Bertini’s theorem, $D_{Y}+H_{Y}$ is a simple
normal crossing divisor, so $f$ is also a $\log$ resolution of (X, $D+H$). We can choose
$H\in \mathcal{H}$ so that $H$ does not contain $f(E_{1}),$

$\ldots,$
$f(E_{r})$ . Thus we have $a(E_{i}, D+H)=$

$a(E_{i}, D)\geq-1$ . This implies the first part of our proposition. In the second part
we can use remark in 1.1.1. $\square $

PROPOSITION 1.3.3 ([R2, 1.13], [KM, 5.17]). Let $X$ be a normal variety and
$D$ a $\mathbb{Q}$ -divisor on X. Let $\mathcal{H}$ be a base point free linear system and $H\in \mathcal{H}$ a general
member. Assume that $K_{X}+D$ is $klt$ (resp. $plt,$ $lc$, canonical, terminal). Then
$K_{H}+D|_{H}$ is $klt$ (resp. $plt,$ $lc$, canonical, terminal).


