Chapter 7

The Determinant of a Period
Matrix

In this chapter we assume that A is an essential complexified real arrangement and
follow [DT]. Using the fnbc bases and the hypergeometric pairing of Definition
2.3.3, we obtain a period matrix whose rows and columns are labeled by fnbc. The
entries are hypergeometric integrals. In general these individual entries cannot be
calculated in closed form. The main result is a formula for the determinant of this
period matrix. The formula was conjectured by Varchenko in [V1] who proved it
for arrangements of general position as well as arrangements in R2. We assume
throughout this chapter that the weights are in

Uz={\eC"|\x ¢Z, X € D(Ax)}

so the weights are nonresonant.

7.1 The Period Matrix

The next result is due to Kohno [Kol].
Theorem 7.1.1. If A € Uy, then

ict HY(M,L) — HP(M,L) ip: Hy(M,LY) — H (M, L")
are isomorphisms for all p.

Proof. Let j : M — X denote the inclusion where X is the resolution constructed
in Theorem 4.2.3. Since 1 is not an eigenvalue of the monodromy along any irre-
ducible component of Y, j.L = jiL, where ji is extension by zero. This provides
isomorphisms:

HP(M, L) ~ HP(X,j.L) ~ HP(X, jiL) ~ HP(M, L).
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O

Consider the Anbc bases ¥, bch. Use Theorem 7.1.1 and write v; = i;, ' (A;) to get
the associated linearly ordered basis for Hy(M, LY), G(A) = {vj}le. An explicit
description of G(A), which is called Hadamard’s finite part, requires considerable
effort, see [AK], [Kt2], and Example 2.2.2. Choose a branch of a” on each chamber
Aj. Note that this specifies a branch on 7; and that the orientation of A; orients ;.
Given v; € U, the pairing in Definition 2.3.3 provides a matrix of hypergeometric
integrals

(1) PM*(A,\)ij = / DY

Vi

Since the integrand is a form with noncompact support, integrating over the non-
compact domain A; results in an improper integral whose convergence must be
argued.

It follows from [LS, 4.2] that the integral (1) may be regarded as a meromor-
phic function on C™ whose poles lie on some hypersurfaces defined by equations
2™ L) — = 0, where L is a linear form of \; and y is a nonzero complex number.
Since the hypergeometric pairing is nondegenerate, we may write L(\) = Ax for
some dense edge X and p = 1. If R\, > 0, for all p, then

/Aj Prth; = /% rti

meaning that the improper integral on the left exists and has the value of the
integral on the right. Note that the integral representation of the classical hyper-
geomertric function of Gauss, formula (4) in the Introduction, requires a similar
consideration.

Definition 7.1.2. Define the hypergeometric period matrix PM(A, \) by

PM(A, Ny = / D

J

It follows that det PM(A, \) takes a finite nonzero value at each nonresonant \.
We formally define det PM(A, \) =1 if 3(A) = 0.

7.2 The Main Theorem
Definition 7.2.1. For X € L(Ay), define
p(X) = |e(M(P(Ax)x)) e(M((Ax)™))|-

Here e(M) is euler characteristic and P(A)x is the projective quotient of the
central arrangement (As)x -



7.2. THE MAIN THEOREM 61

Example 7.2.2. In the projective closure of the Selberg arrangement 3.1.1, the six
lines and the four triple points are dense. If X is a line, then M(P(Ax)x) is the
projective line minus a point, while M((Ax)X) is the projective line minus three
points, so p(X) = 1. If X is a triple point, then M(P(Aw)x) is the projective line
minus three points, while (A )™ =0 and M((Ax)X) is a point, so p(X) = 1.

Lemma 7.2.3. Let A be an essential arrangement with projective closure Aso.
Then

EMPA)] = Ald(Ao)),
) oy o if (Aw)¥ =0,
M (A=) {6((«400)5() if (A) £0,

where (Aso )i denotes (Axo)X with an arbitrary hyperplane removed.

It follows from Corollary 3.3.5 that p(X) = 0if X ¢ D(Aw). There is a disjoint
union L(Ax) = Li(Ax) U L_(Ax) where Ly (Ax) = L(A) consists of edges not
in Hy, and L_(Ax) = L(Ax )= consists of edges in Hy,. Recall that the weight
of Hoo 18 Moo = = ) pres A and for X € L(Ax), we define Ax = ZHe(Ax)x A,

Definition 7.2.4 (Varchenko [V1]). The beta function of A is the following
product of gamma functions

BAN= J] TOx+1/Y J[ T(-Ax+1)9.

XeL,(Ax) XeL (Ax)

Example 7.2.5. If A consists of two points in the line with weights A, A2, this
function is Euler’s original Beta function

I+ DA +1)

B4 = LA+ A2 +1)

For the Selberg arrangement we get

(Hl T FD))TA + A3+ A5+ DP(Ae 4+ Ag + A5 + )

B(A, )
( ) (Zi=1)\i+1)r(/\1+/\2+)\5+1) ()\3-|-/\4—|—)\5+ )

The next theorem is one of the main results of [LS].

Theorem 7.2.6. We have
det PM*(A, ) = &' ...cd" B(A, \)h()),

where ¢y, -+ , ¢, are nonzero constants and h € C(Ay, -+, A\y)*.
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Proof. By [LS, 4.2.10], we have
detPM*(A, /\) _ (p(e%n)\l’ . 227r/\n) 'B(.A /\)B( )

where ¢ is a periodic function of A = (A, -+, \,), €1, - , ¢, are nonzero constants

and h € C(A1,- -+, Ap)*. Since the polynomials o, take real values on each A; and
det PM*(A, \) is holomorphic if R\, > 0 for all p, (™1 ... €%™n) is constant

by the final remark of [LS]. Write h()) = ph()). O

Remark 7.2.7. Theorem7.2.6 can be also obtained as a consequence of a theorem
by M. Sato [SSM, Theorem in Appendiz].

Definition 7.2.8 (Varchenko [V1]). Fiz a branch of a," on each Aj. Choose
zp; € Aj so that |a$‘°(:rp7j)| > \a,’}”(y)| for all y € A;. Define the complex number
n B

RAN = [T I] opr (zp.)-

p=1j=1

Write I = {1,...,n}. The rest of this chapter is devoted to a proof of the
following theorem conjectured by Varchenko [V1].

Theorem 7.2.9. Suppose R\, > 0 for all p € I. Then we have
det PM(A, \) = R(A,\)B(A,\).

In view of Theorem 7.2.6, we must prove that c,);’) = H?=1 ag”(xp’j) and h(\) = 1.

7.3 Deletion-Restriction Formulas

Let P={j | Hj € A', H;N H, = 0} be the set of indices of hyperplanes parallel to

H,. If j € P, then a;j |7, is a nonzero constant. Given the weight \; of H; € A,
the weight of H; € A’ is defined \; = \;. f B € A" let I ={i| H; € A, B C H;}
and define N = Ai. The proof of the next result is analogous to the proof
of [Lo, 6.3].

Theorem 7.3.1.
B(A,\) = B(A',N)B(A", \")

i€l

X I[I  TOx+1/T0x =+ 1PN
X€eLi(Ax),XCH,
X 11 [L(=Ax — A +1)/T(=Ax + 1))

XeL_ (Ax),XZH,

B(A)

R(AN) = RANRA N TT ad (@) (] 011

Jj=1 JEP

A//
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Corollary 7.3.2. We have
B(A,\)

A, =0 = B(A/, A/)B(.A//,AN)

and

R(A,N)

aumo = RN RA" N (T] a1, 1247,
jEP
In order to find the corresponding formula for the determinant, we have to
specify the branches of ®. Let &, be the restriction of oy, to H,, and define

2\ A
/ | | " AAL
A = app7 by = a’l‘ .

pel’ rel

Choose a branch of ®) on each bounded chamber of bch(A’) and a branch
of ®) on each bounded chamber of bch(A”). Also choose a branch of )" on
each bounded chamber A € bch(A). Let ¢, denote one of the complex numbers

Hje P a;" i, We use the terminology from the proof of Proposition 6.4.3 to define
a branch ®A of &y on A as follows:

(1) If A is undivided, then A € bch(A’). Define ®o = (a)"[a)(®/y).

(2) If A is the heir of A’ € bch(A’), then define o = (a2 )(®)y/)]a.

(3) If A is either a cutoff or a newborn, then it has a unique wall AN H,, D
A" € bch(A”). Choose the branch @/ of ®} on A such that & |a» = ¢, ®X,,. Let
@A = (Ozi‘l" A)q)/A

Recall that we are using the nbc-orientation for every chamber of bch(A’),
bch(A”) and beh(A). If A € beh(A) is undivided or the heir of A" € beh(A'), then
the corresponding fnbc-flags are equal. The orientation of A is induced from the
orientation of A’. If A € bch(A) is either a cutoff or newborn, then the orthonormal
frame for A is given by the orthonormal frame for A” together with the unit vector
in the direction of A as the last vector of the frame.

Define PM(A, \), PM(A’, \'), and PM(A”; ") using these branches and orienta-
tions. We analytically continue the determinant det PM(.A, A) onto the hyperplane
H,. Write I' = I\ {n}.

Proposition 7.3.3. Suppose R\, > 0 for all p € I'. Then

det PM(A, \)[5, o = det PM(A", N') det PM(A”, \) BA™).

Proof. Let A’ € bch(A’) be a divided chamber. Let AT be its heir and let A~
be its cutoff. Let ®T and ®~ be the branches of &) on AT and A~. Define the
constant car by ®T = ca®~ on A’ N H,. Add the column corresponding to the
cutoff A~ multiplied by cas to the column corresponding to the heir A* and set
An = 0. The resulting column has entries {([,, ®yap"v;) ,\n=0}f:1. Let M be
the matrix obtained from PM(A, \) by performing this operation for every divided
chamber. Then detM = det PM(A, )|, —o. Write

(29
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where P is a square matrix of size §(A’) and S is a square matrix of size 3(A”).
Since the first 3(A’) columns of M are labeled by bch(A’), it follows from Lemma
6.3.4 that P = PM(A’, \).

When computing R and S we may take ¢ = ((B) where B = {vB" H,} €
pnbc(A”) with B” € fnbc(A”). Write b = 1 A A\yw,. Consider R first. Let
A" € beh(A'). Set A} = AN {ay, =t} and F(t) = fA; @’ 7. Define real numbers
a < bsuch that A} # ) if and only if a < ¢ < b. Using the variable t = «,, Fubini’s
theorem and integration by parts give

b b
+ / Phadmih = / Mt IR ()dt = [t F (1) — / A F(t)dt.
A’ a

a

Taking the limit as A, — 0, R\, > 0, we get

b 0 0¢{a,b}
lim | [t F(t)]) - / tF'(t)dt| ={ F(0) 0=a<b
a ~F(0) a<b=0.

If A’ is divided, then we apply the first part to get zero. If H, intersects A’ in
a face of codimension > 1, then F(0) = 0. If H,, does not intersect A’, then the
integral is again zero. Thus M(A’, 1) = 0. This shows that R = 0.

It remains to compute the entries of S. Let A € bch(A) be either a cutoff or a
newborn. In this case H, N A D A”. Let 7(A") = B". It follows from Lemma
6.3.5 that ¢ = n|ar = ("(B"). Set Ay = AN {a, =t} and G(t) = fAt 'y,
where @’y is the unique branch of ®| on A such that ® |a» = ¢, ®4,,. Define real
numbers a < b such that A; # () if and only if a <t <b. Then 0 € {a,b}. Recall
the choice of branch of ®) on A and orientation of A. By the same calculation
as above, using the variable ¢t = ay,, Fubini’s theorem and integration by parts, we
get

1"

M(A, ) = lim/ P\ =G(0) = cn/ YY" = e, M(A", ")
A
as A, — 0, R\, > 0. So S = ¢,PM(A”, \"). Thus we have

det PM(A, \)

A,=0 = det M = (det P)(det S)
= det PM(A’, X') det PM(A”, X") 5A™),

O
Corollary 7.3.4.

det PM*(A, A)|x,.=0 = det PM*(A’, X') det PM* (A", \) A",

Proof. When the real part of A, is positive for all p € I’, this functional equality
was proved in Proposition 7.3.3. Therefore this equality holds true everywhere. [
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7.4 Proof of the Main Theorem

We argue by induction on (¢,n). If £ =1 the theorem is well-known. If 5(A) =
then the theorem asserts 1 = 1. Note that 3(A) = 0 whenever n < {. From the
induction hypothesis we have

det PM* (A", N) = R(A, N)B(A', ), det PM* (A", \") = R(A", X) B(A", \").

We determine the product of critical values first. The induction hypothesis
together with Corollary 7.3.4 and Corollary 7.3.2 give

= R(A, M)[x,=0.

A1
at...c

Thus ¢ = I ,lag (zp,j) for p # n. By considering another linear order <,
where H,, is the largest hyperplane m # n, we get

i‘l .. .C?L“ Am=0 = R(A, )\) Am =0+
so we obtain c)» = H] Lan (T ).

We have
det PM*(A, \) = R(A, \) B(A, A\)h()).

It remains to determine the rational function h. Let
L={Ax+m|X €D(Ax), me Z}.

Lemma 7.4.1. (1) Up to sign, h is independent of the linear order.

(2) The numerator and the denominator of h are (up to sign) products of linear
forms belonging to L.

(3) For allk € I, h(A1, -+, A\n)|ne=0 is equal to either 1 or —1.

Proof. (1) follows from [FT, Proposition 3.10] and the fact that both B(A, A) and
R(A, ) are independent of the linear order.

As for (2), recall that det PM(A, \) takes a finite nonzero value at each A €
Uy(A). Neither B(A, \) nor R(A, \) has a zero or pole at A\ € Uy(A). Therefore
h is a rational function which takes a finite nonzero value at every A € Uz(A).
Since the complement of Uz(A) is the union of a locally finite infinite family of
hyperplanes, we have (2).

Lastly, (3) is a consequence of the induction assumption, Corollary 7.3.4 and
Corollary 7.3.2. O

Lemma 7.4.2. h is equal to a constant function which is either 1 or —1 .

Proof. Suppose that h is not constant. By Lemma 7.4.1(2), we may write h as
a fraction whose denominator and numerator are both products of finitely many
elements of £. Suppose Ay + m appears in the expression. By Lemma 7.4.1(3),
Ax — A;j +m also appears in the expression for each j such that A; appears in Ax.
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Moreover, Ax + A; +m also appears in the expression for each j such that A; does
not appear in Ax. Using this observation repeatedly, we conclude that ), ; A; +m
appears for every subset J of I. In particular, A\; 4+ - - -+ A\,_1 + m appears in the
expression. This implies either (i) X = H; N ---N Hy,_; is dense and Ax =
{Hy,... Hy 1}, or (i) Xoo = HyN Hy is dense and (Ao )x,. = {Hp, Hoo}. Since
(ii) is a contradiction, (i) always occurs. In particular, Hy, ..., H,_1 are dependent
and there exists j € {1,...,n—1} such that X = HiN---NH;_1NHj41N- - -NHp_1.
If A is central, there is nothing to prove because 3(A) = 0. We may assume
0=HNn---NH,. Thus

0=HiNn---NH,=XNH,=HN---NHj_1NHjz1N---NH,.

This implies that Ay +--- + Aj_1 + Ajp1 + -+ + Ay + m does not appear in the
expression of h, which is a contradiction. This shows that h is a constant. By
Lemma 7.4.1(3), the constant is equal to either 1 or —1. O

It follows from Lemma 7.4.2 that
det PM*(A,\) = £R(A,\)B(A, \).

It remains to determine the sign. It is known that the sign is positive when ¢ =1
or 3(A) = 0. By Corollaries 7.3.4 and 7.3.2, we can show inductively that the sign
is always positive:

det PM* (A, \) = R(A, \)B(A, \).

Since PM* = PM, this proves the main theorem.





