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11 A priori estimates for the wave equation

11.1 Statement of the main weighted estimates for inhomo-
geneous wave equation

The representation of solution of the homogeneous problem (10.2.1) have been

expressed by the fomula (10.2.21) involving the operator $T_{\rho,\sigma}$ . This is an operator

acting on functions $f$ on $X$ by the formula

$T_{\rho,\sigma}(f)(\Omega)=$

(11.1.1) $\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1),2}}\int_{0}^{\infty}\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}P_{\lambda}(f)(\Omega)d\lambda.$

Our main estimate for this operator is given in the following.

Theorem 11.1.1 Let $\rho\geq 4\sigma\geq 1$ and $f\in S(X)$ . Then for

$\frac{n-1}{2(n+1)}\leq\frac{1}{q}\leq\frac{1}{2},\frac{1}{p}=1-\frac{1}{q}$

we have the estimate

(11.1.2) $\Vert T_{\rho,\sigma}(f)\Vert_{L^{q}(X)}\leq C\ln(\rho\prime\sigma)\frac{\sigma^{A}}{\rho^{B}}\Vert f\Vert_{Lp(X)},$

where
$A=1+B, B=\frac{n-1}{p}.$

Assuming the supports of $u$ and $F$ are in the light cone, we can use the coor-
dinates

$\rho=(t^{2}-|x|^{2})^{1\prime 2}, \Omega=(t,x)/\rho\in X,$

and we can represent the $L^{q}$ -norm in the form have

$(11.1_{s}3)$
$\Vert\rho^{\alpha}u\Vert_{Lq(R^{n}+1)}=(l_{0}^{\infty}\Vert\rho^{\alpha}u(\rho.)\Vert_{L^{q}(X)}^{q}\rho^{n}d\rho)^{1\prime q}$

Next step is to use the trivial inequality

(11.1.4) $\Vert F\Vert_{Lq(R^{n+1})}\leq C\sup_{\rho>0}\rho^{(n+1)\prime q+\epsilon}\Vert F(\rho.)\Vert_{Lq(X)}$

Thus the right side of (11.1.3) can be estimated from above by constant times

$\sup_{\rho>0}\rho$

$\alpha+(n+1)/q+\epsilon\Vert u(\rho.)\Vert_{Lq(X)}$



ANALYTIC FAMILY OF OPERATORS ASSOCIATED WITH INHOMOGENEOUS WAVE EQUATION 181

From the representation formula (10.2.21) we see that the estimate (11.1.2) guar-
antees that

(11.1.5) $\Vert\rho^{\alpha}u\Vert_{Lq(R^{n+1})}\leq ol_{0}^{\infty}\Vert\sigma^{A+\epsilon}F(\sigma.)\Vert_{L^{p}(X)}d\sigma.$

provided $\alpha<B-(n+1)/q=n-1-2n/q$ . Now application of the estimate

(11.1.6) $l^{\infty}\Vert F(\rho.)\Vert_{Lp(X)}d\rho\leq C\Vert\rho^{1-(n+1)/p+\epsilon}F\Vert_{Lp(R^{n+1})}$

leads to the following estimate.

Theorem 11.1.2 Let $u$ be a solution of the Cauchy problem (10.2.1) and let the
assumption

$suppF(s,y)\subset\{(s, y);|y|\leq s-1\}$

be fulfilled.
Then the solution of $(10.2.1)$ satisfies the estimate

$\Vert\rho^{\alpha}u\Vert_{L^{q}(R^{n+1})}\leq C\Vert fF\Vert_{L^{p}(R^{n+1})}$

for
$\frac{n-1}{2(n+1)}\leq\frac{1}{q}\leq\frac{1}{2},\frac{1}{p}=1-\frac{1}{q}$

$\alpha<n-1-\frac{2n}{q} \beta>\frac{2}{q}.$

Remark: The above estimate was established in [14] by using Fourier integral
techniques. The proof of this estimate, we represent here, is based on the Fourier
transform on the hyperboloid. $A$ similar idea was followed in [61].

11.2 Analytic family of operators associated with inhomo-
geneous wave equation

The solution of the inhomogeneous problem (10.2.1) can be expressed by the for-
mula (10.2.22), where $T_{\rho,\sigma}$ is an operator acting on functions $f$ on $X$ by the formula

$T_{\rho,\sigma}(f)(\Omega)=$

(11.2.1) $\frac{\sigma^{(n+1)/2}}{\rho^{(n-1)/2}}\int_{0}^{\infty}\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}P_{\lambda}(f)(\Omega)d\lambda.$

Here $P_{\lambda}$ is the spectral projection

$P_{\lambda}(f)(\Omega)=$

(11.2.2) $=|c(\lambda)|^{-2}\int_{S^{n-1}}[\Omega, \Lambda(\omega)]^{-i\lambda-(n-1)\prime 2}f(\lambda,\omega)d\omega.$
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In order to have a meaningful definition of the expression above we can choose
the function $f$ to be $\infty mpactly$ supported. Then the Fourier transfom $f(\lambda,\omega)$

shall be smooth in $\lambda,\omega$ . As we have seen in Theorem 3.2.2 this is not an essential
restriction for the application of this interpolation Theorem. To be sure that the

defimition of this operator is $\infty rrect$ we need also an uniform convergence of the
integral in $\lambda$ . To assure this convergence we can use the other generalization of

the Stein interpolation theorem represented in Theorem 3.3.2. Therefore we can
introduce the approximation operators

$T_{\rho,\sigma,\epsilon}(f)(\Omega)=$

(11.2.3) $\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1),2}}\int_{0}^{\infty}\frac{\sin(\lambda\ln(\rho\prime\sigma))}{\lambda}P_{\lambda}(f)(\Omega)e^{-\epsilon\lambda}d\lambda.$

If we obtain the comspondin$gL^{p}-L^{q}$ estimates with constant independent of
$\epsilon>0$ , then the density argument represented in the proof of Theorem 3.3.2 will
complete the proof.

From (11.2.1) and the inverse formula for the Fourier transfom on $X$ we get

$T_{\rho,\sigma,\epsilon}^{\wedge}f(\lambda,\omega)=$

(11.2.4) $\frac{\sigma^{(n+1)/2}}{\rho^{(n-1)/2}}\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}f(\lambda,\omega)e^{-\epsilon\lambda}.$

To obtain $L^{p}-L^{q}$ estimate we consider a suitable extention of the operator
$T=T_{\rho,\sigma,\epsilon}$ to a family of operators $T_{z}=T_{z,\rho,\sigma,e}$ defined by

(11.2.5)

Here $\chi_{z}(\lambda)$ is a function satisfying the properties
a $)$ for any fixed $\lambda>0$ the function

$z\rightarrow\chi_{z}(\lambda)$

is analytic in the strip Rez $\in[O, (n+1)\prime 2],$

b $)$ we have the relation
(11.2.6) $\chi_{1}(\lambda)=1,$

c $)$ one can find positive constant $D=D(\rho,\sigma)$ , independent of $\epsilon>0$ so that

(11.2.7) $|\frac{\chi_{z}(\lambda)}{\lambda}\sin(\lambda\ln(\rho\prime\sigma))|\leq D(\rho,\sigma)$ ,

for Rez $=0$ and for $d(\Omega, \Omega’)\geq\delta>0$ we have

$|\int_{0}^{\infty}\frac{\chi_{z}(\lambda)}{\lambda}\varphi_{\lambda}(\Omega, \Omega’)\sin(\lambda h(\rho/\sigma))e^{-\epsilon\lambda}d\lambda|\leq$

(11.2.8) $\leq D(\rho,\sigma)e^{-r(n-1)/2},$
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for ${\rm Re} z=(n+1)/2$ . Here $r=d(\Omega, \Omega’)$ .
Later on we shall see that these requirements are sufficient to derive suitable

$L^{p}-L^{q}$ estimate on the hyperboloid $X$ for the operator $T=T_{\rho,\sigma}$ . Now we can see
how to choose the function $\chi_{z}(\lambda)$ . For this we need more information about the
asymptotic behavior of the spherical function

$\varphi_{\lambda}(\Omega, \Omega’)=$

(11.2.9) $=|c(\lambda)|^{-2}\int_{S^{n-1}}[\Omega,\Lambda(\omega)]^{-i\lambda-(n-1)/2}[\Omega’, \Lambda(\omega)]^{i\lambda-(n-1)/2}d\omega.$

A suitable change of $\omega$-variables in (11.2.9) shows that

$\varphi_{\lambda}(\Omega, \Omega’)=\varphi_{\lambda}(g\Omega,g\Omega’)$

for any $g\in SO(1,n)$ so
$\varphi_{\lambda}(\Omega, \Omega’)$

is a function of the distance $d(\Omega, \Omega’)$ between the points $\Omega$ and $\Omega’$ . Then fomula
(8.3.9) imply with $r=d(\Omega, \Omega’)$

(11.2.10) $\varphi_{\lambda}(r)=c_{n}|c(\lambda)|^{-2}L_{\lambda}^{n}(r)$ ,

where
$L_{\sigma}^{n}=(shr)^{-(n-2)\prime 2}P_{-1/2-i\sigma}^{-(n-2)/2}$ (chr).

Further, lemma 8.5.2 shows that for $n\geq 3$ odd we have

(11.2.11) $\varphi_{\lambda}(r)=c_{n}(\frac{1}{shr}\partial_{r})^{(n-1)/2}\cos\lambda r.$

This representation fomula for $r\geq\delta>0$ gives

$|\varphi_{\lambda}(r)-\frac{1}{sh^{(n-1)/2}r}\lambda^{(n-1)/2}(c_{+}e^{i\lambda r}+c-e^{-i\lambda r})|$

(11.2.12) $\leq Ce^{-r(n-1)/2}\lambda(1+\lambda)^{(n-5)\prime 2}.$

On the other hand, for $n\geq 2$ even Lemma 8.5.3 guarantees that a similar estimate
is valid too. In fact, we have the following representation of the spherical function

$\varphi_{\lambda}(r)=$

$\sum_{k=1}^{n\prime 2}l^{\infty}\frac{shs}{\sqrt{chs-chr}}P_{k,r}(s)\partial_{s}^{k}(\cos(\lambda s))ds,$

where the functions $P_{k,r}(s)$ and all derivatives of these functions with respect to
$s$ are bounded from above by constant times $e^{-rn\prime 2}$ . It is clear that the spherical
function is a linear combination of integrals of type

$\lambda^{k}l^{\infty}\frac{shs}{\sqrt{chs-chr}}P_{k,r}(s)e^{\pm i\lambda s}ds$
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with $k=1,$ $\ldots,n/2$ . Take a mt-off function $\psi(s)\in C_{0}^{\infty}$ so that $\psi(s)=1$ for $|s|\leq 1.$

Then using an integration by parts, we reduce the analysis of the spherical function
to the following oscillatory integrals

$\lambda^{k}l^{\infty}\frac{shs}{\sqrt{chs-chr}}\psi(s-r)P_{k,r}(s)e^{\pm i\lambda s}ds.$

Making the change of variables $s\rightarrow\tau=\sqrt{s-r}$ and applying the stationary phase

method, we obtain

$|\varphi_{\lambda}(r)-sh^{-(n-1)\prime 2}r\lambda^{(n-1)/2}(c_{+}(r)e^{i\lambda r}+c_{-}(r)e^{-i\lambda r})|$

(11.2.13) $\leq Ce^{-r(n-1)/2}\lambda(1+\lambda)^{(n-6)\prime 2}.$

Here the functions $c\pm(r)$ are umifomly bounded.
Now choosing

(11.2.14) $\chi_{z}(\lambda)=d(z-(n+1)/2)e^{z^{2}}(1+\lambda)^{1-z},$

we see that the requirement (11.2.6) is fulfilled for

$d=-\frac{1}{e(n-1)/2}.$

Further, the inequality (11.2.7) is satisfied with

$D(\rho,\sigma)=C(1+\ln(\rho/\sigma))$ .

Finally, $fr$ (11.2.12) and (11.2.13) we conclude that the inequality (11.2.8) is
fulfilled too.

It is clear that

$T_{z\overline{\rho,\sigma,},\epsilon}f(\lambda,\omega)=$

(11.2.15) $\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1),2}}\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}e^{-\epsilon\lambda}\chi_{z}(\lambda)f(\lambda,\omega)$ .

For Rez $=0$ we have

(11.2.16) $|T_{z\overline{\rho,\sigma,},\epsilon}f(\lambda,\omega)|\leq D(\rho,\sigma)\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1),2}}|f(\lambda,\omega)|,$

where $D(\rho,\sigma)$ is the constant from (11.2.7) (modulo multiplier independent of
$\rho,$

$\sigma,\epsilon)$ . Now the Plancherel identity (8.4.19) implies that

(11.2.17) $\Vert T_{z,\rho,\sigma,\epsilon}f\Vert_{L^{2}(X)}\leq D(\rho,\sigma)\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1)/2}}\Vert f\Vert_{L^{2}(X)}.$
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For ${\rm Re} z=(n+1)/2$ we shall derive estimate for the kemel $K_{z,\rho,\sigma}(\Omega, \Omega’)$ defined
by the identity

(11.2.18) $T_{z,\rho,\sigma}(f)(\Omega)=l_{x}K_{z,\rho,\sigma}(\Omega, \Omega’)f(\Omega^{l})d\Omega’.$

Then we have

$K_{z,\rho,\sigma}(\Omega, \Omega’)=$

(11.2.19) $=\frac{\sigma^{(n+1)/2}}{\rho^{(n-1)/2}}\int_{0}^{\infty}\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}\chi_{z}(\lambda)\varphi_{\lambda}(\Omega, \Omega’)d\lambda.$

Since the estimates (11.2.12) and (11.2.13) require $d(\Omega, \Omega’)\geq\delta>0$ , we need a
suitable decomposition of the operator $T_{z}$ of type

$T_{z}=S_{z}+\Sigma_{z},$

where the kernel of the operator $S_{z}$ is supported into

$\{(\Omega, \Omega’)\in X\times X;d(\Omega, \Omega’)\geq\delta\}.$

11.3 Partition of unity on the hyperboloid

Our starting point in this section is the following property of the flat Euclidean
space $R^{n}$ . For any space dimension $n\geq 1$ one can find an universal constant
$N=N(n)$ so that for any positive $R>0$ one can find a covering $\{U_{\alpha}\}$ of $R^{n}$ with
the properties:

a$)$ diam $U_{\alpha}\leq R,$

b $)$ any family of $N+1$ elements of the covering has empty intersection.
The index $\alpha$ in the above covering is varying in a metric space $A$ . For example,

we can take $A\subseteq Z^{k}$ with usual distance $d(\alpha,\beta)=|\alpha-\beta|$ between any two
multiindices $\alpha,$

$\beta.$

A covering $\{U_{\alpha}\}$ , satisfying the property a) is called $R$-covering. So the above
property means the existence of a finite integer $N=N(n)$ so that for any $R>0$

one can find $R$-covering so that any family of $N+1$ elements of the covering has
empty intersection.

For example, we can take $N(n)=n$ . Sometimes the above property has the
meaning that the topological dimension(defined as the minimal number $N$ in the
above property) of $R^{n}$ is $n.$

The above property has the following consequence.

Lemma 11.3.1 There exists a number $b(n)>0$ so that for any real number $R>0$
there is a covering of $R^{n}$ formed by a family $\{U_{\alpha}\}$ of open connected domains in
$R^{n}$ , so that
(11.3.1) $d(U_{\alpha}, U_{\beta})\geq R$ when $\rho(\alpha, \beta)\geq b,$

(11.3.2) diam $(U_{\alpha})\leq R$
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Here
$d(Y_{1},Y_{2})=\inf_{y\iota\in Y_{1},y_{2}\in Y_{2}}d(y_{1},y_{2})$

for any couple of subsets $Y_{1}$ and $Y_{2}$ of $R^{n},$ $d(y_{1},y_{2})$ is the usual distance, while

diam $(Y)=\sup_{y_{1},y_{2}\in Y}d(y_{1},y_{2})$ .

Our main goal in this section is to verify a corresponding property for the case
of manifold of $\infty nstant$ negative curvature-l. It is clear that the main difficulty
is the fact that the metric is a Riemannian metric different from Euclidean.

Our constmction of the covering shall be explicit.
Thus we want to constmct a suitable partition of umity on the hyperboloid

$X=\{\Omega\in R^{n+1};[\Omega, \Omega]=1, \Omega_{0}>0\}.$

having the same properties a) and b).
The covering we are looking for is $\{D_{\alpha}\}$ and again the index $\alpha$ is varying in a

metric space $A.$

Then we want to find an integer $b$ so that for any real number $R>0$ there is a
covering of $X$ formed by the family $\{D_{\alpha}\}$ of open connected domains in $X$ , so that

(11.3.3) $d(D_{\alpha}, D_{\beta})\geq R$ when $\rho(\alpha,\beta)\geq b,$

(11.3.4) $\dim(D_{\alpha})\leq R$

Here
$d(Y_{1},Y_{2})= \inf_{y_{1}\in Y_{1},y_{2}\in Y_{2}} d(y_{1},y_{2})$

for any couple of subsets $Y_{1}$ and $Y_{2}$ of the hyperboloid $X,$ $d(y_{1},y_{2})$ is the distance
on the hyperboloid $X$ , while

diam $(Y)=\sup_{y_{1},y_{2}\in Y}d(y_{1},y_{2})$ .

If the above conditions are checked, then one can choose suitable $N=N(b)$ ,
independent of $R$ , so that any family of $N+1$ elements of the covering has empty
intersection.

A more explicit construction of a covering satisfying the above requirements is
given below.

Namely, given any real $R>0$ and any nonnegative integer $m$ we consider the
set
(11.3.5) $D_{m}(R)=\{\Omega\in X;(m-1)R/4<d(\Omega, \Omega^{*})<(m+1)R\prime 4\},$

where $\Omega^{*}=(1,0, \ldots, 0)$ . Then it is clear that these open sets form a covering of $X$

so that the property (11.3.3) is fulfilled and at most 3 sets of the covering have
nonempty intersection. It is clear also that the diameter of $D_{0}(R)$ and $D_{1}(R)$ is
not greater than $R$ so (11.3.4) is fulfilled for these sets. To arrange the property
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(11.3.4) for the sets $D_{m}(R)$ with $m\geq 2$ , we shall make a more refined covering of
each $D_{m}(R)$ by means of balls of type

(11.3.6) $D_{m,l}(R)=\{\Omega\in X;d(\Omega, \Omega_{m,l})<R\prime 2\},$

where
(11.3.7) $\Omega_{m,l}=(ch(mR\prime 4),\omega_{l}sh(mR/4))$ ,

and $\omega_{l}$ are suitable points on the umit sphere $S^{n-1}.$

Our goal is to find an universal number $b=b(n)$ so that for any $R>0$ one can
choose the points $\omega_{l}$ , so that

(11.3.8) $d(D_{m,l}, D_{m,l’})\geq R$ when $|l-l’|\geq b,$

(11.3.9) diam $(D_{m,l})\leq R$

Let us formulate more precisely the corresponding assertion.

Lemma 11.3.2 Let $n\geq 2$ . There exists an integer $b=b(n)$ , so that for any real
number $R>0$ and any integer $m\geq 2$ one can find a real number $\delta=\delta(R, m)>0$

and a finite number $M(R,m)$ of points $\omega_{l},$ $l=1,$
$\ldots,$

$M$ on the unit sphere so that
the balls $D_{m,l}(R)$ defined in (11.3.6) cover

(11.3.10) $D_{m}(R)=\{\Omega\in X;(m-1)R/4<d(\Omega, \Omega^{*})<(m+1)R\prime 4\}$

and the pmperties (11.3.8), (11.3.9) are fulfilled for this choice of $b$ and $R.$

Proof. Any point on $D_{m}(R)$ can be represented as

(11.3.11) $\Omega=(chr,\omega shr)$ ,

where $\omega\in S^{n-1}$ and $r$ satisfies the inequalities

(11.3.12) $(m-1)R\prime 4<r<(m+1)R\prime 4.$

Having in mind the assertion of Lemma 11.3.1, we see that our goal is to find
so small $\delta=\delta(R, m)>0$ and a finite number of points $\omega_{l},$ $l=1,$

$\ldots,$
$M$ on the umit

sphere so that the balls $D_{m,l}(R)$ with radius $R$ and centers

(11.3.13) $\Omega_{m,l}=(ch(mR/4),\omega_{l}sh(mR/4))$ ,

with $l=1,$
$\ldots,$

$M$ form a covering of $D_{m}(R)$ . This means that for any $\Omega\in X$ of the
form (11.3.11), satisfying (11.3.12), one can find

$\omega_{l}, l=1, \ldots,M,$

so that
$d(\Omega, \Omega_{m,l})\leq R$
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or equivalently
(11.3.14) $[\Omega, \Omega_{m,l}]\leq chR.$

Since
$[\Omega, \Omega_{m,l}]=$ ch$(r-mR/4)+shrsh(mR/4)\frac{|\omega-\omega_{l}|^{2}}{2},$

from (11.3.12) we see that (11.3.14) follows from

$|\omega-\omega\iota|^{2}\leq\frac{2}{sh((m+1)R,4)sh(mR,4)}$ (&$R$ -ch($R$/4)).

This observation and Lemma 11.3.1 show that for suitable small $\delta=\delta(R, m)>0$

we can find $\omega_{l},$ $l=1,$
$\ldots,$

$M$ on the unit sphere so that the conclusions of the Lemma
are tme.

Remark. One can also verify that

$M(R,m)=O(\frac{1}{(\delta(R,m))^{n-1}})$ .

Therefore, the integer $M(R,m)$ can grow to $\infty$ as $R$ grows to $\infty.$

The above Lemma shows that the set $A=A(R)$ of indices for the domains $D_{\alpha}$

from (11.3.3) is included in $Z\times Z$ so the corresponding metric is induced by the
Euclidean metric on $Z\times$ Z. More precisely, we have

$A(R)=\{(m, l);l=1, \ldots, M(R, m)\},$

where $M(R,m)$ is chosen $ac\infty rding$ to Lemma 11.3.2. Moreover, for $\alpha=(m, l)\in$

$A(R)$ and $\alpha’=(m’, l’)\in A(R)$ we have

$\rho(\alpha, \alpha’)=|m-m’|+|l-l’|.$

For the covering $\{D_{\alpha};\alpha\in A(R)\}$ of $X$ we can consider the corresponding
partition of unity

(11.3.15)
$1=\sum_{\alpha\in A(R)}\kappa_{\alpha}(\Omega)$

,

where $\kappa_{\alpha}(\Omega)$ are smooth non-negative functions supported in $D_{\alpha}.$

Further, we make the following decomposition of the operator $T_{z}$

(11.3.16) $T_{z}=S_{z}+\Sigma_{z},$

where
(11.3.17)

$S_{z}=\sum_{\rho(\alpha,\alpha’)\geq b}\kappa_{\alpha}T_{z}\kappa_{\alpha’}.$

Here the number $b>0$ is chosen according to (11.3.3). The operator $\Sigma_{z}$ evidently

is defined by

(11.3.18)
$\Sigma_{z}=\sum_{\rho(\alpha,\alpha’)<b}\kappa_{\alpha}T_{z}\kappa_{\alpha’}.$
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Our next step is to localize the estimate (11.2.17). Namely, using the fact that
$\Vert f\Vert_{L^{2}(X)}^{2}$ is equivalent to

$\sum_{\alpha\in A(R)}\Vert\kappa_{\alpha}f\Vert_{L^{2}(X)}^{2},$

from (11.2.17) and the definition (11.3.18) of the operator $\Sigma_{z}$ we get for ${\rm Re} z=0$

(11.3.19) $\Vert\Sigma_{z}f\Vert_{L^{2}(X)}\leq D(\rho, \sigma)\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1)/2}}\Vert f\Vert_{L^{2}(X)}$

and hence

$(11_{s}3.20)$ $\Vert S_{z}f\Vert_{L^{2}(X)}\leq D(\rho, \sigma)\frac{\sigma^{(n+1)/2}}{\rho^{(n-1)/2}}\Vert f\Vert_{L^{2}(X)}$

for ${\rm Re} z=0.$

On the line ${\rm Re} z=(n+1)/2$ we use the representation fomula (11.2.19) for
the kernel $K_{z}$ of the operator $T_{z}$ . Therefore, applying the estimate (11.2.8) for the
kernel

$\sum_{\rho(\alpha,\alpha’)\geq b}\kappa_{\alpha}K_{z}(\Omega, \Omega’)\kappa_{\alpha’}$

of the operator $S_{z}$ we obtain

(11.3.21) $\Vert S_{z}f\Vert_{L^{\infty}(X)}\leq D(\rho, \sigma)\frac{\sigma^{n}}{\rho^{n-1}}\Vert f\Vert_{L^{1}(X)}$

for ${\rm Re} z=(n+1)/2.$

Making interpolation (see Theorem 3.3.2) between (11.3.20) and (11.3.21), we
find

(11.3.22) $\Vert S_{1}f\Vert_{Lq(X)}\leq D(\rho, \sigma)\frac{\sigma^{A}}{\rho^{B}}\Vert f\Vert_{Lp(X)}$

with

$\frac{1}{q}=\frac{n-1}{2(n+1)},\frac{1}{p}=1-\frac{1}{q}=\frac{n+3}{2(n+1)}$

and

$A=B+1, B=\frac{(n-1)(n+3)}{2(n+1)}=\frac{n-1}{p}.$

To obtain $L^{q}-L^{p}$ estimate for the operator $\Sigma_{1}$ we use the representation formula
(10.2.2) and conclude that the kemel of the operator $\Sigma_{1}$ is

(11.3.23)
$\sum_{\rho(\alpha,\alpha)<b}\kappa_{\alpha}(\Omega)\kappa_{\alpha’}(\Omega’)E_{(n-1)/2}(\rho\Omega-\sigma\Omega’)\sigma^{n},$

where $E_{z}(t, x)$ is the distribution introduced in (10.1.13).
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Now we can choose the parameter $R>0$ used in the constmction of the partition
of unity $\{\kappa_{\alpha}\}$ . Namely, let the integers $N$ and $b$ from the beginning of this section
are fixed. Since for fixed $\alpha$ the set of indices $\alpha’$ satisfying

$\rho(\alpha,\alpha’)<b$

is fimite, one can find $C=C(b)$ so that

$d(D_{\alpha}, D_{\alpha’})\leq C(b)R$

for $\rho(\alpha, \alpha’)<b$ . Now for $\rho\geq 4\sigma\geq 1$ we take $R=R(\rho,\sigma)$ so that

$C(b)R=\ln(\frac{\rho}{3\sigma})$

so
(11.3.24) $d(D_{\alpha}, D_{\alpha’})\leq\ln(\frac{\rho}{3\sigma})$

for $\rho(\alpha,\alpha’)<b.$

First, we consider the case $n\geq 3$ odd. In this case the representation fomula
(10.1.23) and (10.1.22) show that the distribution $E_{(n-1)/2}(t,x)$ is supported in
the cone $t^{2}-|x|^{2}=0$ . On the other hand, from (11.3.24) we have

$[\rho\Omega-\sigma\Omega’,\rho\Omega-\sigma\Omega’]=\rho^{2}+\sigma^{2}-2\rho\sigma[\Omega, \Omega’]\geq$

(11.3.25) $\geq\rho^{2}+\sigma^{2}-2\rho\sigma\frac{\rho}{3\sigma}\geq\frac{\rho^{2}}{3}$

for $\rho(\alpha, \alpha’)<b$ . Hence, the kemel in (11.3.23) is identically $0$ for the case $n\geq 3$

odd. For the case $n\geq 2$ even the above observation shows that the kemel in
(11.3.23) is a classical function with absolute value dominated by constant times

(11.3.26)
$\sum_{\rho(\alpha,\alpha’)<b}\kappa_{\alpha}(\Omega)\kappa_{\alpha’}(\Omega’)\rho^{-(n-1)}\sigma^{n}$

so we have

(11.3.27) $\Vert\Sigma_{1}f\Vert_{L\infty(X)}\leq C\frac{\sigma^{n}}{\rho^{n-1}}\Vert f\Vert_{L^{1}(X)}.$

On the other hand, from (11.2.4), the estimate

$|\frac{\sin(\lambda\ln(\rho/\sigma))}{\lambda}|\leq C]n(\rho/\sigma)$

and the Plancherel identity on $X$ we obtain

(11.3.28) $\Vert T_{1}f\Vert_{L^{2}(X)}\leq C\ln(\rho/\sigma)\frac{\sigma^{(n+1)/2}}{\rho^{(n-1),2}}\Vert f\Vert_{L^{2}(X)}.$
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Using the argument to extract the localized version (11.3.20) of the estimate
(11.2.17), we can write the following local version of (11.3.28)

(11.3.29) $\Vert\Sigma_{1}f\Vert_{L^{2}(X)}\leq$ Cln $(\rho/\sigma)\frac{\sigma^{(n+1)\prime 2}}{\rho^{(n-1)/2}}\Vert f\Vert_{L^{2}(X)}.$

Making an interpolation between (11.3.27) and (11.3.29) we get

(11.3.30) $\Vert\Sigma_{1}f\Vert_{Lq(X)}\leq D(\rho,\sigma)\frac{\sigma^{A}}{\rho^{B}}\Vert f\Vert_{Lp(X)}$

with

$\frac{1}{q}=\frac{n-1}{2(n+1)},\frac{1}{p}=1-\frac{1}{q}=\frac{n+3}{2(n+1)}$

and

$A=\frac{n^{2}+4n-1}{2(n+1)}=B+1 B=\frac{(n-1)(n+3)}{2(n+1)}=\frac{n-1}{p}.$

From this estimate, (11.3.22) and the decomposition $T_{z}=S_{z}+\Sigma_{z}$ we arrive at

(11.3.31) $\Vert T_{1}f\Vert_{L^{q}(X)}\leq D(\rho,\sigma)\frac{\sigma^{A}}{\rho^{B}}\Vert f\Vert_{Lp(X)}$

Finally, an interpolation between this estimate and (11.3.28) gives the conclusion
of Theorem 11.1.1.
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