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10 Fundamental solutions

10.1 Cauchy problem for homogeneous wave equation

Our purpose in this section is to construct a solution of the problem

OE =0,
(10.1.1) E(0,z) =0, 8,E(0,z) = 6(z),
where
0=-62+A.
Once the solution E = E(t,z) is found, one can represent the solution of
Ou =0,
(10.1.2) u(0,z) =0, Bu(0,z) = f(x)
by
(10.1.3) u=E(t,.) * f.
Since

a(t,€) = E(t,€)1(¢),
comparing the representation of u with (3.3.7), we see that
sin(¢[¢])
€l

To construct fundamental solution we define s} * for any complex number 2
with Rez <1 by

(10.1.4) E(t,€) =

—_J % ifs>0
(10.1.5) 7 { 0  otherwise.
It is clear that this is a classical function in L},.(R) for Rez < 1. Note that
(10.1.6) %s;" =—zs8;""", forRez< 0.

The above relation enables one to extend the definition of s;’ for 1 < Rez < 2.
Namely, we define (for 1 < Rez < 2)

-z __ 1 d —2+1
- (10.1.7) D e TS )

where the derivative in the right side is taken in the sense of distributions. Moreover
for k < Rez < k + 1 we define s * by the relation

il s 1)}.(—: ) (g;)k ")

| ' _ F(—z+ 1) d £ —z+k
(10.1.8) TT(z+k+1) (ds) + 0
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where the derivatives are taken in distribution sense. Take

Cn -z
(101.9) E,(S) = r—(-i'—__—z)8+
for z # {1,2,3,...}. Here the constant c, > 0 will be chosen later on. We can
rewrite (10.1.8) as
dk
ds*
It is not difficult to establish the relation

(10.1.10) E.(s) = =< E._«(s).

(10.1.11) lim E,(s) = end*=1(s)

for any integer k > 1. Here the limit is taken in distribution sense. In fact, the
relation (see (8.5.4)

I'(2)[(1-z) = si:n
implies that
(10.1.12) imI'(1-2)(z— k) = ﬂ
- ok O

On the other hand, for any ¢ € Cg°(R) and z = k + € we see that the quantity

k
(67 9) = T T (G o)) =

(=1)% * _ed
N (—z+1)...(—z+k) /o s ditp(s)ds

tends to
—1 gkt

1 © gk
(k) /0 ao% ¥ (8)3s = 1y g1 #(0)
as ¢ tends to 0 and from (10.1.12) we obtain the needed relation (10.1.11).
Further, we consider the following family of distributions depending on z € C
Cn -

(10.1.13) Ez(t, a:) = m(t2 - $2)+z.

As before, this is a classical function for Rez < 1. Using the relation

(10.1.14) _OE,(t,z) = 4(2%1- — 2)Esp1,

one can extend the definition of E,(t,z) for Rez # k+ (n —1)/2, k = 0,1,2,...
as a distribution in D'(R™*!). Our next step is to compute the partial Fourier
transform of the distribution D’(R"). First, we start with the case Rez < 1, when
E.(t,z) is a classical function.
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Lemma 10.1.1 For Re z < 1 we have

‘/"l —zzf(t2_z ) zr(ldi z) =

21" —2Z+N Z—n
_ (2m™7 ) @M s amnrag D).

(10.1.15)

Proof. Since the scalar product z.£ is invariant under the action of the group
SO(n) of rotations, we see that the left side of the needed identity is a spherical
function in €. For this we lose no generality assuming £ = (|¢|,0,...,0). Then the
integral in the left side of (10.1.15) takes the form

; dz
— —iz1/é] [ 2,2 1 12\—% g, 1
(10.1.16) I /R e / @~z - [o"); de Fioa)

For n > 3 one can use polar coordinates r = |z/|, w’ = z//r € $"~2. So we have
GRS o
n—1
1
= p(S"2)(t? — 2?) TV / (1 - r?)~*r"2dr,
0

Choosing u(S°) = 2, we see that this identity holds also for n = 2. The relations
(8.5.6) and (8.5.7) enable one to compute explicitly the integral

1 1
/ (1—-r?)"*""%dr = l/ (1- p)_’p("_3)/2dr =
0 2Jo

n—1 1Tl -2)I((n-1)/2)
2 )3 T(n+1)/2-2) °

1
= EB(]. — Z,
So the integral in (10.1.16) becomes

_MEON((n—1)/2) [ iyl g2 —zt(n-1)/2,
=S e+v/2=2 | (¢ =)y doy =

n—-2 n— 1

p(S*A((n—1)/2) ,_2.4n int
N E A /o cos(tz1[€])(1 — 23)*+ "/ 2dg,.

Combining the formula (8.5.9) for the surface of the unit sphere with the Poisson
integral representation (10.4.7) of the Bessel function, we get

I= (27r)n/22—zt—-z+n/2|€|z—n/2J_z+n/2(t|E|).
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This completes the proof of the Lemma.

Remark. Note that the action (E,,¢) of the distribution E.(t,z) on any
test function <p(t z) € C(R™?) is analytic function for z # k + (n — 1)/2 for
k=0,1,2,... in view of the recurrence relation (10.1.14).

Since the right side of (10.1.15) is analytic function of z for |t| # 0, |£| # 0, we
see that (10.1.15) is valid in the sense of distributions for z # k + (n — 1)/2 and
k=0,1,2,..

Given any function ¢(t,z) € C§°(R"*!) we denote by

566 = e . <ot 2)ie

its inverse partial Fourier transform and then the action of E. on ¢ satisfies

—-n/2
(10.1.17) EL (B =
1 -n )
/R /R Sl 21 A g a(1E€]) B8 €) bt
Since
J (3)—‘/lsins
1289 =\ sn ’
we have _
2-——1 (—n+1)/2
——l———(E(n— 1)/2,9) =
(10.1.18) / / smlt”ﬂ‘;(t’e)dgdt'
rJr (€l

Then we choose ¢, so that
2—17r(—n+1)/2

Cn =5
i.e.
_ 1
€ = oDz
Thus we get
(E(n-1)/2,¥) =
in |t
(10.1.19) / / sin 1€l 5., ¢)agat.
rRJr» ¢

Comparing with (10.1.4), we see that E(t, :c) E(n-1)/2(t,z) is a solution of our
problem (10.1.1) and this is the fundamental solution of the initial problem (10.1.1)
for the wave equation.
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The recurrence relation (10.1.14) shows that the fundamental solution E,_1)/2
can be expressed by the aid of Ei(t,z), Eo(t,z) or Ey/2(t,z). For this our next
step will be an explicit representation formula for these solutions. In fact, we have

CBuplt,), ) =c / (- )V f)dy =

lyl<t
1
(10.120) = ctn_l / / f(t'l"(d)(l _ 7'2)'_1/27'n—ld44)d'r
0 JSn-1

for f € Cg°(R™). Here :
e 1
T Ir(1/2) 2w/

[

Further, we have

(Bo(t,), f) = / f(v)dy =

lyl<t
1 .
(10.1.21) = ct" / / f(trw)r™ *dwdr
0 Jsn—1
with
1
C=tn =g a-njz

Taking advantage of (10.1.11), we find

Bty ), f)=5 | fly)dS, =

tJjyl=t
(10.1.22) = ct"? / f(tw)dw,
) . Sn—1
where
1
c=2Cp = op-D/2"

From recurrence relation (10.1.14) we see that

for n > 3 odd. Here

(_1)(n—-3)/2 (_1)(n—1)/2

A= FE-DR) T (D)

For n > 2 even we have

(10.1.24) E(n_1)2 = CO"=32E,
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ith
i (—1)n-2/2

~ 27-2[(n/2)’
So we conclude that the expression OFE,(t, ) for some particular values of k, z

will appear in the representation formula for the fundamental solution of (10.1.1).
For this we shall establish the following representation of term of this type.

C

Lemma 10.1.2 Let z € C satisfy
2#£k+(n-1)/2 , k=0,1,2,..
and let l > 1 be an integer such that
z24+1l#k+(n-1)/2 , k=0,1,2,...
Then we have the relation (in sense of distributions)

(10.1.25) O'E,(t,z) = Y 0fz(ca(t,z)Ex(t, ),

la<i

where ¢ 4(t,z) are smooth functions in R"*1 \ 0 and satisfy for any multiindez 3
the estimate

(101.26) 0Fct,a(t,2) < Capalt] + o) ~1F17241°

Proof. It is sufficient to establish (10.1.25) for | = 1. Our starting point is the
representation

E.(t,z)=¢ (\/t—zl—j_'ﬁ) E.(t,z)+ |1—¢ (ﬁ)] E.(t,z),

where ¢(s) € CP(R) is a cut-off function, such that ¢(s) =1 for |s| < 1/4 and
¢(s8) = 0 for |s| > 1/2. Note that we have the estimate

Y. ||
b=\ V2 + |2l

Then it is sufficient to establish that

(__l=l —
(10.1.28) = Y 8,(da(t,z)E:(t, )

laf<1

(10.1.27) < Cp(It] + |z|) 1AL,
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and
of(1-p (o2 E,(m))=
f—_t2+|:v|2' !
(10.1.29) > 82.(ealt, 2)Ex(t, ),

lei<1

where the coefficients dq (2, z), e (¢, z) satisfy (10.1.26) with [ = 1.
The relation DOE; = ¢(z)(t2 — |z|2) "' E, was established in (10.1.14). Then the
Leibnitz rule implies that

pe(2)E,

(10.1.30) O(pE:) = —E.Op +2 Y _ 8,(E:0"p) + o

pu=0
Note that we have

It| 2t
10.1.31 <—=<—
(10.1.31) o< Z <3

on the support of ¢(|z|//t2 + |z|?). Combining this fact, the representation for-
mula (10.1.30) and the estimate (10.1.27) we arrive at (10.1.28).
To verify (10.1.29) we represent the operator O in polar coordinates

n_.l ar"‘""‘}i'ASn—lo

_D=6t2—33—

Since

(1= (o)) e

is invariant under any rotation, we have

o (1-0 () o)
o255 o) o]

Since
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we have the relation

1
t+r

(62 — 62) E.(t,r) = —22(8; — dr) ( E.(t, r)) =

422

t2 — |z|? Es.

(10.1.32)

Now we are in position to apply the following variant of Leibniz rule

b))

(W—;—W) Za (E*"“"’ (W)) '

(10.1.33) +

The relation (10.1.32) implies that

(oo () e, (e ()=

t2 — |z|? t+ |z

B 5 =l
+t+|:c|(at o) (90( t2+|z|2))'

Using the fact that on the support of

||
1— =
4 ( 2+ 2

-2z

+

we have .
r=|r| > —
|z| = R
while on the support of
o ||
/t2 + IxP

the weights |z| and t are equivalent, we see that (10.1.29) is valid.
From (10.1.28) and (10.1.29) we get the desired representation (10.1.25) and
the lemma is proved.
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Now we can obtain an explicit formula representing the solution of (10.1.2).
From (10.1.22) and

dk a (24
(W) /sn ) flz + tw)dw = |§k/ 0 f(z:+tw.)dw
we can compute the time derivative of
El(t’ ) * f(x)

For n > 3 odd we combine the representation formula (10.1.23) together with
(10.1.22) and applying the above lemma, we get

(10.1.34) u(t,z) = En_1)2(t,.) * f(z) =

(n=3)/2

xr —

(10.1.35) = > > — Clya (Ty) 85 f(y)dSy, t >0,
1=0 |a|=l |z—y|=t |z —y

where ¢;,o(w) are smooth functions on 8"~!. Moreover, from

En-1)/2 = 0 V/2E,

we have
(10.1.36) u(t,z) = E(n_1),2(t,.) * f(z) =
(n—1)/2
=2 X i (z Z y) 8 f(y)dy, t >0,
=0 |a|= b lz—y|<t

where c¢; o (y) are smooth functions in the unit ball. For n > 2 even we can use the
relation (10.1.24) and in this way we get

(10.1.37) u(t,z) = En-1)/2(t,.) * f(z) =

(n-2)/2 z—y dy '
Clal —— aaf(y)_____, t> 0$
- Y S e () 80

=0 |a|=l

where ¢;,o(y) are smooth functions in the unit ball.
Now we can turn to the representation of the solution the the Cauchy problem

Ou = 0,
(10.1.38) u(0,z) = fo(z) , O:u(0,z) = f1(z).

It is clear that

Ll Em-1)/2(t,.) * fo(z) + E(n-1)/2(t,.) * f1(z).

u(t,z) = %
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For n = 1 we have the D’Alembert formula

(10.1.39) ult, z) =

_ z+t
=f°(t+"”)*2’f°(’° t)+% t fily)dy, t>0.

For n = 2 we have the Poisson formula

(10.1.40) u(t,z) =

_afl fo(y)
e (2” /Iz—vl<t mdy) ¥

+—}—/ h) 4 ¢s0,
|z—y|<t

2m Vit =z —y?

For n = 3 we have the Kirchhoff formula

(10.1.41) | u(t, z) =
—o, ( wil fo(y)dsy) |
+1 f1(4)dS,, ¢ >0,

ant J)z_y|=t

For n > 3 odd the solution of (10.1.38) takes the form

(10.1.42) u(t,z) =
(n—1)/2 z—y
Z Z n—1- z_/ Ca (lj) 9y fo(y)dSy +
1=0 |a|—l jz—y|=t z
(n—-3)/2 :z:
+ 2 2 prow z/ dl,a (—) 9y f1(y)dSy, t >0,
1=0 |a|—z |z—yl=t |z — vl

where ¢} o (w), di,o(w) are smooth functions on S™—1, Moreover, for n > 1 odd from
(10.1.36) we get

(10.1.43) | | u(t,z) =

B Z E n_-/l~yl<t he (
+(n—zl:)/zz ;;_11-—, / . (z

1=0 |a|=l fz—yl<t

y) 82 foly)dy +

) i), >0,



CAUCHY PROBLEM FOR INHOMOGENEOUS WAVE EQUATION 171

where ¢;,o (), di,o(y) are smooth functions on the unit ball. Finally, for n > 2 even
from (10.1.37) we deduce
(10.1.44) ult, z) =

n/2
— z-Yy
glal};z 'n—1/2 l/ y|<tc’a( ¢ ) ny(y)\/t—kc— |+

(n-2)/2

+ 2 X I 3/2 z_/ l' d:a( >3°f1(y)\/—t_—|—-—_———|

=0 |a|=t

where ¢;,o(y), di,a(y) are smooth functions on the unit ball.

10.2 Cauchy problem for inhomogeneous wave equation

The solution of the inhomogeneous wave equation

Ou = F,
(10.2.1) u(0,z) = 8:u(0,z) =0
can be found as follows
t
(10.2.2) u(t,z) = / E(n_1)/2(t —s,.) * F(s,.)(x)ds
0

Since we shall use the recurrence relation (10.1.14), our first step is to find sufficient
conditions so that all boundary terms after integration by parts with respect to
time variable in (10.2.2) are identically zero.

The terms at s = 0 can be neglected if we impose the assumption

(10.2.3) supp, F(s,y) C (0, 00),

because the function F'(s,y) together with all space-time derivatives of arbitrary
order are zero at s = 0. To be sure that all terms at 8 = ¢ vanish we need the
following.

Lemma 10.2.1 If Rez < n/2, then

(10.2.4) lim E,(t,z) = 0

t—04

in the sense of distributions in R".
IfRez < (n —1)/2, then we also have

(10.2.5) tl_l+I(IJl+ OtE.(t,z) = 0.
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Proof. Given any ¢ € Cg°(R") we have
(Ex(t,.),p) =
(028) et [ AL )R

for any t > 0 according to (10.1. 15) In fact, for Rez < 1 this follows from
(10.1.15). Then using the fact that both sides of (10.2.6) are analytic functions for
z#k+(n-1)/2,k=0,1,2,..., we establish (10.2.6).

Then the series expansion (10.4.2) together with the asymptotic expansion for
‘the Bessel function (see [1]) show that for Rev > —1/2 we have

(10.2.7) |Ju(8)| £ Cus® ¥, s> 0.
Thus we get .

[(Ex(t,.),0)| <

e IR

and we see that the property (10.2.4) is fulfilled.
To establish the property (10.2.4) for the time derivative of E;(t,z) we use the
recurrence relation (10.4.3) for the Bessel functions and find

Bu(t" JL(HIE])) = ¢*I€|Ju-1 (¢1€])
so we have the following variant of (10.2.6)
0 (Ex(t,.),9) =
Ol G WAL
Applying the estimate (10.2.7) with v = —1 — 2z — n/2, we see that Re v > —1/2 s0
Bu(Ex(t, ), )] <
el [ pa(e)tag

and the assumption Rez < (n — 1)/2 implies that (10 2.5) is true.

This proves the Lemma.
After this preparation we can obtaln the following representation formula.

Proposition 10.2.1 If n > 3 is odd and the inclusion (10.2.3) is fulfilled, then
the solution of (10.2.1) is

u(t,z) =

t
1

g(n-3)/2 .

c,,/o r— /|z Jmts F(s,y)dSyds
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Proof. It is sufficient to apply the recurrence relation
E(n—l)/2 = CnD(n_a)/zEl

from the previous section in combination with Lemma 10.2.1 and the represéntation
formula (10.1.22) of the distribution E;.
In the same way we arrive at

Proposition 10.2.2 Ifn > 2 is even and the inclusion (10.2.3) is fulfilled, then
the solution of (10.2.1) is :

u(t,z) =

t

1 n—2)/2

Cn/ / @] F(s,y)dyds.
0 Jjz—yl<t-s /(t—35)2— |z —y|?

The rest of this section is devoted to another representation of the solution
u(t, z) of (10.2.1) closely related to the Fourier transform on manifolds with con-
stant negative curvature, discussed before.

Namely, we shall consider the case

(10.2.8) supp F(s,y) C {(s,9); ]yl < s - 1}.

In the interior of the light cone K = {(¢, z); |z| < t} we introduce coordinates

(10.2.9) p= 1/t2 — |z|2 , Q _ (E’ E) .
Applying Lemma 8.2.1, we represent the D’Alembert operator

O=-02,+82 +..+82,

as follows
p’0 = —(pd,)? — (n — 1)pd, + Ax,
(10.2.10) O=-82- %6,, + ;lfo,

where A x is the Laplace-Beltrami operator on the hyperboloid
Then the equation (10.2.1) takes the form

(10.2.11) ((08,)* + (n — 1)pB, — Ax) u = —p?F.



174 FUNDAMENTAL SOLUTIONS

Next step is the application of the Fourier transform on X defined in Definition
8.2.2 by

(10.2.12) Fw) = /X [0, A(w)] - (=172 (),

The inverse Fourier transform on X is determined in (8.4.2) by the relation
(10.2.13) f(Q) =
[ [ RA@ICA O e dud,
—o0 J8n-1

where

(10.2.14) ¢(A) = v2(2m)"/2 I'(iA)

T((n—1)/2+1i))
Having in mind that the exponential function

(2, A@)] =07
satisfies according to (8.2.15) the relation

(10.2.15) —Ax[Q, Aw)]EA~ -1/ =

_ ()\2 + (n; 1)2) [0, A(w)] A==/,

one can make Fourier transform in (10.2.11) and in this way we get

2
((Pap)z' + (n—1)p8, + (/\2 + (n_;l) )) i(p; A w) =

(10.2.16) = —p*F(p; \,w),
where
(10.2.17) (s A\ w) = /X 1, A(w)] - =D/Dy(,0)d0)

is the partial Fourier transform in — coordinates. Let us make change of variables
(10.2.18) p— 7 =Inp.

Then p0, = 0, and we get

(10.2.19) ((a,)2 +(n—-1)8, + <,\2 + ( 2 ; 1)2)) 4= —e>"F,
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Since the solution of

((af)2 +(n—1)8, + (,\2 + (";1)2» v=0,

(10.2.20) v(0) =0, 8v(0) =1

is )
e—'r(n—l)/2 SID()‘T)
A Y
from the Duhamel principle we find
i(e"; A\ w) =
- _ /T e—(-r——n)(n-—l)/2 sm()\(; - K‘)) eZNF‘s(en; A w)dn
0
or
a(p; \yw) =
_ /p o= (n=1)/2,(n+1)/2 sin(A 1;1(1’/0))1:-,(0; A w)do.
1

Then the inverse formula (10.2.13) for the Fourier transform on X gives

(10.2.21) u(pQ) = — /1 " T (F(o),.))do,
where T, is an operator acting on functions f on X by the formula
Tpo ()() =
(10.2.22) ‘;((:j))f: / : A R/ p, (1)@,
where P, is the spectral projection
PA(F)Q) =
(10.2.23) = |e(\)["2 /S IR A@I 20 w)dw.

10.3 Cauchy problem for the Klein-Gordon equétion

The Klein-Gordon equation can be associated with a description of a relativistic
scalar field with a fixed positive mass M. The corresponding Cauchy problem can
be written in the form

(D - Mz)u =9,
(10'3'1) u(O, x) = fO(z) 3 atu(o, z) = fl(m)’
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where fo, fi € S(R"), F(t,z) € S(R"*!) and O = —? + A. Introducing coordi-
nates

X = (331, "-’zmzn+1) = ($a$n+l)s

we set

Ut X)= u(t,m)e"M‘”"'“,
G, X) = g(t,z)e"M""‘“,
Fi(X) = fi(z)e'M=+, j =0,1,

(103.2) Opyr=-02+Anp1=—F+02, +..+82 +82 ..

Then the Cauchy problem (10.3.1) is reduced to the following problem for the wave
equation in R x R+,

Dn-l-lU = Ga
(10.3.3) U(0,X) = Ro(X) , 8:U(0,X) = Fy(X),

Now we are in situation to apply the results from the previous section. More
precisely, first we consider the family of operators

E,(t, X) = 1‘(161 3 (2 - X2)7*.

Since the solution of (10.3.3) can be expressed as a convolution in the space of
variables, we start with the following preliminary

Lemma 10.3.1 Let
H(X)= h(a:)e‘M""+1.

Then for Rez < 1 we have
(10.3.4) E.(t,.) x H(z,0) = cnv/m(M/2)*"*/? x
x / (2 — |z — Y)Y 2 1 2 (MAEE — [z — g h(y)dy.
lz—y|<t

Proof. Taking X = (z,0), we have
E.(t,.)* H(z,0) =
Cn '

=—" | 2 — | X = Y|?) " *h(y)etMyn+1dY =
e /|x-m( X - Y*)*hy)e

__Cn -
- P(l _ Z) lz—yl<t K( ,y)h(y)dy,
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where

K(z,y) = (2 /m

(£ — |z — y|* — y241) % cos(M yn+1)dyn+1) =

=2 (/01(1 —72)~* cos(MT\/tz-_—FcT—y_lz)dT) (% — |z —y|?)~=+1/2,

Applying now the Poisson integral representation (10.4.7), we get the relation
(10.3.4).

This completes the proof.

When n > 2 is even, the fundamental solution for the problem (10.3.3) is
E./2(t, X) and from the recurrence relation (10.1.14) we find

En/a(t, X) = cn 002 Bo(t, X).
- Applying (10.1.36) , we get with X = (z,0)
| Eo/2(t,.) * H(z,0) =

IR Y) og r(v)ay,
et iX-YIse

where cqo(t, X —Y') are bounded functions. With H(Y) = h(y)éiM Yn+1 we see that

OH(Y)= Y cgdhh(y)e™vn+i,
181<[al

Then the argument of the proof of Lemma 10.3.1 guarantees that
En/2(t,.) * H(z,0) =

= Z Z/ EE—(—t’——-:E_—;--—y—)afh(y)sin(M t2 — |z — y|?)dy.
le—yl<e T |

I<n/2|B|<1
This calculation shows that for n > 2 even the solution of (10.3.1) is
(10.3.5) | u(t,z) =

' cg(t,z —y.
- > >/ 22 V) 08 fo()K 1, o — yl)dy +
I<(n+2)/2|81<1 Y 1= VISt

| ds(t,z —
+ S [ e n @K e~ vy +

tn-
1<n/2 8IS |

/ |
ve [ [ @MY, )K (- s, 2 - vl)dds.
0 J|z—y|<t—s
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Here cg(t,z — y) and dg(t,z — y) are bounded functions and

K(t,|z]) = sin(M~/Z — [2P?).
When n > 3 is odd we can use the relation

Enja(t, X) = eaD™D/2E_ (8, X).

Then repeating the argument given above and using the fact that for z = —1/2

(8 Iz = o)1 a(MVE e —3P)| <

<CA+V/B-lz—yP)2<ca+)'2

we arrive at

(10.3.6) | u(t,z) =

cg(t,z
- / i£+3/z ?) 0 fo(y)K (¢, |z — yl)dy +
t<(n+3)/2 Iﬂ|<l |lz—yi<t

ds(t,z
+ Y Y[ BTGk - i+
1<(n+1)/2|8]<1 ¥ 1T VISt

+cn / /ll < K(t — s,z — y)(O — M2)(™+1/2g(5 4)dyds
z—y|<t-—-
for n > 3 odd. Here the kernel K (t,z) is given by

K(t,2) = V&~ [eP) i (MG~ o).

10.4 Some properties of Bessel function
(see [1].)

The Bessel function J, (z) is a solution of the ordma.ry differential equation

(10.4.1) Fog i+ (22 - v¥)w =0.

For z € C close to 0 we have the following series expansion

m v+2m
(10.4.2) Ju(z) = Z fn'lr(rfzzfx)z:l)

The Bessel function satisfies the following recurrence relations

(10.4.3) 2J,(2) + v (2) = 2Ju-1(2)
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or equivalently
d
(10.4.4) ‘ { e [2¥ I (2)] = 2¥ Ju-1(2).

Moreover, we have
(10.4.5) 2J,(2) —vdy(2) = —z2Ju41(2).

The Wronskian of two Bessel functions is given by
W (w1, ws2) = wiwh — waw;.
For the case,when w; = J,, ws = J—, the corresponding Wronskian is
2
(10.4.6) W[J,,(z) J_u(2)] = = sin(nv).

The following 1ntegra1 representatmns by Poisson’s integral shall be of specml in-
terest in our considerations -

(10.4.7) T(v+1/2)Ju(2) = % /0 1(1 — t3)Y=1/2 cog(2t)dt.

For the special cases v = +1/2 we have

(10.4.8) Ji2(z) = \/%sin z, J_1/2(2) = \/—\/;%-cos z.
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