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9 Sobolev spaces on manifolds with constant neg-
ative curvature

9.1 Sobolev spaces on the upper branch of the hyperboloid
The upper branch of the unit hyperboloid

X:t=+|z?+1

is a Riemannian manifold with constant negative curvature K(z) = —1. With
respect to the parametrization of X

(9.1.1) Q = (chr,w shr) € X,
where r > 0,w € S"~! the metric on X is
ds® = dr® + sh’rdu?,

where dw? is the standard metric on S™~!. In particular, if f : X — R and dfQ is
the standard measure on X, we have

/,; F()d = /0 ) /s s f(chr, wshr)(shr)* 'drdw.

With respect to this parametrization, the Laplace-Beltrami operator on X takes
the form (8.1.18).
If f is a real integrable function defined on X, then we observe that

dz
1. dQ) =
(912) | r@an= [ s<a>n T
where < z >= /14 |z|%.
Further, in the interior of the positive light cone
(9.1.3) {¢,z) e Ry xR" : |z| < t},

one can introduce the coordinates
t x
p= VAP, n=(ﬂ—)ex
p P

obtaining the following decomposition of the D’Alembertian operator(see Lemma
8.2.1)
=-02+A

p’0 = —(p8,)* — (n - 1)pd, + Ax,

2
2 n a
O=-6,- ;6,, + ?Axu
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where Ax, is the Laplace-Beltrami operator on X,, X = X; and

Ax = ZYOJ Z ko

i<k
with
}’0'7 - zjazo + 3306;, I} Jk - zjazk xkacj.

It is not difficult to see that the operators Yp; are skew—selfadjoint on L?(X).
In fact, from (9.1.2) it follows that

(9.1.4) / %jf(mi(’ﬁidn = / 8, f(<z>,2)g(< : >, z)dz

and the assertion follows from the fact that the partial derivatives 6,] are skew—
selfadjoint operators on L?(R").

Also in a standard way one can check that the operator Ax is selfadjoint on
L?(X). Moreover, there is a well- developed harmonic analysis of Ax on the man-
ifold X of curvature —1. (see [57] §4, §5b).

We shall avoid a direct application of the Fourier transform on X, since we shall
see later on that our study is connected with the operator

(9.1.5) ‘ Ax + Agn-1,

where

(9.1.6) Agn-1 =Y YA
i<k

is the Laplace-Beltrami operator on the unit sphere. From (8.2.10) we see that

n
Ax + B =3 VR
Jj=1

Moreover , if f,g are smooth compactly supported functions on X, then
|, ¥ st -
(9.1.7) = / Oz; < x> 0z, f(<z>,x)9(< = >,z)de
Rﬂ

First we have to mention, that the operator in (9.1.5) is symmetric. Moreover,
(9.1.7) shows it is sufficient to show that the operator

P=) <&>8;<z> 0

i=1
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is self-adjoint on L?(< z >~! dz). This is already established as an application of
Theorem 4.2.1.
For any function f(f2) € C§°(X) we define the norm

(9.1.8) £ e 3y = I = Bx)*"? fllLacx)-

On the other hand, for s > 0 integer one can consider the norm

(9.1.9) | DY flleacxy,

laj<s

where Y* = Y™ ... Yy" and Y1,...,Yn are the vector fields {Yo;, Yjk}jk=1,...,n
given by (8.2.11). :

In order to make an interpolation and define the corresponding Sobolev spaces
of fractional order we start with the following:

Lemma 9.1.1 For s > 0 integer the norm (9.1.9) is equivalent to

(9.1.10) 1 Flzexy = I(L = Ax = Agn-1)*?fl2(x).-

Proof. It is sufficient to verify the assertion for s = 1 and then to proceed
inductively. The square of the norm in (9.1.10) for s =1 is

(9.1.11) /X (1= Ax — Agnos)F(Q) )4

Further, we use the parametrization 2 = (chr,w shr) € X, and from (8.1.18) we
have

chr 1
Ax = 6,2. + (n - 1)shrar + s—h—.z-;Asn—l,
where
(9.1.12) Agn-1 =Y Yi.
i<k

From the fact that the volume element on X is d2 = (shr)" 'drdw we see that
the integral in (9.1.11) can be represented as

[ [ 0P +10.17) (e~ dadr +
0o Jsn-1

oo 1 )
+‘/0 /Sﬂ_1 [E (Z Iijf|2) +Z|ijf|2] (shr)™ 'dwdr.

i<k i<k



SOBOLEV SPACES ON THE UPPER BRANCH OF THE HYPERBOLOID 157

Any vector field Yp; is a linear combination of 8, and (chr/shr) Yji. Since

chr

(9.1.13) Yoi(f) = ~w;bef — o~ > wn¥iuf,
k=1

we conclude that

Y05 flI32x) < Cl(1 — Ax — Asn-1) 2 £ 220y
(x) (

To establish the opposite inequality we take advantage of the relations (8.2.10) and
(9.1.12); we find

n
Ax + Agn-1 = Z}’o%
=0

Therefore, we have the relation
—— n —————
[ 1= Ax = Benn) (@@ = F1rxy - 3 [ ¥ 5@ T a0
Jj=1
and using the fact that Yp; are skew-selfadjoint operators, we get

n
1(1-Ax - As"—¥)1/2f||%2(X) < £lIZ20xy + Z [1Y0; £lIZ2x)-
i=1
This completes the proof of the Lemma. a

Finally, we are in position to make complex interpolation, and we obtain the
space H®(X) with fractional order s > 0:

(9.1.14) H*(X):=(H*(X),H*(X))s , s=s0(1—8)+s19.

In particular, an equivalent norm for these spaces is given by (see [62] 1.15.3)
(9.1.15) I(1 = Ax — Agn-1)*/2f |12 (x).

The following inequality between the norms in H*(X) and H*(X) is fulfilled:

(9.1.16) £l gsxy < I Fllae(x)-

In fact we can check the equivalent inequality
11 = Ax)"*fllzagxy < Cl(L ~ Ax — Agn-2)*’ fllzacx).

Since the operator —Agn-1 can be extended as non-negative operator on X such
that its resolvent commutes with the resolvent of —Ax, we can use the following
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general statement from functional analysis: if A > 0, B > 0 are selfadjoint operators
with commuting resolvents in a Hilbert space H, then

11+ A)*"%f|lx < CIQA+ A+ B)*f||n.

This follows from the functional calculus based on the spectral theorem (see
[62] for example) and completes the proof of (9.1.16).

Further, from the general functional calculus, if A > 0,B > 0 and if their
resolvents are commuting, then we have the inequality

11+ A)*/2(1 + B)**?f|lg <Cl(1 + A+ B)**f|lu, s=s1+s2.
This leads to

12— Ax)*/2(1 - Agn-1)**/2f|lL2ex) <
(9.1.17) < (1= Ax — Agn-1)*2f||L2x)

provided s; + 82 = s.

Now we are in position to state the corresponding Sobolev inequality:

Theorem 9.1.1 For any s > n/2 we have

9.1.18) af* D21 £(Q)] < Cllfllasx)-

We shall postpone the proof in the next sections.

9.2 Weighted Sobolev spaces on the upper branch of the
hyperboloid

Our next step is to introduce weighted Sobolev spaces on X, fixing our attention
on the weight x(Q) = Qg , where [ is a real number.

As usual, we denote by L%(X; Q5) the L?-space on X with measure Qgﬂ dQ,
where dfQ is the standard measure on X; this means:

“fl‘Lﬁ(x;noﬁ) = ”ng"Lz(X)-

The corresponding weighted Sobolev spaces H™#(X) for any integer N > 0 have
the norm

(9.2.1) Iflavecy = D 1Y208 fllracx)
|a|<N

Y® being defined by in Lemma 8.2.1..
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Lemma 9.1.1 shows that this norm is equivalent to
(9:2.2) IFllmaxy = (1 — Ax — Agn-1)¥2QG fl| L2(x).-
On the other hand, using the parametrization
Q=(<z>z)€ X,

where z € R", by (9.1.2) we have

dz
2 — 2 .
(923) 120 = [ 1f(< 2> 00 s
then we can express the norms (9.2.1) and (9.2.2) as L? norms with measure
dz
<z>

Moreover, in what follows we put f(z) = f(< z >, z).
Our next step is to establish the following.

Lemma 9.2.1 For any integer N > 0 we have

(9.2.9) I £~y = |1 Fllno-1r2(mny.-
Proof. Since the quantities

> <z >8:)%f(2)l

la|<N

and

>l f) <z >,3)

la|<N

are equivalent, to obtain (9.2.4) it suffices to use (9.2.3).
0O

This Lemma gives us a possibility to define the corresponding weighted Sobolev
spaces on X by the aid of the norms

(9.2.5) £ e (xy = 1| Fll ges—2/2 remy-
It is clear also that the map
(9.2.6) feH*"(X) »<z > f e H*R")

isan isomefry. Using this fact we obtain the following particular properties of these
spaces
(9.2.7) (H*Y(X)) = H™*~(X),
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(9.2.8) (H*"(X), H**(X))s = H*¥(X)

for s = (1 — 0)s0 + 031, and v = (1 — 6) + v10. Finally, from the above definition
and the equivalence (7.5.22) we can take any real numbers v, s and we can assert
that

(9.2.9)|(1 — Ax — Agn1)*/2Q8 fllLacxy = | (1 — Ax — Agn-1)*2flL2x).

From Lemma 7.5.2 with p = 2 and the isometry (9.2.6) we get the following
weighted Sobolev inequality

(9.2.10) Q3T =D214(Q)| < Cllull ges (x)-

Applying Theorem 7.5.1 in combination with the isometry (9.2.6) we obtain the
following .

Theorem 9.2.1 For
fi9 € H*(X;9g") N L*(X;Q5°%)
and any non-negative s we have

| fgll sromex) <
(9.2.11) < C(IIfll o= () 1029l Lo (x) + 11R0° fll Lo (x) gl o1 (x))

for k = K1 + Ka.
Applying (7.5.47) together with the isometry (9.2.6) we arrive at

Theorem 9.2.2 For
f € H**(X) N L™(X; ),

any A > 1 and any non-negative s with s < A\ we have

(9.2.12) 7 zreaxy < Cllfllmee 19 Fllzx)

fora=p8+(A-1).
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