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8 Fourier transformation on manifolds with con-
stant negative curvature

8.1 Models of manifolds with constant negative curvature

Our goal is to extend the study of the Fourier transform and Sobolev spaces to the
case of a manifold of constant negative curvature. For the purpose we introduce
initially some typical models of manifolds with curvature —1. For more details on
the subject one can see the book of S.Helgason [20], where general symmetric spaces
are studied. Probably, manifolds with curvature —1 are simplest case of symmetric
spaces of rank 1. That is why we shall concentrate our attention to this case. Qur
secondary purpose shall be to see the case of constant curvature —a. Introducing
the Fourier and inverse Fourier transform for this case, we would want to see the
case of flat Euclidean space as a limiting case a — 0.

We turn to the models of manifold with curvature —a,a > 0.

Example 1. For any surface § C R™*! defined by

(8.1.1) S: t=1vy(z),z = (z1,...,2n) € R"

the Minkowski metric
(8.1.2) di? = —dt? + dz?

induces on S a Riemannian metric provided S is spacelike, i.e. any vector tangential
to S is spacelike with respect to the form (8.1.2). More precisely, the metric induced
by the embedding § ¢ R**! is

n
(8.1.3) ds® = (dlis)? = ) gijda’dat,
1,j=1
where ey
(8.1.4) gij = 5,'_7' - 6-’3,‘ E

One can check that
g =det(gi;) = 1—|Vy|?

and the condition that S is spacelike means that g(z) > 0. The unit vector normal
to S at the point (z,%(z)) € S is

_ (LY9E)
V1-|Vi?

N(z)
The second quadratic form on S is

zn: bijdz*dx?

i,j=1
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where

02,029 ()

bij(z) = Wiz
Now the Gauss curvature K (z) is

_detb,-j _ det(V2¢)
Tdetgy; (1 [VPP)TIRE

(8.1.5) K(z) =

A special case of a spacelike surface is the upper branch of the hyperboloid

Xo: t=1+/|z|2 +a?,

where a is any positive number. Then we have

T

Vy(z) = W,

I z®z
VizP+a?  (V]z[? +a?)3’
(8.1.6)  det(VZy(z)) =a*(V|z2+a2) ™% , K(z)=—-a""

The coefficients of the Riemannian metric (8.1.3) are

Vy(z) =

(817) Gij = 6,'_7' —_ (I$|2 + a2)‘1xixj

according to (8.1.4) and (8.1.6). Then we have

2

a
and the matrix inverse to g;; is
(8.1.9) gij = 5” + a_2xi:1;j.

Then the Laplace-Beltrami operator on X, is

n
AX,, — Z 9—1/26z,-gij91/2amj —
i,j=1
Z (272 +a2)1/26z,.6"j(x2 +0'2)_1/2a:cj +

,5=1

n
(8.1.10) +a2 Z (z? + a?)}/20,,ziz(2® + o) 7V/%8,,.

i,5=1
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Further, we shall use another parametrization of X,
(8.1.11) Q = (a chr,aw shr) € X,,

where r > 0,w € 8", chr = (e" +e7")/2 and shr = (¢" — e™")/2. Since dt =
a shrdr and dz = a(chrwdr + shrdw), from w.dw = 0 we get

(8.1.12) ds? = a®(dr? + sh’rdw?),

where dw? is the standard metric on S™~1. A length of a curve ¥(t) (a < t < f3),
parametrized by v(t) = a(chr(t),w(t)shr(t)), is

B8
(8.1.13) L(y)=a / VIFOE+ r @ Ple) Pat.

The distance d(Q2, ') between Q,Q’ € X, is defined by
(8.1.14) a(Q, Q) = i%fL("y),

where the infimum is taken over all curves connecting  and '. Let
Q* = a(chrg,wpshryp)
be a fixed point on X,. It is easy to compute the distance between 2* and the

?origin”
Oa = (a, 0, veey 0) € Xa,-

In fact, let ¥(t) = (achr(t), aw(t)shr(t)) be any curve connecting O, and Q* and
let 4o(t) = (achr(t), aweshr(t)). Then the inequality

(@)1 < 1)1 + Ir(2) | ()?

shows that L(y) < L(v). Since for #(t) > 0

B
L(y) = / ar(t)dt = ar(B) — ar(a) = aro,
we find
(8.1.15) d(0,,*) = aro.

Since the quadratic form (8.1.2) is invariant under the action of the group SO(1,n),
one can derive from (8.1.15) the relation

(8.1.16) d(Q,9') = a ch™}([Q, '] /a?),
where

(8.1.17) [, Q] = Qo — 2 — ... — VW,
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is the quadratic form associated with (8.1.2). Indeed, given Q,Q’ € X,, one can
find g € SO(1,n) so that

9() =04, g(2) =Q".

Since [Q, Q] = [9(?),9(?')] = [0q,Q*], we get from (8.1.15) the needed relation
(8.1.16). Note that the Laplace-Beltrami operator on X, takes the form

(8.1.18) Ax, =a~? (af -S4 ——1—Asn—1> ,

shr sh?r

where Agn-1 is the Laplace-Beltrami operator on the unit sphere S™~ 1.
Example 2.(Model with a ball of radius R.) The ball

Br={y€R":|y| < R}
with metric
4b?
8.1.19 do? = ——— ___dy?
(8.1.19) @)

is also an example of a Riemannian manifold with constant (scalar) curvature. The
volume element for this metric is

2b "
—_—— dy.
<R2 - |y|2) Y

We shall construct an isometry between the ball Bg with metric (8.1.19) and
the quadratic surface X, of Example 1 with metric (8.1.12). For the purpose we
consider the parametrization (8.1.11) of the hyperboloid X, and define the map

(8.1.20) (r,w) e Ry x 8" ' — ye Br
defined by
V=R
Then we have
2
R =l = chizr/2
dy? stglzr/ 2. 2 122 dr?
ch®r/2 4chr/2
and from (8.1.19) we get
b2
do’® = —R;z—(drz + sh®rdw?)
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so comparing with (8.1.12) we see that the metrics of the models with a ball and
the model with a hyperboloid coincide when

LA
: R
From (8.1.11) and (8.1.20) we obtain
shr (Q1yeeey )
=R w=R .
Y= a2 a + Qo

Therefore, the map

(Q1,..,2n)

(8.121) 0= (00,0, 0) € Xo —>y= R0

€ Br

is an isometry. Given any y € Bg and 0 = (0,...,0) € Br, one can compute the

distance d(0,y) using the isometry (8.1.21). In fact,
d(0,y) = d(0,, ),

where (2 is given by

R? + |y|? Q. = _2Rayi

1. e T g o _STOY L, .n
(8 1 22) Qo aR2 — |y|2 1 R2 _ |’y|2’z yeees T
Then (8.1.17) implies that

R? + Jy?
2
0o, =" B 1P
and from (8.1.16) we get
1, R+ |y)?
1
d(0,y) = d(0a,?) = ach (‘RT_—W)-
Now the formula
L RBP4yl R+ lyl
1
2 Ty
RS LS L
shows that
R+ |yl
8.1.23 d(0,y) =a In .
(61.23) O =a n(z

Of special interest for the harmonic analysis on Riemannian manifolds with
constant negative curvature are the horocycles S, defined as spheres contained in
the ball Br and touching tangentially the boundary 8 By of the ball Bg. Therefore,
these spheres are

(8.1.24) S(o,w)={y € Br:|ly—aRw|=(1-)R},
where a € (0,1),w € S*1,
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Definition 8.1.1 Given any z € Br and any w € S™~! we denote by
<zyw>
the distance (with respect to the metric (8.1.14)) between 0 and the horocycle
S(a,w) ={y € Br: |y — aRw| = (1 - a)R},

such that z € S(a,w). We take < z,w > with sign minus if 0 is in the interior of
S(a,w).

It is easy to compute < z,w > explicitly. Indeed, we have
(8.1.25) < z,w >=d(0, R(2a — 1)w),
where o € (0,1) is determined by
|2 — aRw| = R(1 — a)

so we have
_ R? — |2

2R(R—w.z)’
From (8.1.23) and (8.1.25) we obtain

(8.1.26) a

(8.1.27) <zw>=aln T a
and (8.1.26) implies that

R2 _ |z|2
(8.1.28) < Z, W >= aln m

The isometry X, — Bpr defined by (8.1.21) enables one to compute < z,w > as a
function of € X, determined by

. _ RO
77 a + Qo
and this gives
(8.1.29) < z,w>= —alnM,

a

where A(w) = (1,w). Note that [, A(w)] > 0 for Q € X,,w € S*~ 1.
Finally, we shall compute the volume element

2b "
—= ) d
<R2 - Iylz) Y

with respect to the parametrization
(8.1.30) y=vy(a,0,w) = Row + R(1 — )8,
where 6,w € 8" 1, a € (0,1).
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Lemma 8.1.1 For any w € S"~! we have

[ 16 () = [ [, fvteu0hia,b,0)d0de,

where
2n-—1(1 _ a)n—2ban—2
(R =)

h(a,8,w) =

and y = y(a,0,w).
Proof. The key point in the proof is the fact that the volume element
Vvgdvi...dvn

is invariant with respect to any local coordinates v;,...,v, on the Riemannian
manifold. On one hand, the volume element associated with the metric

4b2|dy|?
(R% — |y|?)?

2b "
(mop) @

Our purpose is to compute this volume element with respect to the coordinates
o,0 in (8.1.30).
We lose no generality assuming w = (1,0, ...,0). Then

is

= (cos ¢, 8’ sin )

where
0 ecS™? |, pe(0,n)

for n > 3. For n = 2 we have the coordinates
6 = (cosp,sing) , ¢ € (0,27).
Then
(8.1.31) df? = dp® + sin® p|dd’|?
and from
(¥1,¥") = R(a(1 — cosp) + cos g, (1 — @)@’ sin )
with ¥’ = (y2,...,yn) We get

|dy|* = |dy|* + |ay'|* =
= R*((2 - 2cos p)da?® + (1 — a)%dy?
—2(1 — @) sin pdpda + (1 — a)?sin? p|df’|?)
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On the other hand, we have
R? — |y|* =2R%a(1 — a)(1 — cos ).
The volume element \/g(a, ¢, 8")dadpdd’ is defined now with
9(a,,0") =b>"R*" sin® ("2 4, =2 (1 — a)"2(1 — cos ) 2"V,
From df = sin™~2 pdpdf’ we obtain
Vgdadpdd’ = hdadd.
This completes the proof.

8.2 Fourier transform on space with constant negative cur-
vature

For the flat space R™ with standard metric dy? generalized eigenfunctions of the
Laplace operator are

(8.2.1) et V)

where w € 8" !, 4 = —iX\, A > 0, and y.w = y1w; + ... + Ynwn. The corresponding
Fourier transform is

(8.2.2) fovw) = [ e ).

In a similar way we can define the corresponding exponents for the case of Rie-
mannian manifold with constant negative curvature. For the purpose we consider
the ball Bg of radius R with metric 4b%(R? — |y|?)~2dy as a model of Riemannian
manifold with constant negative curvature K = —a~2 = —R? /b2, We shall look for
eigenfunctions of the corresponding Laplace - Beltrami operator Ag,, of the form

(8.2.3) eh<¥w>

where < y,w > is the distance between the origine and the horocycle S(a,w)
determined in Definition 8.1.1.

Proposition 8.2.1 We have

(8.2.4) Appet<¥V“> = u(p — n- l)eu<y,w>.
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Proof. We shall use the isometry y € Bg — 2 € X, determined by

R? + |yf?
R2 —|y|2’

defined in (8.1.21) and (8.1.22). From (8.1.29) we have

2aRy;

o =a -y

Q=
(8.2.5) eh<V> — [ A(w)]"#%ak?.
Now we can use the embedding

i: X, > R

and the fact that the Riemannian metric on X, is induced by the Minkowski metric
—dz2 4 dz? + ... + dz? on R™*! and the embedding i. Further, in the interior

(8.2.6) {\/z2 + ... + 22 < =z}

of the light cone one can introduce coordinates

(8.2.7) p=qJ/xd—2}—..—-22, Q=a%€Xa.

Then we can use the following decomposition of the D’Alembertian

(8.2.8) O=-82+82 +..+82 .

Lemma 8.2.1 In the interior (8.2.6) of the light cone we have the relations
p*0 = —(p8,)* — (n—1)pd, + Ax,

2
n a
(8.2.9) =-03 - ;6,, + ?Axa,

where Ax, is the Laplace-Beltrami operator on X,, X = X; and

n
(8.2.10) Ax =Y YZ =Y Y3,
j=1 i<k
with
(8.2.11) Yo; = €0z + 200z; , Yjk = 0z, — TkOz;.

Proof of Lemma 8.2.1. For completeness we shall give the proof. Let

(n°P)2 5o = diag(—1,1,...,1)
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be the matrix associated with the Minkowski metric —dz3 + dz? + ... + dz2. Set
0 = ~0zp, if B = 0 and 95 = 8, if B = j = 1,...,n. We shall use also the
notations

n n
0% = Znaﬁag , % = Znaﬁmg.
B=0 B=0
Then we have

p2=—zn::z:°‘:ca , D=i8°‘0a

a=0 a=0

and the vector fields (8.2.11) take the form
(8.2.12) Yop =208 — 200, 0L, < n.
Therefore, we can write the identities

—p’0= Zz“zaagaﬂ =
o,B
(8.2.13) = (z%Yapd® + 2°230.0°).
a,B

On the other hand, we have the following commutator relations
[aa’zﬂ] =MNap = 770”6 ) [xa)Yaﬂ] = "[Yaﬂ,-’va] =ncg.

Here and below we use the summation convention for repeated indices. From
(8.2.13) we get

—p'0= Z(Yaaxaaﬂ + nzpd® + £%0,230° — 2%n,30°)
B

1 af 2
= 5(mzﬁyc,g}’ )+ (n—1)S + S?,

where
§=3 2% =) zad* = pd,
a a
and
Yo =) 0.
v,0
Since "
1 x
—Ax =—5Q_Yap¥*) =D Yo - ) Vi,
a,B j=1 1<j,k<n
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we get the first relation in (8.2.9). The second relation in (8.2.9) follows directly
from the first one.

The Lemma is proved.

Turning back to the proof of the Proposition 8.2.1, we consider any function
x(z) of the form

(8.2.14) x(az) = %(p[2, A(w)]),

where p, ) are the coordinates (8.2.7) in the interior of the light cone. Since for
w € 8"~ ! we have '

O(x(az)) = —a®[A(W), Aw)]%" (o[, A(w)] = 0.

Taking 9(s) = s~#® (in accordance with (8.2.5)), we use the decomposition of
D’Alembertian in Lemma 8.2.1 and get

n.—

(8215)  Ax,0AW)] " = pu-

1 —pa
—5 )[R, Aw)] .
This relation combined with (8.2.5) completes the proof of the proposition.
Setting .
n -——

= —i)\
7 A+ 2

we get
_ABe(—i»\+(n— 1)/(2a))<y,w> _

2
(8.2.16) = ()‘2 + (2_2._3_}.) ) e(—ir+(n—1)/(2a))<y,w>

The relation (8.2.16) suggests us to introduce

Definition 8.2.1 Given any f € C§°(Br) its Fourier transform is

fow) = /B e(TAHR1/ QN <Y> £y )p 4 (),
R

where vr y(y) is the measure

! ndy
) = e

Taking
b_, %,
R - ’ R2 R |
we see that a = R/2,b = R?/2 and the measure
2"b"dy
eel) = Ty
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tends to the Lebesgue measure dy as R — +00. Moreover, from (8.1.28) we see
that the quantity

B My~ RwP?

tends to usual scalar product y.w as R — +oc. This observation and the Lebesgue
convergence theorem show that the Fourier transform from Definition 8.2.1 tends
to the usual Fourier transform in the flat Euclidean space.

Using the isometry B — X, discussed in the previous section, we determine
the Fourier transform on the hyperboloid X, as follows.

Definition 8.2.2 Given any f(Q) € C§°(X.) its Fourier transform is

fnw) = a0/ [ jo, a0/ f(@)ag,

a

where A(w) = (1,w).

8.3 Spherical transform on space with constant negative cur-
vature

In this section we shall study Fourier transform of spherical functions, i.e. functions
defined in the ball B = {y;|y| < R} and depending on |y|. From the definition
8.2.1 we have

. . 26 \"
f )\,w —_—/ e(-—t)\+(n—1)/(2a))<y,w> y (_________) dy.
( ) Br f(l |) R2 _ y2

Since the function < y,w > is invariant under the action of the group of rotations
SO(n) and since the measure (4 2_by )*dy is also invariant under the action of the
same group, we see that

(8.3.1) FOw) = Ffwo) , wo =(1,0,...,0) € S L.

Taking a mean average on the unit ball, we consider the following spherical trans-
form

FO) = gy [, Fhw)as =
(832) = [ oo sz,

Br

where p(S™~!) is the surface of the unit ball S*~1, i.e.

7l,11/2
(8.3.3) p(S™ 1 = I‘2(n 72)
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and @, (y) is the ”spherical exponent”

1 .
- (+H(n—1)/(2a)) <¥> g,
(8.3.4) o) = 25T Joun ©

The invariance of the product < y,w > with respect to the action of the group of
rotations guarantees that the "spherical exponents” are spherical functions. From
(8.3.1) it is clear that

(8.3.5) F) = f(A,wo)

Our next step is to compute explicitly the ”spherical exponents”. For the
purpose we use the parametrization (8.1.20)

shr/2

shr/2
(8.3.6) y=R (cosp,w’sinp) = me,

chr/2

where ¢ € (0,7),w’ € S*~2 for n > 3 and

(8.3.7) y=R 111 jz(coscp,smcp)

with ¢ € (0,27) for n = 2. Then the relation (8.1.28) implies that
@ (Rthr/2) =

n— 2
u(S / (chr — cos pshr)(7iaA=(n=1)/2) ginn=2 ;4

for n > 3. Choosing u(S°) = 2, we see that (8.3.8) is valid also for n = 2. Then the
integral representation (8.5.11) of the Legendre function and (8.3.3) imply

2(n-2/21(n/2) p(n=2)/2
(hr)(n 2)/2 1/2—ide

(8.3.9) =202 (n/2) L, (r),

@ (Rthr/2) = (chr) =

where

L7(r) = (shr)~=2/2pZ 0722 (chy),

For n > 3 odd one can apply Lemma 8.5.2 from the Appendix of this Chapter and
find

(8.3.10) ox(Rthr/2) =
I'(n/2) L (iXa)|® L
['(1/2) IT((n — 1)/2 + iXa)|? “shr

= (—2)(n-1/2 8-)"~1/2 cos rda.
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For n > 2 even Lemma 8.5.3 gives

pa(Rthr/2) =
9(n=1)/2 P(n /9) IT(i)a)|?
(8.3.11) =7« T-12+ iAa)|2I'\'R(r)’
where

[z shs 1 . \n/2
IA,R(T) -—-‘/7: \/ﬁ(shsag) cos(s/\a)ds.

After this preparation we can state the main result of this section. This result
gives an inverse formula for the spherical transform defined according to (8.3.2).

Theorem 8.3.1 For any spherical function f(y) = f(ly|), f € C§°(Br) we have

(8.3.12) £(lyl) =
_ °° = T((n=1)/2+iXa)? dX
=0 [ ex(uion )AL Bl

where s) .

— (97)-"H _
Cn = (277) 2 = 2"71'"/21-‘(77,/2) .

Proof. Our starting point is an application of Lemma 8.1.1 for the integral
over the ball B representing f(A) = f(A,wo) according to the Definition 8.2.1.
For the purpose we use the parametrization

(8.3.13) y(a,0) = R(awo + (1 — a)6)

of the ball Bg by a family of horocycles. From (8.1.27) we have

a
< y(a,8),wo >=aln1 o

Then Lemma 8.1.1 yields

1
f()‘) —_ 2n—1ban—2u(Sn—2) / /w(__a___)—i)\a+(n—1)/2 %
0 Jo 1—-a

£(ly(26)) etz da
e e

(8.3.14)

where cos¢ = f.wp. Assuming p(S%) = 2, we see that the above relation is valid
for n = 2 too.
Let us make change of variables

() € (0,1) x (0,) —> (¢, p) € (—00,00) x (0,00)
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defined by

[0/ .t _ 2
=e , 1—COS(P—W,

where the function ¢ = ¢(¢) will be chosen later. Then we have the relations

(8.3.15) T

et et/2 1 e—t/2
o = = ) 1 —_ = =
1+et  2cht/2 1+e  2cht/2
et dt
8.3.16 da = dt = .
( ) o (1 + et)2 4Ch2t/2

From the second relation in (8.3.15) and
(8.3.17) R? — |y(e, 0)|* = 2R*a(1 — a)(1 — cos ¢)

we find

4R%a(1-a) _ R?
RE—[yP = ch®t/2(R? - |yP?)’
2¢~'p _ 2pch®t/2(R? - |y|?)

1+¢7%p =

singp =

14+¢2p% oR? T
_ 1+ cosy
p=9 V1="cosgy’
___267'dp _ _2(ch’t/2)(R? —|y*)
(8.3.18) dp = =i OR? dp,

where y = y(a, ). Since
D(a’ (P) _ R2 B |y|2

D@t,p) _ 29R®
and a = b/R = R/2, taking ¢(t) = cht/2, from (8.3.14) we get

Foy =2t [ [T e e syt o)) 2apat
Let F(s) be the function defined by
_ B2
(8.3.19) F(mz) = .
From (8.3.17), (8.3.15) and (8.3.16) we have

R? 2 2
o
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so
f) = dna"/ / e AP (p? 4 ch?t/2)p" 2dpdt =

—o0 V0

(8.3.20) = dna™ / / cos(tAa)F (p? + ch?t/2)p"2dpdt
—o00 J0

where

2nﬂ.(n—1)/2
8.3.21 dn = ————.
(8:3.21) (=172

Now we are in situation to apply the inverse formula for 1-dimensional Fourier
transform. Namely, the relation (8.3.20) can be written in the form

o= [ ey
where
(8.3.22) Y(t) = Yn(t) = dna™ /0 ” F(p® + chzt/z)p*"zdp.

The inverse transform on R! gives

B(t) = — /_ " it FA)dh = -2‘-’; /_ "~ cos(tAa) FN)dA,

2T J_o

since f is an even function due to (8.3.20). Thus we arrive at

o0
/ F(p® + ch®t/2)p" 2dp =
0

(8.3.23) _ 2:1(7(:(’":1}32/3_1 /_ Z cos(tAa) F(A)dA.

Our next step is to study the integral transform
F — H(F) = H,(F),
defined by

(8.3.24) Ho(F)(z) = /000 F(p® + z)p" 2dp.

For the purpose we use the recurrent relations
8¢(Hn(F)(ch®t/2)) =
; 3shtHn_2(F)(ch2t/2) , n>4,

(8.3.25) -
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and

(8.3.26) 8(H3(F)(ch®t/2)) = —%shtF(chzt/2).
Our goal is to solve the integral equation

(8.3.27) H.(F) = H,

with respect to F'.
First, we consider the case n > 3 odd. Then combining the above relations, we

get
(_1)(n—-1)/22(n+1)/2
T((n—1)/2) (sht

(8.3.28) F(ch®t/2) = 8;,) "~ V/2H, (ch®t/2)
for n > 3 odd.
If n > 4 is even, then the relation (8.3.25) gives

H,(F)(ch®t/2) =
(=12 D2 1 ey 2
3.2 = —
(8.3.29) T((n = 1)/2) (Shtat) H,(ch®t/2)
and the problem to solve the integral equation (8.3.27) is reduced to the case n = 2,
i.e. we have to solve the equation

(8.3.30) /ow F(p? + ch®t/2)dp = Ha(ch®t/2)
with respect to F'. For this we shall transform in a suitable way the quantity
It) = / 8;)Hz(0? + cht/2)do = / / F'(p* + o® + ch®t/2)dpdo.
Using polar coordinates r = W: cosp = p/r, we obtain
I(t) = g- /0 ” F'(r? + ch®t/2)rdr =

= % /o " B (F(r? + cht/2))dr = —%F(chztﬂ)

SO
8 [ 1
2 __2 il 2 2
F(ch*t/2) = = ); Shtat(Hz(U + ch®t/2))do
Applying (8.3.29), we get
F(ch®t/2) =
n/260(n+4)/2
(8.331) = U2 L 002 (Ho(0? + ch?t/2))do

\/_I‘((n 1)/2) Jo sht
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for any n > 2 even.

After this preparation we can solve (8.3.23) taking for H, the right side of
(8.3.23).

For n > 3 odd we use (8.3.28) and find

(-1) (n—-1)/2

Ft/2) = S bmamr | TG00/ cos(ta)ar

An application of (8.3.10) gives (8.3.12) for n > 3 odd.
For the case n > 2 even we have to compute the action of the operator

1
- n/2
i)
on the function
H,(0? + ch®t/2) = H,(ch®s/2) =

(8.3.32) _ _Iln-1/2) / ” cos(tAa) F(\)dA

on+lp(nt+1)/24n—1

with s = s(t,0) determined by
(8.3.33) ch®s/2 = ch®t/2 + o2.
Then for any integer k > 0 we have

1 ok 2 2, 0y _ (1
(00 Halo® + che/2) = (-0,

)kH’n(Chzs/z)la:a(t,a)

I'((n—1)/2) > (_l_aa)k(cos(s)\a)f()‘))Is=8(tv")d’\'
—oo Shs

= on+lp(n+1)/24n-1

so from (8.3.31), making the change of variables 0 — s = s(t, o) defined by (8.3.33),
we get

2 (-2
f(lyl) = F(ch®t/2) = 2(n+1)/27r(n+2)/2an—1 X

—8,)"/? Aa)dsd.
/ / m( 3) cos(sha)ds

From (8.3.11) we derive the needed identity (8.3.12) when n > 2 is an even
integer.
This completes the proof of the Theorem .
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8.4 Inverse Fourier transform

Once the inverse formula (8.3.12) for spherical transformations is established, one
can establish easy a formula for the inverse Fourier transform on any Riemannian
manifold with constant negative curvature (see [20]). More precisely, we have the
following.

Theorem 8.4.1 For any function f(y) € C(Br) we have

(841) fly) =
00 i n— a w> p _ dw

= ‘/;w /,.-1 e( A+(n—-1)/(2a))<y, >f(A,w)|Ca()\)| zan__fdA’

where
I'(ida)

ca(3) = Va(@m)"/? T((n—1)/2 + ira)"

Especially for the model on the hyperboloid
Xo={0eR":02-0-.. —0% =a%,00 >0}
the inverse formula (8.4.1) takes the form
(8.4.2) Q)=
[o ]
[ atemenimig a0/ £ e ()| 2dud
— 00 n—

For simplicity we shall consider only the case of curvature —1 and therefore we
can take a = b= R = —K =1 for the parameters connected with the models of
manifolds considered at the beginning of this Chapter.

The key idea of the proof is to use the inverse Fourier transform (8.3.12), ob-
tained for spherical functions together with a convolution in the space of functions
defined on manifold with constant negative curvature. For the purpose, consider

the group G = SO(1,n) and denote by dg a Haar measure on G normalized by the
condition ’

(8.4.3) fG f(¢0)dg = /X f(@)da,

where O = (1,0,...,0) € X and gQ denotes the action of the element g € G =
SO(1,n) on Q € X.

Definition 8.4.1 If f1, f2 € C§°(X), then the convolution fi * f2 is defined by

(8.4.4) fis f2(Q) = /G £1(90) f2(a Q) dg.
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It is not difficult to see that the requirement f1, fo € C§(X) is rather strong.
For example, it is sufficient to take f; € C§°(X) and fa € C®(X).
An important step to prove the inverse formula (8.4.1) is the following.

Proposition 8.4.1 For f € C§(X) we have

frea() =
1 . .
-1 (—ir—(n-1)/2) .
(8.4.5) SET /S 9,AW) FOw)dw
Proof of Proposition 8.4.1. We have
(8.4.6) Cfre@= [ feO)ea(s Adg

according to the Definition 8.4.1. The crucial step in the proof is to show that for
any g € SO(1,n) there exists a unique diffeomorphism

(8.4.7) weS" ! & =gw)es!
satisfying the relations

(8.4-8) ng’Z = g~19~2,

and

(8.4.9) gA(w) = pA(Gw)

for some real number u. Multiplying (8.4.9) by O and using the fact that [0, A(w)] =
1, we see that (8.4.9) is equivalent to

(8.4.10) 9A(w) = A(§(w))[0, gA(w)]

This observation enables one to verify the following property: if for g;, g2 one can
find g1,42 so that (8.4.10) is fulfilled for g1,d1 and g2, g2 respectively, then for
g9 = 6192 and § = gi1g> the property (8.4.10) is also fulfilled. Moreover, if the
property (8.4.10) is fulfilled for g, § then the same property is fulfilled for g—! and
G~ 1. This observation shows that we can rewrite (8.4.10) in the form

(8.4.11) 9AW)[0,97  A(§w)] = gA(w)[90, A(Gw)] = A(gw).
Our purpose is to compute the Jacobian of the diffeomorphism
w— §(w).

We can use the following observation. For any g € SO(1,n) one can find a basis in
R"*! so that

(8.4.12) g = grk,
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where
chr shr 0 1 0
(8.4.13) gr=1\| shr chr O , k= ( 0 K )
0 0 In_]_

with K € SO(n). It is clear that the diffeomorphism k corresponding to k according
to (8.4.3) is K € SO(n). This observation shows that it is sufficient to find the
diffeomorphism g; corresponding to gr in (8.4.13). Applying (8.4.10) with g = g,
we obtain that @ = g,(w) is defined by

shr + w;chr - w

. _ shr+wchr et M
(8414)  Gi=Gm—t s O = oo

=2,..n.

A simple computation shows the following relation between the volume elements
d& and dw on S™1,
dw dw

dis = (chr + shrw;)*? - [9-rO, A(W)™ 1"

Multiplying (8.4.10) by gO and using the identity [gO, gA(w)] = [0,A(w)] =1, we
get
[90, A(@)][0, gA(w)] =1

so from KO = O for any K € SO(n), the decomposition (8.4.12) shows that
(8.4.15) dj(w) = [gO, A(@)]" 'dw.

From (8.4.11) we see that

(8.4.16) (2, A(Gw)] = [g7' D2 Aw)][90, A(w)]

Then (8.4.15) implies that
1 )
-1 — -1 (—ix—(n—1)/2)
el = s [ 17, M) o

1 ” —iA—(n— » t n—
= [.l«(sn_l) ./S‘n—1[Q’A(w)]( A—( 1)/2)[90, A(W)]( A+( 1)/2)dw

1 . o
D) /sn-l[Q’A(“’)]( A= (n=1/2[g0, A@)] A D/ D,
Note that with = O this relation gives
(8.4.17) ‘P'\(|g-10|) = o_(l90]).

Thus (8.4.6) leads to

p(S™ N fxoA(Q) =
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= L"_l L f(gO)[gO,A(&'J)]("“("—l)/z)dg[ﬂ,A(w)](—“°("—1)/2)d‘;, _
=/ / f(Q')[Q’,A(G’J)](“‘—("_l)m)dﬂ'[ﬂ,A(&)](_i)"("‘l)/z)d&)
Sn—-1JX

= [ F@)RA@) D Dap
gn—1

and this completes the proof of the proposition.

After this preparation we can turn to the proof of the formula for inverse Fourier
transform. '

Proof of Theorem 8.4.1. As it was mentioned before, for simplicity we shall
consider only the case K = —1.

Let H = SO(n) and dh be the corresponding Haar measure satisfying

/dh:l.
H

Then for any fixed g € G = SO(1,n) we consider the spherical function

f1(Q) = /H f(ghQ)dh.

We know from Theorem 8.3.1 and the isomorphism between the models B; and X
of a manifold with curvature —1 that the inverse formula (8.4.1) is valid for f;. In
particular, we have

2

D((n—1)/2+)[*

(8.4.18) f1(0) = (2—72—1 /_ o:o h (’\)I T(i))

On the other hand, we have the relations
A = /X ZN(D) /H £ (ghQ)dhdQ
= / FQ)p-r(g7 V)2 = / F(g'0)p-r(g7'¢'O)dyg’.
b's G
Applying now (8.4.17), we get
A0 = [ 1g0)er((a) " 90)dg’ = £ *2(50)

From this relation, Proposition 8.4.1 and (8.4.18) we get the desired relation,
since

f1(0) = f(g0)
This completes the proof of Theorem 8.4.1.



148 FOURIER TRANSFORMATION ON MANIFOLDS WITH CONSTANT NEGATIVE CURVATURE

It is not difficult to derive a Plancherel identity
(8.4.19) / |£()|2dQ =
X

@m)" [ A ID((n—1)/2+ia))]? . dA
2 /w/ O ey v L

by the aid of the inverse formula from Theorem 8.4.1.

8.5 Appendix: Some facts about the Euler gamma functlon
and the Legendre function

The Euler function I'(2) is defined by

(8.5.1) I'(z) = / e " 1dt
0

for Rez > 0. Using the recurrent relation

(8.5.2) [(z+1) = 2I'(2),

one can extend the definition of I'(z) for z € C,z # 0,—1—,2,... Since I'(1) = 1,
we get for any integer n,n > 1 the relation I'(n + 1) = n!. Some other relations for
the function I' are given below ([1])

(8.5.3) I'(z)(-2) = -ﬁ(m),
(8.5.4) [(z)[(1-z) = @
(8.5.5) T(z+1/2)[(z — 1/2) = cos7(r7rz) .

The function I'(z) is closely related to the function

1

(8.5.6) B(z,y) = / t*~1(1 - t)v~ldt,
0

defined for Rez > 0, Rey > 0. Namely, we have

I'()T'(y)

(8.5.7) B(z,y) = Tty

Another integral representation is the following. -

w/2
(8.5.8) B(z,y) =2 / (sint)?*~!(cost)®~dt.
0
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It is not difficult to compute the surface of the unit sphere S*~!. In fact for
n = 2 we have p(S') = 2r. For n > 3 we can introduce polar coordinates

(cosp, w'sing) ,w' € S™72.

Then

p(S™) = u(s"?) [ sin™2 pdp =
0

= 8™ B((n - 1)/2,1/2) = B ILTCD)

From the recurrent relation

a1y _ yegne2yy=L(n = 1)/2)
u(8" ") = u(8" )W T(n/2)
we get
27™/2

(8.5.9) ”(Sn——l) = i"—(—n—/2—)'

The Legendre function P/'(z) satisfies the equation (see [1], volume 1, relation
2

(3.2.1))
d*w dw u
5.1 — 2% 5% bk
(8.5.10) (1 z)dzz 2zdz+[u(u+1) T2
We shall use the following integral representation of these special functions ([1]
volume 1, relation (3.7.7))

w = 0.

Pl(chr) =

(8.5.11) = c,(shr)™* / (chr — shrcos p)* 1 sin™2* pdp,
0
where
oH
C, =
k= JATZ— )

and Reu < 1/2.

Another solution of (8.5.10) are the associated Legendre functions Q#(z) of
second kind. They are also solutions of (8.5.10) and satisfy the following relation

P H(2) =

e I(v—p+1) ) sinfr(v — p)][Q%(2) — Q*,_,(2)]-

B meos(vm) v+ p+1

(8.5.12)
An integral representation of Q¥ is given by (see [1] volume 1, relation (3.7.4))

o0
(85.13) Q4(chr) = d,,(sh'r)“/ e_(”"'l/z)"(chs — chr)'”‘l/zds,

r
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R R
=3
and the above representation is valid for Re(v+pu+1) > 0,Rep < 1/2. A differential
equation satisfied by P¥(2) is
dPf(z) _(v+p)v—p+1)
dz V2?2 -1

From these relations we shall establish the following.

where

(8.5.14) P4 1( ) — P“( ).
Lemma 8.5.1 The function
(8.5.15) L™(r) = L2(r) = (shr)~"=2/2 pZ (2% (chr)

satisfies the recurrent relation

(8.5.16) L*(r) = ;‘;_(11»_%_—3)2 (ia,) L™ 3(r).

Proof. From (8.5.14) we have
8, (sh*rP¥(chr)) = (v + p)(v — p + 1)sh*rP¥~1(chr).

With p = —(n —4)/2 and v = —1/2 — i0 we obtain the desired relation.
Further, we shall obtain

Lemma 8.5.2 For n > 1 odd the function
L*(r) = L?(r) =sh~(*~2/2,p 1(72 i)gz(chr)
takes the form

L*(r) =
2 T(io)?

8.5.17 —-1)(r-1)/2
( ) (=) |r(w+n-1)|2(sh,,

)P~ D/2 cos o,

Proof. For n = 1 we use the relation (see [1]), identity (3.6.12))
P(z) = o= 1) A+ V- D" 4 (a4 - 1)
7r

and we find

(8.5.18) L'(r) = \/gcos or.
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Thus, the assertion is verified for n = 1. In case n > 3 odd from (8.5.16) we get

( 1)(n D/ 1 (n-1)/271
n _ ; .
(8.5.19) L*(r) = §c" 03)/2(- TN ra,) L(r)

On the other hand, we have

(n=3)/2 o 4 2=1)[2
IT (i + %5=)|
8.5.20 o’ + k) = —

and hence this relation combined with (8.5.18) and (8.5.19) imply the desired iden-
tity (8.5.17).
The Lemma is proved.

Lemma 8.5.3 For n > 2 even the function
L™(r) = L3(r) = (shr)~"=2/2 P~ 0722 (chr)
takes the form
(8.5.21) L*(r) =

('—1)"/2‘\/5 IF(ZO‘)|2 . /m Shs 1 n/2
Tie . F-'che ds.
T IT(io + Z‘%1—)|2 - \/m(shsa’) (cosos)

Proof. Set
K™(r) = K2(r) =
* shs 1 ...
(85.22) = / ‘/ﬁ(g{gag) /2(COSUS)d8.

Integrating by parts, we find
e o]
K"(r) = 2/ 0s(Vchs — chr)(iga,)"/z(cosas)ds =
T
(o o]
= —2/ (V/chs — chr)0,(
T

1
n/2
<hs 05)™/“(cos os)ds.

Hence, for r # 0 we have

1 1 1
Logn [ 1 o1 oy _ k().
pr 0-K"(r) /r — 0s( s 0s)"'“(cosos)ds = K" *(r)

Thus for n > 2 even we have

(8.5.23) K"(r) = (s_;_rar)(n-zm K2(r).
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Now we have to compute

®  ginso

o
r \/ch.s - chr
If we apply (8.5.13) with p =0,v = —1/2 + io, then we get

Kz(r) = -

oo —is0
e

r +/chs—chr
Applying (8.5.12), we obtain further

*  sinso V2
: mds -7 th(on)P°, J2+io(ChT).

Therefore, we have

ds =v2Q°, /2+i0(ChT).

K(r) = ~ 750 th(om) P2, /3, (cbr) =

(8.5.24) =-5° th(ow) L2 (r).

Now we can apply Lemma 8.5.1 and get for n > 2 even

_1\n/2
( \/)f no th(on)(o? +( )) (e 2+( )L3(r) =

(8.5.25) = (Ea,.)("-”/zxg(r).

Comparing this relation with (8.5.23), we obtain

(—1)"2 2\rn
75 no th(on)(o? +( )) (P + (5 ))L (r) =

(8.5.26) = K™(r).

On the other hand, for n > 2 even we can apply the following relations for the
Gamma function (see [1], vol.1, relations (1.2.5) and (1.2.7))

[(2)[(~z) = —zsi’; — , T(1/2+2)0(1/2-2) = co:m.
Then we get rQy ) D(—io)
1/2+io —io
Tao) )20
SO
. 2
(8.5.27) 'ﬂl—l%j)ﬂ — oth(na).
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From I'(1 + z) = 2I'(2) together with (8.5.27) we derive

2

(8.5.28)

’F((n —1)/2 4 i)
I'(io)

o ((252)"+ ) (2) )

From (8.5.25) we get

(=)™*v2 _ |T(io)|?

T IT(io + "—EL)IZK:(T)'

L"(r) =

This completes the proof of the Lemma.
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