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4 Main hyperbolic equations and energy type es-
timates

4.1 Linear wave and Klein-Gordon equations

Our first step in this chapter is to formulate some of the most important hyperbolic

equations in mathematical physics.
In these lectures we shall focus our attention mainly to the wave and Klein-

Gordon equations as the basic examples of hyperbolic equations in mathematical
physics.

The wave equation is an important problem in continuum mechanics. $A$ deriva-

tion of this equation in the model of vibrating string can be found in [59] Chapter

2.
The same equation plays a crucial role in relativistic quantum mechamics, since

it is connected with a model of a massless relativistic field $u=u(t, x)$ , where $t$ is
the time variable and

$x=(x_{1}, \ldots, x_{n})\in R^{n}$

are the space variables. The wave equation satisfied by the field $u$ has the form

(4.1.1) $(-\partial_{t}^{2}+\Delta)u=F,$

where
$\Delta=\partial_{x_{1}}^{2}+\ldots+\partial_{x_{n}}^{2}$

is the Laplace operator and $F=F(t, x)$ is a given known function. Usually, the

operator
$\square =-\partial_{t}^{2}+\Delta$

is called D’Alembert operator.
For the case, when a scalar relativistic field has a mass, the corresponding

equation is called Klein-Gordon equation and this equation has the form

(4.1.2) $(-\partial_{t}^{2}+\Delta-M^{2})u=F,$

where $M>0$ is the mass of the field.
In general we can consider the wave equation as a partial case of Klein-Gordon

equation with mass zero.
The first important physical law for these equation is the conservation of energy,

when the external force $F$ is identically zero.
Indeed, let us assume the solution is smooth and for any fixed $t$ has a compact

support. Then multiplying (4.1.2) by $\partial_{t}u$ we see that the energy

$E(t)=\frac{1}{2}l|\partial_{t}u(t, x)|^{2}+$

(4.1.3) $+|\nabla_{x}u(t,x)|^{2}+M|u(t, x)|^{2}dx$
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is a constant independent of the time variable $t.$

We shall rewrite the Klein-Gordon equation (and therefore the wave equation)
as abstract evolution equation of the form

(4.1.4) $\partial_{4}v=Av,$

where $A$ is a skew-selfadjoint operator in a suitable Hilbert space $H$ . We refer to
[31] for complete information about this reduction.

For simplicity we shall consider here only the case of positive mass $M.$

It is clear that we can define the operator $ M^{2}-\Delta$ on the space of smooth
compactly supported functions in $R^{n}$ . Then this operator is a symmetric with
respect to the scalar product

$(f,g)_{L^{2}}=\int_{R^{n}}f(x)\overline{g(x)}dx.$

Moreover, this is a strictly monotone operator in the Hilbert space $L^{2}(R)$ .
To show that the closure of this operator is a self-adjoint one, we use Theorem

2.3.3, so it is sufficient to show that any weak solution $u\in H^{1}$ of

$(M^{2}-\Delta)u=f\in L^{2}$

is also strong, i.e. there exists a sequence $u_{k}$ of smooth compactly supported
functions, so that

$uk\rightarrow u$ in $H^{1},$

$(M^{2}-\Delta)u_{k}\rightarrow f$ in $L^{2}.$

To construct such an approximation sequence, let $\varphi(s)$ be a smooth compactly
supported function on $R$ with $\varphi(s)=1$ for $|s|\leq 1$ and $\varphi(s)=0$ for $|s|\geq 2.$

The key point is to construct an approximation sequence $v_{k}$ in $H^{1}\cap E’$ , where $E$‘

denotes the space of distributions with compact support. Approximation sequence
in $H^{1}\cap E’$ means that there exists a sequence $v_{k}\in H^{1}\cap E’$ so that

$v_{k}\rightarrow u$ in $H^{1},$

$(M^{2}-\Delta)v_{k}\rightarrow f$ in $L^{2}.$

Once this sequence is constructed, we can use IFMriedrich’s molifiers $j_{\epsilon}$ (see (3.3.18))
and define

$u_{\epsilon,k}=j_{\epsilon}*v_{k}.$

Since $v_{k}$ is compactly supported, we see that $u_{\epsilon,k}$ is a smooth compactly supported
function. Then using the properties

$u_{\epsilon,k}\rightarrow v_{k}$ in $H^{1},$

$(M^{2}-\Delta)u_{\epsilon,k}\rightarrow(M^{2}-\Delta)v_{k}$ in $L^{2},$
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we see that $u\in H^{1}$ is a strong solution.
Therefore it remains to construct $v_{k}$ . Set

$v_{k}(x)=\varphi(k^{-1}|x|)u(x)$ .

Then $v_{k}$ satisfies the equation

$(M^{2}-\Delta)vk=f+r_{k}(x)$ ,

where
$r_{k}(x)=(1-\varphi(k^{-1}|x|))f(x)+[\Delta, \varphi(k^{-1}|.|)]u.$

It is clear that $r_{k}$ tends to $0$ in $L^{2}$ and this shows we have an approximation
sequence in $H^{1}\cap E’$ . As we have seen this is sufficient to concluded that the closure
of the operator $(M^{2}-\Delta)$ with dense domain $C_{0}^{\infty}$ is a self-adjoint operator.

Setting

$v=\left(\begin{array}{l}u\\\partial_{t}u\end{array}\right) , A=\left(\begin{array}{ll}0 & 1\\\Delta-M^{2} & 0\end{array}\right)$

we see that the nonlinear Klein-Gordon equation (4.1.2) takes the fom (4.1.4).
The fom of the energy in (4.1.3) suggests us to consider the Hilbert space $H=$

$H^{1}(R^{n})\times L^{2}(R^{n})$ . For any couple $v=(v_{1}, v_{2})\in H$ the corresponding nom is
defined by

(4.1.5) $\Vert v||_{H}^{2}=1|\nabla v_{1}|^{2}+M^{2}|v_{1}|^{2}+|v_{2}|^{2}dx$

Denote by $(,$ $)_{H}$ is the corresponding Hilbert norm.
A dense domain for the operator $A$ can be choosen as

(4.1.6) $D(A)=C_{0}^{\infty}(R^{n})\times C_{0}^{\infty}(R^{n})$ .

Then we see that $A$ can be extended to a skew-selfadjoint operator with a dense
domain

$D(A)=H^{2}(R^{n})\times H^{1}(R^{n})$ .
Applying the Stone theorem we see that $A$ is a generator of an umitary group

$U(t)$ acting in the Hilbert space $H.$

The fact that $A$ is a generator of the group $U(t)$ means that

$\lim_{t\rightarrow 0}\frac{U(t)f-f}{t}=A(f)$

for $f\in D(A)$ . The fact that $A$ is skew-selfadjoint assures that $U(t)$ is a unitary
operator

(4.1.7) $\Vert U(t)f\Vert_{H}=\Vert f\Vert_{H}$
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The abstract Cauchy problem associated with the generator $A$ can be written
in the fom

$av=Av,$

$v(0)=f.$

The unique solution of this linear Cauchy problem can be represented as $v=$

$U(t)f.$

Turning back to our original fomulation of the Klein-Gordon equation we can
state the corresponding Cauehy problem as follows

$(-\partial_{t}^{2}+\Delta-M^{2})u=0,$

$u(O,x)=f_{0}(x), \partial_{t}u(0,x)=f_{1}(x)$ .
Here $f=(f_{0}, f_{1})\in H.$

For the case of nontrivial extemal force $F$ we have the Cauchy problem

$(-\partial_{t}^{2}+\Delta-M^{2})u=F,$

$u(O, x)=f_{0}(x), \partial_{t}u(0,x)=f_{1}(x)$ .

The energy conservation law for the linear wave equation is represented in
(4.1.7) so the nom in the Hilbert space $H$ has an interpretation as energy.

4.2 Self- adjoint generators

The operator $ M^{2}-\Delta$ , considered in the previous section, is a typical example of a
symmetric strictly monotone operator with dense domain $C_{0}^{\infty}(R^{n})$ . We have seen
that its closure is a self-adjoint operator in the Hilbert space $H=L^{2}(R^{n})$ .

Another important case is $\infty mected$ with the case when $R^{n}$ is equipped with
a global Riemannian metric

$ds^{2}=\sum_{j,k=1}^{n}g_{jk}(x)dx^{j}dx^{k},$

where $g_{jk}$ are smooth functions defined in $R^{n}$ such that the matrix $G(x)=$

$(g_{jk}(x))_{j,k=1}^{n}$ is a symmetric uniformly positive matrix, i.e. there exists a posi-
tive constant $\mu>0$ , such that

$G(x)\geq\mu I$

in the sense of symmetric matrices. Set

$g(x)=detG(x)$ .

Let $(\dot{f}^{k}(x))_{jk=1}^{n}=G^{-1}(x)$ be the inverse matrix. The Laplace-Beltrami operator
associated with the above metric is

$\Delta_{g}=\frac{1}{\sqrt{g}}\sum_{j,k=1}^{n}\partial_{x_{\dot{f}}}\sqrt{g}\dot{\oint}^{k}\partial_{x_{k}}.$
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This is a symmetric operator in the Hilbert space $L^{2}(\sqrt{g}dx)$ with inner product

$(f, h)_{L^{2}(\sqrt{g}dx)}=\int_{R^{n}}f(x)\overline{h(x)}\sqrt{g(x)}dx.$

A more general situation is connected with the operator

(4.2.1) $P(x, \partial_{x})=\frac{1}{b(x)}\sum_{j,k=1}^{n}\partial_{x_{j}}a^{jk}(x)\partial_{x_{k}},$

where $b(x)>0$ and $a^{jk}(x)$ are smooth functions defined in $R^{n}$ such that the matrix
$A(x)=(a^{jk}(x))_{j,k=1}^{n}$ is a symmetric uniformly positive matrix, i.e. there exists a
positive constant $\mu>0$ , such that

(4.2.2) $A(x)\geq\mu I$

in the sense of symmetric matrices.
The corresponding Hilbert space is $L^{2}(b(x)dx)$ with inner product

$(f, h)_{L^{2}(bdx)}=\int_{R^{n}}f(x)\overline{h(x)}b(x)dx.$

It is clear that the operator $P$ in (4.2.1) can be defined on $C_{0}^{\infty}(R^{n})$ .

Lemma 4.2.1 The operator $1-P$ with dense domain $C_{0}^{\infty}(R^{n})$ is a symmetric

strictly monotone operator in $L^{2}(bdx)$ .

Proof. Given $f,g\in C_{0}^{\infty}(R^{n})$ we have

(4.2.3) $((1-P)f,g)_{L^{2}(bdx)}=(f,g)_{L^{2}(bdx)}+l(A(x)\nabla f(x), \nabla g(x))dx,$

where $(\cdot, \cdot)$ denotes the inner product in $C^{n}$ . In the same way we get

(4.2.4) $(f, (1-P)g)_{L^{2}(bdx)}=(f,g)_{L^{2}(bdx)}+l(A(x)\nabla f(x), \nabla g(x))dx.$

Hence, $1-P$ is a symmetric operator. From (4.2.3) it follows

$((1-P)f, f)_{L^{2}(bdx)}\geq\Vert f\Vert_{L^{2}(bdx)}^{2}.$

This completes the proof of the Lemma.
Now we can define the norm in the energetic space

$H_{E}=\{f;((1-P)f, f)_{L^{2}(bdx)}<\infty\}.$

More precisely, the energetic space is the closure of $C_{0}^{\infty}(R^{n})$ with respect the nom

$\Vert f\Vert_{H_{E}}^{2}=((1-P)f, f)_{L^{2}(bdx)}.$
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Note that the inner product in $H_{B}$ is

(4.2.5) $(f,g)_{H_{B}}=(f,g)_{L^{2}(bdx)}+\int(A(x)\nabla f(x), \nabla g(x))dx.$

due to (4.2.3).
Our goal is to show that any weak solution $u\in H_{E}$ of the equation

$(1-P)u=f$

for $f\in L^{2}(bdx)$ is also a strong one, i.e. there exists a sequence $v_{m},m=1,2,$
$\ldots,$

so that
a$)$ $v_{m}\in C_{0}^{\infty}(R^{n})$ ,
b $)$ $v_{m}\rightarrow u$ in $H_{E},$

c $)$ $(1-P)v_{m}\rightarrow f\in L^{2}(bdx)$ in $L^{2}(bdx)$ .
Having in mind the treatment of the case of usual Laplacian, we shall make an

intermediate step, namely we shall construct an approximation sequence $u_{k},$ $k=$

$1,2,$
$\ldots$ in $H_{E}\cap E’(R^{n})$ , where $E’(R^{n})$ denotes the space of distributions with

compact support. This means the sequence satisfies the properties

(4.2.6) $u_{k}\in H_{E}\cap E’(R^{n})$ ,

(4.2.7) $u_{k}\rightarrow u$ in $H_{E},$

(4.2.8) $(1-P)u_{k}\rightarrow f\in L^{2}(bdx)$ in $L^{2}(bdx)$ .
Once the approximation sequence of this type is constmcted, one can use Friedrich’s
molifiers $j_{\epsilon}$ (see (3.3.18)) to approximate any $u_{k}$ by $j_{\epsilon}*u_{k}$ . Fixing $k$ and taking
$\epsilon\rightarrow 0$ , we have $j_{\epsilon}*u_{k}$ is a smooth function. We can see that

(4.2.9) $j_{\epsilon}*u_{k}\rightarrow u_{k}$

in $H_{E}$ as $\epsilon\rightarrow 0$ . Indeed, for $x\in K$, where $K\subset R^{n}$ is a compact, there exists a
positive constant $C=C(K)$ such that

$C^{-1}\leq b(x)\leq C C^{-1}I\leq A(x)\leq CI.$

This means that the noms $\Vert v\Vert_{H_{B}}$ and $\Vert v\Vert_{H^{1}(R^{n})}$ are equivalent when $v\in H_{E}$ has
a compact support in $K$. Since $j_{\epsilon}*u_{k}\rightarrow u_{k}$ in the Sobolev space $H^{1}$ , we conclude
that (4.2.9) is fulfilled.

Note that for a fixed compact $K$ on the linear space $E’(K)\cap L^{2}(K)$ the norms
$L^{2}(dx)$ and $L^{2}(bdx)$ are equivalent. Also it is easy to see that

(4.2.10) $b(1-P)(j_{\epsilon}*u_{k})-j_{\epsilon}*((b-bP)u_{k})\rightarrow 0$

in $L^{2}$ . In fact, denoting by $[A, B]=AB-BA$ the commutator between the oper-
ators $A,$ $B$ , we see that the tem in (4.2.10) is

$\mathfrak{u}_{\epsilon}*,bP]u_{k}+[b,j_{\epsilon}*]u_{k}$
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Since $u_{\epsilon}*,$ $\partial_{x_{k}}$ ] $=0$ , we have

$\mathfrak{u}_{e}*,bP]=\sum_{m,k=1}^{n}\partial_{x_{m}}\mathfrak{u}_{\epsilon}*,a^{mk}]\partial_{x_{k}}.$

On the other hand, for $x\in K$ with $K$ being a compact set, we have

$|u_{\epsilon}*, a]f(x)|\leq C\epsilon|j_{\epsilon}*|f|(x)|$

provided the derivatives of $a(x)$ are bounded.
Since $u_{k}$ have compact support, we get

$\Vert[j_{\epsilon}*, b(1-P)]u_{k}\Vert_{L^{2}}\leq C\epsilon\Vert u_{k}\Vert_{H^{2}}.$

Applying the G\"arding inequality, we have

$\Vert(1-P)u_{k}\Vert_{L^{2}}\geq C(\Vert u_{k}\Vert_{H^{2}}-\Vert u_{k}\Vert_{H_{1}})$ .

Since $u_{k}$ have compact support, the norms $\Vert u_{k}\Vert_{H^{1}}$ and $\Vert u_{k}\Vert_{H_{E}}$ are equivalent so
we arrive at

$\Vert[_{R}i_{\epsilon}*, (b-bP)]u_{k}\Vert_{L^{2}}\leq C\epsilon(\Vert(1-P)u_{k}\Vert_{L^{2}}+\Vert u_{k}\Vert_{H_{E}})$ .

Taking $\epsilon\rightarrow 0$ , we get (4.2.10).
Therefore, it remains only to localize the problem, i.e. to show the existence of

a sequence $u_{k},$ $k=1,2,$ $\ldots$ , satisfying the properties $(4.2.6)-(4.2.8)$ .
To do this we shall make an additional assumption about the asymptotic be-

havior of $b(x)$ and the matrix $A(x)$ at infinity. Namely, we shall assume that there
exists a smooth positive function $\chi(x)$ and a constant $C>0$ so that

(4.2.11) $\lim_{x\rightarrow\infty}\chi(x)=\infty,$

(4.2.12) $|(A(x)\nabla\chi(x), \nabla\chi(x))|\leq Cb(x)\chi^{2}(x)$ ,

(4.2.13) $|P(\chi)(x)|\leq C\chi(x)$

for any $x\in R^{n}.$

At the end of this section we shall see various examples, when the above as-
sumptions can be checked easily.

To construct the sequence $u_{k}$ take a non-negative smooth compactly supported
function $\varphi(s)$ defined on $R$ and such that $\varphi(s)=1$ for $|s|\leq 1$ and $\varphi(s)=0$ for
$|s|\geq 2$ . Set

$u_{k}=\varphi(k^{-1}\chi(x))u(x)$ .
Applying the Lebesgue convergence theorem and using the fact that $u\in L^{2}(bdx)$

we see that $u_{k}$ tends to $u$ in $L^{2}(bdx)$ . To show that $u_{k}$ tends to $u$ in $H_{E}$ , it is
sufficient to show that the function

$(A(x)\nabla(u_{k}(x)-u(x)), \nabla(u_{k}(x)-u(x)))$
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tends to $0$ in $L^{1}(R^{n})$ . The above tem can be represented as (for the case of real-
valued function u)

$(1-\varphi(k^{-1}\chi(x)))^{2}(A\nabla u, \nabla u)-$

$2k^{-1}(A\nabla\chi, \nabla u)u\varphi’(k^{-1}\chi(x))(1-\varphi(k^{-1}\chi(x)))$

$+k^{-2}(A\nabla\chi, \nabla\chi)u^{2}(\varphi’(k^{-1}\chi(x)))^{2}.$

Note that on the support of $\varphi’(k^{-1}\chi(x))$ the parameter $k$ and the function $\chi(x)$

are equivalent. Moreover, we have the Cauchy inequality

(4.2.14) $(A\nabla\chi, \nabla u)^{2}\leq(A\nabla\chi, \nabla\chi)(A\nabla u, \nabla u)$ .
Therefore, using the assumption (4.2.12) and Lebesgue convergence theorem we see
that $u_{k}$ tends to $u\in H_{E}$ in $H_{E}$ . Finally, it remains to show that $(1-P)u_{k}$ tends
to $f$ in $L^{2}(bdx)$ . For the purpose it is sufficient to show that $[P, \varphi_{k}(x)]u$ tends to $0$

in $L^{2}(bdx)$ . Here
$\varphi_{k}(x)=\varphi(k^{-1}\chi(x))$ .

A direct computation shows that the above commutator is

$[P, \varphi_{k}]u=uP(\varphi_{k})+2\frac{1}{b}(A\nabla\varphi_{k}, \nabla u)$ .

Our assumptions (4.2.12) and (4.2.13) show that

$|P(\varphi_{k})(x)|\leq C$

so the Lebesgue $\infty nvergence$ theorem implies that $uP(\varphi_{k})$ tends to $0$ in $L^{2}(bdx)$ .
For the tem $2\frac{1}{b}(A\nabla\varphi_{k}, \nabla u)$ we use the Cauchy inequality (4.2.14) and see that

this tem also tends to $0$ in $L^{2}(bdx)$ . Thus we have established the following.

Theorem 4.2.1 Suppose the elliptic opemtor $P$ from $(4\cdot 2.1)$ satisfies the assump-
tions $(4\cdot 2.2)$ , (4.2.12) and (4.2.13). Then the opemtor $1-P$ with dense domain
$C_{0}^{\infty}(R^{n})$ has a $self-adjoint$ closure. ($i.e.$ $1-P$ is essenhally self-adjoint opemtor)

Finally, we consider few examples.
Example 1. The operator

$\sum_{j=1}^{n}\partial_{x_{\dot{f}}}<x>^{a}\partial_{x}j a\leq 2,$

in the Hilbert space $L^{2}(R^{n})$ . For this case we take

$A=<x>^{a}, b=1, \chi(x)=<x>.$

Then the assumptions of Theorem 4.2.1 are fulfilled.
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Example 2. The operator

$\sum_{j=1}^{n}<x>\partial_{x_{j}}<x>^{a}\partial_{x}j a\leq 1,$

in the Hilbert space $L^{2}(<x>^{-1}dx)$ . For this case we take

$A=<x>^{a}, b=<x>^{-1} \chi(x)=<x>.$

Again the assumptions of Theorem 4.2.1 are fulfilled.
Example 3. The operator

$\Delta+\Delta_{S^{n-1}},$

where $\Delta_{S^{n-1}}$ is the standard Laplace-Beltrami operator on the unit sphere in $R^{n}.$

Since

$\Delta_{S^{n-1}}=\frac{1}{2}\sum_{j,k}Y_{jk}^{2},$

where $Y_{j,k}=x_{j}\partial_{x_{k}}-x_{k}\partial_{x_{j}}$ are the generators of rotations in the space, we obtain

$\Delta_{S^{n-1}}=\sum_{k=1}^{n}\partial_{x_{k}}|x|^{2}\partial_{x_{k}}-\sum_{k,j}\partial_{x_{k}}x_{j}x_{k}\partial_{x_{j}}.$

For this case we take

$A(x)=<x>^{2}I-x\otimes x, b=1, \chi(x)=<x>$

and see again that the assumptions of Theorem 4.2.1 are fulfilled. In this way we
conclude that the operator

$1-\Delta-\Delta_{S^{n-1}},$

with dense domain $C_{0}^{\infty}(R^{n})$ has a self-adjoint closure.

4.3 Energy estimate for Klein-Gordon equation

In this section we shall derive some simple $L^{2}$ -estimate of the solution of Klein-
Gordon equation
(4.3.1) $\square u-u=-F.$

We shall assume that the supports of $u,$
$F$ are contained in $\{|x|\leq t-1\}$ , the initial

data
(4.3.2) $u|t=t_{0}=g0, \partial_{t}u_{|t=t_{0}}=g_{1}$

with $t_{0}>1$ are such that their supports are contained in $\{|x|\leq t_{0}-1\}$ , and they
have small energy norm

$\Vert g_{0}\Vert_{H^{1}(\mathbb{R}^{n})}+\Vert g_{1}\Vert_{L^{2}(\mathbb{R}^{n})}\leq\epsilon.$
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The classical energy estimate for $t\geq t_{0}$ gives

$\Vert\nabla_{t,x}u(t, \cdot)\Vert_{L^{2}(\mathbb{R}^{n})}+\Vert u(t, \cdot)\Vert_{L^{2}(\mathbb{R}^{n})}$

(4.3.3) $\leq C\epsilon+Cl_{t_{0}}^{t}\Vert F(\tau, \cdot)\Vert_{L^{2}(\mathbb{R}^{n})}d\tau.$

For any fixed $\rho>t_{0}$ we consider the hyperboloid

$X_{\rho}=\{t^{2}-|x|^{2}=\rho^{2},t>0\}$

and our goal is to control the energy over $X_{\rho}$ . Multiplying (4.3.1) by $-\partial_{t}u$, we
obtain the identity

(4.3.4) $\sum_{\mu=0}^{n}\partial_{\mu}P^{\mu}=2F\partial_{t}u,$

where

(4.3.5) $\partial_{0}=\partial_{t}, \partial_{j}=\partial_{x_{j}}, j=1, \ldots,ni$

(4.3.6) $P^{0}=|\nabla_{t,x}u|^{2}+|u|^{2}, P^{j}=-2\partial_{t}u\partial_{j}u, j=1, \ldots,n,$

$P^{0},P^{j}$ are the components of the energy-momentum tensor. We start integrating
(4.3.4) into domain

$D_{\rho}=\{(t,x)\in \mathbb{R}+\times \mathbb{R}^{n};t>t_{0},t^{2}-|x|^{2}<\rho^{2}\}.$

Having in mind that

$D_{\rho}\cap\{(t,x)\in \mathbb{R}_{+}\times \mathbb{R}^{n};|x|\leq t-1\}$

is bounded $(t+|x|\leq\rho^{2})$ , we see from the assumption about the supports of
$u,$ $F,$ go, $g_{1}$ that

(4.3.7) $\int_{\partial D_{\rho}}\sum_{\mu=0}^{n}\nu_{\mu}P^{\mu}(t,x)d\Sigma_{t,x}=l_{D_{\rho}}2F\partial_{t}u(t,x)dxdt,$

where $\partial D_{\rho}$ is the boundary of the domain $D_{\rho},$ $\nu$ is the outward nomal and $\Sigma_{t,x}$

is the surface element with respect to the Riemannian metric in $\mathbb{R}\times \mathbb{R}^{n}$ . The
boundary $\partial D_{\rho}$ for $\rho>t_{0}$ consists of the hyperboloid $X_{\rho}$ and the plane $t=t_{0}$ . For
$(t,x)\in X_{\rho}$ we have

(4.3.8) $\nu=\nu(t,x)=(\rho^{2}+2|x|^{2})^{-1/2}(\sqrt{|x|^{2}+\rho^{2}}, -x)$

while

$d\Sigma_{t,x}=\frac{(\rho^{2}+2|x|^{2})^{1\prime 2}}{\sqrt{|x|^{2}+\rho^{2}}}dx.$
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Lemma 4.3.1 For $\rho>t_{0}$ and $(t,x)\in X_{\rho}$ we have

$|\nabla_{t,x}u(t,x)|^{2}+2\frac{r\partial_{t}u\partial_{r}u}{(\rho^{2}+r^{2})^{1\prime 2}}\geq C\frac{\rho^{2}}{\rho^{2}+r^{2}}|\nabla_{t,x}u|^{2}.$

Here $r=|x|.$

Proof. Indeed, using
$|\partial_{r}u|\leq|\nabla_{x}u|$

and the inequality
$|\nabla_{t,x}u|^{2}\geq 2|\partial_{t}u||\nabla_{x}u|,$

we get

$|\nabla_{t,x}u(t,x)|^{2}+2\frac{r\partial_{t}u\partial_{r}u}{(\rho^{2}+r^{2})^{1/2}}\geq(1-\frac{r}{\sqrt{\rho^{2}+r^{2}}})|\nabla_{t,x}u|^{2}.$

On the other hand, the identity

$1-\frac{r}{\sqrt{\rho^{2}+r^{2}}}=\frac{\rho^{2}}{\sqrt{\rho^{2}+r^{2}}(r+\sqrt{\rho^{2}+r^{2}})}$

shows that this weight is equivalent to

$\frac{\rho^{2}}{\rho^{2}+r^{2}}.$

This completes the proof of the Lemma. $\square $

By the aid of this Lemma and of identity (4.3.7) we find

$ l_{\mathbb{R}^{n}}|u(\sqrt{\rho^{2}+|x|^{2}},x)|^{2}dx+\int_{\mathbb{R}^{n}}\frac{\rho^{2}}{\rho^{2}+|x|^{2}}|\nabla_{t,x}u(\sqrt{\rho^{2}+|x|^{2}}, x)|^{2}dx\leq$

(4.3.9) $\leq C(\Vert go\Vert_{H^{1}}+\Vert g_{1}\Vert_{L^{2}})+2\int_{D_{\rho}}|\partial_{t}u(t,x)||F(t,x)|dxdt.$

On the other hand for any $\rho 0\geq t_{0}$ and for any $L^{1}-non$-negative function $H(t,x)$ ,
having support in $\{|x|\leq t-1\}$ , we have

$l_{D_{\rho}}H(t,x)dxdt\leq l_{0}^{\rho}l_{\mathbb{R}^{n}}H(\sqrt{\sigma^{2}+|x|^{2}},x)\frac{\sigma dx}{\sqrt{\sigma^{2}+|x|^{2}}}d\sigma+$

$+\int_{t_{0}}^{t_{1}}l_{\mathbb{R}^{n}}H(\tau,x)dxd\tau,$

where $t_{1}$ is detemined so that the plain $t=t_{1}$ contains the intersection $\{|x|=$

$t-1\}\cap X_{\rho 0}$ ; this gives

$t_{1}=\frac{1+\rho_{0}^{2}}{2}.$
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Combinin$g$ this relation with (4.3.3), (4.3.9) and Gronwall inequality, we get (for
$\rho\geq\rho_{0})$

$ l_{\mathbb{R}^{n}}|u(\sqrt{\rho^{2}+|x|^{2}},x)|^{2}dx+l_{\mathbb{R}^{n}}\frac{\rho^{2}}{\rho^{2}+|x|^{2}}|\nabla_{t,x}u(\sqrt{\rho^{2}+|x|^{2}},x)|^{2}dx\leq$

$\leq C(\Vert g_{0}\Vert_{H^{1}}^{2}+\Vert g_{1}\Vert_{L^{2}}^{2})+C(l_{\rho 0}^{\rho}(\int_{R^{n}}|F(\sqrt{\sigma^{2}+|x|^{2}},x)|^{2}dx)^{1\prime 2}d\sigma)^{2}+$

(4.3.10) $+C(l_{t_{0}}^{t_{1}}(l_{\mathbb{R}^{n}}|F(\tau,x)|^{2}dx)^{1/2}d\tau)^{2}$

4.4 Some other hyperbolic problems of
mathematical physics

Another important hyperbolic problem is the Dirac system

(4.4.1) $i\gamma_{\mu}\partial_{\mu}\psi=0.$

Here $\psi(t, x)$ is a function defined in the Minkowski space $R^{1+3}$ with values in $C^{4}.$

Usually, $\psi$ is called a spinor. Moreover, $\gamma_{\mu}$ are the Dirac matrices defined as follows

$\gamma 0=\left(\begin{array}{ll}l & 0\\0 & -1\end{array}\right) , \gamma_{k}=\left(\begin{array}{ll}0 & \sigma_{k}\\-\sigma k & 0\end{array}\right) k=1,2,3.$

The Pauli matrices $\sigma_{k}$ are determined by

$\sigma_{1}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}0 & -i\\i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$

The imitial data are determined by

$\psi(0,x)=f(x)$

The Dirac matrices satisfy the relations

(4.4.2) $\gamma^{\mu}\gamma^{\ni}+\gamma^{\ni}\gamma^{\mu}=-2\eta^{\mu\ni}$

A simple reduction of the Dirac equation to the wave equation can be done by
applyin$g$ the operator $i\gamma_{\mu}\partial_{\mu}$ to the Dirac equation in (4.4.1). We use the relations
(4.4.2) and find

$\partial_{\mu}\partial^{\mu}\psi=0.$

From (4.4.1) we have

(4.4.3) $(\partial_{t}+\alpha^{j}\partial_{j})\psi=0.$
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Here $\alpha_{j}=\gamma 0\gamma_{j}$ are selfadjoint matrices. Making the Fourier transfom in $x$ we get

$(\partial_{t}+i\alpha(\xi))\hat{\psi}=0$

$\hat{\psi}(0, \xi)=\hat{f}(\xi)$ .

Here $\alpha(\xi)=\sum\alpha_{j}\xi_{j}$ is a selfadjoint matrix. Then the solution of the Cauchy
problem for the linear Dirac equation has the form

(4.4.4) $\psi(t, x)=\sum_{\pm}(2\pi)^{-3}le^{ix\xi\pm|\xi|t}\pi\pm(\xi)\hat{f}(\xi)d\xi,$

where $\pi+(respectively\pi_{-})$ is the positive (respectively negative) eigenspace of
the matrix $\alpha(\xi)$ .

The Maxwell equations in vacuum have the form

$\partial_{t}E=$ rot$H,$

$\partial_{t}H=$ -rot$E,$

(4.4.5) $divE=divH=0,$

where $E$ (resp. $H$) is the electric (resp. magnetic) field. Recall that $E(t, x),$ $H(t, x)$

are vector-valued functions from Minkowski space in $R^{3}.$

To pose correctly the Cauchy problem for the Maxwell equations we take the
initial conditions

(4.4.6) $E(O, x)=e(x) H(0,x)=h(x)$ .

Then the equations $divE=divH=0$ in (4.4.5) show that the initial data have to
satisfy the constraint conditions

(4.4.7) dive $=divh=0.$

Taking the evolution part

$\partial_{t}E=$ rot$H,$

(4.4.8) $\partial_{t}H=-rotE,$

of the Maxwell equations, we see that we can solve the Cauchy problem for (4.4.8)
with initial data (4.4.6) satisfying the constraint conditions (4.4.7). Then taking

the $div$ operator in the equations (4.4.8), we see that

(4.4.9) $\partial_{t}divE=\partial_{t}divH=0$

so the constraint conditions (4.4.7) assure the elliptic part $divE=divH=0$ in
Maxwell equations (4.4.5). Setting $\psi=(E, H)$ , we see that the equations (4.4.8)
can be written in the form (4.4.3) of a Dirac system so we can use the representation
(4.4.4) to solve this system by the aid of the Fourier transform.
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Again a simple reduction to the wave equation can be done. In fact taking the
time derivative in the first equation in (4.4.5) and using the relation rotrot$E=$
$-\Delta E$ provided $divE=0$ , we get

$(\partial_{t}^{2}-\Delta)E=0.$

In a similar way one can see that $H$ also satisfies the wave equation.
In order to write the system (4.4.5) in relativistic form a natural procedure is

to constmct the following matrix (called usually electromagnetic tensor).

(4.4.10) $F_{km}=\epsilon_{kml}H_{l} , F_{0k}=-F_{k0}=E_{k},$

where $\epsilon_{kml}=1$ if $(kml)$ is an even permutation of (123), $\epsilon_{kml}=-1$ if $(kml)$ is an
odd pemutation of (123) and $\epsilon_{km1}=0$ otherwise. Moreover, in (4.4.10) we use the
summation convention for repeated Latin indices varying from 1 to 3. It is clear
that $F_{\mu\ni}$ is skew-symmetric, i.e. $F_{\mu\ni}=-F_{\ni\mu}.$

By the aid of the metric $\{\eta^{\alpha\beta}\}=diag\{-1,1, \ldots, 1\}$ one can freely raise the
indices

$F^{\alpha\beta}=\eta^{\alpha\mu}\eta^{\beta\ni}F_{\mu\ni}.$

The corresponding dual tensor $\tilde{F}_{\mu\ni}$ can be defined as follows

(4.4.11) $\tilde{F}_{\mu\ni}=\epsilon_{\mu\ni\alpha}\rho F^{\alpha\beta},$

where $\epsilon_{\mu\ni\alpha\beta}=1$ if $(\mu\ni\alpha\beta)$ is an even pemutation of (0123), $\epsilon_{\mu\ni\alpha\beta}=-1$ if
$(\mu\ni\alpha\beta)$ is an odd permutation of (0123) and $\epsilon_{\mu\ni\alpha\beta}=0$ otherwise. Moreover, in
(4.4.11) we use the summation convention for repeated Greek indices varying from
$0$ to 3.

Then the Maxwell equations (4.4.5) take the simple fom

(4.4.12) $\partial_{\mu}F^{\mu\ni}=0 , \partial_{\mu}\tilde{F}^{\mu\ni}=0.$

One can show that if
$F^{\mu\ni}(t,x)$

are smooth functions satisfying (4.4.12), then there exist functions $A_{\mu}(t, x)$ , such
that

$F_{\alpha\beta}=\partial_{\alpha}A\rho-\partial_{\beta}A_{\alpha}$

Remark. The vector $A_{\mu}(t,x)$ is called electromagnetic potential. This po-
tential is not $u\dot{m}que_{s}$ Namely, we can take $\tilde{A}_{\mu}(t, x)=A_{\mu}(t, x)-\partial_{\mu}\varphi(t, x)$ , where
$\varphi(t, x)$ is arbitrary.

Problem 4.4.1 (Maxwell equations in the form of Dimc equahons)
Let $E,$ $H$ satish the Maxwell eguations $(4\cdot 4\cdot 5)$ in $vacuum_{s}$ Consider the vector

$\chi=\left(\begin{array}{ll} & 0\\E_{1} & -iH_{l}\\E_{2} & -iH_{2}\\E_{3} & -iH_{3}\end{array}\right)$
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Find three selfadjoint $(4\times 4)$ matrices $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ so that $\chi$ satisfies the Dimc equa-
tion $(4\cdot 4\cdot 3)$ and the relation

$\alpha_{j}\alpha_{k}+\alpha_{k}\alpha_{j}=2\delta_{jk}$

4.5 Examples of nonlinear hyperbolic equations

One of the simplest nonlinear hyperbolic equation is the equation of a scalar self-
interacting field, that is

(4.5.1) $(-\partial_{t}^{2}+\Delta)u-M^{2}u=u^{3}.$

In order to prove the existence of global in time solution even in the case of large
initial data we shall use the conservation law of the energy. Indeed, multiplying
(4.5.1) by $\partial_{t}u$ we see that the energy

$E(t)=\frac{1}{2}\int|\partial_{t}u(t, x)|^{2}dx+$

(4.5.2) $+\frac{1}{2}l(|\nabla_{x}u(t, x)|^{2}+M|u(t, x)|^{2}+\frac{1}{2}|u(t,x)|^{4})dx$

is a constant. As usual the initial data are given by

(4.5.3) $u(O,x)=f_{0}(x), \partial_{t}u(0,x)=f_{1}(x)$

To establish the existence of global solution we shall make two steps.
First step. We shall rewrite (4.5.1) in abstract evolution equation of the fom

(4.5.4) $\partial_{t}v=Av+K(v)$ ,

where $A$ is a selfadjoint operator in a suitable Hilbert space $H$ and $K(v)$ is an
operator in this Hilbert space.

Second step. We shall prove for (4.5.4) a suitable continuation principle. Com-
bining the existence of local solution with this principle we shall establish the
existence of global solution.

For simplicity we shall consider here only the case of positive mass $M$ . Setting

$v=\left(\begin{array}{l}u\\\partial_{t}u\end{array}\right) A=\left(\begin{array}{ll}0 & 1\\\Delta-M & 0\end{array}\right)$

(4.5.5) $K(v)=\left(\begin{array}{l}0\\-v_{1}^{3}\end{array}\right)$

we see that the nonlinear wave equation (4.5.1) takes the form (4.5.4). The fom
of the energy in (4.5.2) suggests us to consider the Hilbert space $ H=H^{1}(R^{n})\times$

$L^{2}(R^{n})$ . For any couple $v=(v_{1}, v_{2})\in H$ the corresponding nom is defined by

(4.5.6) $\Vert v\Vert_{H}^{2}=\int|\nabla v_{1}|^{2}+M|v_{1}|^{2}+|v_{2}|^{2}dx$
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Denote by $(,$ $)_{H}$ is the corresponding Hilbert norm.
The operator $A$ with dense domain

(4.5.7) $D(A)=H^{2}(R^{n})\times H^{1}(R^{n})$ .

is $skew-$ selfadjoint.
Turning to the continuation principle we consider the abstract nonhnear evolu-

tion problem (4.5.4) assuming $A$ is skew-selfadjoint and $K$ is Lipschitz continuos,
i.e. for any ball $B(R)$ of radius $R$ in $H$ there exists a constant $C=C(R)$ , such
that

(4.5.8) $\Vert K(u)-K(v)\Vert_{H}\leq C\Vert u-v\Vert_{H}.$

The nonhnear problem (4.5.4) can be written in integral fom in the same
manner as it is done for ordinary differential equations.

(4.5.9) $v(t)=U(t)f+l_{0}^{t}U(t-s)K(v(s))ds.$

Now we are in position to state the continuation principle

Theorem 4.5.1 Under the above assumptions there exists a maximum interval
$[0,t\gamma$ of eistence of a unique solution $v(t)\in C([O,- t))$ ; $H)$ of the integral equahon
$(4\cdot 5.9)$ . Then either $\overline{t}=\infty$ , or else $\Vert v(t)\Vert_{H}\rightarrow\infty$ as $t\rightarrow\overline{t}.$

Proof.
For any $t_{0}\geq 0$ consider the following local problem

(4.5.10) $v(t)=U(t-t_{0})f+l_{t_{0}}^{t}U(t-s)K(v(s))ds.$

To establish the existence of solution in the interval $[t_{0},t_{0}+\epsilon]$ we define inductively
the sequenoe $v_{k}(t)$ in the Banach space $B=C([t_{0},t_{0}+\epsilon];H)$ as foUows $v_{0}(t)=f,$

(4.5.11) $v_{k+1}(t)=U(t-t_{0})f+l_{t_{0}}^{t}U(t-s)K(v_{k}(s))ds$

Using the fact that $U(t)$ is a umitary operator and $K$ is Lipschitz continuous, we
obtain the estimate

(4.5.12) $\Vert v_{k+1}-v_{k}\Vert_{B}\leq C\epsilon\Vert v_{k}-v_{k-1}\Vert_{B}$

with some constant $C$ independent of $\epsilon$ . When $f$ varies in a ball of radius $R$ in $H$

the constant $C$ in (4.5.12) depends on $R$ , but is independent of $f.$

The contraction mapping principle shows that a unique solution exists, when
$C(R)\epsilon<1.$
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This means that for $\epsilon<1\prime C(r)$ the life span $\epsilon$ of the solution depends only on
$R$ , but it is independent of the concrete choice of $f$ in

$\{h\in H:|h|_{H}\leq R\}.$

To finish the proof let us consider the maximal interval $[0,t\gamma$ of existence of
solution with finite $\overline{t}$ and $\Vert v(t)\Vert_{H}\leq C$ for $t\in[0,$ $ t\gamma$ . Then taking $R=2C$ and
applying the above argument based on the contraction mapping principle we see
that one can find $\epsilon>$ depending only on $R$ so that the local problem (4.5.10)
with initial data at $t_{0}$ very close to $\overline{t}$ (more precisely our choice is determined by
$\overline{t}-\epsilon<t_{0}<t\gamma$ , can be solved in the interval $[t_{0}, t_{0}+\epsilon]$ . Since $t_{0}+\epsilon>\overline{t}$ this
contradicts the fact that $[0,$ $ t\gamma$ is the maximal interval of existence of solution and
completes the proof.

We shall prove that the semi linear problem (4.5.1) for the wave equation has a
global solution in case of space dimension $n=3$ . To do this it remains to show that
the nonlinear operator $K$ defined in (4.5.5) is Lipschitz continuous. The definition
of the nom in $H$ and the H\"older inequality imply that

$\Vert K(u)-K(v)\Vert_{H}=\Vert u_{1}^{3}-v_{1}^{3}\Vert_{L^{2}}\leq C\Vert u_{1}-v_{1}\Vert_{L^{6}}(\Vert u_{1}\Vert_{L^{6}}+\Vert v_{1}\Vert_{L^{6}})^{2}$

for any two couples $u=(u_{1}, u_{2})^{t},v=(v_{1}, v_{2})^{t}$ in $H$ . Applying the Sobolev in-
equality

$\Vert f\Vert_{L^{6}(R^{3})}\leq C\Vert f\Vert_{H^{1}(R^{3})}$

and the definition of the Hilbert space $H$ we arrive at

$\Vert K(u)-K(v)\Vert_{H}\leq C\Vert u-v\Vert_{H}(\Vert u\Vert_{H}+\Vert v\Vert_{H})^{2}.$

Thus $K$ is a Lipschitz operator and the continuation principle assures the existence
and the uniqueness of the solution.
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