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3 Fourier transform and Sobolev spaces on flat
space

3.1 Overview

In this Chapter we shall introduce two basic tools for the study of hyperbolic
equations. Namely, we start with the Fourier transform and the main facts about
Sobolev spaces in $R^{n}$ . We shall avoid a complete and detailed representation of the
theory of Fourier transform and Sobolev spaces. Nevertheless, we shall underline
only the points, which are important for a further generahzation for the case of
manifolds of curvature $-1.$

The reader can use [44], [21], [43] [6] for more detailed information about the
space of distributions, Fourier transform and the convolution.

3.2 Preliminary facts about holomorphic functions

Let $C$ be the complex plane and let $U\subseteq C$ be an open domain in this plane. Any
point $z\in U$ can be represented as

$z=x+iy,$

where $x,y$ are real numbers. $A$ function

$f:U\rightarrow C$

is $C^{1}(U)$ if the partial derivatives

$\partial_{x}f(x+iy),\partial_{y}f(x+iy)$

exist and are continuous functions. Of special interest are the vector fields

$\partial_{z}=\frac{1}{2}(\partial_{x}-i\partial_{y})$

and
$\partial_{Z}=\frac{1}{2}(\partial_{x}+i\partial_{y})$ .

If $f\in C^{1}(U)$ , then $f$ is called holomorphic in $U$, if satisfies the equation

$\partial_{Z}f(z)=0, z\in U.$

One can see that a function $f$ : $U\rightarrow C$ is holomorphic in $U$ if and only if

$h\rightarrow 01\dot{m}\frac{f(z+h)-f(z)}{h}$

exists for any $z\in U.$
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The most important formula in the elementary theory of $holomorph_{1}^{s}c$ functions
is the Cauchy theorem and the Cauchy formula.

Let $\Gamma$ be a closed path in $U$ and let $z\in C$ be a point such that $\Gamma$ does not pass
through $z$ . Then the index of $z$ with respect to $\Gamma$ is

$Ind_{\Gamma}(z)=\frac{1}{2\pi i}\int_{\Gamma}\frac{d\zeta}{\zeta-z}.$

The Cauchy theorem states that if $\Gamma$ is closed path in $U$ such that $Ind_{\Gamma}(w)=0$ for
any $w$ outside $U$, then

(3.2.1) $\int_{\Gamma}f(\zeta)d\zeta=0$

for any function holomorphic in C. The corresponding Cauchy formula is

(3.2.2) $f(z)=\frac{1}{2\pi i}l_{\Gamma}\frac{f(\zeta)}{\zeta-z}d\zeta.$

The condition $Ind_{\Gamma}(w)=0$ for $w$ outside $U$ is fulfilled for the case $U$ is simply
connected.

Also in the case of a simply connected domain $U$ with smooth boundary $\partial U$

for any function holomorphic in $U$ and continuos in the closure of $U$ we have the
corresponding Cauchy formula

(3.2.3) $f(z)=\frac{1}{2\pi i}\int_{\partial U}\frac{f(\zeta)}{\zeta-z}d\zeta.$

Applying for example the above formula for $\{z, |z-zo|<\delta\}\subset U$, we obtain
the estimate

(3.2.4) $|\partial_{z}^{k}f(z_{0})|\leq\frac{Mk!}{\delta^{k}},$

where

$M=\sup_{|z-z_{0}|=\delta}|f(z)|.$

This estimate guarantees that the formal Taylor series

$\sum_{k=0}^{\infty}\partial_{z}^{k}f(z_{0})(z-z_{0})^{k}/k!$

converges absolutely and uniformly for $|z-z_{0}|$ sufficiently small and moreover the
series coincides with $f(z)$ for $z$ sufficiently close to $z_{0}.$

Our next step is the study of holomorphic functions in the strip

$S=\{z;0<{\rm Re} z<1\}.$

More precisely, given any real number $\gamma$ we consider the class $F(\gamma)$ of all functions
$f\in C^{1}(\overline{S})$ holomorphic in $S$ and satisfying the estimate

(3.2.5) $|f(z)|\leq Ce^{\gamma|{\rm Im} z|}$
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Lemma 3.2.1 (Three lines Lemma.) If $f\in F(\gamma)$ , then for any $\theta\in(0,1)$ we have

$|f(\theta)|\leq\Vert e^{\delta(i\cdot)^{2}}f(i\cdot)\Vert_{L\infty(R)}^{1-\theta}\Vert e^{\delta(1+i\cdot)^{2}}f(1+i\cdot)\Vert_{L(R)}^{\theta_{\infty}}.$

Proof. If $f\in F(\gamma)$ , then we can consider the function

$g(z)=e^{\delta z^{2}}f(z)a_{0}^{z-1}a_{1}^{-z},$

where
$a_{j}=\Vert e^{\delta(j+i\cdot)^{2}}f(j+i\cdot)\Vert_{L\infty(R)}, j=0,1.$

It is clear that we can assume that $a_{j}$ are positive numbers. Otherwise, if $a_{1}=0,$

then we can replace $a_{1}$ by $ a_{1}+\epsilon$ . Then it is easy to see that $g\in F(-\delta_{1})$ with
$ 0<\delta_{1}<\delta$ so we have the estimate

$|g(z)|\leq Ce^{-\delta_{1}|{\rm Im} z|}$

for ${\rm Re} z\in[0,1]$ . Then this estimate enables us to extend the Cauchy formula (3.2.3)
for the strip $S.$

From the Cauchy fomula it follows the maximum principle, i.e.

$\sup_{z\in S}|g(z)|\leq\max(\sup_{t\in R}|g(it)|,\sup_{t\in R}|g(1+it)|)$ .

Since, $|g(it)|\leq 1$ and $|g(1+it)|\leq 1$ , we get

$|g(\theta+iy)|\leq 1.$

Taking $y=0$ , we complete the proof of the lemma.
Remark. From the proof it is clear that we have the estimate

$|f(\theta+iy)|\leq$

$e^{-\delta|\theta+iy|^{2}}\Vert e^{\delta(i\cdot)^{2}}f(i\cdot)\Vert_{L\infty(R)}^{1-\theta}\Vert e^{\delta(1+i\cdot)^{2}}f(1+i\cdot)\Vert_{L\infty(R)}^{\theta}.$

For the case of a function
$f:U\rightarrow V,$

where $U\subseteq C$ is an open domain and $V$ is a topological vector space, we shall say
that $f$ is weakly holomorphic if $\Lambda f$ is a holomorphic function for any $\Lambda\in V’$ . Then
$f$ is also strongly holomorphic in the sense that

$\lim_{h\rightarrow 0}\frac{f(z+h)-f(z)}{h}$

exists in $V$ for any $z\in U.(see[44], Chapter 3)$
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We close this section by another important complex interpolation theorem. To
formulate this theorem we shall denote by $L(A, B)$ the Banach space of bounded
operators from a Banach space $A$ into the Banach space $B.$

Given any positive real numbers $p_{0},p_{1}$ with $ 1\leq p_{0}<p_{1}\leq\infty$ , we recall the
notation $L^{P0}(R^{n})+L^{p_{1}}(R^{n})$ for the linear space

$\{f:f=f_{0}+f_{1}, f_{0}\in L^{P0}(R^{n}), f_{1}\in L^{p_{1}}(R^{n})\}.$

The nom in this space we define as follows

$||f\Vert_{L^{p}0+L^{p_{1}}}=\inf_{f=0+f_{1}}\Vert f_{0}\Vert_{L^{p_{0}}}+\Vert f_{1}\Vert_{L^{p_{1}}}.$

Theorem 3.2.1 $(Stein interpolation theorem, see l43J)$

Suppose $1\leq p0,p_{1},$ $q0,$ $q_{1}\leq\infty,$ $T(z)$ is a continuous function from the $str\dot{\tau p}$

$0\leq{\rm Re} z\leq 1$ into $L(L^{p0}+L^{p_{1}};L^{q0}+L^{q_{1}})$ , holomorphic for $0<{\rm Re} z<1$ and
satisfying the properties

(3.2.6) $\Vert T(z)\Vert_{L(L^{p_{0}};L^{q_{0}})}\leq C\exp(C|$Imz $|)$ for ${\rm Re} z=0,$

(3.2.7) $\Vert T(z)\Vert_{L(L^{p_{1}};L^{q_{1}})}\leq C\exp(C|$ Imz $|)$ for Rez $=1.$

Then for any $\theta\in(0,1)$ we have

$\Vert T(\theta)\Vert_{L(L^{p};L^{q})}\leq C,$

where

(3.2.8) $\frac{1}{p}=(1-\theta)\frac{1}{p_{0}}+\theta\frac{1}{p_{1}} \frac{1}{q}=(1-\theta)\frac{1}{q0}+\theta\frac{1}{q_{1}}.$

Note that Riesz-Thorin interpolation theorem is a trivial corollary of this com-
plex interpolation theorem.

Moreover, we can relax the condition
(Assumption $H$). $T(z)$ is a continuous function from the strip $0\leq{\rm Re} z\leq 1$

into $L(L^{p0}+L^{p_{1}};L^{q0}+L^{q_{1}})$ and holomorphic for $0<{\rm Re} z<1.$

Indeed, let
$q^{*}=\max(q0, q_{1}), p^{*}=\min(p0,p_{1})$ .

Then for any compact subset $K$ in $R^{n}$ the embeddings

$L^{q^{*}}(K)\rightarrow L^{q_{0}}(K)+L^{q_{1}}(K)$

and
$L^{p0}(K)+L^{p_{1}}(K)\rightarrow L^{p^{*}}(K)$ .

are continuos operators.
Here and below $IP(K)$ denotes the space of all $L^{p}$ functions having support in

$K.$
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Then we shall replace the (Assumption $H$) with the following one. For any
two compact sets $K,$ $K’$ in $R^{n}$ we have the property

(Assumption $H_{K,K’}$ ) $T(z)$ is a continuous function from the strip $ 0\leq$ Rez $\leq$

$1$ into $L(L^{p}(K);L^{q\prime} (K’))$ and holomorphic for $0<$ Rez $<1.$

Then we have the following variant of Stein interpolation theorem using the
weaker assumption Assumption $H_{K,K’}$

Theorem 3.2.2 Suppose $1\leq p_{0},p_{1},$ $q_{0},$ $ q_{1}\leq\infty$ and the family $T(z)$ satisfies the
Assumption $H_{K,K’}$ for any couple of compact subsets $K,$ $K’$ in $R^{n}$ . If the esti-
mates
(3.2.9) $\Vert T(z)\Vert_{L(L^{p_{0}}(K);L^{q_{0}}(K’))}\leq$ Cexp $(C|{\rm Im} z|)$ for ${\rm Re} z=0,$

(3.2.10) $\Vert T(z)\Vert_{L(L^{p}\iota(K);L^{q}\iota(K’))}\leq C\exp(C|{\rm Im} z|)$ for ${\rm Re} z=1$

are satisfied with some constant $C$ independent of the choice of the couple $K,$ $K’,$

then for any $\theta\in(0,1)$ , the operator $T(\theta)$ is a bounded opemtor $hmL^{p}$ into $L^{q}$

and we have

$\Vert T(\theta)\Vert_{L(L;Lq)}p\leq C.$

Here $p,$ $q$ are chosen as in (3.2.8).

Proof: To see that the above theorem is vahd, we replace the family $T(z)$ by

$\chi_{K’}T(z)\chi_{K},$

where $\chi_{K}$ denotes the characteristic function of the set $K$. For the new family we
apply the classical Stein interpolation Theorem 3.2.1 and see that

$\Vert\chi_{K’}T(\theta)\chi_{K}f\Vert_{Lq}\leq C\Vert f\Vert_{L^{p}},$

where $C$ is independent of $K,K’$ . Further we replace $K’$ by a sequence $K_{m}=$

$\{x;|x|\leq m\}$ and apply the fact that $f\in L^{q}$ if and only if for any integer $m>1$
we have

$\Vert\chi_{K_{m}}f\Vert_{Lq}\leq C$

with some constant $C$ independent of $m$ . Thus taking the limit as $m$ tends to $\infty,$

we get
$\Vert T(\theta)\chi_{K}f\Vert_{L^{q}}\leq C\Vert f\Vert_{L^{p}}$

and see that $T(\theta)$ is a bounded operator from $L^{p}(K)$ into $L^{q}$ . Note that the relation
$\chi_{K}^{2}=\chi_{K}$ leads to

(3.2.11) $\Vert T(\theta)\chi\kappa f\Vert_{Lq}\leq C\Vert\chi_{K}f\Vert_{Lp}.$

Further, we can see that $T(\theta)\chi_{K_{m}}f$ is a Cauchy sequence in $L^{q}$ by application
of (3.2.11) with $K=K_{m}-K_{j},m>j$ . This observation shows that the definition

$T(\theta)f=\lim_{m\rightarrow\infty}T(\theta)\chi_{K_{m}}f$
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is quite consistent and in this way we see the $T(\theta)$ is a well-defined operator from
$L^{p}$ into $L^{q}$ that satisfies

(3.2.12) $\Vert T(\theta)f\Vert_{Lq}\leq C\Vert f\Vert_{Lp}.$

This completes the proof of the Theorem.
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3.3 Distributions and Fourier transform in Euclidean space

The purpose of this section is to recall some basic notions and properties of the
spaces, where the solutions of the hyperbolic equations are defined.

The first important space is $C_{0}^{\infty}(R^{n})$ . This space consists of all smooth func-

tions with compact support.
The space $C_{0}^{\infty}(R^{n})$ is nonempty linear vector space. Indeed, we can first con-

stmct a smooth function $f(x)$ , such that $f(x)=0$ for $x\leq 0$ and $f(x)>0$ for
$x>0$ . For the purpose take

$f(x)=e^{-1\prime x}$

for $x>0$ . Then $f(x)f(1-x)$ is a smooth function with support in the interval
$[0,1].$

Recall that the support of function $f(x)$ defined for $x\in R^{n}$ is the closure of
the set

$\{x;f(x)\neq 0\}.$

Sometimes this space is called space of test functions and is denoted by $D(R^{n})$ .
This space can be equipped with finite number of semi norms. In fact, given any
integer $N\geq 1$ we define

(3.3.1) $\Vert f\Vert_{N}=\max\{|\partial^{\alpha}f(x)|;|\alpha|\leq N\},$

where here and below $\partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}}\cdots\partial_{x_{n}}^{\alpha_{n}},$ $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ is a multi index and
$|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ . It is well known (see [44]) that any vector space $V$ with
countable number of semi norms is metrizable, i.e. we can introduce a metric. In
fact, if $\Vert.\Vert_{1},$

$\ldots,$

$\Vert.\Vert_{N}\ldots$ are the corresponding semi norms, then

(3.3.2) $d(v, w)=\sum_{N=1}^{\infty}\frac{2^{-N}||v-w||_{N}}{1+||v-w||_{N}}$

The space $C_{0}^{\infty}(R)$ with metric generated by the semi norms (3.3.1) is not com-
plete.

In order to work with a complete space, i.e. space where any Cauchy sequence
converges to an element of the space, we have to define the topology on $C_{0}^{\infty}(R^{n})$

using all the collection of semi norms $\Vert.\Vert_{N}$ . For example a local basis of open
neighborhoods of the origin can be defined by

(3.3.3) $ V_{N}=\{f;\Vert f\Vert_{N}<1/(N+1)\}, N=0,1, \cdots$

Even the topology defined by this local basis is not complete. (see [44]). To
define a complete topoloy the simplest way is to define the convergence of a
sequence of functions $\{f_{k}\}_{k=1}^{\infty}$ to zero. Recall that this sequence converges to zero
if there exists a compact set $K$ such that $suppf_{k}\subseteq K$ for any integer $k\geq 1$

and $\Vert f_{k}\Vert_{N}$ tends to $0$ as $ k\rightarrow\infty$ for any integer $N\geq 0$ . Applying the Arzela-
Ascoli compactness theorem one can check that the topology determined by this
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convergence is complete. Moreover, this is locally convex topological vector space.
Again we refer to [44] for a complete discussion of the topology on this space.

In a similar way one can consider the space $C^{\infty}(R^{n})$ consisting of all smooth
functions. Now we have the following family of semi norms.

$\Vert f\Vert_{N}=\max\{|\partial^{\alpha}f(x)|;|x|\leq N, |\alpha|\leq N\},$

The above family of semi norms enables one directly to introduce a complete topol-
ogy (even one can introduce a complete metric) by using (3.3.2).

The weakest space, where we shall look for solutions of the nonlinear partial
differential equations, is the space of distributions $D’(R^{n})$ consisting of all linear
continuous functionals on $C_{0}^{\infty}(R^{n})$ . Given any distribution $\Lambda$ we shall denote by

$<\Lambda, f>$

the action of the distribution (the linear functional) $\Lambda$ on the test function $ f\in$

$C_{0}^{\infty}(R^{n})$ . It is clear that
$C_{0}^{\infty}(R^{n})\subset D’(R^{n})$

and

$<\Lambda, f>=l\Lambda(x)f(x)dx$

for $\Lambda\in C_{0}^{\infty}(R^{n})$ .
A typical example of a distribution, which is not a test function, is the Dirac

delta function $\delta$ defined by
$<\delta, f>=f(0)$ .

Since the space of distributions is the dual space to the space of test functions,
we choose the topology on the space of distributions to be the weak topology on
this dual space. This means that a sequence of distributions $\{\Lambda_{k}\}_{k=1}^{\infty}$ tends to zero
if for any test function $f$ we have $<\Lambda_{k},$ $f>$ tends to zero.

The space $D’(R^{n})$ equipped with this weak topology is a complete space.
Another useful characterization of the distributions is the following one. $A$

linear functional $\Lambda$ on $C_{0}^{\infty}(R^{n})$ is bounded if for any compact $K\subseteq R^{n}$ there exist
integer $k\geq 0$ and a positive real number $C$ so that for any smooth function $\varphi(x)$

with compact support in $K$ we have

$|<\Lambda, \varphi>|\leq C\sum_{|\alpha|\leq k}\sup|\partial^{\alpha}\varphi(x)|.$

Example. Let $\varphi(x)$ be smooth non-negative function such that $\varphi(0)>0.$

Given any $\epsilon>0$ , we can define the function

(3.3.4) $\varphi_{\epsilon}(x)=\epsilon^{-n}\varphi(x/\epsilon)$ .

Then it is easy to see that
$\lim_{\epsilon\rightarrow 0}\varphi_{\epsilon}=c\delta,$
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where
$c=\int\varphi(x)dx>0.$

Another fact for distributions is the meaming of the identity

$\Lambda=0$

in the sense of distributions. This means

$<\Lambda,\varphi>=0$

for any test function $\varphi.$

A natural operation in the space of distribution is the differentiation defined by

$<\partial^{\alpha}\Lambda, f>=(-1)^{|\alpha|}<\Lambda, \partial^{\alpha}f>.$

Then $\partial^{\alpha}\Lambda$ is a bounded linear functional on $C_{0}^{\infty}(R^{n})$ provided $\Lambda\in D’(R^{n})$ .
Given a distribution $\Lambda$ on $R$ with

$\Lambda’=0$

in the sense of distributions, one can find a constant $c$ such that

$\Lambda=c$

also in the sense of distributions.
Another important tool in the study of partial differential equations is the

Fourier transfom defined fomally for function $f(x)$ by

(3.3.5) $\hat{f}(\xi)=lf(x)e^{-ix\xi}dx$

In order to be sure that the integral in the above defimition is meamingful we
recall the defimition of the space $S(R^{n})$ of rapidly decreasing functions, where the
Fourier transform is well defined. Namely, a smooth function $f(x)$ is called rapidly
decreasing if the norm

$\Vert f\Vert_{M,N}=\max\{(1+|x|)^{M}|\partial^{\alpha}f(x)|;|\alpha|\leq N\}$

is bounded for any integers $M,$ $N\geq 0$ . It is well-known that the Fourier transform
maps the space of rapidly decreasing functions into itself. The formula for the
inverse Fourier transfom has the form

$ f(x)=(2\pi)^{-n}l\hat{f}(\xi)e^{ix\xi}d\xi$

With $S’(R^{n})$ we shall denote the space of tempered distributions which is the dual
to $S(R^{n})$ . We have the inclusions

$D(R^{n})\subset S(R^{n})\subset S’(R^{n})\subset D’(R^{n})$ .



DISTRIBUTIONS AND FOURIER TRANSFORM IN EUCLIDEAN SPACE 29

We refer again to [44] for detailed analysis of the topoloy on $S’.$

Rom (3.3.5) it follows that

$\overline{\partial^{\alpha}f}(\xi)=i^{|\alpha|}\xi^{|\alpha|}f(\xi)$ .

One can extend the Fourier transform for distributions in $S’(R^{n})$ by the aid of
the relation

$<\hat{u}, f>=<u,\hat{f}>$

As an application we shall consider the following Cauchy problem for the linear
wave equation

$(-\partial_{t}^{2}+\Delta)u=0,$

$u(O,x)=0 \partial_{t}u(0,x)=f(x)$ .

Applying the Fourier transfom we get

$(\partial_{t}^{2}+|\xi|^{2})\hat{u}=0,$

(3.3.6) $\hat{u}(0,x)=0 \partial_{t}\hat{u}(0,x)=f(x)$ ,

where

$\hat{u}(t, \xi)=lu(t, x)e^{-ix\xi}dx$

is the partial Fourier transform. The Cauchy problem for the second order ordinary
differential equation in (3.3.6) can be solved directly. Applying the inverse Fourier
transform we get

(3.3.7) $ u(t, x)=(2\pi)^{-n}le^{ix\xi}\frac{\sin(|\xi|t)}{|\xi|}f(\xi)d\xi$

The Fourier transform can be extended in the Hilbert space $L^{2}$ as a unitary opera-
tor. In fact, we can denote by $(,$ $)_{L^{2}}$ the scalar product in this Hilbert space. More
precisely, for $f,g\in L^{2}$ we have

$(f,g)_{L^{2=}}\int f(x)\overline{g}(x)dx$

Using the inverse fomula for the Fourier transform we get

$(f_{\hat{g})_{L^{2}}=(2\pi)^{n}(f,g)_{L^{2}}}$

and we arrive at the Plancherel formula

(3.3.8) $\Vert f\Vert_{L^{2}}=(2\pi)^{n\prime 2}\Vert f\Vert_{L^{2}},$

where $\Vert.\Vert_{L^{2}}$ is the nom in the Hilbert space $L^{2}.$
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As another application we shall prove Hausdorff-Young inequality

(3.3.9) $\Vert f\Vert_{Lq}\leq C\Vert f\Vert_{Lp}$

for $1\leq p\leq 2,1/p+1/q=1$ . To establish this inequality we shall check the
inequality for $ q=\infty$ and $q=2$ . The inequality for $ q=\infty$ follows $fr$ the
definition of the Fourier transform, while the estimate for $q=2$ follow from the
Plancherel identity. The application of Riesz-Thorin interpolation theorem implies

(3.3.9).
Another classical operation in the space of rapidly decreasing functions is the

convolution (denoted by $f*g$) of two functions $f,g\in S(R^{n})$ . The convolution is
defined by

(3.3.10) $(f*g)(x)=lf(x-y)g(y)dy$

Some important properties of the convolution are listed below.

(3.3.11) $f*g=g*f$

(3.3.12) $(f*g)*h=f*(g*h)$

A direct computation shows that we have the relation

(3.3.13) $\overline{f*}g=\hat{f}\hat{g}$

For $f,$ $g\in S(R^{n})$ we have

$\partial_{x}^{\alpha}(f*g)=(\partial_{x}^{\alpha}f)*g=f*\partial_{x}^{\alpha}g.$

For a fixed $g\in S(R^{n})$ we can extend the map

(3.3.14) $f\in S(R^{n})\rightarrow f*g\in S(R^{n})$

to a linear continuos map from the dual space $S^{l}(R^{n})$ into itself. Then we have
the relation
(3.3.15) $<f*g, \varphi>=<f,\check{g}*\varphi>,$

where $\dot{g}(x)=g(-x)$ .
For the case, when $g\in S’(R^{n})$ we can define the map (3.3.14). $A$ possibility to

extend this map as a linear bounded operator in $L^{p}$ for $ 1<p<\infty$ is based on the
following result of E.Stein (see Theorem 1, Chapter 2 in [52])

Theorem 3.3.1 Suppose the Fourier tmnsform of $g$ satisfies

(3.3.16) $|\hat{g}(\xi)|\leq C,$

while $g\in C^{1}(R^{n}-0)$ sahsfies
(3.3.17) $|\nabla(g)(x)|\leq C|x|^{-n-1},$

for any $x\neq 0$ . Then the map (3.3.14) can be extended as a linear bounded opemtor
in $L^{p}$ for $ 1<p<\infty$
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Let $j(x)$ be a smooth compactly supported function such that

(3.3.18) $j(x)=ae^{1\prime(|x|^{2}-1)}$

for $|x|\leq 1$ and $j(x)=0$ for $|x|\geq 1$ . The constant $a>0$ is chosen so that

(3.3.19) $\int_{R^{n}}j(x)dx=1.$

Another example is a smooth compactly supported function $\varphi(x)$ satisfying the
property

(3.3.20) $\varphi(x)=\{$
1, if $|x|\leq 1$ ;
$0$ , if $|x|\geq 2.$

For the purpose let $\chi(x)$ be the characteristic function of the ball $\{|x|\leq 3\prime 2\}.$

Then for any $\epsilon>0$ consider the function

$\varphi_{\epsilon}(x)=j_{\epsilon}*\chi,$

where $j_{\epsilon}(x)=\epsilon^{-n}j(x/\epsilon)$ . Then for $\epsilon>$ sufficiently small the function $\varphi_{\epsilon}(x)i1$ for
$|x|\leq 1$ and is $0$ for $|x|\geq 2.$

One of the classical inequalities for this operation is the Young inequality having
the form

(3.3.21) $\Vert f*g\Vert_{L^{r}}\leq\Vert f\Vert_{L^{p}}\Vert g\Vert_{L^{q}}$

for $1\leq p,$ $q,$ $ r\leq\infty$ , and $1/p+1/q=1+1\prime r.$

Next we introduce Friedrich’s molffiers. Let $j(x)$ be the function from (3.3.18).
For each $u\in L^{p}$ and

$u_{\epsilon}(x)=j_{\epsilon}*u$

we have
$\Vert u_{\epsilon}\Vert_{L^{p}}\leq\Vert u\Vert_{L^{p}}$

$(1\leq p<\infty)$ and moreover
$\Vert u-u_{\epsilon}\Vert_{Lp}\rightarrow 0$

as $\epsilon\rightarrow 0.$

One can show further that for any $f\in S(R^{n})$ we have

$j_{\epsilon}*f\rightarrow f$

in $S(R^{n})$ as $\epsilon\rightarrow 0.$

This property enables us to show that $S(R^{n})$ is dense in $S’(R^{n})$ .
A possible variation of the interpolation Theorem 3.2.2 is the case, when the

assumption Assumption $H_{K,K’}$ is further relaxed. Namely, we assume that

$T(z):L^{p}.(K)\rightarrow D’,$
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and one can find a suitable approximation family $T_{\epsilon}(z),\epsilon>0$ so that for any
$f\in L^{p}(K)$ we have
(3.3.22) $\lim_{\epsilon\rightarrow 0}T_{\epsilon}(z)f=T(z)f$

with limit taken in the sense of distributions. For the approximation family we
shall assume

(Assumption $H_{K,K’,\epsilon}$ ) $T_{e}(z)$ is a continuous function from the strip $ 0\leq$

Rez $\leq 1$ into $L(L^{p}(K);L^{q}(K’))$ and holomorphic for $0<$ Rez $<1.$

As before we take

$q^{*}=\max(q_{0},q_{1}),$ $p^{*}$ $=$ min $(p_{0},p_{1})$

in the above assumption.
Then we turn to the following.

Theorem 3.3.2 Suppose $ 1\leq\infty,p_{1},q_{0},q_{1}\leq\infty$ and the family $T_{\epsilon}(z)$ satisfies the
Assumption $H_{K,K’,\epsilon}$ for any couple of compact subsets $K,$ $K’$ in $R^{n}$ and for any
$\epsilon>0$ . If the estimates

(3.3.23) $\Vert T_{\epsilon}(z)\Vert_{L(L^{p}0(K);L^{q}0(K’))}\leq C\exp(C|{\rm Im} z|)$ for Rez $=0,$

(3.3.24) $\Vert T_{\epsilon}(z)\Vert_{L(L^{p_{1}}(K)_{j}L^{q_{1}}(K’))}\leq$ Cexp$(C|Imz|)$ for ${\rm Re} z=1$

are satisfied with some constant $C$ independent of the choice of the couple $K,K’$

and $\epsilon>0$ , then for any $\theta\in(0,1)$ , the operator $T(\theta)$ is a bounded opemtor ffvm
$L^{p}$ into $L^{q}$ and we have

$\Vert T(\theta)\Vert_{L(L;Lq)}p\leq C.$

Here $p,q$ are chosen as in (3.2.8).

Proof: Let the compact set $K$ be fixed. Take $f\in L^{p}(K)$ and extend $f$ as zero
outside $K$. For any $g\in C_{0}^{\infty}$ we have

$\lim_{e\rightarrow\infty}<T_{\epsilon}(\theta)(f),g>=<T(\theta)(f),g>.$

Now we are in position to apply the classical interpolation Theorem 3.2.2 for the
family $T_{\epsilon}(z)$ and for $\epsilon>0$ ffied. Thus we have the estimate

$|<T_{\epsilon}(\theta)(f),g>|\leq C\Vert f\Vert_{L^{p}(K)}\Vert g\Vert_{Lq’},$

where the index $q’$ is conjugate to $q$ i.e. $1\prime q+1/q’=1$ and the constant $C$

is independent of $\epsilon>0,K$. Now we can use the following simple property. If
$u_{m},m=1,2,$ $\ldots$ is a sequence of distributions, tending in the sense of distributions
to $u$ and if

$|<u_{m},g>|\leq C\Vert g\Vert_{L^{q’}}$
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with $C$ independent of $m>1$ , then the distribution $u$ is a classical measurable
function in $L^{q}$ . This observation shows that $T(\theta)(f)\in L^{q}$ and

$\Vert T(\theta)(f)\Vert_{Lq}\leq C\Vert f\Vert_{Lp(K)}.$

In this way we arrived at the estimate (3.2.11). Then the argument following after
(3.2.11), completes the proof of the Theorem.

3.4 Homogeneous distributions and Fourier
transform of concrete functions

Fourier transfom of a distribution $u\in S’(R^{n})$ can be defined on the basis of the
relation

$<\hat{u}, f>=<u, f>.$

Here $f\in S(R^{n})$ is a rapidly decreasing function and $<u,$ $f>$ denotes the action
of the functional $u\in S’(R^{n})$ on $f\in S(R^{n})$ . The Fourier transform ia a continuous
linear operator in the space $S’(R^{n})$ . In particular, if $f_{k}$ is a sequence of elements
in $S(R^{n})$ tending to $f$ in $S’(R^{n})$ , then $\hat{f}_{k}$ tend to $\hat{f}.$

This remark is of special interest when we want to compute the Fourier trans-
form of a measurable function $f(x)$ , homogeneous of degree $s\in R$ , i.e. for any
$t>0$ we have

$f(tx)=t^{s}f(x)$

for almost every $x\in R^{n}.$

Any measurable homogeneous of order $s$ function $f(x)$ satisfies the relation

(3.4.1) $<f, \varphi_{t}>=t^{s}<f, \varphi>,$

where $\varphi$ is arbitrary test function and $\varphi_{t}(x)=t^{-n}\varphi(x\prime t)$

On the basis of this fact we introduce the following.

Definition 3.4.1 $A$ distribution $f\in S’(R^{n})$ is homogeneous of order $s\in R$ , if

(3.4.2) $<f, \varphi_{t}>=t^{s}<f, \varphi>,$

where $\varphi\in S(R^{n})$ and $\varphi_{t}(x)=t^{-n}\varphi(x/t)$ .

If $f\in S’(R^{n})$ is homogeneous of order $s$ , then one can see that $f$ is homogeneous
of order $-n-s.$

Recall that $f\in L_{1oc}^{p}$ if $\varphi f\in L^{p}$ fbr any smooth compactly supported function
$\varphi.$

$Exampl*$ Let $x_{+}^{s}=x^{s}$ if $x>0$ and $x_{+}^{s}=0$ for $x\leq 0$ . Then $x_{+}^{s}\in L_{1oc}^{1}(R)$ for
$s>-1.$

Then for $ 1\leq p<\infty$ we have

$L_{1oc}^{p}(R^{n})\subset S’(R^{n})$
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The function $x_{+}^{s}$ is a homogeneous distribution of order $s$ for $s>-1.$

Example.
Let $x^{\underline{s}}=x$ if $x<0$ and $x^{\underline{s}}=0$ for $x\geq 0$ . Then $x^{\underline{s}}\in L_{1oc}^{1}(R)$ for $s>-1.$

As before $x^{\underline{s}}$ is a homogeneous distribution of order $s$ for $s>-1.$

It can be shown that $x_{+}^{s}$ can be extended as a distribution in $R$ for $ s\neq$

$\{-1, -2, \ldots\}$ . In a similar way if $f\in C^{\infty}(R^{n}\backslash \{0\})$ is homogeneous function of
order $s$ , then it can be extended as a distribution in $R^{n}$ for $s\neq\{-n, -n-1, \ldots\}.$

(see Section 3.2 in [21]) Further, the results of L.Hormander (see Theorem 7.1.18
in [21] $)$ guarantee that $f$ is a tempered distribution, i.e. $f\in S’(R^{n})$ so its Fourier
transform is well defined.

Next we shall consider Fourier transform of some special functions (for more
information we refer to some classical books as [11] $)$

We start with the Fourier transform of the function

$e^{-x^{2}}\in S(R^{n})$ ,

i.e. our goal is to compute

$f(\xi)=\int_{R^{n}}e^{-ix\xi-x^{2}}dx.$

We shall consider only the case $n=1$ , since the case $n\geq 2$ can be treated in a
similar manner.

Using the identity

$-ix\xi-x^{2}=-(x+i\xi/2)^{2}-\xi^{2}/4,$

we get

$\hat{f}(\xi)=e^{-\xi^{2}\prime 4}le^{-(x+i\xi\prime 2)^{2}}dx.$

Let $\xi>0$ for determinacy. Since the function

$z\in C\rightarrow e^{-z^{2}}$

is an entire function and for $z$ in the strip $\{z;{\rm Im} z\in[O, \xi]\}$ we have the estimate

$|e^{-z^{2}}|\leq C(\xi)e^{-x^{2}}$

we can change the path of integration ${\rm Im} z=\xi$ in

$f(\xi)=e^{-\xi^{2}\prime 4}\int_{{\rm Im} z=\xi}e^{-z^{2}}dz.$

into ${\rm Im} z=0$ so

$f(\xi)=e^{-\xi^{2}\prime 4}\int_{{\rm Im} z=0}e^{-z^{2}}dz=e^{-\xi^{2}\prime 4}\int_{R}e^{-x^{2}}dx.$
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To determine the constant

$c=\int_{R}e^{-x^{2}}dx,$

we use the fact that

$c^{2}=\int_{R}e^{-x_{1}^{2}}dx_{1}\int_{R}e^{-x_{2}^{2}}dx_{2}.$

Introducing polar coordinates in $R^{2}$

$x=(x_{1}, x_{2})=\rho(\cos\varphi, \sin\varphi)$ ,

where $\rho>0,$ $\varphi\in[0,2\pi)$ , we get

$c^{2}=2\pi l_{0}^{\infty}e^{-\rho^{2}}\rho d\rho=\pi.$

So $c=\sqrt{\pi}$ and
$e^{\hat{-x^{2}}}(\xi)=\sqrt{\pi}e^{-\xi^{2}\prime 4}$

provided the space dimension is $n=1.$

For $n$-dimensional case the Fourier transfom $F(f)(\xi)$ of

$f(x)=e^{-R^{2}x^{2}}, x\in R^{n}$

is
$F(e^{-R^{2}x^{2}})(\xi)=R^{-n/2}\pi^{n/2}e^{-\xi^{2}\prime(4R)}$

for any space dimension $n\geq 1$ and any $R>0.$

It is easy to extend the above result to the case, when $R\in C$ and ${\rm Re} R>0.$

In fact, we can use the fact that $z^{1\prime 2}$ is a well- defined analytic function for
${\rm Re} z>0.$

Using the formula

$F(e^{-R^{2}x^{2}})(\xi)=R^{-n/2}\pi^{n/2}e^{-\xi^{2}/(4R)}$

with ${\rm Re} R>0$ , we set
$ R=i+\epsilon$

and taking the limit as $\zeta\rightarrow 0$ , we can establish the following property: the Fourier
transform of the distribution

$e^{ix^{2}}\in S’(R^{n})$

is
$e^{-i\pi n/4}\pi^{n\prime 2}e^{-i\xi^{2}/4}.$

Using a diagonalization for any symmetric matrix $Q$ we obtain on the basis of
the last argument the following.
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Lemma 3.4.1 If $Q$ is a symmetric $n\times nmat\dot{m}$ with determinant

$\det Q\neq 0,$

then the Fourier tmnsform of the distribution

$e^{1(Qx,x)}\in S’(R^{n})$ ,

where $($ ., . $)$ is the scalar pmduct in $R^{n}$ , is

$e^{-i\pi*gnQ\prime 4}\pi^{n/2}|\det Q|^{-1/2}e^{-i(Q^{-1}\xi,\xi)/4}.$

Here $sgnQ$ is the signature of the symmetric matrix $Q.$

3.5 Sobolev spaces of integer order

The space of test functions $C_{0}^{\infty}(R^{n})$ is too strong, while the space of distribution
is too weak to describe the space of solutions of partial differential equations.
As intermediate spaces one can consider the Sobolev spaces $W_{p}^{\iota}(R^{n})$ defined for
integers $l\geq 0$ and real numbers $ 1\leq p<\infty$ as follows. $A$ distribution $f\in S’(R^{n})$

if the nom

(3.5.1)
$\Vert f\Vert_{W_{p}^{l}}=\sum_{|\alpha|\leq l}\Vert\partial^{\alpha}f\Vert_{Lp}$

are finite.
Using Friedrich’s molifiers, one can see that for any

$u\in W_{p}^{l}$

there exists a sequence of smooth compactly supported functions tending to $u$ with
respect to the nom (3.5.1).

This fact shows that the Sobolev space can be defined also as the closure of the
space $C_{0}^{\infty}(R^{n})$ of test functions with respect to the nom (3.5.1).

The fundamental property of these Sobolev spaces is the inclusion

(3.5.2) $W_{p}^{\iota}\subseteq W_{q}^{r}$

when $1<p<q<\infty,$ $1\prime p-1\prime q\leq(l-r)\prime n>0$ . The inclusion follows directly
from the Sobolev inequality

(3.5.3) $\Vert f\Vert_{W_{q}^{r}}\leq C\Vert f\Vert_{W_{p}^{l}}$

The proof of the Sobolev inequality (3.5.3), we shall present, is based on suitable
Sobolev identity. For the purpose we follow the approach ffim the book of Maz’ya
[36]. Namely, we shall use the following Sobolev identity.
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Lemma 3.5.1 For any integer $l,0<l\leq n$ and any real numbers $D>\delta>0$

one can find smooth functions $\varphi\beta$ ($\beta$ is multi index with $|\beta|<l$) support $ed$ in the
unit ball and smooth functions $\psi_{\alpha}$ such that for any smooth function $u(x)$ and for
$|x|<D$ we have the representation

$u(x)=\delta^{-n}\sum_{|\beta|<l}(\frac{x}{\delta})^{\beta}\int_{|y|\leq\delta}\varphi_{\beta}(\frac{y}{\delta})u(y)dy+$

(3.5.4) $+\sum_{|\alpha|=l}\int_{|y|\leq 2D}\psi_{\alpha}(x, r, \theta)\partial^{\alpha}u(y)\frac{dy}{r^{n-l}}$

where $r=|x-y|,$ $\theta=(x-y)\prime r$ and the functions $\psi_{\alpha}(x, r, \theta)$ satisfy the estimate

(3.5.5) $|\psi_{\alpha}(x, r, \theta)|\leq C(\frac{D}{\delta})^{n-1}$

Proof. $A$ scaling argument shows it is sufficient to consider the case $\delta=1$ . Let
us take a smooth nonnegative function $\omega(y)$ supported in the unit ball so that

(3.5.6) $\int_{|y|\leq 1}\omega(y)dy=1.$

Introduce functions

$f(x;r, \theta)=-\frac{r^{l-1}}{(l-1)!}l^{\infty}\omega(x+t\theta)t^{n-1}dt$

(3.5.7) $F(x;r, \theta)=\sum_{k=0}^{l-1}(-1)^{k}\frac{\partial^{k}}{\partial r^{k}}u(x+r\theta)\frac{\partial^{l-1-k}}{\partial r^{l-1-k}}f(x;r, \theta)$

We lose no generality assuming $u$ has a compact support in $|x|\leq 2D$ . Since all the
derivatives with respect to $r$ of the function $f$ at $r=0$ up to order $l-2$ are zero
we see that

$F(x;0, \theta)=-u(x)\int_{0}^{\infty}\omega(x+t\theta)t^{n-1}dt$

Now we apply the fomula

$0=F(x;0, \theta)+l_{0}^{\infty}\frac{\partial F}{\partial r}(x;r,\theta)dr$

valid in view of the fact that $u$ is compactly supported.
On the other hand, from (3.5.7) we get

$\frac{\partial F}{\partial r}(x;r, \theta)=u\frac{\partial^{l}f}{\partial r^{l}}+(-1)^{l-1}\frac{\partial^{\iota}u}{\partial r^{l}}f.$
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Hence we get the identity

$u(x)\int_{0}^{\infty}\omega(x+t\theta)t^{n-1}dt=\int_{0}^{\infty}u(x+r\theta)\frac{\partial^{l}f}{\partial r^{l}}(x;r,\theta)dr+$

$+(-1)^{l-1}\int_{0}^{\infty}\frac{\partial^{\iota}u}{\partial\tau^{l}}(x+r\theta)f(x;r, \theta)dr$

Integrating this identity over $\theta\in S^{n-1}$ , we obtain

$u(x)=lu(y)\frac{\partial^{\iota}f}{\partial r^{l}}(x;r, \theta)\frac{dy}{r^{n-1}}+$

$+(-1)^{l-1}l\frac{\partial^{l}u}{\partial r^{\iota}}(y)f(x;r,\theta)\frac{dy}{r^{n-1}}$

Having in mind that we have the representation

$\frac{\partial^{\iota}f}{\partial r^{l}}(x;r, \theta)\frac{1}{r^{n-1}}=\sum_{|\beta|<l}x^{\beta}\varphi\beta(y)$ ,

we arrive at Sobolev identity (3.5.4) with

(3.5.8) $\psi_{\alpha}=c_{\alpha}l^{\infty}\omega(x+t\theta)t^{n-1}dt.$

The estimate (3.5.5) follows directly from (3.5.8).
This $\infty mpletes$ the proof of the Sobolev identity.
To prove the inequalty (3.5.3) it is sufficient to combine the Sobolev identity

with the Sobolev inequality of Lemma 2.4.1.
In fact, Lemma 2.4.1 allows us to estimate the Riesz potential operator

$I_{\lambda}f(x)=l|x-y|^{-\lambda}f(y)dy.$

In fact, for $1\prime p-1/q+\lambda/n=1$ and $1<p,$ $ q<\infty$ we have the following Adam’s
estimate

(3.5.9) $\Vert I_{\lambda}(f)\Vert_{L\tau}\leq C\Vert f\Vert_{Lp}.$

The Sobolev identity shows that

$u(x)=u^{I}(x)+u^{II}(x)$ ,

where

$u^{I}(x)=\sum_{|\beta|<l}\delta^{-n-|\beta|}x^{\beta}\int_{|y|\leq\delta^{\varphi}}\beta(y/\delta)u(y)dy.$
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Let us assume $u$ is a smooth function with a compact support inside the ball of
radius $R$ and center at $0$ . Taking $\delta=R$ and $D=2R$ in the Sobolev identity we get

$\Vert u^{I}\Vert_{L^{q}(|y|\leq R)}\leq C\sum_{|\beta|<l}R^{-n-|\beta|}(\int_{|y|\leq R}|y|^{\beta q}dy)^{1/q}l|u(y)|dy.$

Applying the H\"older inequality, we get

$\Vert u^{I}\Vert_{L^{q}(|y|\leq R)}\leq CR^{-n/p+n\prime q}\Vert u\Vert_{L^{p}},$

where $C>0$ is a constant independent of $R$. To estimate $u^{II}$ we start with the
estimate

$|u^{II}(x)|\leq C\sum_{|\alpha|=l}I_{n-l}(|\partial^{\alpha}f|)(x)$
.

Now we are in situation to apply Adams estimate (3.5.9) and get

$\Vert u^{II}\Vert_{L^{q}}\leq C\sum_{|\alpha|=t}\Vert\partial^{\alpha}u\Vert_{L^{p}}$

provided $1/q+1=1/p+(n-l)/n$ , i.e. for $1\prime p-1\prime q=l/n$ . Hence, we get

$\Vert u\Vert_{L^{q}}\leq CR^{-n\prime p+n/q}\Vert u\Vert_{L^{p}}+C\sum_{|\alpha|=l}\Vert\partial^{\alpha}u\Vert_{L^{p}},$

where $C>0$ is independent of $R>0$ . Taking $ R\rightarrow\infty$ , we get

(3.5.10)
$\Vert u\Vert_{L(\mathbb{R}^{n})}q\leq C\sum_{|\alpha|=l}\Vert\partial^{\alpha}u\Vert_{Lp(\mathbb{R}^{n})}$

provided $u$ is a smooth compactly supported function and $l/n=1/p-1/q.$

Taking the closure of the space of smooth compactly supported functions with
respect to the nom in $W_{p}^{l}$ , we complete the proof of the Sobolev inequality (3.5.3).

We shall close this section with the following Sobolev inequality

(3.5.11) $\Vert f\Vert_{L^{\infty}}\leq C\Vert f\Vert_{W_{p}^{*}}$

for $1<p<\infty,$ $1\prime p<s/n$ . An easy proof can be found when $p=2$ by the aid of
the Fourier transform and Plancherel identity. For the general case, one can use
the Sobolev identity and the H\"older inequality.

Lemma 3.5.2 (Hardy, Littlewood) Let $m(\xi)=c|\xi|^{-t}$ and consider the operator

$I(f)(x)=\int_{R^{n}}e^{ix\xi}m(\xi)\hat{f}(\xi)d\xi.$

Pmve that for $ 1<p\leq 2\leq q<\infty$ and $1/p-1\prime q=t/n$ this opemtor can be

extended as a bounded operator from $L^{p}$ to $L^{q}.$
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On the other hand, for any real $s$ one can define the Sobolev space $H^{s}(R^{n})$ as
completition of the space of smooth functions with compact support with respect
to the nom

(3.5.12) $\Vert f\Vert_{H^{s}}=\Vert(1-\Delta)^{s\prime 2}f\Vert_{L^{2}}$

Applying the Plancherel identity, we see that this nom is equivalent to the following
one

$\Vert(1+|\xi|^{2})^{s\prime 2}f\Vert_{L^{2}}.$

It is clear that this is a Hilbert space with scalar product

$(f,g)_{H^{s}}=l(1+|\xi|^{2})^{s}f(\xi)\hat{g}\overline{(}\xi)d\xi.$

We have the following property

$H^{k}=W_{2}^{k}.$

Moreover, the dual space of $H^{s}$ is $H^{-s}.$

Now we can formulate a result for existence and uniqueness of higher regularity
solutions of the Cauchy problem

$(-\partial_{t}^{2}+\Delta-M^{2})u=0,$

(3.5.13) $u(O,x)=f_{0}(x), \partial_{t}u(0,x)=f_{1}(x)$

for the linear Klein-Gordon equation. Namely, if the initial data $f=f_{0}\times f_{1}$ belongs
to the Hilbert space

$H^{s}\times H^{s-1}$

with $s\geq 1$ , then the Cauchy problem (3.5.13) has a unique solution

$u(t, .)\in\bigcap_{m=0}^{[s]}C^{m}([0, \infty);H^{s-m})$ ,

where $[s]$ denotes the integer part of the real number $s.$

3.6 Gagliardo-Nirenberg inequality

Another useful interpolation inequality is the following variant of Gagliardo-Niren-
berg inequality.

Lemma 3.6.1 Suppose $f\in W_{q,k}^{k}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})$ . Then for any integer $k\geq 1$ and
any $q\geq k$ we have

$\Vert f\Vert_{W_{q/(k-1)}^{k-1}(\mathbb{R}^{n})}\leq C\Vert f\Vert_{W_{q/k}^{k}(\mathbb{R}^{n})}^{1-1\prime k}\Vert f\Vert_{L\infty(\mathbb{R}^{n})}^{1/k}.$
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Proof. Let $\varphi(x)$ be a smooth compactly supported function such that $\varphi(x)=1$

near $x=0$ . Then for any $q>1$ and any integer $k\geq 0$ we know that

$\varphi(x/R)f(x)$

tends to $f\in W_{q}^{k}$ as $R$ tends to infinity. Moreover, for $f\in L^{\infty}$ we have the unifom
estimate

$|\varphi(x/R)f(x)|\leq C|f(x\rangle|.$

This argument shows that without loss of generality we can assume $f$ is compactly
supported. We can reduce the proof to the case $f$ is smooth compactly supported
function, using ]$F$)riedrich’s molifiers.

Moreover, the simple estimate

$\Vert f\Vert_{Lq/(k-1)}\leq C\Vert f\Vert_{Lq/k}^{1-1/k}\Vert f\Vert_{L\infty}^{1/k}$

enables us to reduce the proof to the case $n=1$ . Then we shall proceed by means
of induction with respect to $k.$

We shall consider in details only the case

$q\geq 2k$

and shall give only the idea for the case $k\leq q<2k.$

The identity

$|f^{(k)}(x)|^{q\prime k}=f^{(k)}(x)|f^{(k)}(x)|^{-2+q/k}f^{(k)}(x)$

and integration by parts give

$|\int_{-\infty}^{\infty}|f^{(k)}(x)|^{q/k}dx|\leq$

$C\int_{-\infty}^{\infty}|f^{(k+1)}(x)||f^{(k)}(x)|^{-2+q\prime k}|f^{(k-1)}(x)|dx.$

Applying the H\"older inequality, we get

$\Vert f^{(k)}\Vert_{L^{q/k}}^{q/k}\leq C\Vert f^{(k+1)}\Vert_{Lq/(k+1)}\Vert f^{(k)}\Vert_{L^{q/k}}^{-2+q\prime k}\Vert f^{(k-1)}\Vert_{L^{q/(k-1)}}.$

Applying the inductive assumption for $k-1$ , we get the desired estimate for $k.$

For the case $k\leq q<2k$ we use the relation

$|f^{(k)}(x)|^{q\prime k}=|f(x)|^{A}|f^{(k)}(x)|^{q/k}|f(x)|^{-A}$

and applying H\"older inequality, we get an estimate of type

$\int|f^{(k)}(x)|^{q/k}dx\leq C(\int|f(x)|^{Ar}dx)^{1/r}(\int|f(x)|^{-As}|f^{(k)}(x)|^{2}dx)^{1/s},$
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where $s=2k/q$ and $r=2k/(2k-q)$ . Further, we make an integration by parts in

$l|f(x)|^{-\epsilon A}|f^{(k)}(x)|^{2}dx$

and use the inductive argument as it was done above in the case $q\geq 2k.$

This completes the proof of the Lemma.
The above estimate has few interesting corollaries.

Corollary 3.6.1 Suppose $f\in W_{p}^{k}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})$ with $p\geq 1$ . Then for any inte-
gers $k>l\geq 1$ we have

llfII $W_{pk/l}^{l}(\mathbb{R}^{n})\leq C\Vert f\Vert_{W_{p}^{k}(\mathbb{R}^{n})}^{\iota/k}\Vert f\Vert_{L\infty(\mathbb{R}^{n})}^{(k-l)\prime k}.$

Corollary 3.6.2 Suppose $f,g\in W_{p}^{k}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})$ with $p\geq 1$ . Then we have

$\Vert fg\Vert_{W_{p}^{k}(\mathbb{R}^{n})}\leq C(\Vert f\Vert_{W_{p}^{k}(\mathbb{R}^{n})}\Vert g\Vert_{L(\mathbb{R}^{n})}\infty+\Vert g\Vert_{W_{p}^{k}(\mathbb{R}^{n})}\Vert f\Vert_{L(\mathbb{R}^{n})}\infty)$

Proof. It is sufficient to apply Leibniz rule in combination with the estimate
of the previous Corollary.

Corollary 3.6.3 Suppose $f\in W_{p}^{k}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})$ with $p\geq 1$ . Then for any $\lambda>k$

we have
$\Vert|f|^{\lambda}\Vert_{W_{p}^{k}(\mathbb{R}^{n})}\leq C\Vert f\Vert_{W_{p}^{k}(\mathbb{R}^{n})}\Vert f\Vert_{L\infty(\mathbb{R}^{n})}^{\lambda-1}.$

Proof. It is sufficient to apply induction with respect to $k$ in combination with

Gagliardo-Nirenberg inequality.
In fact, due to Leibniz mle we have

$\partial_{x}^{\alpha}F(f)=\sum c_{\alpha_{1},\ldots,\alpha_{m}}F^{m}(f)\partial_{x}^{\alpha_{1}}f, \ldots, \partial_{x}^{\alpha_{m}}f,$

where the sum is over $m=0,1,$ $\ldots,$

$|\alpha|$ md $|\alpha_{1}|+\ldots+|\alpha_{m}|=|\alpha|$ . Then with $|\alpha|=k$

we get
$\Vert|f|^{\lambda}\Vert_{W_{p}^{k}(R^{n})}\leq\sum\Vert|f|^{\lambda-m}\Vert_{L\infty}\Vert f\Vert_{W_{pk/|\alpha_{1}|}^{|\alpha_{1}|}}\ldots\Vert f\Vert_{W_{pk/|\alpha_{m}|}^{|\alpha_{m}|}}$

provided
$|\alpha_{1}|/pk+\ldots+|\alpha_{m}|/pk=1\prime p.$

Applying Corollary 3.6.1, we get the desired estimate.
This completes the proof.
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