2 Preliminaries from functional analysis

2.1 Overview

In this chapter we shall make a review of some basic facts from functional analysis and we shall focus our attention to two main points.

On one hand, we shall give suitable sufficient conditions that assure that a symmetric strictly monotone operator in a Hilbert space is self-adjoint. More precisely, we consider Friedrich's extention of a symmetric strictly monotone operator. The criterion to assure that its closure is self-adjoint operator is of type: weak solution \Rightarrow strong solution. We shall apply this criterion in the next chapters.

On the other hand, we represent some of the basic interpolation theorems for the Lebesgue spaces L^{p}.

To get a complete information on the subject one can use [42], [43], [65].

2.2 Linear operators in Banach spaces

Given any couple A, B of Banach spaces we denote their corresponding norms by

$$
\|a\|_{A}, \quad\|b\|_{B}
$$

for $a \in A, b \in B$. A linear operator

$$
F: A \rightarrow B
$$

is called bounded (or continuous) if there is a constant $C>0$ such that

$$
\|F a\|_{B} \leq C\|a\|_{A}
$$

The space $L(A, B)$ is the set of bounded linear operators

$$
F: A \rightarrow B
$$

with norm

$$
\|F\|=\sup _{\|a\|_{A}=1}\|F a\|_{B}
$$

In case $A=B$ we shall denote by $L(A)$ the corresponding linear space of bounded linear operators from A in A. It is easy to see that $L(A, B)$ equipped with the above norm is a Banach space.

If B is the field \mathbf{C} of complex numbers, then the elements in $L(A, \mathbf{C})$ are called functionals and $L(A, \mathbf{C})$ itself is called dual space of A and is denoted by A^{\prime}.

For any $v^{\prime} \in A^{\prime}$ we denote by

$$
\left\langle v^{\prime}, v\right\rangle
$$

the action of the linear functional v^{\prime} on $v \in A$. There is a natural embedding

$$
J: A \rightarrow A^{\prime}
$$

defined by the identity

$$
\left\langle J(v), v^{\prime}\right\rangle=\left\langle v^{\prime}, v\right\rangle
$$

In dominant part of applications we work with Banach spaces that are reflexive ones, i.e. $J(A)=A^{\prime \prime}$.

For the typical case of Hilbert space H with inner product $(\cdot, \cdot)_{H}$ for any element $h^{\prime} \in H^{\prime}$ there exists an element $h_{0} \in H$ so that

$$
<h^{\prime}, h>=\left(h, h_{0}\right)_{H}
$$

for any $h \in H$. This is the classical Riesz representation theorem. On the basis of this theorem there is an isometry

$$
h^{\prime} \in H^{\prime} \rightarrow h_{0} \in H .
$$

We shall denote this isometry by

$$
H^{\prime} \sim_{(,)_{H}} H .
$$

It is clear that the isometry depends on the choice of the product $(\cdot, \cdot)_{H}$.
Sometimes it is possible to define the linear operator only on a dense domain $D \subset A$ so that

$$
F: D \rightarrow B .
$$

Then $D=D(F)$ is called a domain for F. The range of the operator F is

$$
R(F)=\{b: b=F(a), a \in D(F)\} .
$$

A linear operator

$$
F: D(F) \rightarrow B
$$

is an extension of the operator

$$
G: D(G) \rightarrow B
$$

if $D(G) \subset D(F)$ and $G a=F a$ for $a \in D(G)$. The operator $G: D(G) \rightarrow B$ is called closed, if the conditions

$$
a_{n} \rightarrow a, a_{n} \in D(G), G\left(a_{n}\right) \rightarrow b
$$

imply $a \in D(G)$ and $b=G a$.
Let

$$
F: D(F) \rightarrow B
$$

be a linear operator with dense domain $D(F)$. On the product

$$
A \times B
$$

one can define a norm by

$$
\|a\|_{A}+\|b\|_{B}
$$

for $a \in A, b \in B$. Then F is a closed operator if and only if its graph

$$
\Gamma(F)=\{(a, F(a)) ; a \in D(F)\}
$$

is a closed subset in $A \times B$.
Theorem 2.2.1 (closed graph theorem) Let $F: D(F) \rightarrow B$ be a linear operator with $D(F)=A$. If the operator is closed, then the operator is bounded, i.e. there exists a constant $C>0$ such that

$$
\|F a\|_{B} \leq C\|a\|_{A}
$$

for $a \in D(F)=A$.
If F has a dense domain $D(F) \subset A$

$$
F: D(F) \rightarrow B
$$

then the dual operator F^{\prime} is an operator between B^{\prime} and A^{\prime} and this operator has a domain $D\left(F^{\prime}\right)$ defined as follows: $b^{\prime} \in D\left(F^{\prime}\right)$ if and only if there exists an element $a^{\prime} \in A^{\prime}$ so that

$$
\begin{equation*}
\left\langle b^{\prime}, F a\right\rangle=\left\langle a^{\prime}, a\right\rangle \tag{2.2.1}
\end{equation*}
$$

for any $a \in D(F)$. We put $F^{\prime}\left(b^{\prime}\right)=a^{\prime}$.
Let $b^{\prime} \in D\left(F^{\prime}\right)$. Then there is a unique $a^{\prime} \in A^{\prime}$, satisfying (2.2.1).
Given any Banach space A we call

$$
T: A \rightarrow \mathbf{C}
$$

a conjugate linear functional if

$$
T\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right)=\overline{\alpha_{1}} T\left(a_{1}\right)+\overline{\alpha_{2}} T\left(a_{2}\right) .
$$

Moreover, we shall say that the conjugate linear functional T is bounded, if there exists a constant $C>0$ such that

$$
|T(a)| \leq C\|a\|_{A}
$$

for any $a \in D(F)$.
We denote by A^{*} the vector space of linear conjugate functionals on A.
Then A^{*} is a Banach space and one can see that there is a natural isomorphism between A^{*} and A^{\prime}.

For any $a^{*} \in A^{*}$ we denote by

$$
<a^{*}, a>
$$

the action of the linear functional a^{*} on $a \in A$.

Let F be an operator with a dense domain $D(F) \subset A$ and

$$
F: D(F) \rightarrow B
$$

The conjugate operator F^{*} is an operator between B^{*} and A^{*} and has a domain $D\left(F^{*}\right)$ defined as follows: $b^{*} \in D\left(F^{*}\right)$ if and only if there exists an element $a^{*} \in A^{*}$ so that

$$
\begin{equation*}
<b^{*}, F a>=<a^{*}, a> \tag{2.2.2}
\end{equation*}
$$

for any $a \in D(F)$.
Let $b^{*} \in D\left(F^{*}\right)$. Then there is a unique $a^{*} \in A^{*}$, satisfying (2.2.2).
By definition $F^{*}\left(b^{*}\right)=a^{*}$, where the element a^{*} is the unique element satisfying (2.2.2). In general the fact that F has dense domain does not guarantee that $D\left(F^{*}\right)$ is dense in A^{*}. However, if the spaces A, B are reflexive ones one can show (see Theorem III. 21 in [4] for example) that the space $D\left(F^{*}\right)$ is dense in B.

The operator F^{*} with dense domain $D\left(F^{*}\right)$ is closed operator.
Further, we turn again to the situation of a Hilbert space H. An operator F with dense domain $D(F) \subset H$ is called symmetric if

$$
(F h, g)_{H}=(h, F g)_{H}
$$

for any $h, g \in D(F)$. Using the definition of the adjoint operator F^{*} we see that F^{*} is an extention of the operator F, when F is symmetric.

We shall say that F is self-adjoint if

$$
F=F^{*}
$$

The following criterion for self-adjointness plays an important role.
Theorem 2.2.2 (see [43], [44]) Suppose F is symmetric operator on a Hilbert space H with dense domain $D(F)$ and

$$
\begin{equation*}
R(F-\lambda)=R(F-\bar{\lambda})=H \tag{2.2.3}
\end{equation*}
$$

for some complex number λ. Then F is self-adjoint.
The condition (2.2.3) with $\lambda=i$ is equivalent to

$$
\operatorname{Ker}\left(F^{*}-i\right)=\operatorname{Ker}\left(F^{*}+i\right)=0
$$

Let F be a symmetric operator with a dense domain $D(F) \subset H$.
A natural way to extend this operator to a closed operator is to take the closure $\overline{\Gamma(F)}$ of the graph

$$
\Gamma(F)=\{(h, F h) ; h \in D(F)\}
$$

in $H \times H$.

If F is a symmetric operator with a dense domain $D(F)$ in H, then there exists an operator \bar{F} such that

$$
\overline{\Gamma(F)}=\Gamma(\bar{F}) .
$$

We call \bar{F} a closure of F.
The importance of self-adjoint operators is connected with the possibility to use the spectral theorem. (see [42])

Theorem 2.2.3 (Spectral theorem-functional calculus) Let F be a self-adjoint operator in a Hilbert space H. Then there is a unique map $\hat{\phi}$ from the bounded Borel functions on \mathbf{R} into $L(H)$ so that
a) $\hat{\phi}$ is an algebric *- homomorphism, i.e.

$$
\begin{gathered}
\hat{\phi}(f g)=\hat{\phi}(f) \hat{\phi}(g), \hat{\phi}(\lambda f)=\lambda \hat{\phi}(f), \hat{\phi}\left(f_{1}+f_{2}\right)=\hat{\phi}\left(f_{1}\right)+\hat{\phi}\left(f_{2}\right), \\
\hat{\phi}(1)=I, \hat{\phi}(\bar{f})=(\hat{\phi}(f))^{*}
\end{gathered}
$$

b) $\|\hat{\phi}(f)\|_{L(H)} \leq\|f\|_{L^{\infty}}$,
c) let $h_{n}(x)$ be a sequence of bounded Borel functions with

$$
\lim _{n \rightarrow \infty} h_{n}(x)=x
$$

for each x and $\left|h_{n}(x)\right| \leq|x|$ for all x and n. Then for any $\psi \in D(F)$ we have

$$
\lim \hat{\phi}\left(h_{n}\right) \psi=F \psi
$$

d) if $h_{n}(x) \rightarrow h(x)$ pointwise and if the sequence $\left\|h_{n}\right\|_{L^{\infty}}$ is bounded, then

$$
\hat{\phi}\left(h_{n}\right) \rightarrow \hat{\phi}(h)
$$

strongly.
e) if $F \psi=\lambda \psi$ then

$$
\hat{\phi}(h) \psi=h(\lambda) \psi
$$

f) if $h \geq 0$, then $\hat{\phi}(h) \geq 0$.

This spectral theorem gives us a possibility to define the function of the operator F by means of the identity

$$
f(F)=\hat{\phi}
$$

for any measurable function f on \mathbf{R}.
The above spectral theorem can be rewritten in projection valued measure form (see [42]).

Given any Borel set $\Omega \subset \mathbf{R}$, we denote by χ_{Ω} the corresponding characteristic function for the set Ω. Then the functional calculus for the self-adjoint operator F enables one to consider the projection:

$$
P_{\Omega}=\chi_{\Omega}(F)=\hat{\phi}\left(\chi_{\Omega}\right)
$$

The family $\left\{P_{\Omega}\right\}$ satisfies the properties:
a) P_{Ω} is an orthogonal projection,
b) $P_{\emptyset}=0, P_{(-\infty, \infty)}=I$,
c) If Ω is a countable disjoint union of Borel sets $\Omega_{m}, m=1,2, \ldots$, then for any $h \in H$ we have

$$
P_{\Omega} h=\lim _{N \rightarrow \infty} \sum_{m=1}^{N} P_{\Omega_{n}} h
$$

d) $P_{\Omega_{1}} P_{\Omega_{2}}=P_{\Omega_{1} \cap \Omega_{2}}$.

Given any $h \in H$, we see that

$$
\mu(\Omega)=\left(h, P_{\Omega} h\right)_{H}
$$

is a classical measure. By $d\left(h, P_{\lambda} h\right)$ we shall denote the corresponding volume element needed for integration with respect to this measure so we have

$$
\int_{-\infty}^{\infty} \chi_{\Omega}(\lambda) d\left(h, P_{\lambda} h\right)=\left(h, P_{\Omega} h\right)_{H}
$$

Now for any (eventually unbounded) Borel function g on $(-\infty, \infty)$ we consider the domain

$$
D_{g}=\left\{h \in H ; \int_{\mathbf{R}}|g(\lambda)|^{2} d\left(h, P_{\lambda} h\right)<\infty\right\}
$$

and then define the operator (eventually unbounded) $h \in D_{g} \rightarrow g(F) h$ by means of the identity

$$
(h, g(F) h)_{H}=\int_{\mathbf{R}} g(\lambda) d\left(h, P_{\lambda} h\right)
$$

Then we have the following assertion.
Theorem 2.2.4 For any real-valued Borel function $g(\lambda)$ defined on $(-\infty, \infty)$ the operator $g(F)$ with dense domain D_{g} is self-adjoint.

The functional calculus enables one to define the exponential $U(t)=\mathrm{e}^{i t F}$.
Theorem 2.2.5 (see [42]) If F is a self-adjoint operator in the Hilbert space H, then $U(t)=\mathrm{e}^{i t F}$ satisfies the properties:
a) $U(t)$ is a bounded unitary operator for any $t \in \mathbf{R}$.
b) $U(t) U(s)=U(t+s)$ for any real numbers t, s,
c) $\lim _{t \rightarrow 0} U(t) h=h$ for any $h \in H$.
d) $h \in D(F)$ if and only if

$$
\lim _{t \rightarrow 0} \frac{U(t) h-h}{t}
$$

exists in H.

Remarks A. The property a) in the above theorem means that

$$
\|U(t) h\|_{H}=\|h\|_{H} .
$$

Remark B. An operator-valued function $U(t)$ satisfying the above properties a),b) and c) is called a strongly continuous one-parameter unitary group.

Theorem 2.2.6 (Stone's theorem, see [43]) If $U(t)$ is a strongly continuous oneparameter unitary group, then we can define its generator G so that $h \in D(G)$ if and only if the limit

$$
\lim _{t \rightarrow 0} \frac{U(t) h-h}{t}
$$

exists. The above limit shall be denoted $G h$ for $h \in D(G)$. One has

$$
G=i F,
$$

where F is a self-adjoint operator in H.

2.3 Symmetric strictly monotone operators on Hilbert space

In this section we shall consider the special case when a symmetric operator B is defined on a dense domain $D(B) \subset H$, where H is a real Hilbert space. For simplicity we take Hilbert space over \mathbf{R}, but the results are valid also for Hilbert spaces over C. We shall denote by

$$
(\cdot, \cdot)_{H},\|\cdot\|_{H}
$$

the inner product and the norm in H respectively.
Our main assumption is that B is strictly monotone, i.e. there exists a constant $C>0$, so that

$$
\begin{equation*}
(B u, u) \geq C\|u\|_{H}^{2} \tag{2.3.1}
\end{equation*}
$$

for $u \in D(B)$.
First we consider the case, when the range $R(B)$ is dense in H.
Lemma 2.3.1 If B is a symmetric strictly monotone operator with dense range $R(B)$, then the closure \bar{B} is a self-adjoint operator.

Proof. The operator \bar{B} is also symmetric and strictly monotone. Then the inequality

$$
\|\bar{B} u\|_{H}^{2} \geq C\|u\|_{H}^{2}
$$

shows that $R(\bar{B})$ is closed. Since $R(B) \subset R(\bar{B})$ and $R(B)$ is dense in H, we see that $R(\bar{B})=H$. Applying Theorem 2.2.2, we see that \bar{B} is self-adjoint.

The next step is to introduce the corresponding "energetic" space (see [65]).

For the purpose for any $u, v \in D(B)$ we define the corresponding energy inner product

$$
\begin{equation*}
(u, v)_{E}=(B u, v)_{H} . \tag{2.3.2}
\end{equation*}
$$

The corresponding norm is

$$
\|u\|_{E}=\sqrt{(u, u)_{E}}
$$

Definition 2.3.1 The space H_{E} consists of all $u \in H$ such that there exists a sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ with the properties:
a) $u_{n} \in D(B)$,
b) $u_{n} \rightarrow u$ in H,
c) u_{n} is a Cauchy sequence for the norm $\|\cdot\|_{E}$, i.e. for any $\varepsilon>0$ there exists an integer $N \geq 1$, such that

$$
\left\|u_{n}-u_{m}\right\|_{E} \leq \varepsilon
$$

for $n, m \geq N$.
We shall call the sequence $\left\{u_{n}\right\}$, satisfying the above properties, admissible for u. Given any $u \in H_{E}$, we can define its norm by

$$
\begin{equation*}
\|u\|_{E}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{E} \tag{2.3.3}
\end{equation*}
$$

Our first step is to show that this definition is independent of the concrete choice of admissible sequence $\left\{u_{n}\right\}$.

Lemma 2.3.2 Suppose $\left\{u_{n}\right\}$ is an admissible sequence of 0 . Then

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{E}=0
$$

Proof. Assume the assertion of Lemma is not true. Choosing a subsequences we can reduce the proof of a contradiction to the case

$$
\begin{equation*}
a<\left\|u_{n}\right\|_{E}<a^{-1} \tag{2.3.4}
\end{equation*}
$$

with some $a>0$. Given any $\varepsilon>0$, we can choose N depending on $\varepsilon>0$ according to property c) of Definition 2.3.1. Then for any $n \geq N$ we have the inequalities

$$
\left\|u_{n}\right\|_{E}^{2} \leq\left|\left(u_{n}, u_{N}\right)_{E}\right|+\left|\left(u_{n}, u_{n}-u_{N}\right)_{E}\right| \leq\left|\left(u_{n}, u_{N}\right)_{E}\right|+a^{-1} \varepsilon .
$$

On the other hand, we have the identity

$$
\left(u_{n}, u_{N}\right)_{E}=\left(u_{n}, B u_{N}\right)_{H},
$$

according to our definition of the inner product $(\cdot, \cdot)_{E}$ on $D(B)$. Since $\left\{u_{n}\right\}$ is admissible sequence for 0 , we have $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{H}=0$. Therefore, we can find $n \geq N$ so large that

$$
\left|\left(u_{n}, u_{N}\right)_{E}\right| \leq \varepsilon .
$$

Thus, for any $\varepsilon>0$ we can find n so that

$$
\left\|u_{n}\right\|_{E}^{2} \leq \varepsilon\left(1+a^{-1}\right)
$$

It is clear that this inequality is in contradiction with the left inequality in (2.3.4), when $\varepsilon>0$ is sufficiently small.

Therefore we have a contradiction and this completes the proof of the lemma.
The above lemma enables one to introduce a norm in H_{E} as follows

$$
\begin{equation*}
\|u\|_{E}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{E} \tag{2.3.5}
\end{equation*}
$$

where $\left\{u_{n}\right\}$ is an admissible sequence for $u \in H_{E}$.
Also it is easy to define the inner product in H_{E}. For $u_{n}, v_{n} \in D(B)$ such that $\left\{u_{n}\right\},\left\{v_{n}\right\}$ are admissible sequences for $u, v \in H_{E}$ we have the polarization identity

$$
\left(u_{n}, v_{n}\right)_{E}=\frac{1}{4}\left(\left\|u_{n}+v_{n}\right\|_{E}^{2}\right)-\frac{1}{4}\left(\left\|u_{n}-v_{n}\right\|_{E}^{2}\right)
$$

Then from (2.3.5) we see that the limit

$$
\lim _{n \rightarrow \infty}\left(u_{n}, v_{n}\right)_{E}
$$

exists and it is independent of the concrete choice of admissible sequences. For this we can introduce the inner product in H_{E} as follows

$$
(u, v)_{E}=\lim _{n \rightarrow \infty}\left(u_{n}, v_{n}\right)_{E}
$$

The next step is of special importance to verify the fact that the space H_{E} is a Hilbert space.

Lemma 2.3.3 If $\left\{u_{n}\right\}$ is an admissible sequence for $u \in H_{E}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{E}=0 \tag{2.3.6}
\end{equation*}
$$

Proof. For any integer $m \geq 1$ the sequence

$$
u_{n}-u_{m}
$$

is admissible for $u-u_{m}$. The fact that $\left\{u_{n}\right\}$ is a Cauchy sequence in H_{E} means that for any positive number ε there exists an integer $N \geq 1$, so that

$$
\left\|u_{n}-u_{m}\right\|_{E} \leq \varepsilon
$$

for $n, m \geq N$. Then definition (2.3.5) shows that

$$
\left\|u-u_{m}\right\|_{E} \leq \varepsilon
$$

for $m \geq N$. This completes the proof.
It is clear that the definition (2.3.5) guarantees that

$$
\begin{equation*}
\|u\|_{E}^{2} \geq C\|u\|_{H}^{2} \tag{2.3.7}
\end{equation*}
$$

This estimate shows that $(u, u)_{E}=0$ implies $u=0$, so H_{E} is a pre - Hilbert space. Also it is a trivial fact that $D(B)$ is a dense subset in H_{E}, since any element u in H_{E} by the definition of H_{E} is such that there exists an admissible sequence $\left\{u_{n}\right\}$ with $u_{n} \in D(B)$.

Our next step is to study the space H_{E}.
Theorem 2.3.1 The space H_{E} is a Hilbert space.
Proof. Let $\left\{u_{n}\right\}$ be a Cauchy sequence in H_{E}. Since $D(B)$ is dense in H_{E}, for any integer $n \geq 1$ one can find $v_{n} \in D(B)$, so that

$$
\begin{equation*}
\left\|v_{n}-u_{n}\right\|_{E} \leq \frac{1}{n} \tag{2.3.8}
\end{equation*}
$$

Then the estimate $\left\|v_{n}\right\|_{E}^{2} \geq C\left\|v_{n}\right\|_{H}^{2}$ shows that $\left\{v_{n}\right\}$ is a Cauchy sequence in H so there exists $u \in H$, so that

$$
v_{n} \rightarrow u \text { in } H
$$

Applying Lemma 2.3.3, we conclude that

$$
\lim _{n \rightarrow \infty}\left\|u-v_{n}\right\|_{E}=0
$$

and from (2.3.8) we get

$$
\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{E}=0
$$

This completes the proof.
Further, we turn to the dual space H_{E}^{*}. As usual for any linear continuous functional $f \in H_{E}^{*}$ and any $g \in H_{E}$ we denote by

$$
\langle f, g\rangle
$$

the action of the functional f on g. The inclusion $H \subset H_{E}^{*}$ is such that

$$
<f, g>=(f, g)_{H}
$$

for $f \in H, g \in H_{E}$. The norm in H_{E}^{*} is

$$
\|f\|_{H_{E}^{*}}=\sup _{g \in H_{E},\|g\|_{E}=1}<f, g>.
$$

Then H_{E}^{*} is clearly a Banach space. Later on we shall introduce on H_{E}^{*} a structure of a Hilbert space. The main preparation for this is the following

Lemma 2.3.4 The symmetric strictly monotone operator $B: D(B) \rightarrow H$ can be extended to an invertible isometry

$$
B_{E}: H_{E} \rightarrow H_{E}^{*}
$$

i.e. we have the properties
a) $B_{E} u=B u$ for $u \in D(B)$,
b) B_{E} maps H_{E} onto H_{E}^{*},
c) $\left\|B_{E} u\right\|_{H_{E}^{*}}=\|u\|_{H_{E}}$.

Proof. For any $u \in H_{E}$ we take an admissible sequence $\left\{u_{n}\right\}$, such that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{E}=0
$$

On the other hand, we have the relation

$$
\begin{equation*}
\|B u\|_{H_{E}^{*}}=\|u\|_{E} \tag{2.3.9}
\end{equation*}
$$

for $u \in D(B)$. Indeed, for $u \in D(B), v \in H_{E}$ we have

$$
\begin{equation*}
\left|<B u, v>\left|=\left|(B u, v)_{H}\right|=\left|(u, v)_{E}\right| \leq\|u\|_{E}\|v\|_{E}\right.\right. \tag{2.3.10}
\end{equation*}
$$

Hence,

$$
\|B u\|_{H_{E}^{*}} \leq\|u\|_{E}
$$

To establish inequality in the opposite direction we choose $v=u$ in (2.3.10) and get

$$
\|u\|_{E}^{2} \leq\|B u\|_{H_{E}^{*}}\|u\|_{E}
$$

Once, the relation (2.3.9) is established, we can conclude that $\left\{B u_{n}\right\}$ is a Cauchy sequence in H_{E}^{*} so it is convergent in H_{E}^{*} to an element $v \in H_{E}^{*}$ so by definition

$$
B_{E} u=v
$$

It is clear that the element v is independent of the concrete choice of the admissible sequence $\left\{u_{n}\right\}$ for u. Also (2.3.9) can be extended to $u \in H_{E}$.

Therefore, it remains to show that B_{E} maps the energetic space H_{E} onto its dual H_{E}^{*}. To do this take $v \in H_{E}^{*}$ and consider the linear continuos functional

$$
h \in H_{E} \rightarrow<v, h>\in \mathbf{R} .
$$

According to Riesz representation theorem, there exists $u \in H_{E}$ so that

$$
\langle v, h\rangle=(u, h)_{E} .
$$

Taking an admissible sequence for u we can see that

$$
\left(u_{n}, h\right)_{E}=\left(B u_{n}, h\right)_{H} \rightarrow<B_{E} u, h>
$$

Hence, $\left\langle B_{E} u, h\right\rangle=\langle v, h\rangle$ so $B_{E} u=v$. This completes the proof.
Using the fact that $B_{E}: H_{E} \rightarrow H_{E}^{*}$ is an invertible isometry, we can define via the polarization identity inner product on H_{E}^{*} and conclude that this is a Hilbert space.

In fact starting with the relations

$$
\|B u\|_{H_{E}^{*}}^{2}=\|u\|_{E}^{2}=(B u, u)_{H}
$$

for $u \in D(B)$ and using the previous Lemma, we see that we can introduce the inner product in H_{E}^{*} by means of

$$
\left(B_{E} u, B_{E} v\right)_{H_{E}^{*}}=(u, v)_{E}=\left\langle B_{E} u, v>.\right.
$$

The above relations show that B_{E} is a symmetric operator. It is easy to see that B_{E} is a strictly monotone operator on H_{E}^{*} with dense domain H_{E}. Applying the first Lemma of this section, we conclude that

Lemma 2.3.5 The operator B_{E} is self-adjoint.
Our main result in this section is the following.
Theorem 2.3.2 (see [65]) If B is a symmetric strictly monotone operator, then the operator A with dense domain

$$
D(A)=\left\{u \in H_{E}, B_{E} u \in H\right\}
$$

defined with $A u=B_{E} u$ for $u \in D(A)$ is a self-adjoint extention of B.
Proof.
Given any $f \in H$, we can find $u \in H_{E}$ so that $f=B_{E} u$.
It is not difficult to see that the operator

$$
F: f \in H \rightarrow u=F(f) \in H_{E}
$$

is well - defined bounded, symmetric and

$$
F(B h)=h, h \in D(B)
$$

In fact F is a restriction of the isometry

$$
B_{E}^{-1}: H_{E}^{*} \rightarrow H_{E}
$$

to H. Moreover, F is a symmetric bounded operator from H into H. Then the symmetric bounded operator F is self-adjoint. Applying the spectral theorem in the form of Theorem 2.2.4 with $g(\lambda)=1 / \lambda$, we see that the operator $A=F^{-1}$ with dense domain $D(A)$ is selfadjoint.

It is an open problem if the closure of the graph of B is the graph of A. For this we introduce the following.

Definition 2.3.2 Given any $f \in H$, we shall say that $u \in H_{E}$ is a weak solution of the equation $B u=f$, if

$$
(u, B v)_{H}=(f, v)_{H}
$$

for any $v \in D(B)$.
The above identity ca be rewritten in the form

$$
<B_{E} u, v>=(f, v)_{H}
$$

for any $v \in D(B)$. Since $D(B)$ is dense H_{E}, we see that any weak solution satisfies

$$
B_{E} u=f
$$

On the other hand, we introduce the following
Definition 2.3.3 Given any $f \in H$, we shall say that $u \in H_{E}$ is a strong solution of $B u=f$, if there exists a sequence $\left\{u_{k}\right\}$ such that
a) $u_{k} \in D(B)$,
b) $u_{k} \rightarrow u$ in H_{E},
c) $B u_{k}$ tends to f in H.

One can show that any strong solution of $B u=f$ is also a weak one.
For the applications of special importance is the following result.
Theorem 2.3.3 Suppose in addition to assumptions of Theorem 2.9.2 that any weak solution of $B u=f$ for $f \in H$ is also a strong solution. Then the closure of the operator B is self-adjoint.

Proof. The result follows from Theorem 2.3.2 and the fact that the assumption "weak implies strong" guarantees that the closures of the graphs of the operators A and B coincide.

2.4 Basic interpolation theorems

Let L^{q} denote the Lebesgue space $L^{q}\left(\mathbf{R}^{n}\right)$.
The first important interpolation theorem is the Riesz-Thorin interpolation theorem. To state this theorem we start with some notations.

Given any positive real numbers p_{0}, p_{1} with $1 \leq p_{0}<p_{1} \leq \infty$, we denote by $L^{p_{0}}\left(\mathbf{R}^{n}\right)+L^{p_{1}}\left(\mathbf{R}^{n}\right)$ the linear space

$$
\left\{f: f=f_{0}+f_{1}, f_{0} \in L^{p_{0}}\left(\mathbf{R}^{n}\right), f_{1} \in L^{p_{1}}\left(\mathbf{R}^{n}\right)\right\}
$$

The norm in this space we define as follows

$$
\|f\|_{L^{p_{0}}+L^{p_{1}}}=\inf _{f=f_{0}+f_{1}}\left\|f_{0}\right\|_{L^{p_{0}}}+\left\|f_{1}\right\|_{L^{p_{1}}} .
$$

Here the infimum is taken over all representations $f=f_{0}+f_{1}$, where $f_{0} \in L^{p_{0}}\left(\mathbf{R}^{n}\right)$ and $f_{1} \in L^{p_{1}}\left(\mathbf{R}^{n}\right)$.

It is easy to see that $L^{p_{0}}+L^{p_{1}}$ is a Banach space.

Theorem 2.4.1 Suppose T is a linear bounded operator from $L^{p_{0}}+L^{p_{1}}$ into $L^{q_{0}}+$ $L^{q_{1}}$ satisfying the estimates

$$
\begin{align*}
& \|T f\|_{L^{q_{0}}} \leq M_{0}\|f\|_{L^{p_{0}}}, f \in L^{p_{0}}, \\
& \|T f\|_{L^{q_{1}}} \leq M_{0}\|f\|_{L^{p_{1}}}, f \in L^{p_{1}} . \tag{2.4.1}
\end{align*}
$$

Then for any $t \in(0,1)$ we have

$$
\begin{equation*}
\|T f\|_{L^{q_{t}}} \leq M_{0}\|f\|_{L p_{t}}, \tag{2.4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
1 / p_{t}=t / p_{1}+(1-t) / p_{0}, \quad 1 / q_{t}=t / q_{1}+(1-t) / q_{0} \tag{2.4.3}
\end{equation*}
$$

Applying this interpolation theorem, one can derive (see [43]) the Young inequality

$$
\begin{equation*}
\|f * g\|_{L^{\natural}} \leq\|f\|_{L^{1}}\|g\|_{L^{q}} \tag{2.4.4}
\end{equation*}
$$

for $1 \leq q \leq \infty$. Here

$$
f * g(x)=\int f(x-y) g(y) d y
$$

It is not difficult to derive the following more general variant of (2.4.4)

$$
\begin{equation*}
\|f * g\|_{L^{s}} \leq\|f\|_{L^{r}}\|g\|_{L^{p}} \tag{2.4.5}
\end{equation*}
$$

for $1 / p+1 / r=1+1 / s$.
Further, we turn to a weighted variant of Young inequality. For simplicity, we consider only the continuous case. Let $w(x), w_{1}(x)$ and $w_{2}(x)$ be smooth positive functions satisfying the assumption

$$
\begin{equation*}
w(x+y) \leq C w_{1}(x) w_{2}(y) \tag{2.4.6}
\end{equation*}
$$

Then the argument of the proof of Young inequality leads to

$$
\begin{equation*}
\|w(f * g)\|_{L^{q}} \leq C\left\|w_{1} f\right\|_{L^{1}}\left\|w_{2} g\right\|_{L^{q}} \tag{2.4.7}
\end{equation*}
$$

Indeed, we have the inequality

$$
|w(x)(f * g)(x)| \leq C\left(\left|w_{1} f\right| *\left|w_{2} g\right|\right)(x)
$$

and (2.4.7) follows from the classical Young inequality.
Two typical examples of weights satisfying the assumption (2.4.6) are considered below.

Example 1. let $w(x)=\langle x\rangle^{s}$ with $s>0$. Then we can choose $w_{1}=w_{2}=w$ and the assumption (2.4.6) is fulfilled.

Example 2. Let $w(x)=\left\langle x>^{s}\right.$ with $s<0$. Then we take $w_{1}(x)=<x>^{-s}$ and $w_{2}(x)=<x>^{s}$. Again (2.4.6) is fulfilled.

To prove the Sobolev inequality we need more fine interpolation theorems concerning the weak L^{p} spaces. To define these weak spaces we shall denote by μ the Lebesgue measure. Given any measurable function f we shall say that $f \in L_{w}^{p}$ if the quantity

$$
\begin{equation*}
\|f\|_{L_{w}^{p}}=\sup _{t}\left(t^{p} \mu\{x:|f(x)|>t\}\right)^{1 / p} \tag{2.4.8}
\end{equation*}
$$

is finite. Note that the quantity in (2.4.8) is not a norm. We have the inclusion $L^{p} \subset L_{w}^{p}$ in view of the inequality $\|f\|_{L_{w}^{p}} \leq\|f\|_{L^{p}}$.

Example. The function $|x|^{-n / p}$ is in L_{w}^{p}, but not in L^{p}.
The following two theorems play crucial role in the interpolation theory.
Theorem 2.4.2 (Marcinkiewicz interpolation theorem) Suppose T is a linear operator satisfying the estimates

$$
\begin{align*}
& \|T f\|_{L_{w}^{q_{0}}} \leq M_{0}\|f\|_{L^{p_{0}}} \\
& \|T f\|_{L_{w}^{q_{1}}} \leq M_{0}\|f\|_{L^{p_{1}}} \tag{2.4.9}
\end{align*}
$$

with $p_{0} \neq p_{1}, 1 \leq p_{0} \neq p_{1} \leq \infty$ and $1 \leq q_{0} \neq q_{1} \leq \infty$.
Then we have

$$
\begin{equation*}
\|T f\|_{L^{q}} \leq M_{0}\|f\|_{L^{p}} \tag{2.4.10}
\end{equation*}
$$

provided

$$
\begin{equation*}
1 / p=t / p_{1}+(1-t) / p_{0}, \quad 1 / q=t / q_{1}+(1-t) / q_{0} \tag{2.4.11}
\end{equation*}
$$

for some $t \in(0,1)$ and $p \leq q$.
Theorem 2.4.3 (Hunt interpolation theorem) Suppose T is a linear operator satisfying the inequalities

$$
\begin{align*}
& \|T f\|_{L^{q_{0}}} \leq M_{0}\|f\|_{L^{p_{0}}} \\
& \|T f\|_{L^{q_{1}}} \leq M_{0}\|f\|_{L^{p_{1}}} \tag{2.4.12}
\end{align*}
$$

with $1 \leq p_{1}<p_{0} \leq \infty$ and $1 \leq q_{1}<q_{0} \leq \infty$. Then for any $t \in(0,1)$ we have

$$
\begin{equation*}
\|T f\|_{L_{w}^{q_{t}}} \leq M_{0}\|f\|_{L_{w}^{p_{t}}} \tag{2.4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
1 / p_{t}=t / p_{1}+(1-t) / p_{0}, \quad 1 / q_{t}=t / q_{1}+(1-t) / q_{0} \tag{2.4.14}
\end{equation*}
$$

As an application of the above interpolation theorems one can prove (see [43]) the following generalization of the Young inequality

$$
\begin{equation*}
\|f * g\|_{L^{s}} \leq\|f\|_{L^{p}}\|g\|_{L_{w}^{r}} \tag{2.4.15}
\end{equation*}
$$

for $1 / p+1 / r=1+1 / s, 1<p, r, s<\infty$.
After this preparation we can turn to the proof of the following Sobolev estimate.

Lemma 2.4.1 Suppose $0<\lambda<n, f \in L^{p}\left(\mathbf{R}^{n}\right), g \in L^{r}\left(\mathbf{R}^{n}\right)$, where $1 / p+1 / r+$ $\lambda / n=2$ and $1<p, r<\infty$. Then we have

$$
\begin{equation*}
\iint \frac{|f(x) \| g(y)|}{|x-y|^{\lambda}} d x d y \leq C\|f\|_{L^{p}}\|g\|_{L^{r}} \tag{2.4.16}
\end{equation*}
$$

Proof of Lemma 2.4.1 We know that (2.4.15) is fulfilled. Then for the left hand side of the Sobolev inequality (2.4.16) we can apply the Hölder inequality so we get

$$
\begin{equation*}
\iint \frac{|f(x) \| g(y)|}{|x-y|^{\lambda}} d x d y \leq C\|f\|_{L^{p}}\|g * h\|_{L^{p^{\prime}}} \tag{2.4.17}
\end{equation*}
$$

with $h(x)=|x|^{-|\lambda|}$. Now the application of (2.4.15) yields

$$
\begin{equation*}
\|g * h\|_{L^{p^{\prime}}} \leq\|g\|_{L^{r}}\|h\|_{L_{w}^{l}} \tag{2.4.18}
\end{equation*}
$$

provided

$$
\begin{equation*}
\frac{1}{p^{\prime}}+1=\frac{1}{r}+\frac{1}{l} \tag{2.4.19}
\end{equation*}
$$

The example considered after the definition of the weak L^{p} spaces shows that the quantity $\|h\|_{L_{w}^{l}}$ is bounded when $\lambda l=n$. From this relation and (2.4.19) we see that for $2=1 / p+1 / r+\lambda / n$ we have the Sobolev inequality.

