
4 PRELIMINARIES FROM FUNCTIONAL ANALYSIS

2 Preliminaries from functional analysis

2.1 Overview

In this chapter we shall make a review of some basic facts from functional analysis
and we shall focus our attention to two main points.

On one hand, we shall give suitable sufficient conditions that assure that a sym-
metric strictly monotone operator in a Hilbert space is self-adjoint. More precisely,
we consider Friedrich’s extention of a symmetric strictly monotone operator. The
criterion to assure that its closure is self-adjoint operator is of type: weak solution
$\Rightarrow$ strong solution. We shall apply this criterion in the next chapters.

On the other hand, we represent some of the basic interpolation theorems for
the Lebesgue spaces $L^{p}.$

To get a complete information on the subject one can use [42], [43], [65].

2.2 Linear operators in Banach spaces

Given any couple $A,B$ of Banach spaces we denote their corresponding norms by

$\Vert a\Vert_{A} \Vert b\Vert_{B}$

for $a\in A,$ $b\in B.$ $A$ lmear operator

$F:A\rightarrow B$

is called bounded (or continuous) if there is a constant $C>0$ such that

$\Vert Fa\Vert_{B}\leq C\Vert a\Vert_{A}.$

The space $L(A, B)$ is the set of bounded linear operators

$F:A\rightarrow B$

with norm
$\Vert F\Vert=\sup_{\Vert a||_{A}=1}\Vert Fa\Vert_{B}.$

In case $A=B$ we shall denote by $L(A)$ the corresponding linear space of bounded
linear operators from $A$ in $A$ . It is easy to see that $L(A, B)$ equipped with the
above norm is a Banach space.

If $B$ is the field $C$ of complex numbers, then the elements in $L(A, C)$ are called
fimctionals and $L(A, C)$ itself is called dual space of $A$ and is denoted by $A’.$

For any $v’\in A’$ we denote by

$<v’, v>$

the action of the linear functional $v’$ on $v\in A$ . There is a natural embedding

$J:A\rightarrow A’,$
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defined by the identity
$<J(v), v’>=<v’, v>.$

In dominant part of applications we work with Banach spaces that are reflexive
ones, i.e. $J(A)=A’’.$

For the typical case of Hilbert space $H$ with inner product $(\cdot, \cdot)_{H}$ for any element
$h’\in H’$ there exists an element $h_{0}\in H$ so that

$<h’, h>=(h, h_{0})_{H}$

for any $h\in H$. This is the classical Riesz representation theorem. On the basis of
this theorem there is an isometry

$h’\in H’\rightarrow h_{0}\in H.$

We shall denote this isometry by

$H’\sim(_{)})_{H}H.$

It is clear that the isometry depends on the choice of the product $(\cdot, \cdot)_{H}.$

Sometimes it is possible to define the linear operator only on a dense domain
$D\subset A$ so that

$F:D\rightarrow B.$

Then $D=D(F)$ is called a domain for $F$. The range of the operator $F$ is

$R(F)=\{b:b=F(a),a\in D(F)\}.$

A linear operator
$F:D(F)\rightarrow B$

is an extension of the operator

$G:D(G)\rightarrow B$

if $D(G)\subset D(F)$ and $Ga=Fa$ for $a\in D(G)$ . The operator $G:D(G)\rightarrow B$ is called
closed, if the conditions

$a_{n}\rightarrow a, a_{n}\in D(G), G(a_{n})\rightarrow b$

imply $a\in D(G)$ and $b=Ga.$

Let
$F:D(F)\rightarrow B$

be a linear operator with dense domain $D(F)$ . On the product

$A\times B$

one can define a norm by
$\Vert a\Vert_{A}+\Vert b\Vert_{B}$
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for $a\in A,$ $b\in B$ . Then $F$ is a closed operator if and only if its graph

$\Gamma(F)=\{(a,F(a));a\in D(F)\}$

is a closed subset in $A\times B.$

Theorem 2.2.1 (closed graph theorem) Let $F:D(F)\rightarrow B$ be a linear operator
with $D(F)=A$ . If the operator is closed, then the operator is bounded, $i.e$ . there
exists a constant $C>0$ such that

$\Vert Fa\Vert_{B}\leq C\Vert a\Vert_{A}$

for $a\in D(F)=A.$

If $F$ has a dense domain $D(F)\subset A$

$F:D(F)\rightarrow B,$

then the dual operator $F’$ is an operator between $B’$ and $A’$ and this operator has a
domain $D(F’)$ defined as follows: $b’\in D(F’)$ if and only if there exists an element
$a’\in A’$ so that
(2.2.1) $<b’,Fa>=<a’,a>$

for any $a\in D(F)$ . We put $F’(b’)=a’.$

Let $b’\in D(F’)$ . Then there is a unique $a’\in A’$ , satisfying (2.2.1).
Given any Banach space $A$ we call

$T:A\rightarrow C$

a conjugate linear functional if

$T(\alpha_{l}a_{1}+\alpha_{2}a_{2})=\overline{\alpha_{1}}T(a_{1})+\overline{\alpha_{2}}T(a_{2})$ .

Moreover, we shall say that the conjugate linear functional $T$ is bounded, if there
exists a constant $C>0$ such that

$|T(a)|\leq C\Vert a\Vert_{A}$

for any $a\in D(F)$ .
We denote by $A^{*}$ the vector space of linear conjugate functionals on $A.$

Then $A^{*}$ is a Banach space and one can see that there is a natural isomorphism
between $A^{*}$ and $A’.$

For any $a^{*}\in A^{*}$ we denote by

$<a^{*},a>$

the action of the linear functional $a^{*}$ on $a\in A.$
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Let $F$ be an operator with a dense domain $D(F)\subset A$ and

$F:D(F)\rightarrow B.$

The conjugate operator $F^{*}$ is an operator between $B^{*}$ and $A^{*}$ and has a domain
$D(F^{*})$ defined as follows: $b^{*}\in D(F^{*})$ if and only if there exists an element $a^{*}\in A^{*}$

so that
(2.2.2) $<b^{*}, Fa>=<a^{*}, a>$

for any $a\in D(F)$ .
Let $b^{*}\in D(F^{*})$ . Then there is a unique $a^{*}\in A^{*}$ , satisfying (2.2.2).

By definition $F^{*}(b^{*})=a^{*}$ , where the element $a^{*}$ is the unique element satisfying
(2.2.2). In general the fact that $F$ has dense domain does not guarantee that $D(F^{*})$

is dense in $A^{*}$ . However, if the spaces $A,$ $B$ are reflexive ones one can show (see

Theorem III.21 in [4] for example) that the space $D(F^{*})$ is dense in $B.$

The operator $F^{*}$ with dense domain $D(F^{*})$ is closed operator.
Further, we turn again to the situation of a Hilbert space $H$. An operator $F$

with dense domain $D(F)\subset H$ is called symmetric if

$(Fh, g)_{H}=(h, Fg)_{H}$

for any $h,$ $g\in D(F)$ . Using the definition of the adjoint operator $F^{*}$ we see that
$F^{*}$ is an extention of the operator $F$, when $F$ is symmetric.

We shall say that $F$ is self-adjoint if

$F=F^{*}.$

The following criterion for self-adjointness plays an important role.

Theorem 2.2.2 $(see l43J, l44])$ Suppose $F$ is symmetric operator on a Hilbert
space $H$ with dense domain $D(F)$ and

(2.2.3) $R(F-\lambda)=R(F-\overline{\lambda})=H$

for some complex number $\lambda$ . Then $F$ is self-adjoint.

The condition (2.2.3) with $\lambda=i$ is equivalent to

$Ker(F^{*}-i)=Ker(F^{*}+i)=0.$

Let $F$ be a symmetric operator with a dense domain $D(F)\subset H.$

A natural way to extend this operator to a closed operator is to take the closure
$\overline{\Gamma(F)}$ of the graph

$\Gamma(F)=\{(h, Fh);h\in D(F)\}$

in $H\times H.$
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If $F$ is a symmetric operator with a dense domain $D(F)$ in $H$ , then there exists
an operator $\overline{F}$ such that

$\overline{\Gamma(F)}=\Gamma(\overline{F})$ .
We call $\overline{F}$ a closure of $F.$

The importance of self-adjoint operators is connected with the possibility to use
the spectral theorem. (see [42])

Theorem 2.2.3 (Spectral theorem-functional calculus) Let $F$ be a self-adjoint

operator in a Hilbert space H. Then there is a unique map $\hat{\phi}$ frvm the bounded
Borel functions on $R$ into $L(H)$ so that

a$)$
$\hat{\phi}$ is an $algebriC*$ -homomorphism, $i.e.$

$\hat{\phi}(fg)=\hat{\phi}(f)\hat{\phi}(g),\hat{\phi}(\lambda f)=\lambda\hat{\phi}(f),\hat{\phi}(f_{i}+f_{2})=\hat{\phi}(f_{i})+\hat{\phi}(f_{2})$ ,

$\hat{\phi}(1)=I,\hat{\phi}(\overline{f})=(\hat{\phi}(f))^{*}$

b$)$ $\Vert\hat{\phi}(f)\Vert_{L(H)}\leq\Vert f\Vert_{L\infty},$

c$)$ let $h_{n}(x)$ be a sequence of bounded Borel functions with

$\lim_{n\rightarrow\infty}h_{n}(x)=x$

for each $x$ and $|h_{n}(x)|\leq|x|$ for all $x$ and $n$ . Then for any $\psi\in D(F)$ we have

$\lim\hat{\phi}(h_{n})\psi=F\psi.$

d$)$ if $h_{n}(x)\rightarrow h(x)$ pointwise and if the sequence $\Vert h_{n}\Vert_{L^{\infty}}$ is bounded, then

$\hat{\phi}(h_{n})\rightarrow\hat{\phi}(h)$

strongly.
e$)$ if $ F\psi=\lambda\psi$ then

$\hat{\phi}(h)\psi=h(\lambda)\psi.$

$f)ifh\geq 0$ , then $\hat{\phi}(h)\geq 0.$

This spectral theorem gives us a possibility to define the function of the operator
$F$ by means of the identity

$f(F)=\hat{\phi}$

for any measurable function $f$ on $R.$

The above spectral theorem can be rewritten in projection valued measure form
(see [42]).

Given any Borel set $\Omega\subset R$, we denote by $\chi_{\Omega}$ the corresponding characteristic
function for the set $\Omega$ . Then the functional calculus for the self-adjoint operator $F$

enables one to consider the projection:

$P_{\Omega}=\chi_{\Omega}(F)=\hat{\phi}(\chi_{\Omega})$ .
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The family $\{P_{\Omega}\}$ satisfies the properties:
a$)$ $P_{\Omega}$ is an orthogonal projection,
b $)$ $P_{\emptyset}=0,$ $P_{(-\infty,\infty)}=I,$

c $)$ If $\Omega$ is a countable disjoint union of Borel sets $\Omega_{m},$ $m=1,2,$ $\ldots$ , then for any
$h\in H$ we have

$P_{\Omega}h=\lim_{N\rightarrow\infty}\sum_{m=1}^{N}P_{\Omega_{n}}h,$

d $)$ $P_{\Omega_{1}}P_{\Omega_{2}}=P_{\Omega_{1}\cap\Omega_{2}}.$

Given any $h\in H$, we see that

$\mu(\Omega)=(h, P_{\Omega}h)_{H}$

is a classical measure. By $d(h, P_{\lambda}h)$ we shall denote the corresponding volume
element needed for integration with respect to this measure so we have

$\int_{-\infty}^{\infty}\chi_{\Omega}(\lambda)d(h, P_{\lambda}h)=(h, P_{\Omega}h)_{H}$

Now for any (eventually unbounded) Borel function $g$ on $(-\infty, \infty)$ we consider
the domain

$D_{g}=\{h\in H;\int_{R}|g(\lambda)|^{2}d(h, P_{\lambda}h)<\infty\}$

and then define the operator (eventually unbounded) $h\in D_{g}\rightarrow g(F)h$ by means
of the identity

$(h,g(F)h)_{H}=\int_{R}g(\lambda)d(h, P_{\lambda}h)$ .

Then we have the following assertion.

Theorem 2.2.4 For any real-valued Borel function $g(\lambda)$ defined on $(-\infty, \infty)$ the
operator $g(F)$ with dense domain $D_{g}$ is self-adjoint.

The functional calculus enables one to define the exponential $U(t)=e^{itF}.$

Theorem 2.2.5 (see [42]) If $F$ is a self-adjoint operator in the Hilben space $H,$

then $U(t)=e^{itF}$ satisfies the properties:
a) $U(t)$ is a bounded unitary operator for any $t\in R.$

b) $U(t)U(s)=U(t+s)$ for any real numbers $t,s,$

c) $\lim_{t\rightarrow 0}U(t)h=h$ for any $h\in H.$

d) $h\in D(F)$ if and only if

$\lim_{t\rightarrow 0}\frac{U(t)h-h}{t}$

exists in $H.$
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Remarks A. The property a) in the above theorem means that

$\Vert U(t)h\Vert_{H}=\Vert h\Vert_{H}.$

Remark B. An operator-valued function $U(t)$ satisfying the above properties
a),b) and c) is called a strongly continuous one-parameter unitary group.

Theorem 2.2.6 $(Stone$ ’s $theorem, see l43J)$ If $U(t)$ is a stro ngly continuous one-
parameter unitary group, then we can define its generator $G$ so that $h\in D(G)$ if
and only if the limit

$\lim_{t\rightarrow 0}\frac{U(t)h-h}{t}$

exists. The above limit shall be denoted $Gh$ for $h\in D(G)$ . One has

$G=iF,$

where $F$ is a self-adjoint opemtor in $H.$

2.3 Symmetric strictly monotone operators on Hilbert space

In this section we shall consider the special case when a symmetric operator $B$

is defined on a dense domain $D(B)\subset H$ , where $H$ is a real Hilbert space. For
simplicity we take Hilbert space over $R$ , but the results are valid also for Hilbert
spaces over C. We shall denote by

$(\cdot, \cdot)_{H} \Vert\cdot\Vert_{H}$

the ner product and the norm in $H$ respectively.
Our main assumption is that $B$ is strictly monotone, i.e. there exists a constant

$C>0$ , so that
(2.3.1) $(Bu,u)\geq C\Vert u\Vert_{H}^{2}$

for $u\in D(B)$ .
First we consider the case, when the range $R(B)$ is dense in $H.$

Lemma 2.3.1 If $B$ is a symmetric strictly monotone operator with dense range
$R(B)$ , then the closure $\overline{B}$ is a self-adjoint operator.

Proof. The operator $\overline{B}$ is also symmetric and strictly monotone. Then the
inequality

$\Vert\overline{B}u\Vert_{H}^{2}\geq C\Vert u\Vert_{H}^{2}$

shows that $R(B)$ is closed. Since $R(B)\subset R(\overline{B})$ and $R(B)$ is dense in $H$, we see
that $R(\overline{B})=H$. Applying Theorem 2.2.2, we see that $\overline{B}$ is self-adjoint.

The next step is to introduce the corresponding”energetic” space (see [65]).
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For the purpose for any $u,$ $v\in D(B)$ we define the corresponding energy inner
product
(2.3.2) $(u, v)_{E}=(Bu, v)_{H}.$

The corresponding norm is
$\Vert u\Vert_{E}=\sqrt{(u,u)_{E}}.$

Definition 2.3.1 The space $H_{E}$ consists of all $u\in H$ such that there exists a
sequence $\{u_{n}\}_{n=1}^{\infty}$ with the propenies:

a$)$ $u_{n}\in D(B)$ ,
b$)$ $u_{n}\rightarrow u$ in $H,$

c$)$ $u_{n}$ is a Cauchy sequence for the norm $\Vert\cdot\Vert_{E},$ $i.e$ . for any $\epsilon>0$ there exists

an integer $N\geq 1$ , such that
$\Vert u_{n}-u_{m}\Vert_{E}\leq\epsilon$

for $n,$ $m\geq N.$

We shall call the sequence $\{u_{n}\}$ , satisfying the above properties, admissible for
$u$ . Given any $u\in H_{E}$ , we can define its norm by

(2.3.3) $\Vert u\Vert_{E}=\lim_{n\rightarrow\infty}\Vert u_{n}\Vert_{E}.$

Our first step is to show that this definition is independent of the concrete

choice of admissible sequence $\{u_{n}\}.$

Lemma 2.3.2 Suppose $\{u_{n}\}$ is an admissible sequence of $0$ . Then

$\lim_{n\rightarrow\infty}\Vert u_{n}\Vert_{E}=0.$

Proof. Assume the assertion of Lemma is not true. Choosing a subsequences

we can reduce the proof of a contradiction to the case

(2.3.4) $a<\Vert u_{n}\Vert_{E}<a^{-1}$

with some $a>0$ . Given any $\epsilon>0$ , we can choose $N$ depending on $\epsilon>0$ according

to property c) of Definition 2.3.1. Then for any $n\geq N$ we have the inequalities

$\Vert u_{n}\Vert_{E}^{2}\leq|(u_{n},u_{N})_{E}|+|(u_{n},u_{n}-u_{N})_{E}|\leq|(u_{n}, u_{N})_{E}|+a^{-1}\epsilon.$

On the other hand, we have the identity

$(u_{n},u_{N})_{E}=(u_{n}, Bu_{N})_{H},$

according to our definition of the inner product $(\cdot, \cdot)_{E}$ on $D(B)$ . Since $\{u_{n}\}$ is

admissible sequence for $0$ , we have $\lim_{n\rightarrow\infty}\Vert u_{n}\Vert_{H}=0$ . Therefore, we can find
$n\geq N$ so large that

$|(u_{n},u_{N})_{E}|\leq\epsilon.$
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Thus, for any $\epsilon>0$ we can find $n$ so that

$\Vert u_{n}\Vert_{E}^{2}\leq\epsilon(1+a^{-1})$

It is clear that this inequality is in contradiction with the left inequality in (2.3.4),

when $\epsilon>0$ is sufficiently small.
Therefore we have a contradiction and this completes the proof of the lemma.
The above lemma enables one to introduce a norm in $H_{E}$ as follows

(2.3.5) $\Vert u\Vert_{E}=n\rightarrow\infty 1\dot{m}\Vert u_{n}\Vert_{E},$

where $\{u_{n}\}$ is an admissible sequence for $u\in H_{E}.$

Also it is easy to define the inner product in $H_{E}$ . For $u_{n},v_{n}\in D(B)$ such that
$\{u_{n}\},$ $\{v_{n}\}$ sre admissible sequences for $u,$ $v\in H_{E}$ we have the polarization identity

$(u_{m},v_{n})_{B}=\frac{1}{4}(\Vert u_{n}+v_{n}\Vert_{E}^{2})-\frac{1}{4}(\Vert u_{n}-v_{n}\Vert_{E}^{2})$ .

Then$fr$ we see that the limit

$\lim_{n\rightarrow\infty}(u_{n},v_{n})_{E}$

exists and it is independent of the concrete choice of admissible sequences. For this
we can introduce the inner product in $H_{E}$ as follows

$(u,v)_{E}=\lim_{n\rightarrow\infty}(u_{n}, v_{n})_{E}.$

The next step is of special importance to verify the fact that the space $H_{E}$ is a
Hilbert space.

Lemma 2.3.3 If $\{u_{n}\}$ is an admissible sequence for $u\in H_{E}$ , then

(2.3.6) $n\rightarrow 1\dot{m}_{\infty}\Vert u_{n}-u\Vert_{E}=0.$

Proof. For any integer $m\geq 1$ the sequence

$u_{n}-u_{m}$

is admissible for $u-u_{m}$ . The fact that $\{u_{n}\}$ is a Cauchy sequence in $H_{E}$ means
that for any positive number $\epsilon$ there exists an integer $N\geq 1$ , so that

$\Vert u_{n}-u_{m}\Vert_{E}\leq\epsilon$

for $n,$ $m\geq N$. Then defimition (2.3.5) shows that

$\Vert u-u_{m}\Vert_{E}\leq\epsilon$
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for $m\geq N$. This completes the proof.
It is clear that the definition (2.3.5) guarantees that

(2.3.7) $\Vert u\Vert_{E}^{2}\geq C\Vert u\Vert_{H}^{2}$

This estimate shows that $(u, u)_{E}=0$ implies $u=0$ , so $H_{E}$ is a pre-Hilbert space.

Also it is a trivial fact that $D(B)$ is a dense subset in $H_{E}$ , since any element $u$ in
$H_{E}$ by the definition of $H_{E}$ is such that there exists an admissible sequence $\{u_{n}\}$

with $u_{n}\in D(B)$ .
Our next step is to study the space $H_{E}.$

Theorem 2.3.1 The space $H_{E}$ is a Hilbert space.

Proof. Let $\{u_{n}\}$ be a Cauchy sequence in $H_{E}$ . Since $D(B)$ is dense in $H_{E}$ , for
any integer $n\geq 1$ one can find $v_{n}\in D(B)$ , so that

(2.3.8) $\Vert v_{n}-u_{n}\Vert_{E}\leq\frac{1}{n}.$

Then the estimate $\Vert v_{n}\Vert_{E}^{2}\geq C\Vert v_{n}\Vert_{H}^{2}$ shows that $\{v_{n}\}$ is a Cauchy sequence in $H$

so there exists $u\in H$, so that
$v_{n}\rightarrow u$ in $H.$

Applying Lemma 2.3.3, we conclude that

$\lim_{n\rightarrow\infty}\Vert u-v_{n}\Vert_{E}=0$

and from (2.3.8) we get
$\lim_{n\rightarrow\infty}\Vert u-w_{n}\Vert_{E}=0.$

This completes the proof.
Further, we turn to the dual space $H_{E}^{*}$ . As usual for any linear continuous

functional $f\in H_{E}^{*}$ and any $g\in H_{E}$ we denote by

$<f,g>$

the action of the functional $f$ on $g$ . The inclusion $H\subset H_{E}^{*}$ is such that

$<f,g>=(f,g)_{H}$

for $f\in H,$ $g\in H_{E}$ . The norm in $H_{E}^{*}$ is

$\Vert f\Vert_{H_{\dot{E}}}=\sup_{g\in H_{E},||g\Vert_{E}=1}<f,g>.$

Then $H_{E}^{*}$ is clearly a Banach space. Later on we shall introduce on $H_{E}^{*}$ a structure
of a Hilbert space. The main preparation for this is the following
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Lemma 2.3.4 The symmetric strictly monotone opemtor $B$ : $D(B)\rightarrow H$ can be
extended to an invertible isometry

$B_{E}:H_{E}\rightarrow H_{E}^{*},$

$i.e$ . we have the pmperties
a$)$ $B_{E}u=Bu$ for $u\in D(B)$ ,
b$)$ $B_{E}$ maps $H_{E}$ onto $H_{E}^{*},$

c$)$ $\Vert B_{E}u\Vert_{H_{\dot{E}}}=\Vert u\Vert_{H_{E}}.$

Proof. For any $u\in H_{E}$ we take an admissible sequence $\{u_{n}\}$ , such that

$\lim_{n\rightarrow\infty}\Vert u_{n}-u\Vert_{E}=0.$

On the other hand, we have the relation

(2.3.9) $\Vert Bu\Vert_{H_{B}^{*}}=\Vert u\Vert_{E}$

for $u\in D(B)$ . Indeed, for $u\in D(B),$ $v\in H_{E}$ we have

(2.3.10) $|<Bu, v>|=|(Bu,v)_{H}|=|(u,v)_{E}|\leq\Vert u\Vert_{E}\Vert v\Vert_{E}.$

Hence,
$\Vert Bu\Vert_{H_{\dot{B}}}\leq\Vert u\Vert_{E}.$

To establish inequality in the opposite direction we choose $v=u$ in (2.3.10) and
get

$\Vert u\Vert_{E}^{2}\leq\Vert Bu\Vert_{H_{B}^{*}}\Vert u\Vert_{E}.$

Once, the relation (2.3.9) is established, we can conclude that $\{Bu_{n}\}$ is a Cauchy
sequence in $H_{E}^{*}$ so it is convergent in $H_{E}^{*}$ to an element $v\in H_{E}^{*}$ so by definition

$B_{E}u=v.$

It is clear that the element $v$ is independent of the concrete choice of the admissible
sequence $\{u_{n}\}$ for $u$ . Also (2.3.9) can be extended to $u\in H_{E}.$

Therefore, it remains to show that $B_{E}$ maps the energetic space $H_{E}$ onto its
dual $H_{E}^{*}$ . To do this take $v\in H_{E}^{*}$ and consider the linear continuos functional

$h\in H_{E}\rightarrow<v, h>\in R.$

According to Riesz representation theorem, there exists $u\in H_{E}$ so that

$<v, h>=(u, h)_{E}.$

Taking an admissible sequence for $u$ we can see that

$(u_{n}, h)_{E}=(Bu_{n}, h)_{H}\rightarrow<B_{E}u, h>$
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Hence, $<B_{E}u,$ $h>=<v,$ $h>$ so $B_{E}u=v$ . This completes the proof.
Using the fact that $B_{E}$ : $H_{E}\rightarrow H_{E}^{*}$ is an invertible isometry, we can define via

the polarization identity inner product on $H_{E}^{*}$ and conclude that this is a Hilbert
space.

In fact starting with the relations

$\Vert Bu\Vert_{H_{E}^{*}}^{2}=\Vert u\Vert_{E}^{2}=(Bu,u)_{H}$

for $u\in D(B)$ and using the previous Lemma, we see that we can introduce the
inner product in $H_{E}^{*}$ by means of

$(B_{E}u, B_{E}v)_{H_{E}^{*}}=(u, v)_{E}=<B_{E}u, v>.$

The above relations show that $B_{E}$ is a symmetric operator. It is easy to see
that $B_{E}$ is a strictly monotone operator on $H_{E}^{*}$ with dense domain $H_{E}$ . Applying
the first Lemma of this section, we conclude that

Lemma 2.3.5 The operator $B_{E}$ is self-adjoint.

Our main result in this section is the following.

Theorem 2.3.2 (see $[65J)$ If $B$ is a symmetric strictly monotone opemtor, then
the operator $A$ with dense domain

$D(A)=\{u\in H_{E}, B_{E}u\in H\}$

defined with $Au=B_{E}u$ for $u\in D(A)$ is a self-adjoint extention of $B.$

Proof.
Given any $f\in H$, we can find $u\in H_{E}$ so that $f=B_{E}u.$

It is not difficult to see that the operator

$F:f\in H\rightarrow u=F(f)\in H_{E}$

is well-defined bounded, symmetric and

$F(Bh)=h, h\in D(B)$ .

In fact $F$ is a restriction of the isometry

$B_{E}^{-1}:H_{E}^{*}\rightarrow H_{E}$

to $H$. Moreover, $F$ is a symmetric bounded operator from $H$ into $H$. Then the
symmetric bounded operator $F$ is self-adjoint. Applying the spectral theorem in
the form of Theorem 2.2.4 with $ g(\lambda)=1\prime\lambda$ , we see that the operator $A=F^{-1}$

with dense domain $D(A)$ is selfadjoint.
It is an open problem if the closure of the graph of $B$ is the graph of $A$ . For

this we introduce the following.
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Definition 2.3.2 Given any $f\in H$ , we shall say that $u\in H_{E}$ is a weak solution

of the equation $Bu=f$, if
$(u, Bv)_{H}=(f,v)_{H}$

for any $v\in D(B)$ .
The above identity ca be rewritten in the form

$<B_{E}u,v>=(f,v)_{H}$

for any $v\in D(B)$ . Since $D(B)$ is dense $H_{E}$ , we see that any weak solution satisfies

$B_{E}u=f.$

On the other hand, we introduce the following

Definition 2.3.3 Given any $f\in H$, we shall say that $u\in H_{E}$ is a stro $ng$ solution

of $Bu=f$, if there exists a sequence $\{u_{k}\}$ such that
a$)$ $u_{k}\in D(B)$ ,
b$)$ $u_{k}\rightarrow u$ in $H_{E},$

c$)$ $Bu_{k}$ tends to $f$ in $H.$

One can show that any strong solution of $Bu=f$ is also a weak one.
For the applications of special importance is the following result.

Theorem 2.3.3 Suppose in addition to assumptions of Theorem 2.3.2 that any
weak solution of $Bu=f$ for $f\in H$ is also a stmng solution. Then the closure of
the operator $B$ is self-adjoint.

Proof. The result follows from Theorem 2.3.2 and the fact that the assumption
“weak implies strong” guarantees that the closures of the graphs of the operators
$A$ and $B$ coincide.

2.4 Basic interpolation theorems

Let $L^{q}$ denote the Lebesgue space $L^{q}(R^{n})$ .
The first important interpolation theorem is the Riesz-Thorin interpolation the-

orem. To state this theorem we start with some notations.
Given any positive real numbers $p0,p_{1}$ with $ 1\leq p0<p_{1}\leq\infty$ , we denote by

$L^{Po}(R^{n})+L^{p_{1}}(R^{n})$ the linear space

$\{f:f=f_{0}+f_{1}, f_{0}\in L^{p0}(R^{n}), f_{1}\in L^{p_{1}}(R^{n})\}.$

The norm in this space we define as follows

$\Vert f\Vert_{L^{P0}+L^{p_{1}}}= inf\Vert fo\Vert_{L^{p}0}+\Vert f_{i}\Vert_{L^{p}\iota}.$

$f=f_{0}+f_{1}$

Here the infimum is taken over all representations $f=f_{0}+f_{1}$ , where $f_{0}\in L^{p0}(R^{n})$

and $f_{1}\in L^{p_{1}}(R^{n})$ .
It is easy to see that $L^{p0}+L^{p_{1}}$ is a Banach space.
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Theorem 2.4.1 Suppose $T$ is a hnear bounded operatorfrom $L^{p0}+L^{p_{1}}$ into $L^{q0}+$

$L^{q_{1}}$ satisfying the estimates

$\Vert Tf\Vert_{L^{q}0}\leq M_{0}\Vert f\Vert_{L^{p_{0}}}, f\in L^{p0},$

(2.4.1) $\Vert Tf\Vert_{L^{q_{1}}}\leq M_{0}\Vert f\Vert_{L^{p_{1}}}, f\in L^{p_{1}}.$

Then for any $t\in(O, 1)$ we have

(2.4.2) $\Vert Tf\Vert_{Lt}q\leq M_{0}\Vert f\Vert_{Lt}p,$

where

(2.4.3) $1/p_{t}=t/p_{1}+(1-t)/p0 1/q_{t}=t/q_{1}+(1-t)/q0.$

Applying this interpolation theorem, one can derive (see [43]) the Young in-
equality

(2.4.4) $\Vert f*g\Vert_{Lq}\leq$ lfll $L^{1}\Vert g\Vert_{L^{q}}$

for $ 1\leq q\leq\infty$ . Here
$f*g(x)=lf(x-y)g(y)dy.$

It is not difficult to derive the following more general variant of (2.4.4)

(2.4.5) $\Vert f*g\Vert_{L^{s}}\leq\Vert f\Vert_{L^{r}}\Vert g\Vert_{Lp}$

for $1/p+1\prime r=1+1/s.$

Further, we turn to a weighted variant of Young inequality. For simplicity, we
consider only the continuous case. Let $w(x),w_{1}(x)$ and $w_{2}(x)$ be smooth positive
functions satisfying the assumption

(2.4.6) $w(x+y)\leq Cw_{1}(x)w_{2}(y)$ .

Then the argument of the proof of Young inequality leads to

(2.4.7) $\Vert w(f*g)\Vert_{Lq}\leq C\Vert w_{1}f\Vert_{L^{1}}\Vert w_{2}g\Vert_{Lq}$

Indeed, we have the inequality

$|w(x)(f*g)(x)|\leq C(|w_{1}f|*|w_{2}g|)(x)$

and (2.4.7) follows from the classical Young inequality.
Two typical examples ofweights satisfying the assumption (2.4.6) are considered

below.
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Example 1. let $w(x)=<x>^{s}$ with $s>0$ . Then we cm choose $w_{1}=w_{2}=w$

and the assumption (2.4.6) is fulfilled.
Example 2. Let $w(x)=<x>^{s}$ with $s<0$ . Then we take $w_{1}(x)=<x>^{-s}$

and $w_{2}(x)=<x>^{s}$ . Again (2.4.6) is fulfilled.
To prove the Sobolev inequality we need more fine interpolation theorems con-

cerning the weak $ I\nearrow$ spaces. To define these weak spaces we shall denote by $\mu$ the
Lebesgue measure. Given any measurable function $f$ we shall say that $f\in L_{w}^{p}$ if
the quantity

(2.4.8) $\Vert f\Vert_{L_{w}^{p}}=\sup_{t}(t^{p}\mu\{x : |f(x)|>t\})^{1\prime p}$

is finite. Note that the quantity in (2.4.8) is not a nom. We have the inclusion
$L^{p}\subset L_{w}^{p}$ in view of the inequality $\Vert f\Vert_{L_{w}^{p}}\leq\Vert f\Vert_{L^{p}}.$

Example. The function $|x|^{-n/p}$ is in $IP_{w}$ , but not in $L^{p}.$

The following two theorems play cmcial role in the interpolation theory.

Theorem 2.4.2 (Marcinkiewicz interpolation theorem) Suppose $T$ is a lin-
ear operator satisfying the estimates

II $\tau f\Vert_{L_{w}^{q}}0\leq M_{0}\Vert f\Vert_{L^{p_{0}}}$

(2.4.9) $I\tau f\Vert_{L_{w}^{q_{1}}}\leq M_{0}\Vert f\Vert_{L^{p_{1}}}$

with $ p0\neq p_{1},1\leq p0\neq p_{1}\leq\infty$ and $1\leq q0\neq q_{1}\leq\infty.$

Then we have

(2.4.10) $\Vert Tf\Vert_{L^{q}}\leq M_{0}\Vert f\Vert_{L^{p}},$

provided

(2.4.11) $1/p=t/p_{1}+(1-t)\prime p_{0} 1\prime q=t\prime q_{1}+(1-t)/q_{0}$

for some $t\in(0,1)$ and $p\leq q.$

Theorem 2.4.3 (Hunt interpolation theorem) Suppose $T$ is a linear opemtor
satisfy $ing$ the inequalities

$\Vert Tf\Vert_{L^{q_{0}}}\leq M_{0}\Vert f\Vert_{L^{p_{0}}}$

(2.4.12) $\Vert Tf\Vert_{L^{q_{1}}}\leq M_{0}\Vert f\Vert_{L^{p_{1}}}$

with $ 1\leq p_{1}<p0\leq\infty$ and $ 1\leq q_{1}<q0\leq\infty$ . Then for any $t\in(O, 1)$ we have

(2.4.13) $\Vert Tf\Vert_{L_{w}^{qt}}\leq M_{0}\Vert f\Vert_{L_{w}^{p_{t}}},$

where

(2.4.14) $1/p_{t}=t\prime p_{1}+(1-t)/p0 , 1/q_{t}=t\prime q_{1}+(1-t)/q0.$
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As an application of the above interpolation theorems one can prove (see [43])
the following generalization of the Young inequality

(2.4.15) $\Vert f*g\Vert_{L^{s}}\leq\Vert f\Vert_{L^{p}}\Vert g\Vert_{L_{w}^{r}}$

for $1/p+1\prime r=1+1\prime s,$ $1<p,r,s<\infty.$

After this preparation we can turn to the proof of the following Sobolev esti-
mate.

Lemma 2.4.1 Suppose $0<\lambda<n,$ $f\in L^{p}(R^{n}),g\in L^{r}(R^{n})$ , where $1/p+1/r+$
$\lambda/n=2$ and $1<p,$ $ r<\infty$ . Then we have

(2.4.16) $\int\int\frac{|f(x)||g(y)|}{|x-y|^{\lambda}}dxdy\leq C\Vert f\Vert_{L^{p}}\Vert g\Vert_{L^{r}}$

Proof of Lemma 2.4.1 We know that (2.4.15) is fulfilled. Then for the left
hand side of the Sobolev inequality (2.4.16) we can apply the H\"older inequality so
we get

(2.4.17) $\int\int\frac{|f(x)||g(y)|}{|x-y|^{\lambda}}dxdy\leq C\Vert f\Vert_{Lp}\Vert g*h\Vert_{L^{p’}}$

with $h(x)=|x|^{-|\lambda|}$ . Now the application of (2.4.15) yields

(2.4.18) $\Vert g*h\Vert_{Lp’}\leq\Vert g\Vert_{L^{r}}\Vert h\Vert_{L_{w}^{l}}$

provided

(2.4.19) $\frac{1}{p}+1=\frac{1}{r}+\frac{1}{l}$

The example considered after the definition of the weak $L^{p}$ spaces shows that the
quantity $\Vert h\Vert_{L_{w}^{\iota}}$ is bounded when $\lambda l=n$ . IFlrom this relation and (2.4.19) we see
that for $2=1/p+1/r+\lambda\prime n$ we have the Sobolev inequality.
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