2 Preliminaries from functional analysis

2.1 Overview

In this chapter we shall make a review of some basic facts from functional analysis and we shall focus our attention to two main points.

On one hand, we shall give suitable sufficient conditions that assure that a symmetric strictly monotone operator in a Hilbert space is self-adjoint. More precisely, we consider Friedrich's extention of a symmetric strictly monotone operator. The criterion to assure that its closure is self-adjoint operator is of type: weak solution \Rightarrow strong solution. We shall apply this criterion in the next chapters.

On the other hand, we represent some of the basic interpolation theorems for the Lebesgue spaces L^p .

To get a complete information on the subject one can use [42], [43], [65].

2.2 Linear operators in Banach spaces

Given any couple A, B of Banach spaces we denote their corresponding norms by

$$\|a\|_A$$
, $\|b\|_B$

for $a \in A, b \in B$. A linear operator

$$F: A \rightarrow B$$

is called bounded (or continuous) if there is a constant C > 0 such that

$$\|Fa\|_B \leq C \|a\|_A.$$

The space L(A, B) is the set of bounded linear operators

$$F: A \rightarrow B$$

with norm

$$||F|| = \sup_{||a||_A=1} ||Fa||_B.$$

In case A = B we shall denote by L(A) the corresponding linear space of bounded linear operators from A in A. It is easy to see that L(A, B) equipped with the above norm is a Banach space.

If B is the field C of complex numbers, then the elements in L(A, C) are called functionals and L(A, C) itself is called dual space of A and is denoted by A'.

For any $v' \in A'$ we denote by

the action of the linear functional v' on $v \in A$. There is a natural embedding

$$J: A \to A',$$

defined by the identity

$$< J(v), v' > = < v', v > .$$

In dominant part of applications we work with Banach spaces that are reflexive ones, i.e. J(A) = A''.

For the typical case of Hilbert space H with inner product $(\cdot, \cdot)_H$ for any element $h' \in H'$ there exists an element $h_0 \in H$ so that

$$\langle h',h
angle=(h,h_0)_H$$

for any $h \in H$. This is the classical Riesz representation theorem. On the basis of this theorem there is an isometry

$$h' \in H' \to h_0 \in H.$$

We shall denote this isometry by

$$H' \sim_{(,)_H} H.$$

It is clear that the isometry depends on the choice of the product $(\cdot, \cdot)_H$.

Sometimes it is possible to define the linear operator only on a dense domain $D \subset A$ so that

$$F: D \rightarrow B.$$

Then D = D(F) is called a domain for F. The range of the operator F is

$$R(F) = \{b: b = F(a), a \in D(F)\}.$$

A linear operator

$$F: D(F) \rightarrow B$$

is an extension of the operator

$$G: D(G) \to B$$

if $D(G) \subset D(F)$ and Ga = Fa for $a \in D(G)$. The operator $G : D(G) \to B$ is called closed, if the conditions

$$a_n \to a$$
, $a_n \in D(G)$, $G(a_n) \to b$

imply $a \in D(G)$ and b = Ga.

 \mathbf{Let}

$$F: D(F) \to B$$

be a linear operator with dense domain D(F). On the product

 $A \times B$

one can define a norm by

$$||a||_A + ||b||_B$$

for $a \in A, b \in B$. Then F is a closed operator if and only if its graph

$$\Gamma(F) = \{(a,F(a)); a \in D(F)\}$$

is a closed subset in $A \times B$.

Theorem 2.2.1 (closed graph theorem) Let $F : D(F) \to B$ be a linear operator with D(F) = A. If the operator is closed, then the operator is bounded, i.e. there exists a constant C > 0 such that

$$||Fa||_B \le C ||a||_A$$

for $a \in D(F) = A$.

If F has a dense domain $D(F) \subset A$

$$F:D(F)\to B,$$

then the dual operator F' is an operator between B' and A' and this operator has a domain D(F') defined as follows: $b' \in D(F')$ if and only if there exists an element $a' \in A'$ so that

(2.2.1) < b', Fa > = < a', a >

for any $a \in D(F)$. We put F'(b') = a'.

Let $b' \in D(F')$. Then there is a unique $a' \in A'$, satisfying (2.2.1).

Given any Banach space A we call

$$T:A\to \mathbf{C}$$

a conjugate linear functional if

$$T(\alpha_1 a_1 + \alpha_2 a_2) = \overline{\alpha_1} T(a_1) + \overline{\alpha_2} T(a_2).$$

Moreover, we shall say that the conjugate linear functional T is bounded, if there exists a constant C > 0 such that

$$|T(a)| \le C ||a||_A$$

for any $a \in D(F)$.

We denote by A^* the vector space of linear conjugate functionals on A.

Then A^* is a Banach space and one can see that there is a natural isomorphism between A^* and A'.

For any $a^* \in A^*$ we denote by

$$\langle a^*,a \rangle$$

the action of the linear functional a^* on $a \in A$.

Let F be an operator with a dense domain $D(F) \subset A$ and

$$F: D(F) \to B.$$

The conjugate operator F^* is an operator between B^* and A^* and has a domain $D(F^*)$ defined as follows: $b^* \in D(F^*)$ if and only if there exists an element $a^* \in A^*$ so that

 $(2.2.2) < b^*, Fa > = < a^*, a >$

for any $a \in D(F)$.

Let $b^* \in D(F^*)$. Then there is a unique $a^* \in A^*$, satisfying (2.2.2).

By definition $F^*(b^*) = a^*$, where the element a^* is the unique element satisfying (2.2.2). In general the fact that F has dense domain does not guarantee that $D(F^*)$ is dense in A^* . However, if the spaces A, B are reflexive ones one can show (see Theorem III.21 in [4] for example) that the space $D(F^*)$ is dense in B.

The operator F^* with dense domain $D(F^*)$ is closed operator.

Further, we turn again to the situation of a Hilbert space H. An operator F with dense domain $D(F) \subset H$ is called symmetric if

$$(Fh,g)_H = (h,Fg)_H$$

for any $h, g \in D(F)$. Using the definition of the adjoint operator F^* we see that F^* is an extention of the operator F, when F is symmetric.

We shall say that F is self-adjoint if

 $F = F^*$.

The following criterion for self-adjointness plays an important role.

Theorem 2.2.2 (see [43], [44]) Suppose F is symmetric operator on a Hilbert space H with dense domain D(F) and

(2.2.3) $R(F - \lambda) = R(F - \overline{\lambda}) = H$

for some complex number λ . Then F is self-adjoint.

The condition (2.2.3) with $\lambda = i$ is equivalent to

$$\operatorname{Ker}(F^* - i) = \operatorname{Ker}(F^* + i) = 0.$$

Let F be a symmetric operator with a dense domain $D(F) \subset H$.

A natural way to extend this operator to a closed operator is to take the closure $\overline{\Gamma(F)}$ of the graph

$$\Gamma(F) = \{(h, Fh); h \in D(F)\}$$

in $H \times H$.

If F is a symmetric operator with a dense domain D(F) in H, then there exists an operator \overline{F} such that

$$\overline{\Gamma(F)} = \Gamma(\bar{F}).$$

We call \overline{F} a closure of F.

The importance of self-adjoint operators is connected with the possibility to use the spectral theorem. (see [42])

Theorem 2.2.3 (Spectral theorem - functional calculus) Let F be a self-adjoint operator in a Hilbert space H. Then there is a unique map $\hat{\phi}$ from the bounded Borel functions on **R** into L(H) so that

a) $\hat{\phi}$ is an algebric *- homomorphism, i.e.

b) $\|\hat{\phi}(f)\|_{L(H)} \leq \|f\|_{L^{\infty}}$, c) let $h_n(x)$ be a sequence of bounded Borel functions with

$$\lim_{n\to\infty}h_n(x)=x$$

for each x and $|h_n(x)| \leq |x|$ for all x and n. Then for any $\psi \in D(F)$ we have

$$\lim \hat{\phi}(h_n)\psi = F\psi.$$

d) if $h_n(x) \to h(x)$ pointwise and if the sequence $||h_n||_{L^{\infty}}$ is bounded, then

$$\hat{\phi}(h_n) \rightarrow \hat{\phi}(h)$$

strongly.

e) if $F\psi = \lambda\psi$ then

$$\hat{\phi}(h)\psi=h(\lambda)\psi.$$

f) if
$$h \geq 0$$
, then $\phi(h) \geq 0$.

~

This spectral theorem gives us a possibility to define the function of the operator F by means of the identity

$$f(F) = \hat{\phi}$$

for any measurable function f on \mathbf{R} .

The above spectral theorem can be rewritten in projection valued measure form (see [42]).

Given any Borel set $\Omega \subset \mathbf{R}$, we denote by χ_{Ω} the corresponding characteristic function for the set Ω . Then the functional calculus for the self-adjoint operator F enables one to consider the projection:

$$P_{\Omega} = \chi_{\Omega}(F) = \hat{\phi}(\chi_{\Omega}).$$

The family $\{P_{\Omega}\}$ satisfies the properties:

a) P_{Ω} is an orthogonal projection,

b) $P_{\emptyset} = 0$, $P_{(-\infty,\infty)} = I$,

c) If Ω is a countable disjoint union of Borel sets $\Omega_m, m = 1, 2, ...,$ then for any $h \in H$ we have

$$P_{\Omega}h = \lim_{N \to \infty} \sum_{m=1}^{N} P_{\Omega_n}h,$$

d) $P_{\Omega_1}P_{\Omega_2} = P_{\Omega_1 \cap \Omega_2}$. Given any $h \in H$, we see that

$$\mu(\Omega) = (h, P_{\Omega}h)_H$$

is a classical measure. By $d(h, P_{\lambda}h)$ we shall denote the corresponding volume element needed for integration with respect to this measure so we have

$$\int_{-\infty}^{\infty} \chi_{\Omega}(\lambda) d(h, P_{\lambda}h) = (h, P_{\Omega}h)_{H}$$

Now for any (eventually unbounded) Borel function g on $(-\infty, \infty)$ we consider the domain

$$D_g = \{h \in H; \int_{\mathbf{R}} |g(\lambda)|^2 d(h, P_{\lambda}h) < \infty\}$$

and then define the operator (eventually unbounded) $h \in D_g \to g(F)h$ by means of the identity

$$(h,g(F)h)_H = \int_{\mathbf{R}} g(\lambda) d(h,P_{\lambda}h).$$

Then we have the following assertion.

Theorem 2.2.4 For any real-valued Borel function $g(\lambda)$ defined on $(-\infty, \infty)$ the operator g(F) with dense domain D_g is self-adjoint.

The functional calculus enables one to define the exponential $U(t) = e^{itF}$.

Theorem 2.2.5 (see [42]) If F is a self-adjoint operator in the Hilbert space H, then $U(t) = e^{itF}$ satisfies the properties:

a) U(t) is a bounded unitary operator for any $t \in \mathbf{R}$. b) U(t)U(s) = U(t+s) for any real numbers t, s,c) $\lim_{t\to 0} U(t)h = h$ for any $h \in H$. d) $h \in D(F)$ if and only if

$$\lim_{t\to o}\frac{U(t)h-h}{t}$$

exists in H.

Remarks A. The property a) in the above theorem means that

$$||U(t)h||_{H} = ||h||_{H}.$$

Remark B. An operator-valued function U(t) satisfying the above properties a),b) and c) is called a strongly continuous one-parameter unitary group.

Theorem 2.2.6 (Stone's theorem, see [43]) If U(t) is a strongly continuous oneparameter unitary group, then we can define its generator G so that $h \in D(G)$ if and only if the limit

$$\lim_{t\to 0}\frac{U(t)h-h}{t}$$

exists. The above limit shall be denoted Gh for $h \in D(G)$. One has

G = iF,

where F is a self-adjoint operator in H.

2.3 Symmetric strictly monotone operators on Hilbert space

In this section we shall consider the special case when a symmetric operator B is defined on a dense domain $D(B) \subset H$, where H is a real Hilbert space. For simplicity we take Hilbert space over \mathbf{R} , but the results are valid also for Hilbert spaces over \mathbf{C} . We shall denote by

$$(\cdot, \cdot)_H$$
, $\|\cdot\|_H$

the inner product and the norm in H respectively.

Our main assumption is that B is strictly monotone, i.e. there exists a constant C > 0, so that

 $(2.3.1) (Bu, u) \ge C ||u||_H^2$

for $u \in D(B)$.

First we consider the case, when the range R(B) is dense in H.

Lemma 2.3.1 If B is a symmetric strictly monotone operator with dense range R(B), then the closure \overline{B} is a self-adjoint operator.

Proof. The operator \overline{B} is also symmetric and strictly monotone. Then the inequality

$$|\bar{B}u\|_H^2 \ge C \|u\|_H^2$$

shows that $R(\bar{B})$ is closed. Since $R(B) \subset R(\bar{B})$ and R(B) is dense in H, we see that $R(\bar{B}) = H$. Applying Theorem 2.2.2, we see that \bar{B} is self-adjoint.

The next step is to introduce the corresponding "energetic" space (see [65]).

For the purpose for any $u, v \in D(B)$ we define the corresponding energy inner product

$$(u,v)_E = (Bu,v)_H.$$

The corresponding norm is

$$\|u\|_E = \sqrt{(u,u)_E}.$$

Definition 2.3.1 The space H_E consists of all $u \in H$ such that there exists a sequence $\{u_n\}_{n=1}^{\infty}$ with the properties:

a)
$$u_n \in D(B)$$
,

b) $u_n \rightarrow u$ in H,

c) u_n is a Cauchy sequence for the norm $\|\cdot\|_E$, i.e. for any $\varepsilon > 0$ there exists an integer $N \ge 1$, such that

$$\|u_n - u_m\|_E \leq \varepsilon$$

for $n, m \geq N$.

We shall call the sequence $\{u_n\}$, satisfying the above properties, admissible for u. Given any $u \in H_E$, we can define its norm by

(2.3.3)
$$||u||_E = \lim_{n \to \infty} ||u_n||_E.$$

Our first step is to show that this definition is independent of the concrete choice of admissible sequence $\{u_n\}$.

Lemma 2.3.2 Suppose $\{u_n\}$ is an admissible sequence of 0. Then

$$\lim_{n\to\infty}\|u_n\|_E=0.$$

Proof. Assume the assertion of Lemma is not true. Choosing a subsequences we can reduce the proof of a contradiction to the case

 $(2.3.4) a < \|u_n\|_E < a^{-1}$

with some a > 0. Given any $\varepsilon > 0$, we can choose N depending on $\varepsilon > 0$ according to property c) of Definition 2.3.1. Then for any $n \ge N$ we have the inequalities

$$||u_n||_E^2 \le |(u_n, u_N)_E| + |(u_n, u_n - u_N)_E| \le |(u_n, u_N)_E| + a^{-1}\varepsilon.$$

On the other hand, we have the identity

$$(u_n, u_N)_E = (u_n, Bu_N)_H,$$

according to our definition of the inner product $(\cdot, \cdot)_E$ on D(B). Since $\{u_n\}$ is admissible sequence for 0, we have $\lim_{n\to\infty} ||u_n||_H = 0$. Therefore, we can find $n \geq N$ so large that

$$|(u_n,u_N)_E|\leq \varepsilon.$$

Thus, for any $\varepsilon > 0$ we can find n so that

$$\|u_n\|_E^2 \leq \varepsilon(1+a^{-1})$$

It is clear that this inequality is in contradiction with the left inequality in (2.3.4), when $\varepsilon > 0$ is sufficiently small.

Therefore we have a contradiction and this completes the proof of the lemma. The above lemma enables one to introduce a norm in H_E as follows

(2.3.5)
$$||u||_E = \lim_{n \to \infty} ||u_n||_E,$$

where $\{u_n\}$ is an admissible sequence for $u \in H_E$.

Also it is easy to define the inner product in H_E . For $u_n, v_n \in D(B)$ such that $\{u_n\}, \{v_n\}$ are admissible sequences for $u, v \in H_E$ we have the polarization identity

$$(u_n, v_n)_E = \frac{1}{4}(\|u_n + v_n\|_E^2) - \frac{1}{4}(\|u_n - v_n\|_E^2).$$

Then from (2.3.5) we see that the limit

$$\lim_{n\to\infty}(u_n,v_n)_E$$

exists and it is independent of the concrete choice of admissible sequences. For this we can introduce the inner product in H_E as follows

$$(u,v)_E = \lim_{n\to\infty} (u_n,v_n)_E.$$

The next step is of special importance to verify the fact that the space H_E is a Hilbert space.

Lemma 2.3.3 If $\{u_n\}$ is an admissible sequence for $u \in H_E$, then

$$\lim_{n\to\infty} \|u_n-u\|_E = 0.$$

Proof. For any integer $m \ge 1$ the sequence

$$u_n - u_m$$

is admissible for $u - u_m$. The fact that $\{u_n\}$ is a Cauchy sequence in H_E means that for any positive number ε there exists an integer $N \ge 1$, so that

$$\|u_n - u_m\|_E \leq \varepsilon$$

for $n, m \ge N$. Then definition (2.3.5) shows that

$$\|u-u_m\|_E \leq \varepsilon$$

for $m \geq N$. This completes the proof.

It is clear that the definition (2.3.5) guarantees that

$$(2.3.7) \|u\|_E^2 \ge C \|u\|_H^2$$

This estimate shows that $(u, u)_E = 0$ implies u = 0, so H_E is a pre - Hilbert space. Also it is a trivial fact that D(B) is a dense subset in H_E , since any element u in H_E by the definition of H_E is such that there exists an admissible sequence $\{u_n\}$ with $u_n \in D(B)$.

Our next step is to study the space H_E .

Theorem 2.3.1 The space H_E is a Hilbert space.

Proof. Let $\{u_n\}$ be a Cauchy sequence in H_E . Since D(B) is dense in H_E , for any integer $n \ge 1$ one can find $v_n \in D(B)$, so that

$$(2.3.8) ||v_n - u_n||_E \le \frac{1}{n}.$$

Then the estimate $||v_n||_E^2 \ge C ||v_n||_H^2$ shows that $\{v_n\}$ is a Cauchy sequence in H so there exists $u \in H$, so that

$$v_n \to u \text{ in } H_n$$

r

Applying Lemma 2.3.3, we conclude that

$$\lim_{n\to\infty}\|u-v_n\|_E=0$$

and from (2.3.8) we get

$$\lim_{n\to\infty}\|u-u_n\|_E=0.$$

This completes the proof.

Further, we turn to the dual space H_E^* . As usual for any linear continuous functional $f \in H_E^*$ and any $g \in H_E$ we denote by

the action of the functional f on g. The inclusion $H \subset H_E^*$ is such that

$$\langle f,g \rangle = (f,g)_H$$

for $f \in H, g \in H_E$. The norm in H_E^* is

$$\|f\|_{H_E^*} = \sup_{g \in H_E, \|g\|_E = 1} < f, g > .$$

Then H_E^* is clearly a Banach space. Later on we shall introduce on H_E^* a structure of a Hilbert space. The main preparation for this is the following

Lemma 2.3.4 The symmetric strictly monotone operator $B: D(B) \rightarrow H$ can be extended to an invertible isometry

$$B_E: H_E \to H_E^*,$$

i.e. we have the properties

a) $B_E u = Bu$ for $u \in D(B)$,

b) B_E maps H_E onto H_E^* ,

c) $||B_E u||_{H_E^*} = ||u||_{H_E}$.

Proof. For any $u \in H_E$ we take an admissible sequence $\{u_n\}$, such that

$$\lim_{n\to\infty}\|u_n-u\|_E=0.$$

On the other hand, we have the relation

$$\|Bu\|_{H_E^*} = \|u\|_E$$

for $u \in D(B)$. Indeed, for $u \in D(B), v \in H_E$ we have

$$(2.3.10) | < Bu, v > | = |(Bu, v)_H| = |(u, v)_E| \le ||u||_E ||v||_E.$$

Hence,

$$\|Bu\|_{H_E^*} \leq \|u\|_E.$$

To establish inequality in the opposite direction we choose v = u in (2.3.10) and get

$$||u||_E^2 \leq ||Bu||_{H_E^*} ||u||_E.$$

Once, the relation (2.3.9) is established, we can conclude that $\{Bu_n\}$ is a Cauchy sequence in H_E^* so it is convergent in H_E^* to an element $v \in H_E^*$ so by definition

$$B_E u = v.$$

It is clear that the element v is independent of the concrete choice of the admissible sequence $\{u_n\}$ for u. Also (2.3.9) can be extended to $u \in H_E$.

Therefore, it remains to show that B_E maps the energetic space H_E onto its dual H_E^* . To do this take $v \in H_E^*$ and consider the linear continuos functional

$$h \in H_E \rightarrow < v, h > \in \mathbf{R}.$$

According to Riesz representation theorem, there exists $u \in H_E$ so that

$$\langle v,h \rangle = (u,h)_E.$$

Taking an admissible sequence for u we can see that

$$(u_n, h)_E = (Bu_n, h)_H \rightarrow < B_E u, h >$$

Hence, $\langle B_E u, h \rangle = \langle v, h \rangle$ so $B_E u = v$. This completes the proof.

Using the fact that $B_E : H_E \to H_E^*$ is an invertible isometry, we can define via the polarization identity inner product on H_E^* and conclude that this is a Hilbert space.

In fact starting with the relations

$$\|Bu\|^2_{H^*_E} = \|u\|^2_E = (Bu, u)_H$$

for $u \in D(B)$ and using the previous Lemma, we see that we can introduce the inner product in H_E^* by means of

$$(B_E u, B_E v)_{H^*_E} = (u, v)_E = < B_E u, v > .$$

The above relations show that B_E is a symmetric operator. It is easy to see that B_E is a strictly monotone operator on H_E^* with dense domain H_E . Applying the first Lemma of this section, we conclude that

Lemma 2.3.5 The operator B_E is self-adjoint.

Our main result in this section is the following.

Theorem 2.3.2 (see [65]) If B is a symmetric strictly monotone operator, then the operator A with dense domain

$$D(A) = \{ u \in H_E, B_E u \in H \}$$

defined with $Au = B_E u$ for $u \in D(A)$ is a self-adjoint extention of B.

Proof.

Given any $f \in H$, we can find $u \in H_E$ so that $f = B_E u$. It is not difficult to see that the operator

$$F: f \in H \rightarrow u = F(f) \in H_E$$

is well - defined bounded, symmetric and

$$F(Bh) = h, h \in D(B).$$

In fact F is a restriction of the isometry

$$B_E^{-1}: H_E^* \to H_E$$

to *H*. Moreover, *F* is a symmetric bounded operator from *H* into *H*. Then the symmetric bounded operator *F* is self-adjoint. Applying the spectral theorem in the form of Theorem 2.2.4 with $g(\lambda) = 1/\lambda$, we see that the operator $A = F^{-1}$ with dense domain D(A) is selfadjoint.

It is an open problem if the closure of the graph of B is the graph of A. For this we introduce the following.

Definition 2.3.2 Given any $f \in H$, we shall say that $u \in H_E$ is a weak solution of the equation Bu = f, if

$$(u, Bv)_H = (f, v)_H$$

for any $v \in D(B)$.

The above identity ca be rewritten in the form

 $\langle B_E u, v \rangle = (f, v)_H$

for any $v \in D(B)$. Since D(B) is dense H_E , we see that any weak solution satisfies

 $B_E u = f.$

On the other hand, we introduce the following

Definition 2.3.3 Given any $f \in H$, we shall say that $u \in H_E$ is a strong solution of Bu = f, if there exists a sequence $\{u_k\}$ such that

a) $u_k \in D(B)$, b) $u_k \rightarrow u$ in H_E , c) Bu_k tends to f in H.

One can show that any strong solution of Bu = f is also a weak one. For the applications of special importance is the following result.

Theorem 2.3.3 Suppose in addition to assumptions of Theorem 2.3.2 that any weak solution of Bu = f for $f \in H$ is also a strong solution. Then the closure of the operator B is self-adjoint.

Proof. The result follows from Theorem 2.3.2 and the fact that the assumption "weak implies strong" guarantees that the closures of the graphs of the operators A and B coincide.

2.4 Basic interpolation theorems

Let L^q denote the Lebesgue space $L^q(\mathbf{R}^n)$.

The first important interpolation theorem is the Riesz-Thorin interpolation theorem. To state this theorem we start with some notations.

Given any positive real numbers p_0, p_1 with $1 \le p_0 < p_1 \le \infty$, we denote by $L^{p_0}(\mathbf{R}^n) + L^{p_1}(\mathbf{R}^n)$ the linear space

$$\{f: f = f_0 + f_1, f_0 \in L^{p_0}(\mathbf{R}^n), f_1 \in L^{p_1}(\mathbf{R}^n)\}.$$

The norm in this space we define as follows

$$\|f\|_{L^{p_0}+L^{p_1}} = \inf_{f=f_0+f_1} \|f_0\|_{L^{p_0}} + \|f_1\|_{L^{p_1}}.$$

Here the infimum is taken over all representations $f = f_0 + f_1$, where $f_0 \in L^{p_0}(\mathbb{R}^n)$ and $f_1 \in L^{p_1}(\mathbb{R}^n)$.

It is easy to see that $L^{p_0} + L^{p_1}$ is a Banach space.

Theorem 2.4.1 Suppose T is a linear bounded operator from $L^{p_0} + L^{p_1}$ into $L^{q_0} + L^{q_1}$ satisfying the estimates

(2.4.1)
$$\begin{aligned} \|Tf\|_{L^{q_0}} &\leq M_0 \|f\|_{L^{p_0}}, \ f \in L^{p_0}, \\ \|Tf\|_{L^{q_1}} &\leq M_0 \|f\|_{L^{p_1}}, \ f \in L^{p_1}. \end{aligned}$$

Then for any $t \in (0,1)$ we have

$$(2.4.2) ||Tf||_{L^{q_t}} \le M_0 ||f||_{L^{p_t}},$$

where

$$(2.4.3) 1/p_t = t/p_1 + (1-t)/p_0 , 1/q_t = t/q_1 + (1-t)/q_0.$$

Applying this interpolation theorem, one can derive (see [43]) the Young inequality

$$(2.4.4) ||f * g||_{L^q} \le ||f||_{L^1} ||g||_{L^q}$$

for $1 \leq q \leq \infty$. Here

$$f * g(x) = \int f(x-y)g(y)dy.$$

It is not difficult to derive the following more general variant of (2.4.4)

$$(2.4.5) ||f * g||_{L^s} \le ||f||_{L^r} ||g||_{L^p}$$

for 1/p + 1/r = 1 + 1/s.

Further, we turn to a weighted variant of Young inequality. For simplicity, we consider only the continuous case. Let $w(x), w_1(x)$ and $w_2(x)$ be smooth positive functions satisfying the assumption

(2.4.6)
$$w(x+y) \leq Cw_1(x)w_2(y).$$

Then the argument of the proof of Young inequality leads to

$$||w(f * g)||_{L^q} \le C ||w_1 f||_{L^1} ||w_2 g||_{L^q}$$

Indeed, we have the inequality

$$|w(x)(f*g)(x)| \leq C(|w_1f|*|w_2g|)(x)$$

and (2.4.7) follows from the classical Young inequality.

Two typical examples of weights satisfying the assumption (2.4.6) are considered below.

Example 1. let $w(x) = \langle x \rangle^s$ with s > 0. Then we can choose $w_1 = w_2 = w$ and the assumption (2.4.6) is fulfilled.

Example 2. Let $w(x) = \langle x \rangle^s$ with s < 0. Then we take $w_1(x) = \langle x \rangle^{-s}$ and $w_2(x) = \langle x \rangle^s$. Again (2.4.6) is fulfilled.

To prove the Sobolev inequality we need more fine interpolation theorems concerning the weak L^p spaces. To define these weak spaces we shall denote by μ the Lebesgue measure. Given any measurable function f we shall say that $f \in L^p_w$ if the quantity

(2.4.8)
$$\|f\|_{L^p_w} = \sup_t \left(t^p \mu\{x : |f(x)| > t\}\right)^{1/p}$$

is finite. Note that the quantity in (2.4.8) is not a norm. We have the inclusion $L^p \subset L^p_w$ in view of the inequality $\|f\|_{L^p} \leq \|f\|_{L^p}$.

Example. The function $|x|^{-n/p}$ is in L^p_w , but not in L^p .

The following two theorems play crucial role in the interpolation theory.

Theorem 2.4.2 (Marcinkiewicz interpolation theorem) Suppose T is a linear operator satisfying the estimates

(2.4.9)
$$\begin{aligned} \|Tf\|_{L^{q_0}_w} &\leq M_0 \|f\|_{L^{p_0}} \\ \|Tf\|_{L^{q_1}_w} &\leq M_0 \|f\|_{L^{p_1}} \end{aligned}$$

with $p_0 \neq p_1$, $1 \leq p_0 \neq p_1 \leq \infty$ and $1 \leq q_0 \neq q_1 \leq \infty$. Then we have

$$(2.4.10) ||Tf||_{L^q} \le M_0 ||f||_{L^p},$$

provided

$$(2.4.11) 1/p = t/p_1 + (1-t)/p_0 , 1/q = t/q_1 + (1-t)/q_0$$

for some $t \in (0,1)$ and $p \leq q$.

Theorem 2.4.3 (Hunt interpolation theorem) Suppose T is a linear operator satisfying the inequalities

(2.4.12)
$$\begin{aligned} \|Tf\|_{L^{q_0}} &\leq M_0 \|f\|_{L^{p_0}} \\ \|Tf\|_{L^{q_1}} &\leq M_0 \|f\|_{L^{p_1}} \end{aligned}$$

with $1 \leq p_1 < p_0 \leq \infty$ and $1 \leq q_1 < q_0 \leq \infty$. Then for any $t \in (0,1)$ we have

$$(2.4.13) ||Tf||_{L^{q_t}_w} \le M_0 ||f||_{L^{p_t}_w},$$

where

$$(2.4.14) 1/p_t = t/p_1 + (1-t)/p_0 , 1/q_t = t/q_1 + (1-t)/q_0.$$

18

As an application of the above interpolation theorems one can prove (see [43]) the following generalization of the Young inequality

$$(2.4.15) ||f * g||_{L^s} \le ||f||_{L^p} ||g||_{L^r_w}$$

for $1/p + 1/r = 1 + 1/s, 1 < p, r, s < \infty$.

After this preparation we can turn to the proof of the following Sobolev estimate.

Lemma 2.4.1 Suppose $0 < \lambda < n, f \in L^p(\mathbf{R}^n), g \in L^r(\mathbf{R}^n)$, where $1/p + 1/r + \lambda/n = 2$ and $1 < p, r < \infty$. Then we have

(2.4.16)
$$\int \int \frac{|f(x)||g(y)|}{|x-y|^{\lambda}} dx dy \leq C ||f||_{L^{p}} ||g||_{L^{r}}$$

Proof of Lemma 2.4.1 We know that (2.4.15) is fulfilled. Then for the left hand side of the Sobolev inequality (2.4.16) we can apply the Hölder inequality so we get

(2.4.17)
$$\int \int \frac{|f(x)||g(y)|}{|x-y|^{\lambda}} dx dy \leq C \|f\|_{L^{p}} \|g * h\|_{L^{p'}}$$

with $h(x) = |x|^{-|\lambda|}$. Now the application of (2.4.15) yields

$$(2.4.18) ||g * h||_{L^{p'}} \le ||g||_{L^r} ||h||_{L^1_{en}}$$

provided

(2.4.19)
$$\frac{1}{p'} + 1 = \frac{1}{r} + \frac{1}{l}$$

The example considered after the definition of the weak L^p spaces shows that the quantity $\|h\|_{L^l_w}$ is bounded when $\lambda l = n$. From this relation and (2.4.19) we see that for $2 = 1/p + 1/r + \lambda/n$ we have the Sobolev inequality.