
Chapter 7

Proof of the Orbifold
Theorem

In this section we will give a sketch of the proof of the Orbifold Theorem.
We have assumed that the reader is familiar with the definitions and general
ideas presented so far in this memoir and have tried to highlight the main
theorems needed in the proof of this result. For a complete proof the reader
may consult [19]. For an alternative proof of a somewhat different version
of the Theorem, see [8].

7.1 Topological preliminaries

The Orbifold Theorem states that if a compact, orientable, orbifold-irreducible
orbifold has a l-dimensional singular locus, then it can be cut along a (pos-
sibly empty) Euclidean 2-orbifold so that each of the resulting components
has a geometric structure. As discussed in Chapter 2, this is the orbifold
version of the Geometrization Conjecture 2.57 for orientable 3-orbifolds with
the important assumption that the singular locus is non-empty.

Theorem 7.1 (The Orbifold Theorem).
Suppose that $\mathcal{O}$ is a compact, orientable, orbifold-irreducible 3-orbifold with
(possibly empty) orbifold-incompressible boundary consisting of Euclidean
2-orbifolds. Suppose that $\Sigma(\mathcal{O})$ is a non-empty graph. Then there is an
incompressible Euclidean 2-suborbifold $\mathcal{T}$ (possibly empty) such that each
component of $\mathcal{O}-\mathcal{T}$ is a geometric orbifold.

To begin the proof of the Orbifold Theorem, we need an orbifold version
of the torus decomposition of a 3-manifold. This will provide the incom-
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pressible Euclidean 2-suborbifold $\mathcal{T}$ along which the orbifold is decomposed.
The statement of the decomposition theorem given in 2.55 has been special-
ized to the orbifolds that arise in the version of the Orbifold Theorem given
above.

Theorem 7.2 (Euclidean Decomposition Theorem).
Suppose that $\mathcal{O}$ is a compact, orientable, $orbifold- i\gamma 7r$ducible 3-orbifold with
(possibly empty) boundary consisting of orbifold-incompressible Euclidean 2-
orbifolds. Then there is a (possibly empty) closed, orientable, incompressible
Euclidean 2-suborbifold $\mathcal{T}\subset \mathcal{O}$ such that if $P$ is the closure of a component
of $\mathcal{O}-\mathcal{T}$ , then $P$ is either an orbifold Seifert fibre space or it is orbifold-
atoroidal. If $P$ has non-empty boundary, that boundary will be orbifold-
incompressible.

For the remainder of this paper we will assume that we have decom-
posed the orbifold in this manner. Seifert fibred orbifolds that are orbifold-
irreducible are easily seen to have geometric structures (see 2.50) so we may
assume that the orbifold $\mathcal{O}$ is orbifold-irreducible, orbifold-atoroidal, with
(possibly empty) boundary consisting of orbifold-incompressible Euclidean
2-orbifolds. The Orbifold Theorem is equivalent to the statement that such
an orbifold $\mathcal{O}$ is geometric as long as the singular set $\Sigma(\mathcal{O})$ is non-empty
and l-dimensional.

Consider the complement of an open regular neighbourhood of the sin-
gular locus, $\Sigma(\mathcal{O})$ , in O. This is a compact, orientable manifold with non-
trivial boundary. It is easy to check that it is irreducible and atoroidal.
Thurston has shown that such manifolds (since they are Haken) have a ge-
ometric structure. (See 1.7 for a more general version of this theorem from
which this one follows.) In particular, the following holds:

Theorem 7.3 (Thurston’s Theorem for Manifolds with Boundary).
Suppose that $M$ is a compact, orientable, irreducible, atoroidal 3-manifold
with $\partial M\neq\phi$ . Either the interior of $M$ admits a complete hyperbolic struc-
ture or $M$ is Seifert fibred.

The case when the complement of the singular locus is Seifert fibred can
be dealt with because irreducibility of $\mathcal{O}$ allows one to conclude that $\mathcal{O}$ itself
is Seifert fibred. This is essentially a matter of showing that the fibration
can be extended over a neighbourhood of the singular locus in a manner
consistent with the local group action.

Proposition 7.4 (Complement Seifert Fibred).
Suppose that $\mathcal{O}$ is a compact, orientable, orbifold-i $7\gamma e$ducible 3-orbifold and
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that $\mathcal{O}$ , with an open regular neighbourhood of $\Sigma(\mathcal{O})$ removed, is a Seifert
fibred 3-manifold. Then $\mathcal{O}$ is a Seifert fibred 3-orbifold.

As noted above, orbifold-irreducible Seifert fibred orbifolds are easily
seen to have geometric structures (see 2.50) so we may assume that the
complement of the singular locus has a complete hyperbolic structure.

However, if the boundary of $\mathcal{O}$ (which, if non-empty, is assumed to be
Euclidean) contains any 2-orbifolds that are not tori, there will be compo-
nents of the singular locus that go out to the boundary of $\mathcal{O}$ . Then the
complement of a neighbourhood of the singular locus will have higher genus
boundary components that are not tori. Higher genus boundary components
will also arise if the singular set has vertices. The complete hyperbolic struc-
ture on the complement of the singular locus will not have finite volume nor
will it be unique. The deformation theory for such hyperbolic structures
is quite different from that of complete hyperbolic structures with finite
volume.

To avoid this situation we first remove neighbourhoods of the vertices;
this introduces spherical turnover boundary components. Then we double
the resulting orbifold along its non-tori boundary components. The singu-
lar locus of the double consists of simple closed curves; removing a tubular
neighbourhood of this doubled singular locus results in an irreducible man-
ifold with only torus boundary components. It can be given a finite volume
hyperbolic structure except when it is Seifert fibred or an I-bundle. These
exceptional cases only arise when the original orbifold $\mathcal{O}$ is itself Seifert
fibred or when $\mathcal{O}$ is an $I$ bundle over a Euclidean 2-orbifold. We have al-
ready dealt with Seifert fibred orbifolds and I-bundles are easily seen to be
geometric. Thus we will assume that this doubled orbifold has a complete,
finite volume hyperbolic structure on the complement of its singular locus.

We record this process of vertex removal $and/or$ doubling in the following
definition and theorem. In the later sections we will want to have the
topological conclusions of the theorem even when only some of the vertices
are removed. Thus we will allow for this possibility in the construction.

Definition. Suppose that $\mathcal{O}$ is a compact, orbifold-irreducible 3-orbifold
with boundary consisting of Euclidean 2-orbifolds. Let $0_{\{v_{i}\}}$ denote $\mathcal{O}$

with an open neighbourhood of a subset $\{v_{i}\}$ of its vertices removed. Let
$\partial_{NT}\mathcal{O}_{\{v_{i}\}}$ denote the subset of $\partial \mathcal{O}_{\{v_{i}\}}$ consisting of all components that are
not tori. Thus each component of $\partial_{NT}\mathcal{O}_{\{v_{i}\}}$ is a turnover or pillowcase.
Let $D\mathcal{O}_{\{v_{i}\}}$ be the double of $\mathcal{O}_{\{v_{i}\}}$ along $\partial_{NT}\mathcal{O}_{\{v_{i}\}}$ . (The notation $D\mathcal{O}$ will
be used when no vertices are removed.) We will regard $\partial_{NT}\mathcal{O}_{\{v_{i}\}}$ as a
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sub-orbifold of $D\mathcal{O}_{\{v_{i}\}}$ which separates $D\mathcal{O}_{\{v_{i}\}}$ into two copies of $\mathcal{O}$ with
neighbourhoods of the vertices, $\{v_{i}\}$ , removed.

Theorem 7.5 (Doubling Tkick).
Suppose that $\mathcal{O}$ is a compact, $ori$entable, $orbifold- ir\tau educible$ , orbifold-atoroidal
3-orbifold with orbifold-incompressible Euclidean boundary. Furthermore,
suppose that $\mathcal{O}$ is not an orbifold Seifert fibre space or an I-bundle over
$a$ Euclidean 2-orbifold. As above, let $D\mathcal{O}_{\{v_{i}\}}$ denote $\mathcal{O}$ , with neighbour-
hoods of some of its vertices removed, doubled along its non-torus bound-
ary components. Then $D\mathcal{O}_{\{v_{i}\}}$ has orbifold-incompressible boundary and
every orbifold-incompressible pillowcase or tumover in $D\mathcal{O}_{\{v_{i}\}}$ is orbifold-
isotopic to $\partial_{NT}\mathcal{O}_{\{v_{i}\}}$ . If $\{v_{i}\}$ consists of all the vertices in $\mathcal{O}$ , then $D\mathcal{O}_{\{v_{i}\}}-$

$\Sigma(D\mathcal{O}_{\{v.\}})$ admits a finite volume, complete hyperbolic structure.

7.2 Deforming hyperbolic structures

After this preliminary topological preparation, including using vertex re-
moval $and/or$ doubling if necessary, we can assume that we have an orbifold
$Q_{0}$ that has a non-empty link $\Sigma$ as its singular locus and that has a com-
plete, finite volume hyperbolic structure on the complement of the singular
locus.

Thinking of this complete hyperbolic structure as a cone-manifold struc-
ture on $Q_{0}$ with all cone angles equal to $0$ , we begin to deform the structure
through a continuous family $M_{t}$ of hyperbolic cone-manifold structures on
$Q_{0}$ with increasing cone angles. (By definition, a cone-manifold structure on
an orbifold means that there is a cone-manifold structure on the underlying
manifold whose singular set is contained in that of the orbifold.) The family
is parametrized so that on a component $L_{i}$ of the singular locus, the cone
angle in $M_{t}$ along $L_{i}$ is $t\theta_{i}$ , where $\theta_{i}$ corresponds to the orbifold angle. If
$Q_{0}$ itself has any torus boundary components, these remain cusps (i.e. cone
angle $0$ ) for all $t$ .

Such a family, $M_{t}$ , exists for $t$ in an interval $[0, t_{\infty}$ ) with $t_{\infty}>0$ by
the results in chapter 5. If the family can be extended to $t=1$ , then $Q_{0}$

can be given a hyperbolic structure. The bulk of the proof of the Orbifold
Theorem consists of controlling the way the cone structures can degenerate.
In the sections that follow, we describe the theorems that are proved in
order to study degenerations. Here we first give a preview of the ultimate
conclusions of that study.

If $Q_{0}$ was obtained by removing vertices and doubling, one type of de-
generation that can occur will lead us to replace one or more of the vertices
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that were removed. The result will be a hyperbolic cone-manifold structure
on a new orbifold $Q_{1}$ whose singular locus will be a graph, not just a link.
The cone angles on $Q_{1}$ will then be increased, with the deformation still
parametrized so that at time $t$ the cone angles will be $t\theta_{i}$ , where the $\theta_{i}$

correspond to the orbifold angles. We then need to analyze the possible de-
generations of this new family of structures. In order to include such families
as well, the theorems below 7.6 (trouble at $t<1$ ) and 7.7 (trouble at $t=1$ )
are stated for orbifolds that may have vertices and for parametrization that
may begin with some value of $t$ bigger than $0$ .

The process of filling in vertices and the resulting topological changes
are discussed in more detail below. Similarly, even if there are no vertices,
it is still possible that the orbifold $Q$ is the double, $D\mathcal{O}$ , of the original
orbifold $\mathcal{O}$ in the Orbifold Theorem that we want to prove is geometric.
It is necessary to draw conclusions about $\mathcal{O}$ from the information derived
about $Q$ . Again, this is discussed below. However, these issues should be
considered secondary, and the reader is encouraged, at the first reading, to
assume that the original orbifold, $\mathcal{O}$ , had no vertices and no boundary other
than possibly tori. Then $Q$ would equal $\mathcal{O}$ throughout this chapter and all
statements and conclusions about $Q$ would apply directly to $\mathcal{O}$ .
Theorem 7.6 (trouble at $t<1$ ). Suppose that $Q$ is a compact, orientable
3-orbifold with singular locus a gmph $\Sigma$ and (possibly empty) boundary con-
sisting of tori. Suppose that $\epsilon<t_{\infty}<1$ and that there is a continuous
family of hyperbolic cone-manifold structures on $Q$ for $t\in[\epsilon, t_{\infty}$ ). Then one
of the following happens:
1 (hyperbolic) There is a hyperbolic cone-manifold structure on $Q$ with cone
angles corresponding to $t=t_{\infty}$ .
2 (Euclidean) There is $a$ Euclidean cone-manifold structure on $Q$ with cone
angles corresponding to $t=t_{\infty}$ .
3 (vertex filling) $Q$ contains an open subset which has the structure of a
finite-volume complete hyperbolic 3-dimensional cone-manifold $M^{\prime}$ with cone
angles corresponding to $t=t_{\infty}$ . The 2-dimensional cross-sections of the
ends of $M^{\prime}$ , when given the orbifold angles of $Q$ , are orbifold-incompressible
in $Q$ .

Case 3 (vertex filling) only occurs for $t_{\infty}<1$ when the original orb-
ifold had vertices, neighbourhoods of which were removed; $Q$ was obtained
by doubling. Any boundary components of $M^{\prime}$ that don’t come from the
boundary of $Q$ itself, arise from the boundary of some of these vertex neigh-
bourhoods. They appear as cusps in the hyperbolic structure on $M^{\prime}$ . In
this case the cone angles can still be increased a small amount in $M^{\prime}$ and
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the boundary components from these vertices ‘can be filled in to give a
cone-manifold structure on the new orbifold $Q^{\prime}$ that includes these vertices.
(Topologically $Q^{\prime}$ is obtained by cutting $Q$ open along some of the turnovers
created during the vertex removal and doubling process and then adding
cones to the resulting boundary turnovers.) The family of hyperbolic struc-
tures on this new cone-manifold can be extended by increasing the cone
angles, at least a small amount. Once all the vertices have been filled back
in, or if there were none to begin with, this case can no longer occur. The
underlying topological structure at this stage will be that of the original
orbifold, doubled along any non-torus Euclidean boundary components it
might have had.

In case 1 (hyperbolic), there actually is no degeneration. The cone angles
can be increased further, and the family can be extended beyond $t=t_{\infty}$ .
To see this when the family begins with the complete structure on the com-
plement of the singular locus of $Q(t=0)$ , note that, since the family is
continuous, the holonomy representations all lie on the same component of
the representation variety as that of the complete structure. Using con-
vergence of holonomy (6.22) and the finiteness of the outer automorphism
group of $\pi_{1}(Q-\Sigma)$ , we conclude that the holonomy representation of the
limiting hyperbolic cone manifold $M_{t_{\infty}}$ is on the same component. By the
deformation theory developed in chapter 5, the cone angles can be increased
further. When the family doesn’t begin at the complete structure, which
will occur when $Q$ has vertices (i.e., some of the vertices that were removed
have been put back in, via case 3 (vertex filling)), it is still possible to
view the holonomy representations as lying on a component of a variety to
which the deformation theory in chapter 5 applies. The argument is then
the same. However, an explanation of this fact is beyond the scope of this
outline; the reader is referred to [19] for details. We note that this situa-
tion will only arise when the original orbifold, $\mathcal{O}$ , in the statement of the
Orbifold Theorem has vertices.

In case 2 (Euclidean) the results of Hamilton on 3-manifolds with pos-
itive Ricci curvature can be applied to conclude that $Q$ has a spherical
structure. The argument used to arrive at this conclusion will be explained
in Section 7.4. This case cannot occur if the boundary of $Q$ is non-empty
or if $Q$ was obtained by doubling.

If an orbifold has a spherical structure, then it will have a finite orb-
ifold fundamental group. Thus, the previous theorem, together with the
Ricci curvature argument, implies that if $Q$ has infinite orbifold fundamen-
tal group, then no degeneration of the hyperbolic structure is possible for
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$t_{\infty}<1$ , other than that leading to filling in of vertices. However, consider-
ably more can occur at the limiting value $t_{\infty}=1$ .

Theorem 7.7 (trouble at $t=1$ ). Suppose that $Q$ is a compact, ori-
entable, orbifold-irreducible 3-orbifold with singular locus a graph and (pos-
sibly empty) boundary consisting of tori. Suppose that there is a continuous
family of hyperbolic cone-manifold structures on $Q$ for $t\in[\epsilon, 1$ ), for some
$\epsilon<1$ . Then one of the following happens:
1 (hyperbolic) $Q$ contains a finite-volume complete hyperbolic 3-suborbifold
whose ends have orbifold-incompressible cross-sections.
2 (Euclidean) $Q$ is a compact Euclidean 3-orbifold.
3 (gmph) $Q$ is a graph orbifold.
4 (bundle) $Q$ is an orbifold bundle with generic fibre a pillowcase or a
tumover and base a l-orbifold.

Using this theorem and the discussion after theorem 7.6 (trouble at
$t<1)$ , we can finish the proof of the Orbifold Theorem as follows:

We begin with the orbifold denoted by $Q_{0}$ at the beginning of this sec-
tion. Its singular locus is a link and the complement of the singular locus has
a complete, finite volume hyperbolic structure. If the original orbifold, $\mathcal{O}$ ,
has no vertices and no pillowcase or turnover boundary components, then
$Q_{0}=\mathcal{O}$ . If it has no vertices but does have either pillowcase or turnover
boundary components, $Q_{0}=D\mathcal{O}$ , which is $\mathcal{O}$ , doubled along its non-torus
boundary components. If $\mathcal{O}$ has vertices, $Q_{0}=D\mathcal{O}_{\{v_{i}\}}$ , which is obtained
from $\mathcal{O}$ by deleting open neighbourhoods of all of its vertices and then
doubling along its non-torus boundary components.

By the deformation theory in Chapter 5, there is a continuous family of
cone-manifold structures on $Q_{0}$ with cone angles $t\theta_{i}$ , where the $\theta_{i}$ are the
orbifold angles. The family begins with $t=0$ , the $co$mplete structure; if
$t=1$ is reached, then $Q_{0}$ has a hyperbolic structure. If $Q_{0}=\mathcal{O}$ , then $\mathcal{O}$ is
hyperbolic, hence geometric as desired. If $Q_{0}$ has been obtained from $\mathcal{O}$ by
any vertex removal $and/or$ doubling, it will contain incompressible spherical
turnovers $and/or$ Euclidean turnovers or pillowcases in its interior. This is
not possible for a hyperbolic orbifold, so $Q_{0}=\mathcal{O}$ is the only possibility in
this case.

Using theorem 7.6 (trouble at $t<1$ ) and the discussion after it, we can
analyze the types of degeneration that can occur as $t\rightarrow t_{\infty}<1$ . In case
1 (hyperbolic) of 7.6 there is no degeneration; the family can be extended.
So we can assume this case doesn’t occur. If case 2 (Euclidean) occurs,
Theorem 7.12 (Euclidean/spherical transition) (which depends on the work
of Hamilton and whose proof is outlined in Section 7.4) implies that $Q_{0}$ is
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spherical. If $Q_{0}=\mathcal{O}$ , then $\mathcal{O}$ is spherical, hence geometric as desired. If
$Q_{0}$ has been obtained by any vertex removal $and/or$ doubling, it can be
shown to have infinite orbifold fundamental group which is not possible for
a spherical orbifold. Again, $Q_{0}=\mathcal{O}$ is the only possibility in this case.

As discussed after the statement of 7.6 (trouble at $t<1$ ), case 3 (vertex
filling) of (7.6) can only occur if the original orbifold $\mathcal{O}$ had vertices. Then
$Q_{0}=D\mathcal{O}_{\{v_{i}\}}$ where the set $\{v_{i}\}$ consists of all the vertices of $\mathcal{O}$ . Denote
by $M^{\prime}$ the finite volume, complete hyperbolic 3-dimensional cone-manifold
structure obtained as the limit at $t_{\infty}$ . Then some of the cusps $M^{\prime}$ must have
Euclidean turnovers as cross-sections. In $Q_{0}$ , these turnover cross-sections,
with the orbifold angles, will be spherical since $t_{\infty}<1$ . By 7.5 (doubling
trick) they are orbifold isotopic in $Q_{0}$ to some of the spherical turnovers
created by removing vertices and doubling. We let $C$ denote the orbifold
with boundary obtained by giving the compact core of $M^{\prime}$ (see Proposition
7.11 (ends at $t<1$ )) the orbifold angles coming from $Q_{0}$ . It has boundary
consisting of tori and spherical turnovers that are incompressible in $Q_{0}$ . It
follows, using 7.5 (doubling trick), that $C$ is homeomorphic as an orbifold to
$Q_{0}$ with open neighbourhoods of some of the spherical turnovers removed.
This, in turn, can be viewed as constructed by removing neighbourhoods of
all of the vertices of the original orbifold, $\mathcal{O}$ , but then not doubling along
some of the resulting spherical turnovers, leaving them instead as boundary
components.

$M$‘ is a cone-manifold structure on the interior of $C$ where the boundary
turnovers appear as Euclidean turnover cross-sections of some of the ends.
It can be shown that the cone angles can be increased slightly so that the
turnover cross-sections become spherical and can be filled in with a cone.
The result is a hyperbolic cone-manifold structure on a new orbifold, $Q_{1}$ .
The orbifold, $Q_{1}$ , is obtained from $C$ by attaching cones to the spherical
turnover boundary components; in particular, it will have vertices. It can
also be viewed as obtained from the original orbifold, $\mathcal{O}$ , by removing open
neighbourhoods of only a proper (possibly empty) subset of the vertices of
$\mathcal{O}$ and then doubling along the non-torus boundary components.

The cone angles of the cone-manifold structure on $Q_{1}$ can now be in-
creased, forming a new continuous family of hyperbolic cone-manifolds, be-
ginning with parameter $ t=\epsilon$ , where $ 0<\epsilon$ . We can then apply the same
arguments to this family. If $Q_{1}$ has also been obtained from $\mathcal{O}$ by removing
some vertices $and/or$ doubling, then, again, the only degeneration possible
as $t\rightarrow t_{\infty}<1$ is case 3 (vertex filling). The only other possibility would be
for there to be degeneration as $t\rightarrow t_{\infty}$ , where $t_{\infty}=1$ . But this is not possi-
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ble until all the vertices have been filled in. To see this, note that, if $Q_{1}$ has
also been obtained by removing some vertices and doubling, it will contain
incompressible spherical turnovers. For each such spherical turnover, there
will be a value of $t$ strictly less than 1 for which the angles correspond to
a Euclidean cone structure on a turnover. One can show that there would
actually be a totally geodesic Euclidean turnover in the hyperbolic cone
structure on $Q_{1}$ ; this is impossible.

Thus we can repeat the same process until all the vertices have been
filled in. Case 3 (vertex filling) of Theorem 7.6 (trouble at $t<1$ ) can no
longer occur. The other possibilities in Theorem 7.6 (trouble at $t<1$ ),
where $t_{\infty}<1$ , or in the case when $t=1$ is attained, have already been
shown to give geometric structures on the original orbifold, $\mathcal{O}$ .

We are now reduced to the case when $t_{\infty}=1$ and when $Q$ is either
the original orbifold, $\mathcal{O}$ or the original orbifold doubled along its non-torus
boundary components, (denoted by $D\mathcal{O}$). In particular, $Q$ is orbifold-
irreducible. Applying 7.7 (trouble at $t=1$ ) and 7.5 (doubling trick) we
will now show that either $Q$ is the original orbifold, $\mathcal{O}$ , and is geometric or
$Q=D\mathcal{O}$ and we can “undouble” it to find a geometric structure on $\mathcal{O}$ .

We now discuss the cases of 7.7 (trouble at $t=1$ ). In case 2 (Euclidean)
$Q$ obviously has a geometric structure and, in case 4 (bundle) there is a ge-
ometric structure on the bundle by (2.36). In case 3 (graph) either $Q$ is ac-
tually Seifert fibred, hence geometric by (2.50), or it has an incompressible,
non-peripheral Euclidean 2-suborbifold. Similarly, in case 1 (hyperbolic)
either the 3-suborbifold is all of $Q$ and $Q$ is geometric or $Q$ contains an
incompressible, non-peripheral Euclidean 2-suborbifold. Since the original
orbifold, $\mathcal{O}$ , had no such 2-suborbifolds, then, in both cases (3 graph) and (1
hyperbolic), if $Q$ is not geometric, it must have been obtained by doubling.
Thus, in all cases, if $Q$ is the original orbifold, $\mathcal{O}$ , it is geometric.

Now suppose that $Q$ was obtained as a double; then $Q=D\mathcal{O}$ , where $\mathcal{O}$

is the original orbifold. This might a priori occur even when $Q$ is geomet-
ric. By 7.5 (doubling trick) the incompressible, non-peripheral Euclidean
2-suborbifolds in $D\mathcal{O}$ are precisely those that come from the boundary com-
ponents along which the doubling occurred. In case 1 (hyperbolic), since no
hyperbolic 3-orbifold contains an incompressible, non-peripheral Euclidean
2-suborbifold, these doubling 2-suborbifolds must all be contained in the
boundary of the hyperbolic 3-suborbifold. Since there are no other such
non-peripheral Euclidean 2-suborbifolds, it must be the case that the hy-
perbolic 3-suborbifold equals $\mathcal{O}$ and the original orbifold $\mathcal{O}$ is geometric.

Case 4 (bundle) can’t occur as a double since all the incompressible, non-
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peripheral Euclidean 2-suborbifolds have the property that cutting along
them leads to an I-bundle over a Euclidean 2-orbifold, a case that was
ruled out since it could be handled directly. It can be shown that the Eu-
clidean 2-suborbifolds created in $Q$ by doubling $\mathcal{O}$ are represented by totally
geodesic 2-dimensional sub-cone-manifolds in the approximating hyperbolic
cone-manifold structures. If $Q$ is Euclidean (case 2), the doubling suborb-
ifolds will be totally geodesic so $\mathcal{O}$ will also be Euclidean. Similarly, in case
3 (graph), if $Q$ is Seifert fibred, it can be shown that $\mathcal{O}$ is Seifert fibred.
In case 3 (graph), if $Q$ is not Seifert fibred, it is a union of Seifert fibred
orbifolds glued along incompressible Euclidean 2-suborbifolds. By 7.5 (dou-
bling trick) these must have come from the boundary components of $\mathcal{O}$ since
$\mathcal{O}$ was orbifold-atoroidal. Thus the Seifert fibred pieces of the graph orbifold
must equal $\mathcal{O}$ , possibly doubled along a subset of its boundary components.
By the previous argument, $\mathcal{O}$ itself is Seifert fibred.

This completes the outline of the proof of the Orbifold Theorem, assum-
ing Theorem 7.6 (trouble at $t<1$ ) and Theorem 7.7 (trouble at $t=1$ ).

7.3 Controlling degenerations

In this section we give an outline of the theorems that are needed to control
the family of hyperbolic cone-manifolds that we are studying and explain
how they lead to proofs of 7.6 (trouble at $t<1$ ) and 7.7 (trouble at $t=1$ ).

As above, we begin with an orbifold $Q$ (for example $D\mathcal{O}_{\{v_{i}\}}$ ) whose
singular locus is a non-empty graph and we assume that it has a smooth
family of hyperbolic cone-manifold structures, $M_{t}$ , whose cone angles equal
$t$ times the orbifold angles of $Q$ . The set of $t\in[0,1]$ such that $M_{t}$ is a
hyperbolic cone-manifold is (relatively) open and non-empty. If $t=1$ is
in this set then there is a hyperbolic structure on $Q$ . Otherwise, for some
$\epsilon>0$ , there will be a maximal $t_{\infty}$ in $(\epsilon, 1$ ] for which $M_{t}$ is hyperbolic for all
$t$ in $[\epsilon, t_{\infty}$ ). Our goal is to understand the behaviour of $M_{t}$ as $t\rightarrow t_{\infty}$ .

The primary geometric quantity that controls this behaviour is the in-
jectivity radius. (See Chapter 6.) We begin the analysis by considering
the different possibilities for the injectivity radii of points in family of cone-
manifolds, $M_{t}$ .

Case 1 (inj bd everywhere). The injectivity radius is bounded
below over all points in $M_{t}$ and all $t\in[\delta, t_{\infty}$ ), for some $\delta<t_{\infty}$ .

Note that we need to stay away from those hyperbolic structures with
cusps in order to bound below injectivity radius. There are cusps at $t=0$
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and also just before a vertex is filled in. This is the only role of $\delta$ in the
statement.

The volumes of the $M_{t}$ are bounded above; indeed, by the Schl\"afli for-
mula 3.20, they are decreasing as $t$ increases. Thus, if all the injectivity
radii are bounded below, then the $M_{t}$ are covered by a uniform number of
standard balls. So they are all compact, and their diameters are bounded
above. As $t\rightarrow t_{\infty}$ , the $M_{t}$ converge (in the Gromov-Hausdorff topology)
to a cone-manifold structure, $M_{t_{\infty}}$ , on a homeomorphic underlying space
$(M, \Sigma)$ .

The only subtlety in this case is that the family of holonomy representa-
tions $h_{t}$ : $\pi_{1}(M-\Sigma)\rightarrow Isom(\mathbb{H}^{3})$ associated to the structures also converges.
By convergence of holonomy (6.22), they will converge up to automorphisms
of $\pi_{1}(M-\Sigma)$ . Using the finiteness of the automorphism group in this case,
a subsequence will converge.

If $t_{\infty}=1$ , then $Q$ has a geometric structure and we are done. (This
is a simple example of case 1 (hyperbolic) in 7.7 (trouble at $t=1$ ) $.$ ) If
$t_{\infty}<1$ , then the family can be extended. (This is a simple example of case
1 (hyperbolic) in 7.6 (trouble at $t<1$ ) $.$ )

Note that, if $Q$ has boundary, $M_{t}$ will have at least one cusp for all $t$

so this case won’t occur. However, if $Q$ has no boundary and is orbifold-
atoroidal and orbifold-irreducible, this is the “generic” case.

Case 2 (inj bd at base pt). There are points $z_{t}\in M_{t}$ at which the
injectivity radius is uniformly bounded below for all $t\in[\delta, t_{\infty}$ ), for some
$\delta<t_{\infty}$ .

We take the $z_{t}$ to be our basepoint and consider convergence in the
(based) Gromov-Hausdorff topology. The first step in this analysis is to show
that, if the injectivity is uniformly bounded below at a sequence of points,
then it is uniformly bounded below (with a different bound, of course) in the
ball of a fixed radius around those points. Furthermore, the relation between
the two bounds can be made independently of the underlying topology. The
precise statement is:

Theorem 7.8 (Bounded Decay of Injectivity Radius).
Given $\epsilon,$

$\delta,$ $r>0$ there is $\eta>0$ such that if $M$ is any complete 3-dimensional
cone-manifold of constant curvature $\kappa\in[-1,0]$ and with all cone angles in
$[\delta, \pi]$ and if $x,$ $z\in M$ with $ inj(z)>\epsilon$ and $d(z, x)<r$ then $ inj(x)>\eta$ .

In particular, this theorem implies that no pieces of the singular lo-
cus can come together and no sets can collapse within any bounded dis-



130 CHAPTER 7. PROOF OF THE ORBIFOLD THEOREM

tance of the basepoint. It follows that the limit will again be a complete
3-dimensional cone-manifold.

Theorem 7.9 ( $3d$ limit). Let $(M_{n}, z_{n})$ be a sequence of pointed, complete
3-dimensional cone-manifolds with constant curvature $\kappa_{n}\in[-1,0]$ and uni-
formly bounded volume and with all cone angles in $[\delta, \pi]$ . Suppose there is an
$\epsilon>0$ such that $ inj(z_{n})>\epsilon$ for all $n$ . Then there is a subsequence $(M_{n_{i}}, z_{n_{i}})$

converging in the Gromov-Hausdorff topology to a complete, finite volume
3-dimensional cone-manifold of curvature $\kappa$ , where $\kappa_{n_{i}}\rightarrow\kappa$ .

However, if we are not in the previous case 1 (inj bd everywhere) and
the injectivity radius goes to $0$ at a sequence of points, the diameter will
go to infinity and there is no guarantee that the limiting cone-manifold
will be homeomorphic to the approximates. One thing that can happen
is that a cusp develops. Just before this happens, the approximate cone-
manifolds become stretched out so that they contain a submanifold that
is topologically the product of a compact 2-dimensional Euclidean cone-
manifold with a long interval, where the metrics on the 2-dimensional cross-
sections are scaled down exponentially as one moves along the interval. Part
of the approximates may then pinch off in the limit.

We show below that this is the only way that the limit can differ topo-
logically from the approximates under the hypothesis that the injectivity
radius at the basepoint is bounded below. Furthermore, we show that the
creation of new cusps can only occur as a result of pillowcases or turnovers
that are either boundary parallel or were created by doubling (possibly after
removing vertices).

In order to see that this is the only limiting behaviour that can occur, one
notes that the Gromov-Hausdorff topology provides almost isometric maps
of larger and larger diameter pieces of the geometric limit into the approx-
imates (6.21). In order to control the limiting behaviour, we need first to
understand the ends of the geometric limits and then derive some topologi-
cal conclusions about the maps and about the topology of the approximates.
The following propositions characterize the ends of finite volume, complete
hyperbolic cone-manifolds with cone angles at most $\pi$ . The two cases cor-
respond to the cases $t_{\infty}=1$ (in which case the limit is an orbifold, not
just a cone-manifold) and $t_{\infty}<1$ , respectively in our limiting procedure of
hyperbolic cone-manifolds $M_{t}$ as $t\rightarrow t_{\infty}$ .

Proposition 7.10 (ends at $t=1$ ). Suppose that $Q$ is a complete, finite-
volume, hyperbolic 3-orbifold. There is a compact (non-convex) core $C$ of
$Q$ such that each component, $E$ , of $Q-C$ is isometric to the quotient of a
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torus cusp by a finite group of isometWies. Thus the closure of $E$ is orbifold
isomorphic to $ F\times[0, \infty$ ) where $F$ is an orientable, closed, Euclidean 2-
orbifold: a tumover, pillowcase or torus.

Proposition 7.11 (ends at $t<1$ ). Suppose that $M$ is a complete, finite-
volume, hyperbolic 3-dimensional cone-manifold with cone angles in $(0, \theta_{0}$ ]
for some $\theta_{0}<\pi$ . Then $M=C\cup E_{1}\cup\cdots\cup E_{n}$ where $C$ is compact and
each $ E_{i}\cong F_{i}\times[0, \infty$ ) is a cusp. Each $F_{i}$ is a tumover or torus, and
$C\cap E_{i}=\partial E_{i}\cong F_{i}$ .

Proposition 7.10 (ends at $t=1$ ) follows easily from the fact that $Q$ is
finitely orbifold-covered by a hyperbolic manifold. Proposition 7.11 (ends
at $t<1$ ) requires knowledge of the possible non-compact 3-dimensional
Euclidean cone-manifolds. A discussion of this topic appears in the last
section of this chapter.

If such a cusp develops as $t$ approaches $t_{\infty}$ , then the Gromov-Hausdorff
topology implies that there are almost isometric maps of large compact
pieces of the geometric limit into the cone-manifolds. If $t_{\infty}<1$ and the
geometric limit has an end with a non-torus cross-section, then 7.11 (ends
at $t<1$ ) implies that there are turnovers in the cone-manifolds whose angle
sums approach $ 2\pi$ as $t\rightarrow t_{\infty}$ . Since $t_{\infty}<1$ the turnovers must be spherical
in the orbifold; hence they must be the result of removing vertices in the
original orbifold and doubling.

If $t_{\infty}=1$ (or if there are only torus cross-sections when $t_{\infty}<1$ ), all the
cross-sections of ends in the geometric limit will be Euclidean orbifolds. We
claim that, for $t$ sufficiently close to $t_{\infty}$ , the images of these cross-sections
will be incompressible in the orbifold $Q$ . Assuming this claim, we can
finish case 2 (inj bd at base pt).

Using the Gromov-Hausdorff topology, we obtain embeddings of the
compact core $C$ , as described in 7.10 (ends at $t=1$ ) and 7.11 (ends at
$t<1)$ , of the limit cone-manifold or orbifold. If $t_{\infty}<1$ , the image of the
boundary of $C$ consists of tori that are incompressible in $Q$ , and turnovers
that, with their angles replaced by the orbifold angles, are spherical in $Q$ .
The tori, since they are incompressible, must be boundary parallel and, by
7.5 (doubling trick), the turnovers must be orbifold-isotopic to those created
by removing vertices. It follows that $Q$ contains a finite-volume complete
hyperbolic 3-dimensional cone-manifold $M^{\prime}$ , (homeomorphic to the interior
of $C$), with angles corresponding to $t=t_{\infty}$ . This is case 3 (vertex filling)
of 7.6 (trouble at $t<1$ ). Note that, as discussed in the previous section,
if the original orbifold $\mathcal{O}$ had no vertices or if they have all been filled in,
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$Q$ will not contain any spherical turnovers. Thus, all the boundary of $C$ is
boundary parallel in $Q$ and $M^{\prime}$ will be homeomorphic to $Q$ . Contrary to the
choice of $t_{\infty},$ $Q$ has a hyperbolic cone-manifold structure with cone angles
corresponding to $t=t_{\infty}$ . No degeneration has occurred and the family can
be extended.

Similarly, if $t_{\infty}=1$ , the image of the compact core, $C$ , will have bound-
ary consisting of incompressible tori (which must be boundary parallel)
and incompressible Euclidean turnovers and pillowcases (which are the re-
sult of doubling). It follows that $Q$ contains an orbifold-incompressible
finite-volume complete 3-dimensional hyperbolic suborbifold. This is case 1
(hyperbolic) in 7.7 (trouble at $t=1$ ).

It remains to be seen why the tori, pillowcases, and Euclidean turnovers
are incompressible in $Q$ . The turnovers are trivially incompressible because
every simple closed curve in them bounds a (singular) disk in the turnover
itself. We will first consider the case when there are no vertices and when
there are only tori in the boundary of $C$ . We then sketch the changes
necessary when there are vertices or pillowcases.

The complement of the singular locus in $Q$ is irreducible so, if an em-
bedded torus is compressible in the complement of the singular locus, it is
either contained in a ball or bounds a solid torus. Since $Q-\Sigma(Q)$ is also
atoroidal, an incompressible torus must be boundary parallel.

The holonomy of elements of the fundamental group of the boundary
of the core $C$ are all parabolic in the geometric limit, so, by convergence
of holonomy, any given element must become arbitrarily close to parabolic
in the approximates. This is not possible if the torus is contained in a
ball, in which case the holonomies are all trivial. Thus, if the torus is
compressible in $Q$ , it must bound a (singular) solid torus. The meridian
curve will be represented by either the trivial element, if the solid torus
is non-singular, or an elliptic element with rotation bounded away from $0$ ,
if the solid torus is singular. Therefore, by convergence of holonomy, in a
sequence of approximates any given curve on a torus boundary of $C$ can be
a meridian at most a finite number of times.

The subtlety here is that, a priori, in a sequence of approximations, $C$

could be mapped into $Q$ in topologically distinct ways so that an infinite
sequence of distinct curves bound (singular) disks in $Q$ . Let $Q_{n}$ denote the
image of $C$ under the nth approximating map union the (singular) solid
tori bounded by the compressible tori. Then $Q_{n}$ is obtained from $C$ by
Dehn filling along the nth meridians, $\mu_{n}^{i}$ . Viewed as a suborbifold of $Q$ , the
boundary of $Q_{n}$ is incompressible. It is not difficult to show that there are
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only a finite number of 3-dimensional sub-orbifolds of $Q$ with incompressible
boundary, up to isotopy. After taking a subsequence, we can assume that
the $Q_{n}$ are all diffeomorphic to the same orbifold, $Q_{\infty}$ .

If $t_{\infty}<1$ the cone angles will be less than the orbifold angles in $Q$ and in
$Q_{\infty}$ . To avoid using Mostow-Kojima rigidity for hyperbolic cone-manifolds
5.11 (see [53]) which depends on arguments similar to those in the proof of
the Orbifold Theorem (including those in the next few paragraphs) and on
local rigidity of cone-manifolds 5.10 (see [45]), we remove a neighbourhood
of the singular locus.

Let $N_{\infty}$ denote $Q_{\infty}$ with a regular neighbourhood of its singular locus
removed and let $\hat{C}$ denote $C$ with a regular neighbourhood of its singular
locus removed. It is not hard to see that the complement of the singular
locus of a finite volume hyperbolic cone-manifold can be given a complete
metric of strictly negative curvature. (See, e.g., [53]; a further argument is
required in the case with vertices.) Hence, $\hat{C}$ is irreducible and atoroidal
and by 7.3 (Thurston’s Haken theorem) it has a finite volume hyperbolic
metric.

Suppose that $N_{\infty}$ is homeomorphic to $\hat{C}$ ; i.e., that the only solid tori
added are. singular. An infinite number of distinct curves on the bound-
ary of $\hat{C}$ are mapped to the curves on the boundary of $N_{\infty}$ that bound
singular disks in $Q$ . This implies that $\hat{C}$ has an infinite number of self-
homeomorphisms which are homotopically distinct. But, since $\hat{C}$ can be
given a complete finite volume hyperbolic metric, Mostow rigidity implies
that the group of self-homotopy equivalences which are homeomorphisms
on the boundary is finite, a contradiction.

Thus $N_{\infty}$ is obtained from $\hat{C}$ by an infinite sequence of Dehn fillings
where, on each filled-in torus, the same curve is a meridian at most a finite
number of times. But, by Thurston’s hyperbolic Dehn surgery theorem, all
but a finite number of these Dehn fillings result in finite volume hyperbolic
manifolds. Furthermore, the hyperbolic structures on such a sequence of
fillings has arbitrarily short closed geodesics. By Mostow rigidity there is a
unique hyperbolic structure on $N_{\infty}$ ; by discreteness and finite volume, there
is a shortest geodesic. This gives a contradiction. Thus, all the images of
the boundary tori of $\hat{C}$ , hence of $C$ , are incompressible in $Q$ as claimed.

When $C$ has pillowcase boundary components, the argument is very
similar. If the image of such a pillowcase in $Q$ is compressible, it either is
contained in a singular ball with a single unknotted arc of singular locus
or it bounds a folded ball. In the first case the holonomy of the image
pillowcase would be a single elliptic element. As before, this is impossible
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by convergence of holonomy for approximating maps sufficiently far out in
the sequence.

If the image of a pillowcase bounds a folded ball, a simple closed curve,
called the meridian, in the pillowcase which does not bound a (singular) disk
in the pillowcase does bound a non-singular disk in the folded ball. Conver-
gence of holonomy again implies that a single curve can be a meridian at
most a finite number of times since, in $C$ , the holonomy of every element
in the orbifold fundamental group of the pillowcase is parabolic and non-
trivial. If there are pillowcases in $C$ , then $t_{\infty}=1$ and $C$ is an orbifold, not
just a cone-manifold. It has a complete, finite volume hyperbolic structure
on its interior. We again conclude that the same orbifold, $Q_{\infty}$ , is obtained
by orbifold Dehn fillings on infinitely many distinct meridians on each com-
ponent. The theory of hyperbolic Dehn filling, as extended to orbifolds by
Dunbar-Meyerhoff ([64]), leads, as before, to a $cont\dot{ra}diction$ , using Mostow
rigidity applied to $Q_{\infty}$ .

When there are vertices, the argument is essentially the same. However,
when the limit, $C$ , is not an orbifold but only a cone manifold, a further
argument beyond that contained in [53] is required in order to show that
there is a hyperbolic structure on the complement of the singular locus where
the holonomies around the edges connecting the vertices are all parabolic.
This fact is used to show it is not possible to obtain the same manifold
by Dehn filling on infinitely many distinct curves on each torus boundary
component of $\hat{C}$ . The argument then proceeds as before. This completes
the outline of the proof of Case (2 inj bd at base pt).

Case 3 ( $inj\rightarrow 0$ everywhere). The injectivity radius goes to $0$ for
all $x\in M_{t}$ as $t\rightarrow t_{\infty}$ .

In this case, the diameter of $M_{t}$ may actually go to $0$ . If so, we rescale
so that the diameter is 1. If not, we don’t rescale. There are 2 subcases
here, depending on whether or not the injectivity radius in the (possibly)
rescaled metric goes to $0$ at all points.

Case $3a$ (rescaled inj bd). The injectivity radius does not go to
$0$ all $x\in M_{t}$ when the diameter is scaled to equal $\max$ (1, diam $M_{t}$ ).

We are assuming that we are not in Case (2 inj bd at base pt), so the
injectivity radius goes to $0$ everywhere in the unscaled metric. The metric
must have been scaled to have diameter 1 in this case. By 7.8 (decay of
inj) , since the diameter is bounded above, the injectivity radius must be
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uniformly bounded below at all points in the rescaled metric. By 7.9 $(3d$

limit), the limit as $t\rightarrow t_{\infty}$ will be a compact Euclidean cone-manifold.
If $t_{\infty}=1$ , we are at the orbifold angles and $Q$ has a Euclidean structure.

This is case 2 (Euclidean) of 7.7 (trouble at $t=1$ ).
If $t_{\infty}<1$ , we will argue, using the work of Hamilton, that $Q$ has a

spherical structure. This is case 2 (Euclidean) of 7.6 (trouble at $t<1$ ).
We record this step as the following theorem. The argument will be

outlined in the next section.

Theorem 7.12 (Euclidean/spherical transition). Let $Q$ be a compact
orbifold with $a$ Euclidean cone structure with some cone angles strictly less
than the orbifold angles. Then $Q$ has either a spheri $cal$ structure or a $S^{2}\times \mathbb{R}$

structure. If the Euclidean cone structure arises as a rescaled limit (in the
Gromov-Hausdorff topology) of hyperbolic cone structures on $Q$ , then $Q$ has
a spher’ical structure.

Case $3b$ (collapsing). The injectivity radius goes to $0$ for all $ x\in$

$M_{t}$ when the diameter is scaled to equal $\max$ (1, diam $M_{t}$ ).

This is the most complicated case in the analysis, which we refer to as
the “collapsing case” In the manifold context there has been considerable
analysis (see [17], [18], [66], [29]) of the topology of manifolds that admit
a sequence of metrics with curvature bounds where the injectivity radius
goes to $0$ at every point. Such manifolds are shown to possess a generalized
Seifert fibred structure called an “F-structure” A 3-dimensional manifold
with an F-structure is a graph manifold.

The theorems below may be viewed as a generalization to cone-manifolds
of these theorems. However, it is not apparent at this time that the tech-
niques in the manifold context generalize directly.

We say that a 3-dimensional orbifold $Q$ has an $\epsilon$ -collapse if there is a 3-
dimensional hyperbolic cone-manifold $M$ with inj $(x)<\epsilon\cdot\min(1, diam(M))$

for all $x\in M$ , and a homeomorphism $f$ : $Q-\partial Q\rightarrow M$ such that $f(\Sigma(Q-$

$\partial Q))=\Sigma(M)$ . In addition, for every edge $e$ of $\Sigma(Q)$ , the difference between
the cone angle on $e$ in $Q$ and the cone angle on $f(e)$ in $M$ is less than $\epsilon$ . It
is often convenient to use orbifold terminology when referring to $M$ so we
will pass back and forth between $M$ and $Q$ .
Theorem 7.13 (Collapsing Theorem for Cone-manifolds). Suppose
that $Q$ is a compact, orientable, orbifold-irreducible 3-orbifold with non-
empty l-dimensional singular locus and with orbifold-incompressible Eu-
clidean boundary. Then there is $\epsilon>0$ such that if $Q$ has an $\epsilon$ -collapse
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then either
(1) $Q$ is a graph orbifold or
(2) $Q$ is an orbifold bundle with generic fibre a tumover or pillowcase and
base a l-orbifold.
Furthermo $re$ there is an edge of $\Sigma(Q)$ labelled 2.

We discuss the theorems used in the proof of this theorem in the final
section of this chapter.

Cases (1) and (2) of the collapsing theorem correspond to cases 3(graph)
and 4 (bundle) in 7.7 (trouble at $t=1$). Assuming the theorems stated in
this section, this concludes the outline of the proofs of 7.6 (trouble at $t<1$ )
and 7.7 (trouble at $t=1$ ) and, hence, of the Orbifold Theorem.

We summarize the logic in this section in the following flow diagram:
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7.4 Euclidean to spherical transition
In this section we outline the proof of 7.12 (Euclidean/spherical transition).

The basic idea behind this theorem is that, if there is a Euclidean cone-
manifold structure on $Q$ with angles strictly less than the orbifold angles,
then one should be able to spread out some of the concentrated curvature
away from the singular locus to obtain a metric with the orbifold angles and
some positive curvature on the smooth part of the orbifold. The Ricci flow
on $Q$ with this metric should either lead to a spherical orbifold metric or
imply that there is an $S^{2}\times \mathbb{R}$ structure on $Q$ .

When the singular locus is a link, this process of “smoothing” the metric
to the orbifold angles can be done simply and explicitly. When there are
vertices, it is less clear how to reach the orbifold angles while maintaining
positive curvature on the smooth part of the orbifold so a more ad hoc argu-
ment is used. FUrthermore, Hamilton’s results are proved only for manifolds
so, in all cases, a device for finding an orbifold cover which is a manifold is
required. (Hamilton has an unpublished manuscript [36] which generalizes
his results to orbifolds, but we won’t use that here.)

The following theorem of Hamilton is in [37].

Theorem 7.14. A compact 3-manifold, $M$ , with non-negative Ricci curwa-
ture which is not everywhere flat is diffeomorphic to a quotient of either $S^{3}$

or $S^{2}\times \mathbb{R}$ by a group of fixed point free isometries in the standand metrics.
Furthermore, if the original $metr^{t}ic$ with non-negative Ricci curwature has a
$non- tr\dot{v}v^{i}ial$ group of symmetries, the homogeneous metric on $M$ will possess
the same group of symmetri es.

We suppose that $Q$ has a Euclidean cone structure with cone angles
strictly less than the orbifold angles. Assume that the singular locus is
a link; i.e., assume that there are no vertices. Consider disjoint singular
solid tori, each containing a single component of the singular locus. Assume
that each torus consists of points a constant distance from the component it
contains. The cross-sections perpendicular to the singular loci are Euclidean
disks with a single cone point. The metrics on these can be smoothed in
a rotationally symmetric way to obtain a smooth metric with non-negative
Ricci curvature on the underlying manifold $X$ of $Q$ .

This smoothed metric on $X$ is not flat so 7.14 (Hamilton’s theorem)
implies that $X$ is finitely covered by $S^{3}$ or $S^{2}\times S^{1}$ . Assume that we are in
the $S^{3}$ case. Viewing $Q$ as $X$ with a link determining the singular locus,
we can lift to the topological universal cover of $X$ which is homeomorphic
to $S^{3}$ . This defines an orbifold cover $\tilde{Q}$ of $Q$ whose underlying space is $S^{3}$
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and whose singular locus is a link. The homology of the complement of the
link is a direct product of infinite cyclic groups, each of which is generated
by a meridian around a component of the link. We map onto a product
of finite cyclic groups, sending the meridian to a generator and killing the
pth power if the singular component has local group $\mathbb{Z}_{p}$ . The kernel of this
homomorphism defines an orbifold covering of $\tilde{Q}$ which is a manifold. We
denote this manifold by $M$ . It also is an orbifold cover of $Q$ .

Return to the Euclidean cone-manifold structure on $Q$ . This time we
“smooth” the metric so that the cone angles along the singular locus equal
the orbifold angles. This is done in the same way as before, in tubular
neighbourhoods of each singular component, in a radially symmetric fashion
on each transverse disk. The new metric on each disk still has a singular
point at the centre of the disk but it has the orbifold angle; the smooth
portion of the disk has some positive curvature near the singular point.

This metric lifts to a smooth metric on the manifold cover $M$ with non-
negative Ricci curvature. Hamilton’s theorem implies that the Ricci flow
converges to a spherical metric possessing any symmetries that the original
metric on $M$ had. Thus the spherical metric descends to $Q$ and $Q$ has a
spherical structure as desired.

If the underlying manifold $X$ is finitely covered by $S^{2}\times S^{1}$ , then Hamil-
ton’s proof shows that the algebraic splitting of the curvature operator that
appears in an $S^{2}\times \mathbb{R}$ will exist in all the metrics that occur in the Ricci flow
for all positive times. Since the smoothed metric on $X$ has concentrated
positive curvature orthogonal to the original singular locus, this must be
compatible with the splitting. From this, it follows that $Q$ is, up to a 2-fold
cover, homeomorphic to a bundle over $S^{1}$ with fibre $S^{2}$ with finitely many
singular points. Hamilton’s proof also provides a metric with positive cur-
vature on the fibres for all positive times, so using Gauss-Bonnet and the
fact that all the cone angles are less than $\pi$ , there will be at most 3 singular
points in the fibres.

From this description, it is apparent that $Q$ is, in fact, Seifert fibred
with the singular locus contained in the fibres. This is easily seen to have a
geometric structure. However, it is also not hard to see that such an orbifold
cannot have a hyperbolic metric in the complement of its singular locus, so
this case does not actually arise in our context.

When there are vertices, it is less clear how to do the smoothing parts
of the argument so we resort to a more ad hoc argument which we hope to
simplify in the near future.
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We will call a vertex whose link is $S^{2}(2,2, n)$ a dihedral vertear an edge,
labelled $n$ , joining two distinct dihedral vertices is called a dihedral edge of
order $n$ . Such an edge has a neighbourhood whose 2-fold branched cover over
the edges labelled 2 is a tubular neighbourhood of a closed curve labelled
$n$ . The process of smoothing such a neighbourhood (both to the orbifold
angle and to angle $ 2\pi$ ) described above was radially symmetric on each disk
cross-section so it is symmetric with respect the order 2 symmetry on the
cover.

If $Q$ has a Euclidean cone structure with some of its angles less than the
orbifold angles, it can be seen to have finite orbifold fundamental group.
Otherwise, the orbifold universal cover is non-compact and would contain
an bi-infinite ray. This can be ruled out, using triangle comparison theory.
The same argument shows that any orbifold obtained from $Q$ by decreasing
the labels on some edges (i.e. increasing the desired orbifold cone angles)
will also have finite orbifold fundamental group. Since the only orbifolds
with a geometric structure that can have finite orbifold fundamental group
are spherical, it suffices to show that such an orbifold is geometric in order
to conclude that it is spherical.

To guarantee the existence of a dihedral edge in our orbifold, we change
all of the labels to $2’ s$ . Denote this orbifold by $Q_{2}$ . We claim that it is
geometric, hence spherical.

Assuming that $Q_{2}$ is spherical, its topological type, including the singu-
lar graph, is an OSFS and belongs to one of a few known families (see [26],
[28]). The original orbifold $Q$ has the same topology with some of the labels
increased. By looking at each family, it is then possible to show that chang-
ing the labels leads either to an orbifold with infinite orbifold fundamental
group, which is impossible for $Q$ , or to a spherical orbifold.

In order to obtain a spherical structure on $Q_{2}$ , we note that there must
be a dihedral edge (of order 2) if there are any vertices. We first attempt to
find a hyperbolic structure on $Q_{2}$ where the holonomy around the dihedral
edge remains parabolic. This parabolicity requirement has the effect of
removing a neighbourhood of the edge, creating a sphere with 4 cone points
on the boundary. The cone angles begin at $0$ ; we attempt to increase them
to $\pi$ . Throughout the deformation the meridian curve will be parabolic. If
we reach cone angles $\pi$ , the boundary will become a pillowcase cusp.

The only way this sequence of hyperbolic structures can degenerate is
for it to collapse at time $t=1$ , in which case $Q_{2}$ with the neighbourhood
removed is a graph manifold. By the arguments in the last section (using the
latitude hypothesis) on collapsing, the fibration can be extended over the
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folded ball that the pillowcase bounds in $Q_{2}$ . Thus $Q_{2}$ is a graph manifold;
since it has finite orbifold fundamental group it is a spherical OSFS.

If we reach the final angles, we can begin to increase the cone angle
around the dihedral edge. (At the angles of the form $\frac{2\pi}{k}$ this amounts to
doing hyperbolic Dehn filling along a meridian of the pillowcase.) Since $Q_{2}$

can’t be hyperbolic, this must degenerate at some stage. Either we again
conclude that $Q_{2}$ is a graph manifold, hence a spherical OSFS or we obtain
a Euclidean structure on $Q_{2}$ with cone angles $\pi$ along all edges except the
dihedral edge.

One can then find an orbifold cover which unfolds the angle $\pi$ edges,
leaving one with a link singularity in the cover. This can be smoothed
symmetrically with respect to the covering maps as described above. The
argument now proceeds as before in the link singularity case. The spherical
structure obtained from the Ricci flow will be symmetric and descend to
one on $Q_{2}$ .

7.5 Analysis of the thin part

We have seen that as long as the injectivity radius is bounded below, con-
trolling the degeneration of the family of hyperbolic cone-manifolds is not
difficult. However, when the injectivity radius goes to $0$ , controlling the
topology of the geometric limits becomes more difficult. In the outline,
there were two key theorems concerning the topology of the regions where
the injectivity radius is small. The first 7.11 (ends at $t<1$ ) described
the ends of a finite volume hyperbolic cone-manifold. The cross-sections
of these ends provided us with 2-dimensional Euclidean sub-cone-manifolds
that put strong topological limitations on the orbifolds $Q$ that could de-
generate when the injectivity radius was bounded below at the basepoint
but went to $0$ elsewhere. The second theorem 7.13 (Collapsing theorem)
provided a topological classification for those orbifolds $Q$ that could admit
a family of metrics where the injectivity radius went to $0$ everywhere.

One way to understand the topological and metric structure near a point
where the injectivity radius is going to $0$ is to rescale the metric so the
injectivity radius is 1, using that point as the basepoint. Since the injectivity
radius at the basepoint goes to zero, the sequence of scale factors will go to
infinity. Applying 7.8 (decay of inj) , one sees that the limit of the scaled
structures will be a complete Euclidean cone-manifold: If the diameter of
the original sequence doesn’t go to zero (or goes to zero at a slower rate than
the injectivity radius), the diameter of the geometric limit will be infinite
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and the cone-manifold will be non-compact.
One of the most important tools in the proof of the Orbifold Theorem is

the classification of non-compact 3-dimensional cone-manifolds whose cone
angles are at most $\pi$ . The restriction on the cone angles is crucial to this
theorem. If the cone angles are allowed to lie between $0$ and $2\pi$ , the number
of possibilities becomes unbounded.

Theorem 7.15 (Bieberbach-Soul Theorem). A non-compact, $0$rientable,
3-dimensional Euclidean cone-manifold with cone angles in $(0, \pi$ ] is isomet-
ric to one of the following.
(1) A cone.
(2) $A$ (possibly singular) solid torus, possibly with a twisted product met $r\dot{v}c$ .
(3) The product of a compact or’ientable 2-dimensional Euclidean cone-
manifold with a line:

(i) $torus\times \mathbb{R}_{f}$

(ii) $pillowcBse\times \mathbb{R}$ , or
(iii) $tumover\times \mathbb{R}$ .

(4) (i) A folded ball, $or$

(ii) a singular folded ball.

(5) $(i)D^{2}(\pi, \pi)\times S^{1}$ ,
(ii) a twisted product $ D^{2}(\pi, \pi)\times S^{1}\sim$ , or
(iii) a twisted line bundle over a Klein bottle.

(6) $(i),(ii),(iii)R^{3}$ with the singular locus shown, $or$

(iv) a twisted line bundle over $\mathbb{R}P^{2}(\pi, \pi)$ .

(7) (i), (ii) $\mathbb{R}^{3}$ with the singular locus shown.

Remark: These are illustrated in the following figure. The reader may wish
to refer to Chapter 2 for an explanation of some of the terms in the theorem.
In particular, definition 2.48 extends to cone-manifolds in the obvious way.

This theorem is actually a special case of a general theorem about non-
compact, orientable, n-dimensional Euclidean cone-manifolds with cone an-
gles at most $\pi$ . That theorem states that such a Euclidean cone-manifold
is, up to a 2-fold branched cover, isometric to a normal bundle of a lower
dimensional, compact Euclidean cone-manifold.

This general theorem is analogous to the Bieberbach Theorems for Eu-
clidean manifolds. In particular, it reduces the classification of non-compact,
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Euclidean cone-manifolds to that of compact, lower dimensional Euclidean
cone-manifolds and involutions on them. For example, the possible non-
compact, orientable, 2-dimensional Euclidean cone-manifolds are a cone
(normal bundle over a point with some angle; this includes the plane),
an infinite cylinder (normal bundle over a circle), and an infinite pillow-
case (normal bundle over an interval with angle $\pi$ attached to its endpoints,
which is the circle divided out by an involution). The 3-dimensional theorem
above follows from the classification of $0,1$ , and 2 dimensional Euclidean
cone-manifolds with angles at most $\pi$ and involutions on them.

The proof of the general theorem starts by following the outline of the
proof of the Soul Theorem, due to Cheeger and Gromoll ([16]) which gives a
structure theorem for non-compact manifolds with non-negative Ricci cur-
vature. Indeed, in some cases the topology of the underlying space of the
Euclidean cone-manifolds can be inferred directly from the Soul Theorem if
one can smooth the metric to obtain a positively curved one. (The topology
of the soul may change, however.) This argument works for all cone angles
at most $ 2\pi$ . However, the more precise isometric description as a normal
bundle is only true for cone angles at most $\pi$ and requires further analysis.

The compact set, $C$ , for which the Euclidean cone-manifold, $B$ , is the
normal bundle is called the soul of $B$ . It can be described in terms of
Busemann functions on $B$ . A Busemann function, $b_{\gamma}$ , is determined by an
infinite ray $\gamma$ ; it is defined by $b_{\gamma}(x)=\lim_{t\rightarrow\infty}d_{B}(x, \gamma(t))-t$ , where $d_{B}(\cdot, \cdot)$

denotes distance in $B$ . The soul $C$ is derived from the level set for the
maximum value of the function obtained by taking the infimum over all
rays emanating from a chosen point, $p\in B$ . This construction is at the
centre of [16].

The 3-dimensional theorem above gives a list of the possible geomet-
ric limits under the scaling process, at least when the limit is non-compact.
The Gromov-Hausdorff topology implies that neighbourhoods of points with
small injectivity radius in hyperbolic cone-manifolds can be approximated
by these. This leads to a structure theorem for the topology of the set with
small injectivity radius that generalizes the Margulis Lemma for hyperbolic
manifolds. The following theorem, which is a consequence of the general-
ized Margulis lemma, says that, if a point in a 3-dimensional hyperbolic
cone-manifold, $M$ , has a small injectivity radius when $M$ is scaled to have
diameter at least 1, it has a neighbourhood that is almost isometric to a
neighbourhood of the soul in a non-compact Euclidean cone-manifold. The
possible list for such models comes from 7.15 (Bieberbach-Soul theorem),
where a few cases have been eliminated using the finite volume hypothesis.
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Theorem 7.16 (Local Margulis for Cone-Manifolds).
Let $M$ be a finite volume 3-dimensional hyperbolic cone-manifold with cone
angles in the range $(0, \pi$]. Then there is an $\epsilon>0$ so that if $x\in M$ with
$inj(x)<\epsilon\min(1, diam(M))$ then $x$ has a compact neighbourhood, containing
$N(x, 1000inj(x))$ , which is almost isometric to one of the following:
(1) $A$ (singular) solid torus,
(2) $A$ (singular) folded ball,
(3) A thick torus, pillowcase, or tumover,
(4) A folded thick torus, pillowcase or tumover.

The main idea in the proofs of both the Collapsing Theorem for cone-
manifolds 7.13 (Collapsing theorem) and the structure of the ends of cone-
manifolds 7.11 (ends at $t<1$ ) is to use the neighbourhoods of points with
small injectivity radius whose topology is described by this theorem and
analyze how they can be glued together.

The analysis of the ends of hyperbolic cone-manifolds in 7.11 (ends at
$t<1)$ is simplified by the fact that, since $t_{\infty}<1$ and we have not reached
the orbifold angles, all the cone angles are strictly less than $\pi$ . This reduces
the list of possible local models from 7.16 (local Margulis) to a (singular)
solid torus, a thick torus, or a thick turnover. The (singular) solid tori
can be incorporated into the compact part. The remainder of the proof
involves showing that any pair of standard neighbourhoods homeomorphic
to a thick turnover (torus) that intersect can be amalgamated into a larger
neighbourhood homeomorphic to a thick turnover (torus). The product
ends are created in this manner.

7.6 Outline of the Collapsing Theorem

In this section we will outline the proof of the Collapsing Theorem 7.13,
which states that, if an orbifold $Q$ has an $\epsilon$-collapse, for sufficiently small $\epsilon$ ,
then it is either a graph orbifold or an orbifold bundle with generic fibre a
turnover or a pillowcase.

The proof begins with the local Margulis theorem 7.16 (local Margulis)
which provides the local models from which the orbifold is built. There
is an analogy to a child’s construction kit. The construction kit contains
pieces which are Euclidean models that are almost isometric to standard
neighbourhoods and we can build orbifolds by fitting together pieces from
this kit. The pieces are metric spaces which must be glued by almost isome-
tries along parts of their boundaries. With one exception, which is easily
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analyzed separately, the pieces have OSFS structures. The main issue is
to show that these structures can be glued together to give the structure
of a graph orbifold, except in special cases when $Q$ is an orbifold bundle.
The geometry of the collapse provides extra information, called the latitude
hypothesis, on the relation between the fibres of the different pieces. This
plays a key role in the argument.

With the exception of (folded) thick turnovers, every standard model
admits at least one OSFS structure. However, it is easy to see that if there
are any (folded) thick tumovers then $Q$ is a bundle.

The idea is that (folded) thick turnovers are the only standard neigh-
bourhoods with “triangular” shaped boundaries. The standard neighbour-
hoods are almost isometric to Euclidean models, and are glued together by
isometries. Thus the corresponding Euclidean model neighbourhoods have
almost isometric boundaries. Hence the only standard neighbourhood that
can be connected to a (folded) thick turnover is another such. This implies
that $Q$ is a union of a finite sequence of (folded) thick turnovers, arranged
in either a linear fashion (giving a bundle over an interval with generic fibre
a turnover) or a circular fashion (giving a bundle over a circle). This is
essentially the same argument that provides the structure of the ends of a
cone-manifold whose angles are strictly less than $\pi 7.11$ (ends at $t<1$ ).

Having dealt with (folded) thick turnovers, we may assume that every
standard neighbourhood admits at least one OSFS structure. One of these
neighbourhood types, folded thick tori, is easily analyzed. The boundary
of a folded thick torus, $V$, is a torus $T$ which is incompressible in $V$. If $T$ is
incompressible in $Q$ , it must be boundary parallel and $Q$ equals $V$ , which
is an OSFS. If $T$ compresses in $Q$ , then $Q-V$ is a (singular) solid torus.
Every every folded thick torus admits two OSFS structures, given by the
two eigenvectors of the involution that does the folding. By 2.46, a fibration
on the boundary of a (singular) solid torus extends over the interior unless
the fibre is isotopic to a meridian. This can occur for at most one of the
two fibrations of $V$ , so $Q$ is an OSFS.

Thus we are reduced to the case that the only standard neighbourhoods
in $Q$ are (folded) thick pillowcases, (singular) folded balls, (singular) solid
tori and thick tori. This corresponds to moving down the flowchart at the
end of this section past the first two boxes.

The basic strategy is to attempt to fit the OSFS structures on the stan-
dard neighbourhoods together to give a single OSFS structure on $Q$ when
it is orbifold-atoroidal or, more generally, when $Q$ arises as a double, to give
an OSFS structure to each component after $Q$ is cut along incompressible
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Euclidean 2-dimensional sub-orbifolds.
The boundaries of these standard neighbourhoods consist of tori or pil-

lowcases. By 2.46 they both admit countably many orbifold Seifert fibra-
tions, parametrized by the slope of a regular fibre. The main tool used to
extend an OSFS defined on the boundary over the interior of a (singular)
solid torus or (singular) folded ball is the lemma 2.46 which states this can
be done unless a regular fibre is a meridian.

In a general topological setting, it is quite possible to have a manifold
or orbifold that is the union of two SFS glued along their boundaries which
is not a SFS or a graph manifold. For example the exterior, $X$ , of the
trefoil knot is a SFS. Glue a solid torus, which also is a SFS, to $X$ along
their boundaries so that a meridian curve of the solid torus is glued to a
regular fibre in the boundary of $X$ . This is $\pm 6$ Dehn filling depending on
whether the trefoil is left-or right-handed. The resulting closed manifold is
$L(2,1)\# L(3,1)$ . It is not difficult to show that it is not a graph manifold.

In our situation there is an additional piece of information coming from
the geometry of an almost collapsed orbifold called the latitude hypoth-
esis. A latitude is the isotopy class of any shortest closed geodesic on a
pillowcase or torus. There may be up to three such isotopy classes, though
generically there is exactly one. When we attempt to construct an OSFS
structure on $Q$ at each stage we will have a finite number of suborbifolds
each of which has been given an OSFS structure such that a regular fibre
is isotopic to a latitude of the boundary pillowcase (or torus) of some (sin-
gular) folded ball (or solid torus) standard neighbourhood. We discuss the
pillowcase case here; the torus case is similar. The latitude hypothesis is
the statement that if $\alpha$ is a latitude of a standard neighbourhood which is a
(singular) folded ball then $\alpha$ is not homotopic in $ Q-\Sigma$ to either a point or to
a meridian of $\Sigma$ . Thus all regular fibres appearing in our construction satisfy
this condition. This prevents the phenomenon of killing the homotopy class
a regular fibre when gluing together two OSFS.

The latitude hypothesis is proved by estimating the holonomy of a lat-
itude. A standard neighbourhood in $Q$ which is a (singular) folded ball is
almost isometric to a compact Euclidean cone-manifold. The first step is to
show that the Euclidean holonomy of a latitude is the composition of two
rotations through $\pi$ around almost parallel axes. This uses the fact that the
diameter of a (singular) folded ball standard neighbourhood is very large
compared to the diameter of the soul, i.e. the distance between the two axes
of rotation. Roughly speaking, by taking a large finite orbifold cover of the
(singular) folded ball, one sees there are two almost parallel rotation axes
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in the cover which are not too far apart. Thus the hyperbolic holonomy of
a latitude is almost the composition of two rotations through angles almost
equal to $\pi$ around almost parallel distinct axes. The hyperbolic holonomy is
non-trivial; hence, the latitude is essential in $ Q-\Sigma$ . This estimate also shows
that the latitude has very small complex translation length. Its holonomy
can’t be close to a rotation through an angle $2\pi/n$ around some edge of $\Sigma$

because such an elliptic does not have “very small” rotation angle. Thus a
latitude is not homotopic in $ Q-\Sigma$ to a meridian of $\Sigma$ .

The union of standard neighbourhoods meeting $\Sigma$ is a suborbifold bounded
by tori. We denote by $\mathcal{N}$ the union of those components of this orbifold
that are not singular solid tori. A foliation argument is used to show that:

Theorem 7.17. At least one component of the union of the $standa7d$ neigh-
bourhoods meeting $\Sigma$ is not a singular solid torus. Hence $\mathcal{N}$ is non-empty.

This is important because the boundaries of the components of $\mathcal{N}$ are
incompressible in $\mathcal{N}$ so they must either be boundary parallel or compress-
ible in $Q$ . A compressible torus must bound a (singular) solid torus since
$Q$ is irreducible. It follows that if each component of $\mathcal{N}$ is an OSFS then
(using the latitude hypothesis) this OSFS structure can be extended over
all of $Q$ . Similarly, if each component of $\mathcal{N}$ is a graph orbifold, then so is $Q$ .

The standard neighbourhoods in $\mathcal{N}$ are of three types: thick pillowcases,
(singular) folded balls, and folded thick pillowcases. All three have pillow-
cases as boundary components. By topological methods, it is possible to
combine any neighbourhoods of the same type that intersect. Either it can
be arranged that any two neighbourhoods of the same type are disjoint, or a
component of $\mathcal{N}$ fibres over a l-dimensional orbifold with Euclidean fibre, a
case that can be easily handled separately. Furthermore, the same argument
used previously to deal with folded thick tori shows that either all the folded
thick pillowcases are incompressible in $Q$ , or $Q$ is a folded thick pillowcase
union a (singular) folded ball. As with the folded thick torus, the latter two
cases are readily seen to be OSFS. When a folded thick pillowcase, $V$ , is
incompressible, we cut along a pillowcase which is boundary parallel in $V$ .
This creates a component which is again homeomorphic to $V$ and is used in
the decomposition as a graph orbifold; the remaining component contains
a new thick pillowcase with one component on the boundary. We continue
to denote the latter piece by $\mathcal{N}$ ; it suffices to show that its components are
graph orbifolds.

A component, $X$ , of $\mathcal{N}$ is a union $X=A\cup B$ where $A$ is a disjoint
union of thick pillowcases and $B$ is a disjoint union of (singular) folded
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We will now show that each piece $X$ of the disassembled orbifold admits
a OSFS structure. Choose a (singular) folded ball $B_{1}$ in $X$ . Then $\partial B_{1}\cap\partial X$ is
an annulus, as shown in the figure. A core curve of this annulus is a latitude
of $\partial B_{1}$ . Since this latitude does not compress in $B_{1}$ there is a OSFS structure
on $B_{1}$ with this latitude a regular fibre. Now $C=A_{2}\cap B_{1}\cong D^{2}(2,2)$ . The
OSFS structure on $B_{1}$ may be isotoped to give an orbifold fibration of $C$

with $\partial C$ one of the fibres. This fibration extends productwise over $A_{2}$ to an
OSFS structure on $A_{2}$ . This may be isotoped and then extended over the
next (singular) folded ball $B_{3}$ attached to $A_{2}$ . In this way we can extend



150 CHAPTER 7. PROOF OF THE ORBIFOLD THEOREM

the OSFS structure around the string of beads which makes up $X$ .

We now use these OSFS structures on the pieces to define a graph orb-
ifold structure on $Q$ . The boundary components of each piece has an induced
fibration. One boundary component of each piece of the disassembled orb-
ifold is a torus. It is either boundary parallel or bounds a (singular) solid
torus in $Q$ . The induced fibration extends over the (singular) solid tori by
the latitude hypothesis; fill in these (singular) solid tori with the extended
fibration. We now glue back along the pillowcases used to disassemble $\mathcal{N}$ .
If such a pillowcase, $P$ , is incompressible, then we do not try to match the
OSFS structures on the two sides of $P$, since $P$ will be part of a set of
incompressible pillowcases decomposing $Q$ in OSFS pieces.

If a pillowcase, $P$ , becomes compressible when two pieces are glued to-
gether, it must bound a (singular) folded ball in $Q$ (see 2.47). (That it
can’t be contained in a (singular) ball follows from the Seifert fibres on
the pieces.) By the latitude hypothesis, the fibration on $P$ extends over
the (singular) folded ball. This may change the fibration that was already
on the (singular) folded ball. Continuing in this manner the fibrations are
matched up, piece by piece along all of the compressible pillowcases. Thus,
every component of $\mathcal{N}$, cut along incompressible pillowcases, is an OSFS.
Hence $\mathcal{N}$ is a graph manifold as desired.

It is useful to note that when $Q$ is the union of two (folded) thick pil-
lowcases glued along their mutual boundary, the process of cutting along
incompressible pillowcases decomposes $Q$ into two (folded) thick pillowcases.
This is a degenerate version of a graph orbifold where the pieces are each
(possibly the quotient by an involution of) a product. In this case $Q$ is a
bundle with generic fibre a pillowcase and base a circle or interval. This
happens if $Q$ is a Solv orbifold.

The following flowchart summarizes the overall structure of this proof.
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