
Chapter 5

Deformations of Hyperbolic
Structures

5.1 Introduction

Let $Q$ be a compact 3-dimensional orbifold with link singularities. In most
cases the manifold $ Q-\Sigma$ obtained by removing the singular locus has a
finite volume hyperbolic structure. If $Q$ has a hyperbolic structure, it can be
viewed as a cone-manifold structure with cone angles of the form $2\pi/m$ . In
the proof of the Orbifold Theorem we will attempt to connect the complete
structure on $ Q-\Sigma$ , viewed as a cone-manifold with angles $0$ , with the desired
orbifold structure via a family of cone-manifolds.

To study hyperbolic cone-manifold structures on $Q$ with singularities
along $\Sigma$ , we first remove a neighbourhood of $\Sigma$ from $Q$ to obtain a compact
manifold $M$ with boundary consisting of tori. First we investigate when
deformations of a hyperbolic structure on $M$ exist. We will show that hy-
perbolic (or general $(G,$ $X)$ ) structures on a compact manifold $M$ are locally
in 1-1 correspondence with nearby holonomy representations $\pi_{1}(M)\rightarrow G$

up to conjugacy. (If $M$ has boundary, we may have to restrict to the com-
plement of a small neighbourhood of the boundary $\partial M.$ )

We then study how the deformed hyperbolic structures behave near the
boundary of $M$ . We will see that to find a nearby cone-manifold structure,
it suffices to find a nearby holonomy representation for which the holonomy
of each meridian is elliptic.

Next we discuss Thurston’s analysis of representation spaces for 3-manifold
groups into $PSL(2, \mathbb{C})$ and his theory of hyperbolic Dehn surgery. In partic-
ular, this implies that hyperbolic cone-manifold structures on $Q$ with cone
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90 CHAPTER 5. DEFORMATIONS OF HYPERBOLIC STRUCTURES

angles, $\alpha_{i}$ , along the components of $\Sigma$ exist for all sufficiently small values
of $\alpha_{i}$ .

We finish the chapter with some examples, and some general conjectures
on the global structure of hyperbolic Dehn surgery spaces.

5.2 Deformations and degenerations of surfaces

The proof of the orbifold theorem involves deforming a hyperbolic cone
metric in an attempt to produce a hyperbolic orbifold. In the process the
hyperbolic cone structure can degenerate. By analyzing how this happens
one produces some other kind of geometric structure. In this section we will
describe some two-dimensional analogues of the degenerations that occur
in the proof of the orbifold theorem. The first example shows how Eu-
clidean and spherical structures can arise and the second one suggests how
an orbifold Seifert fibre structure can arise.

Example 5.1. Euclidean/Spherical transition

Given $\theta\in[0,2\pi]$ there is a turnover $M(\theta)=S^{2}(\theta, \theta, \theta)$ with 3 cone
angles $\theta$ . This is the double of a triangle of constant curvature with all
angles $\theta/2$ . It is hyperbolic, Euclidean or spherical depending on whether
$\theta/2$ is less than, equal to, or greater than $\pi/3$ . When the cone angle $\theta=0$

this is interpreted as the double of an ideal hyperbolic triangle which gives
a hyperbolic three-punctured sphere with three cusps. As $\theta\rightarrow 2\pi/3$ the
diameter of $M(\theta)$ approaches $0$ . We may rescale the metric on $M(\theta)$ by
multiplying the metric by a constant $\lambda=diam(M(\theta))^{-1}$ to obtain $M^{\prime}(\theta)=$

$\lambda\cdot M(\theta)$ of diameter 1. The curvature of $M^{\prime}(\theta)is\pm 1/\lambda^{2}$ and this goes to zero
as $\theta\rightarrow 2\pi/3$ . In this way one obtains a continuous family of cone metrics
$M^{\prime}(\theta)$ of varying constant curvature for $ 0\leq\theta\leq 2\pi$ .

$\Theta<\pi/3$ $\Theta=\pi/3$ $\Theta>\pi/3$
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Example 5.2. Degeneration to an Orbifold fibmtion
The Gauss-Bonnet theorem implies there is no hyperbolic metric on a

torus. It follows that a pillowcase is not a hyperbolic orbifold. In other words
there is no hyperbolic cone metric on the sphere with 4 cone points each
with cone angle $\pi$ . Otherwise the 2-fold cover branched over these points
would give a hyperbolic metric on the torus. However for each $\theta\in[0, \pi$ )
there is a hyperbolic cone-manifold $M(\theta)$ with underlying space the sphere
and four cone angles $\theta$ obtained by doubling a hyperbolic quadrilateral with
all corner angles $\theta/2$ .

1

$\epsilon|$

–

This quadrilateral may be chosen to have diameter 1. Then the area of
$M(\theta)$ approaches $0$ as $\theta\rightarrow\pi$ . The limit of $M(\theta)$ is an interval of length 1.
For $\theta$ close to $\pi$ there is an orbifold foliation of $M(\theta)$ by short circles plus
two intervals joining the cone points. There is a map of $M(\theta)$ to the interval
which collapses each circle to a point.

The orbifold fundamental group of a pillowcase has an infinite cyclic
normal subgroup. A hyperbolic orbifold cannot have such a subgroup.
As the cone angles increase to the orbifold angle of $\pi$ , loops representing
this subgroup shrink to points. In some sense this is forced by the holon-
omy representation which more and more nearly is a representation of the
orbifold fundamental group. This produces an orbifold fibration. It is a
two-dimensional version of the kind of collapsing that can happen with a
three-dimensional orbifold.
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5.3 General deformation theory

Of basic importance in the deformation theory of geometric structures on
manifolds is the following observation. Given the holonomy representation
$\rho$ : $\pi_{1}(M)\rightarrow G$ for a $(G, X)$-structure on $M$ , all nearby representations also
correspond to geometric structures on M. (Compare [89], [80, chap. 5],
[57].)

Let $\mathcal{R}=Hom(\pi_{1}(M), G)$ denote the space of representations $\pi_{1}(M)\rightarrow$

$G$ ; the group $G$ acts on $\mathcal{R}$ by conjugation. If $G$ is an algebraic (or analytic)
group then $\mathcal{R}$ has a natural structure as an algebraic (or analytic) variety;
this gives a natural topology on $\mathcal{R}$ . (This will be described in more detail
in section 5.5 below).

Theorem 5.3 (Deformations exist).
Suppose that $M$ is the interior of a compact manifold with boundary. Let

$\rho$ : $\pi_{1}(M)\rightarrow G$ be the holonomy representation of a (possibly incomplete)
$(G, X)$ -structure on M. Then there is a neighbourhood, $U$ , of $\rho$ in the
representation space $\mathcal{R}=Hom(\pi_{1}(M), G)$ such that for each $\rho^{\prime}\in U$ there
is a (nearby) $(G, X)$ -structure on $M$ with holonomy $\rho^{\prime}$ .

Sketch of Proof. (See [31], [43] and [14] for more details.) Suppose
that $M$ is a connected $(G, X)$-manifold without boundary. $-Let\tilde{M}$ be the
universal cover of $M$ . Then there is a developing map dev : $M\rightarrow X$ which
is a local diffeomorphism. This map is equivariant with respect to the
holonomy $representati_{\sim}onh$ : $\pi_{1}(M)\rightarrow G$ in the sense that for all covering
transformations $g$ of $M$

dev $og=h(g)0$ dev.

Conversely if $M$ is a smooth manifold (without a geometric structure) then
given a homomorphism $h$ : $\pi_{1}M\rightarrow G$ and a map dev : $\tilde{M}\rightarrow X$ which
is equivariant in the above sense and which is a local diffeomorphism we
may use dev to pull-back the $(G, X)$-structure to $\tilde{M}$ . The equivariance con-
dition ensures this structure is preserved by covering transformations and
therefore covers a $(G, X)$-structure on $M$ . Hence a $(G, X)$-structure on $M$ is
determined by the pair (dev, h) satisfying the equivariance condition. There
is an equivalence relation generated by isotopy and thickening. Two $(G, X)-$

structures on $M$ are isotopic if there is a $(G, X)$-diffeomorphism between
them which is isotopic to the identity. Suppose that $N$ is $M$ minus a collar.
We call $M$ a thickening of $N$ .
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We now outline another approach to describing a geometric structure
on a manifold (see Thurston [82, chapter 3]). Given only a holonomy rep-
resentation $\rho:\pi_{1}(M)\rightarrow G$ we can construct a bundle $E=E_{\rho}\rightarrow M$ with
fibre $X$ . The developing map gives a section $s:M\rightarrow E$ . This will now be
described. There is a diagonal action of $\pi_{1}M$ on $\tilde{M}\times X$ where the action on
the first factor is by covering transformations and the action on the second
factor is by the holonomy. The quotient $E=(\tilde{M}\times X)/\pi_{1}M$ is a bundle as
stated. The graph of the developing map:

Graph(dev) $=\{(\tilde{x}, dev(\tilde{x})) : \tilde{x}\in\tilde{M}\}\subset\tilde{M}\times X$

is preserved by the action of $\pi_{1}M$ and therefore defines a section $ s:M\rightarrow$

$denotestheprojectionofapointin\tilde{M}E.Thissectionisdefinedbys(x)=\times XtoE[(\tilde{x}, dev(\tilde{x}))]$
. The notation $[(\tilde{x}, y)]$

The product structure on $\tilde{M}\times X$ is preserved by the action of $\pi_{1}M$ and
so there is a horizontal foliation of $E$ by leaves which are the projections of
$\tilde{M}\times y$ for $y\in X$ . This foliation determines a flat connection on $E$ . A bundle
over $M$ with fibre $X$ has a universal cover which is a bundle over $\tilde{M}$ and
the covering transformations act diagonally if and only if there is a foliation
of $E$ transverse to the fibres. Furthermore, the action on $X$ is by elements
of $G$ if and only if the holonomy of the bundle is in $G$ .

The statement that the developing map is a local diffeomorphism is
equivalent to the statement that the graph of dev is transverse to the hor-
izontal foliation. This is equivalent to the statement that the section $s$ is
transverse to the horizontal foliation of $E$ .

It follows that a $(G, X)$-structure on $M$ is determined by a flat X-bundle
over $M$ with holonomy in $G$ together with a section $s$ of this bundle which
is transverse to the horizontal foliation.

Given a hyperbolic metric on $M$ with holonomy $\rho$ and a representation
$\rho^{\prime}$ close to $\rho$ then there is a bundle $E_{\rho^{\prime}}$ . The section $s:M\rightarrow E_{\rho}$ given by
the $(G, X)$-structure on $M$ is transverse to the horizontal foliation of $E_{\rho}$ .
The bundle $E_{\rho^{\prime}}$ is close to $E_{\rho}$ . One may construct a section $s^{\prime}$ : $M\rightarrow E_{\rho^{\prime}}$

close to $s$ . Since transversality is an open condition, if one restricts to a
compact subset $N$ of $M$ which contains $M$ minus a collar, then $s^{\prime}|N$ will
still be transverse to the horizontal foliation, provided $\rho^{\prime}$ is close enough
to $\rho$ . Then the pair $(\rho, s^{\prime})$ determines a $(G, X)$-structure on $N\cong M$ with
holonomy $\rho^{\prime}$ . $\square $
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The previous result can be refined as follows. Let $Def(M)$ denote the
deformation space consisting of $(G, X)$-structures on $M$ modulo the equiva-
lence relations of isotopy and thickening described above. This has a natural
topology, where two points are close if they correspond to structures with
developing maps $\tilde{M}\rightarrow X$ which are close in the $ c\infty$ topology on compact
subsets of $\tilde{M}$ . The deformation space $Def(M)$ is locally parametrized by
nearby holonomy representations in $\mathcal{R}$ modulo the action of $G$ by conjuga-
tion. (See Goldman [31] for a precise statement.)

5.4 Deforming hyperbolic cone-manifolds
Suppose we have a hyperbolic cone-manifold structure on $Q$ with a link
as the singular locus $\Sigma$ . Theorem 5.3 applies to a (possibly incomplete)
hyperbolic structure with no singularities on a manifold without boundary.
To apply it to a cone-manifold structure, cut out a singular solid torus
neighbourhood of each component of the cone locus. We then deform what
remains, and glue in suitably deformed singular solid tori to get a new
cone-manifold structure. This will be described in more detail below.

We will first investigate (incomplete) hyperbolic structures on $M=$
$ Q-\Sigma$ near the complete structure.

The ends of a complete, orientable hyperbolic 3-manifold $M$ with finite
volume are cusps which are topologically $ T^{2}\times[0, \infty$ ) and are foliated by
horospherical tori. They are obtained by dividing out the foliation of $\mathbb{H}^{3}$ by
horospheres by a $\mathbb{Z}\oplus \mathbb{Z}$ lattice. Each torus has an induced flat metric which
decreases exponentially as one moves out in the cusp; all geodesics in this
flat metric have geodesic $curvature+1$ in $M$ .

Near a parabolic isometry there are both elliptic and hyperbolic isome-
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tries. In dimension 2, the unique fixed point at infinity becomes an interior
fixed point or an invariant axis. Annular regions between horocycles develop
into regions between equidistant curves.

Notice also that the geometry of equidistant curves varies continuously:
the geodesic curvature is $\coth r$ at distance $r$ from a point, $\tanh r$ at distance
$r$ from a geodesic axis, $and+1$ on any horocycle.

curvature curvature
$+1$ $\tanh r$

equidistant curves
in $H^{2}$

In dimension 3 both elliptic and hyperbolic isometries have an invariant
axis. Commuting elements share the same axis. The complex length, $\mathcal{L}$ , of
such an element of $PSL(2, \mathbb{C})$ is defined to $ p+i\theta$ , where $\ell$ is the translation
distance along the axis and $\theta$ is the angle of rotation around the axis. It
satisfies tr $=2\cosh(\mathcal{L}/2)$ . Thus, a group element is elliptic if and only if
$|tr|<2$ and tr is real. Further, the angle of rotation $\theta$ is related to the trace
by tr $=2\cos(\theta/2)$ .
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If one deforms the complete structure on the 3-manifold $ M=Q-\Sigma$ ,
the region between two parallel horocyclic tori will develop into a region
between two equidistant surfaces. The quotient under the holonomy group
of the torus will contain a foliation by equidistant tori. If the holonomies
of the meridians are elliptic the tori can be filled in to a cone-manifold
structure on $X_{Q}$ .

Again the geometry of the equidistant surfaces varies continuously: the
surface at distance $r$ from an axis has an intrinsic flat metric with principal
curvatures $\tanh r$ and $\coth r$ , while all principal curvatures on a horosphere
$are+1$ .

Combining this discussion with the general deformation theory of section
5.3 shows that to find a nearby cone-manifold structure, it suffices to find a
nearby holonomy representation for which the holonomy of the meridian is
elliptic.

To see this, we remove a neighbourhood of the singular locus. The
developing image of a neighbourhood of the boundary will lie in a neigh-
bourhood of a nearby axis. We then fill the neighbourhood in to obtain a
cone-manifold structure, with the new cone angle.
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Exercise 5.4. Extend this discussion to the case where the singular locus
contains trivalent vertices.

5.5 Representation spaces
We now want to show that one can always deform the holonomy repre-
sentation, keeping the meridians elliptic and varying the cone angles inde-
pendently. First we need to find non-trivial deformations of a hyperbolic
structure on $M$ . To do this we estimate the dimension of the representation
variety, $\mathcal{R}=Hom(\pi_{1}(M), G)$ , where $G=PSL(2, \mathbb{C})$ .

Let $\mathcal{R}=Hom(\Gamma, G)$ denote the set of all representations (homomor-
phisms) from $\Gamma$ into $G$ . If $\Gamma$ is a finitely generated group, and $G$ is a Lie
group this has the structure of a real analytic variety (an algebraic variety
if $G$ is an algebraic group). If $\gamma_{1},$

$\ldots,$ $\gamma_{g}$ is a set of generators for $\Gamma$ then $\mathcal{R}$

embeds in $G^{g}$ , via the evaluation map

$\mathcal{R}\rightarrow G^{g}$ , $\rho\leftrightarrow(\rho(\gamma_{1}), \ldots, \rho(\gamma_{g}))$ .

The image is the analytic subset of $G^{g}$ satisfying the relations of F.
$We’ 11$ be interested in representations $\rho$ : $\Gamma\rightarrow PSL(2, \mathbb{C})$ ; in this case

we get a complex analytic variety. (It becomes a complex algebraic variety,
if we lift the representations into $SL(2, \mathbb{C})$ –see [24].)

Proposition 5.5. If a group $\pi$ is described in $tem\iota s$ of $g$ genemtors and $r$

relations, the dimension of the variety of representations of $\pi$ into a complex
analytic Lie group $G$ is at least

$(g-r)\dim G$ .
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Sketch of proof. If $\pi$ has a presentation

$\pi=\langle a_{1}, \ldots, a_{g}|w_{1}=\ldots=w_{r}=e\rangle$ ,

define $\tau$ : $G^{g}\rightarrow G^{r}$ by $\{\rho(a_{i})\}\mapsto\{\rho(w_{j})\}$ . Then $\mathcal{R}=\tau^{-1}(e, e, \ldots, e)$ . Each
equation $w_{i}=e$ is given locally by $\dim G$ complex analytic equations so
reduces the complex dimension by at most $\dim$ G. $\square $

For any 3-manifold $M$ with $\partial M\neq\emptyset$ , there is a deformation retraction of
$M$ to a 2-complex $K$ (obtained by collapsing 3-cells away from free boundary
faces, starting at the boundary). This gives a presentation of $\pi_{1}(M)\cong$

$\pi_{1}(K)$ with $g$ generators and $r$ relations, where $g-r=1-\chi(K)=1-\chi(M)$ .
For 3-dimensional hyperbolic structures we have $G=PSL(2, \mathbb{C})$ and

$\dim_{\mathbb{C}}G=3$ , so we get the estimate

$\dim_{\mathbb{C}}\mathcal{R}\geq 3(1-\chi(M))$ .

If the holonomy representation $\rho$ has trivial centralizer

$Z(\rho)=$ {$g\in G:g\rho(\gamma)g^{-1}=\rho(\gamma)$ for all $\gamma\in\pi_{1}(M)$ }
then conjugation determines a 3-complex dimensional subvariety of equiva-
lent structures so we obtain:

$\dim_{\mathbb{C}}Def(M)\geq-3(\chi(M))$ .

Exercise 5.6. Show that the centralizer is trivial for any holonomy repre-
sentation of a finite volume hyperbolic structure.

Exercise 5.7. If $M$ is a compact n-manifold with $n$ odd, then $\chi(M)=$

$\frac{1}{2}\chi(\partial M)$ . [Hint: consider the double of $M.$ ]

Using this we obtain

$\dim_{\mathbb{C}}Def(M)\geq-\frac{3}{2}\chi(\partial M)$ .

So if $\partial M$ is a union of tori, this only gives $0$ as a lower bound. A subtler
argument of Thurston (see [80], [22]) gives:

Theorem 5.8. Let $\rho$ : $\pi_{1}(M)\rightarrow PSL(2, \mathbb{C})$ be an $i$rreducible representation
($i.e$ . $\rho(\pi_{1}(M))$ has no fixed point on $s_{\infty}^{2}$). Then each irreducible component
of $\mathcal{R}=Hom(\pi_{1}(M), PSL(2, \mathbb{C}))$ containing $\rho$ has complex dimension $\geq$

$3-\frac{3}{2}\chi(\partial M)+t$ , where $t$ is the number of torus boundary components.
Hence,

$\dim_{\mathbb{C}}Def(M)\geq-\frac{3}{2}\chi(\partial M)+t$ .
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Idea of proof. If $\partial M$ consists of a single torus, drill out a (suitable)
properly embedded arc from $M$ giving a new manifold $M^{\prime}$ with $\partial M^{\prime}$ of
genus 2. Then $\dim_{\mathbb{C}}Def(M^{\prime})\geq 3$ . Thurston shows that we can kill off
the fundamental group of a 2-handle to obtain a representation of $\pi_{1}M$ by
adding just two complex relations: that two carefully chosen elements have
trace equal to 2. $\square $

We also need to know the behaviour of holonomies for meridians as rep-
resentations are deformed. If $\partial M$ consists of $t$ tori, $T_{i}$ , and $\gamma_{i}$ are meridian
curves on $T_{i}$ , define:

$Tr:Def(M)\rightarrow \mathbb{C}^{t}$

by
$Tr(\rho)=(tr\rho(\gamma_{1}), \cdots, tr\rho(\gamma_{t}))$

By Mostow-Pmsad rigidity there is a unique complete hyperbolic struc-
ture on $M$ . It follows that the holonomy of the complete structure $\rho_{0}$

gives an isolated point in $Tr^{-1}(\pm 2, \cdots, \pm 2)$ . Hence the polynomial func-
tions $tr\rho(\gamma_{i})$ are non-constant near $\rho_{0}$ , and it can be shown that $Tr$ gives
an open mapping whose image contains a neighbourhood of $(\pm 2, \cdots , \pm 2)$ .
(See [22], [23].) In fact, with some additional work it can be shown that
$\dim \mathbb{C}Def(M)=t$ near $\rho_{0}$

Rom the previous section, we conclude that all representations near
$\rho_{0}$ whose meridians have traces in the open interval $(-2,2)$ correspond to
cone-manifold structures with cone angles $\alpha_{i}$ given by $tr\rho(\gamma_{i})=2\cos(\alpha_{i}/2)$ .
Corollary 5.9. Suppose that $M$ is a hyperbolic cone-manifold with singular
locus a l-manifold and whose holonomy is on the component of the represen-
tation variety containing $\rho_{0}$ . If the cone angles of $M$ are $\alpha_{i}$ , there is $\epsilon>0$

such that if $|\alpha_{i}^{\prime}-\alpha_{i}|<\epsilon$ for all $i$ then there is a hyperbolic cone-manifold
structure on $M$ close to the original structure and with these cone angles.
Furthemore the holonomy of this structure is on the same component of
the representation variety as $\rho_{0}$ .

The proof of the Orbifold Theorem consists of a study of what can
happen at the boundary of the realizable angle set.
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Theorem 5.10. (Hodgson-Kerckhoff [45]) Suppose that $N$ is a closed 3-
manifold and $L$ is a closed l-manifold in N. Finite volume hyperbolic cone-
manifold structures on $(N, L)(i.e$ . structures on $N$ with singularities along
$L)$ are locally parametWized by the cone angles on the components of $L$ when
all cone angles $ are\leq 2\pi$ .

The proof of this result uses quite different, analytic techniques: in-
finitesimal deformations give cohomology classes which can be represented
by harmonic forms. These are studied by the use of a Bochner formula and
a Fourier series type analysis of asymptotic behaviour of harmonic forms
near the singular locus. A survey of this approach is given in [49].

Theorem 5.11. (Kojima [53]) Suppose that $N$ is a closed 3-manifold and
$L$ is a closed l-manifold in N. Two hyperbolic cone-manifold structures
on $(N, L)$ with corresponding cone angles equal are isometric, provided all
angles $ are\leq\pi$ ,

Sketch of proof. The proof uses part of the proof of the Orbifold Theorem,
Mostow rigidity for the complete structure, and the local parametrization by
cone angle of theorem 5.10. Given two structures, the idea is to decrease the
angles to zero, giving complete hyperbolic structures on $N-L$ . By Mostow-
Prasad rigidity, these structures are equal. By the local parametrization
theorem, they were equal throughout the deformation. $\square $

5.6 Hyperbolic Dehn filling

Given a 3-manifold $M$ with boundary a union of tori $T_{1},$
$\cdots,$

$T_{k}$ , and a choice
$\gamma=(\dot{\gamma}_{1}, \cdots, \gamma_{k})$ of a non-trivial simple closed curve $\gamma_{i}$ on each $T_{i}$ , one can
do $\gamma$ -Dehn filling on $M$ by attaching a solid torus to each $T_{i}$ so that $\gamma_{i}$

bounds a disk. The result is denoted by $M(\gamma)$ as in section 1.11.
With a choice of generators for each $\pi_{1}(T_{i})$ , the $\gamma_{i}$ correspond to pairs

of relatively prime integers $(p_{i}, q_{i})$ .
In the following discussion, we assume there is a single boundary torus

$T=T_{1}$ for simplicity. It is shown in [80], [68] that the complex translation
length for elements in the boundary torus can be lifted to $\mathbb{C}$ so that rotation
angle is lifted from $S^{1}$ to $\mathbb{R}$ , and each parabolic (at the complete structure)
has complex length $0$ . If $\mu,$

$\lambda$ are the complex lengths for a chosen set of
generators for $\pi_{1}(T)$ , then the complex length of the $(p, q)$-curve is $ p\mu+q\lambda$ .
A solution to $p\mu+q\lambda=\alpha i$ near the complete structure gives a cone-manifold
structure on $M(p, q)$ with cone angle $\alpha$ ; it is a smooth structure if $\alpha=2\pi$ .
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Define
$DS:Def(M)\rightarrow(\mathbb{R}^{2}\cup\infty)/\pm 1$

by
$DS(\rho)=(x, y)$ if $x\mu+y\lambda=2\pi i$ .

Then points along lines of rational slope in $\mathbb{R}^{2}\cup\infty$ correspond to hyperbolic
cone-manifolds.

$\bullet$ $\bullet$ $\bullet$ $\bullet$

DS
$=(p,q)givesa\nearrow^{\bullet}$

smooth hyperbolic
structure on $MCp,q$)
when $p,q\in Z$ are
coprime

Theorem 5.12. (Thurston [80]) $DS$ maps onto a neighbourhood of $\infty$ in
$\mathbb{R}^{2}\cup\infty$ . Thus all but finitely many Dehn fillings on $M$ are hyperbolic.

The number of the exceptional (non-hyperbolic) surgeries is not effec-
tively computable from this proof. However, the computer program Snappea
developed by Jeff Weeks [88] provides a powerful tool for studying examples,
and can estimate the number of exceptional surgeries quickly.

There are universal bounds on the number of Dehn surgeries without
negatively curved metrics given by the “length $ 2\pi$ ’ Theorem of Gromov-
Thurston, (see [33], [6], [1]). The recent “length 6” theorem of Agol and
Lackenby (see [1], [57]) gives new bounds on the number of surgeries giving
manifolds whose fundamental group is not word hyperbolic.

Recently, Hodgson-Kerckhoff have obtained the first universal bounds
on the number of non-hyperbolic surgeries (see [46], [49]).

Finally we mention some conjectures on the global structure of hyper-
bolic Dehn Surgery space.
Conjecture 1. The Dehn surgery coordinate map $ DS:Def(M)\rightarrow(\mathbb{R}^{2}\cup$

$\infty)/\pm 1$ should be a (local) diffeomorphism onto its image.

Conjecture 2. Hyperbolic Dehn surgery space, $\mathcal{H}$ , should be star-like with
respect to rays from infinity towards the origin. In particular, it should be
a connected set.
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If both conjectures are true, then this implies global (Mostow-Kojima)
rigidity for all hyperbolic cone-manifolds. (The proof of theorem 5.11 sketched
above for cone angles $\leq\pi$ , would again apply.)

5.7 Dehn surgery on the figure eight knot
Thurston’s Princeton University notes [80] and Hodgson’s thesis [43] include
detailed studies of the hyperbolic Dehn surgery space for the complement
$M=S^{3}-K$ of the figure eight knot $K$ in $S^{3}$ .

$s^{3}-$

In the following discussion the Dehn surgery coordinate $(p, q)$ refers to
$ p\mu+q\lambda$ where $\mu$ is a meridian and $\lambda$ a standard longitude for the figure eight
knot. Thurston shows that the lightly shaded region shown below consists of
hyperbolic structures obtained by gluing together positively oriented ideal
tetrahedra. Hodgson shows that the “algebraic volume” associated with
representations into $PSL(2, \mathbb{C})$ goes to zero along the solid curve shown
below. This curve consists of straight line segments corresponding to repre-
sentations into Isom $(\mathbb{H}^{2})$ and curves corresponding to representations into
$SO(3)$ . It is conjectured that this represents the true boundary of the hy-
perbolic Dehn surgery space, but currently hyperbolic structures with Dehn
surgery type singularities are only known for some special points within the
darkly shaded region.
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On the boundary of the hyperbolic region degenerations of the following
kinds occur.

(1) Dehn surgery coordinates $(m, 1),$ $-4<m<4$ .
Here there are limiting representations $\pi_{1}(M)\rightarrow PSL(2, \mathbb{R})$ , corre-

sponding to foliations with transverse hyperbolic structures. The foliations
can be seen directly, since we have two positively oriented simplices flatten-
ing out simultaneously. It was shown explicitly in [80] that this is part of
the exact boundary of hyperbolic Dehn surgery space. The manifold points
in the boundary are as follows. (Note that $M(p, q)$ and $M(-p, q)$ are oppo-
sitely oriented copies of the same manifold, since the figure eight knot has
an orientation reversing symmetry.)

(a) The manifold $M(0,1)$ is a torus bundle over $S^{1}$ with Anosov gluing

map with matrix $\Phi=\left(\begin{array}{ll}1 & l\\1 & 2\end{array}\right)$ ; this gives rise to a Solv geometry structure.

Here there are hyperbolic cone-manifold structures on $M(O, 1)$ for cone an-
gles $\theta<2\pi$ which collapse as $\theta\rightarrow 2\pi$ to a circle whose length is $\log\lambda$ , where
$\lambda>1$ is the larger eigenvalue of the matrix $\Phi$ . (See [43], [41], [78].)

(b) Each manifold $M(n, 1)$ for $n=\pm 1,$ $\pm 2,$ $\pm 3$ is a Seifert fibre space
over a hyperbolic 2-orbifold which is sphere with 3 cone points. There
are hyperbolic cone-manifold structures on $M(n, 1)$ for cone angles $\theta<2\pi$

which collapse as $\theta\rightarrow 2\pi$ to the 2-dimensional hyperbolic structure on the
base orbifold. The singular locus is transverse to the fibres of the Seifert
fibration and projects to a geodesic in the base orbifold.

For example, $M(\pm 1,1)$ is the unit tangent bundle of the (2, 3, 7) spherical
orbifold (see example 2.39) and the singular locus $\Sigma$ is the horizontal lift
of a geodesic through the order 2 cone point (double covering a geodesic in
base):
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Similarly, $M(\pm 2,1)$ is the unit tangent bundle to $S^{2}(2,4,5)$ , and $M(\pm 3,1)$

is the unit tangent bundle to $S^{2}(3,3,4)$ .
Each manifold $M(\pm 4,1)$ is a graph manifold containing an incompress-

ible torus which splits the manifold into the union of a trefoil knot comple-
ment and the non-trivial I-bundle over the Klein bottle. In this case, the
hyperbolic cone-manifold structures for cone angles $\theta<2\pi$ split along an
essential torus and collapse to give a limiting cusped Seifert fibred structure
on the complementary pieces. (Compare example 3.4.)
Remark: These non-hyperbolic manifolds resulting from Dehn surgery on
the figure eight knot can be identified using the Kirby calculus (see [43]),
or via the “Montesinos trick” which divides out by a 180 degree rotational
symmetry and studies the quotient orbifold. (For examples of this technique
see [6].)

(2) There are orthogonal representations corresponding to Dehn surgery
coordinates on a curve from (3.618..., 0.809...) passing through $(3, 0)$ to
$(3.618\ldots, -0.809\ldots)$ .
Special case: The orbifold $M(3,0)$ has a Euclidean structure described ear-
lier (see 2.33). In this case there are hyperbolic cone-manifold structures
for cone angles $\theta<2\pi/3$ which collapse to a point as $\theta\rightarrow 2\pi/3$ . After
rescaling the hyperbolic metrics, these converge to the Euclidean orbifold
structure with cone angle $2\pi/3$ . FMrther, there are spherical cone-manifold
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structures for for $ 2\pi/3<\theta\leq\pi$ . All of these cone-manifold structures can
be constructed directly from suitable polyhedra by identifying pairs of faces
by isometries –see [41], [78].

Hodgson’s work in [43] implies that near this point, the curve where
volume $=0$ corresponds to Euclidean structures with Dehn surgery singu-
larities, and is locally the boundary of hyperbolic Dehn surgery space. (See
also [67].) Furthermore, each Euclidean structure can also be approximated
by spherical structures with Dehn surgery type singularities. If we consider
the larger space $GS(M)$ of all constant curvature geometric structures on
$M$ with Dehn surgery type singularities; then we locally obtain a manifold.
The Dehn surgery coordinates give a local diffeomorphism from geometric
structures in $GS(M)$ , up to rescaling of metrics, to a neighbourhood of
$(3, 0)$ in $\mathbb{R}^{2}$ . The Euclidean structures correspond to the codimension one
subspace, where volume $=0$ .

(3) Dehn surgery coordinates on the straight line from (3.618..., .809...)
to $(4, 1)$ and on the straight line from $(-3.618\ldots, 0.809...)$ to $(-4,1)$ also cor-
respond to representations into Isom $(\mathbb{H}^{2})$ since simplices are flat. But little
is currently known about the geometric meaning of these representations.
Remark: In the proof of the orbifold theorem, we will encounter analogues
of all the kinds of degeneration of hyperbolic structures described for the
figure eight knot complement. However, the Seifert fibre spaces arising will
be orbifolds which have both intervals and circles as fibres.


