
Introduction

The theory of manifolds of dimension three is very different from that of
other dimensions. On the one hand we do not even have a conjectural
list of all 3-manifolds. On the other hand, if Thurston’s Geometrization
Conjecture is true, then we have a very good structure theory.

The topology of compact surfaces is well understood. There is a well
known topological classification theorem, based on a short list of easily
computable topological invariants: orientability, number of boundary com-
ponents and Euler characteristic. For closed surfaces (compact with no
boundary) the fundamental group is a complete invariant. The geometry
of surfaces is also well understood. Every closed surface admits a metric of
constant curvature. Those with curvature $+1$ are called spherical, or elliptic,
and comprise the sphere and projective plane. Those with curvature $0$ are
Euclidean and comprise the torus and Klein bottle. The remainder all ad-
mit a metric of curvature-l and are called hyperbolic. The Gauss-Bonnet
theorem relates the topology and geometry

$\int_{F}KdA=2\pi\chi(F)$

where $K$ is the curvature of a metric on the closed surface $F$ of Euler charac-
teristic $\chi(F)$ . In particular this implies that the sign of a constant curvature
metric is determined by the sign of the Euler characteristic. However in the
Euclidean and hyperbolic cases, there are many constant curvature met-
rics on a given surface. These metrics are parametrized by a point in a
Teichm\"uller space.

The topology of 3-dimensional manifolds is far more complex. At the
time of writing there is no complete list of closed 3-manifolds and no proven
complete set of topological invariants. However if Thurston’s Geometriza-
tion Conjecture were true, then we would know a complete set of topo-
logical invariants. In particular for irreducible atoroidal 3-manifolds, with
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the exception of lens spaces, the fundamental group is a complete invariant.
However this group, on its own, does not provide a practical method of iden-
tifying a 3-manifold. On the other hand, once the geometric structure has
been found then there are geometrical invariants which can be practically
calculated and completely determine the manifold.

A geometric structure on a manifold is a complete, locally homogeneous
Riemannian metric: every two points have isometric neighbourhoods. The
universal cover of such a manifold is a homogeneous space and is thus the
quotient of a Lie group by a compact subgroup. In dimension two it is
a classical result that every surface admits a geometric structure. There
are eight geometries needed for compact 3-manifolds. The connected sum
of two geometric three manifolds is usually not geometric. However the
Geometrization Conjecture states that every closed 3-manifold can be de-
composed (in a way to be described) into geometric pieces.

The first step in the decomposition of orientable 3-manifolds is into ir-
reducible pieces by cutting along essential 2-spheres and capping off the
resulting boundaries by attaching 3-balls. This theory was worked out by
Kneser and refined by Milnor. For 3-dimensional manifolds the irreducible
pieces obtained are unique. The corresponding statement in higher dimen-
sions is false. Some important classes of 3-manifolds which were studied
early on include the following:
$\bullet$ The quotient of the 3-sphere by a finite group of isometries acting
freely (a spherical space form). These include the lens spaces (quotients
of the round 3-sphere by a cyclic group of isometries) which provide the
only known examples of distinct irreducible, atoroidal 3-manifolds with the
same fundamental group. The famous Poincar\’e homology 3-sphere is the
quotient of the 3-sphere by the binary icosahedral group (the double cover
in $SU(2)$ of the icosahedral subgroup of $SO(3).)$
$\bullet$ The Seifert fibre spaces. These are compact 3-manifolds which can be
foliated by circles and were classified by Seifert. A special case is a circle
bundle over a closed surface $F$. If $F$ and the total space $M$ are both ori-
entable this bundle is determined by its Euler class $e\in \mathbb{Z}$ . In general, the
quotient space obtained by collapsing each circle to a point is a two dimen-
sional orbifold. All Seifert fibre spaces have a geometric structure.
$\bullet$ The 10 Euclidean 3-manifolds fit into the general theory of flat manifolds
developed by Bieberbach. Bieberbach showed that a compact Euclidean
manifold of dimension $n$ is finitely covered by an n-torus. Bieberbach’s
results also apply to Euclidean orbifolds, producing the 219 types of 3-
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dimensional crystallographic groups known to chemists.
$\bullet$ The mapping cylinder construction produces an n-manifold $M$ from
any automorphism $\theta$ of an $(n-1)$ -manifold $F$ as the quotient $ M=F\times$

$[0,1]/(x, 1)\equiv(\theta(x), 0)$ . In the case that $F$ is a 2-torus, the automorphism is
determined up to isotopy by an element of the group $GL(2, \mathbb{Z})$ . These give
3-manifolds with the Solv, Nil and Euclidean geometries. When the genus
of $F$ is more than 1 there is a (possibly trivial) torus decomposition into
geometric pieces.
$\bullet$ A Haken manifold, $M$ , is a compact, irreducible 3-manifold which con-
tains a closed embedded surface with infinite fundamental group that injects
under the map induced by inclusion into the fundamental group of $M$ . Haken
manifolds include many important classes of 3-manifolds, and a great deal is
now known about these manifolds through the work of Haken, Waldhausen,
Thurston and many others. In particular they have geometric decompo-
sitions. However, Hatcher [38] showed that all but finitely many Dehn
surgeries on a knot give a non-Haken manifold. More recently, Cooper and
Long [20] showed that all but finitely many such fillings give a 3-manifold
containing an essential immersed surface.

The next step in the classification program is to decompose along essen-
tial embedded tori. The JSJ decomposition (of Jaco-Shalen and Johannson)
gives a canonical splitting of a compact 3-manifold by cutting out a maximal
Seifert fibred piece.

Thurston [80] introduced the idea of “hyperbolic Dehn surgery” which
is a method of continuously changing one 3-manifold into another with a
different topology. The intermediate spaces are cone-manifolds with a
hyperbolic metric everywhere except along a knot or link called the singular
locus. The set of manifolds form a discrete subset, contained in the larger
subset of orbifolds. This method of continuously changing topology and
geometry only works in dimension three. The computer program SnapPea
developed by Jeff Weeks [88] allows one to put this philosophy into practice.
Many insights and theorems have developed from this point of view.

Roughly speaking an orbifold is the quotient of a manifold by a finite
group of diffeomorphisms. Actually an orbifold has the local structure of
such a space. It is the natural object to consider when one is studying dis-
crete symmetry groups. Compact two dimensional orbifolds are classified in
a similar way to surfaces, using an orbifold version of Euler characteristic.
This classification encompasses the classification of the regular solids (finite
subgroups of the orthogonal group $O(3))$ , the classification of the 17 wallpa-
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per groups, and of periodic tessellations of the hyperbolic plane. There are,
however, four families of bad or non-geometric two-dimensional orbifolds
that do not arise globally as the quotient of a manifold by a finite group.
However they do arise quite naturally as the base-orbifolds of certain Seifert
fibrations. In fact the base orbifold of a Seifert fibration is bad if and only
if the fibration is not isotopic to one with the fibres geodesic in a geometric
structure on the Seifert fibre space.

The Orbifold Theorem characterizes when a 3-dimensional orbifold with
l-dimensional singular locus has a geometric structure, in other words, when
it is the quotient of a homogeneous space by a discrete group of isometries.
This theorem has many consequences, for example an irreducible, atoroidal,
closed orientable 3-manifold which admits a symmetry with l-dimensional
fixed set is geometric. It follows that all 3-manifolds of Heegaard genus two
have a geometric decomposition.


