
35

Part II

Axioms for a vertex algebra
In Section 4, we will begin with describing the set of axioms for a vertex algebra
following [B2] and some of the straightforward consequences. A vertex algebra of
local fields is introduced as a corollary to the result in Section 3. The notion of
a module for a vertex algebra and the notion of an intertwiner are also described
briefly. In section 5, we will explain the state-field correspondence, which is the
characteristic feature of vertex algebras that separates those acting on themselves
from those acting on modules. This property together with the mutual locality
can be used to characterize the vertex algebra structures on a given vector space
by using the vertex algebra of local fields as a tool. In Section 6, we will explain
the role of the translation operator (or the derivation), which is one of the main
ingredients in the formulation by Goddard.

4 Axioms and their consequences

In this section, we first review the definition of a vertex algebra following Borcherds
[B2] and describe some consequences of the axioms. We next describe the vertex
algebra of local fields as an application of the results of the preceding section. We
also explain the notion of amodule for avertex algebra.

4.1 Borcherds’ axioms for a vertex algebra

According to Borcherds [B2], a vertex algebra is defined as $follows^{10}$ :

Definition 4.1.1. A vertex algebra is a vector space $V$ equipped with countably
many bilinear binary operations

$V\times V$ $\rightarrow$ $V$

$(a, b)$ – $a_{(n)}b$ , $(n\in \mathbb{Z})$ ,

and a vector $1\in V$ subject to the following conditions:
(BO) For each pair of vectors $a,$ $b\in V$ , there exists a nonnegative integer $n_{0}$ such
that

$a_{(n)}b=0$ for all $n\geq n_{0}$ .

$1Originally$ in [Bl, Section 4], the properties (BO), (4.2.3),(4.2.2),(4.2.6) and (4.3.3) given below
are taken as the axioms for a vertex algebra.
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(B1) (Borcherds identity)11 For all vectors $a,$ $b,$ $c\in V$ and all integers $p,$ $q,$
$r\in \mathbb{Z}$ ,

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(r+\iota)}b)_{(p+q-i)^{C}}$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{(p+r-i)}(b_{(q+i)}c)-(-1)^{r}b_{(q+r-i)}(a_{(p+i)}c))$ .

(B2) For any $a\in V$ ,

$a_{(n)}1=\left\{\begin{array}{ll}0, & (n\geq 0),\\a, & (n=-1).\end{array}\right.$

The vector 1 is called the vacuum vector of $V$ . Note that, because of (BO), each
side of the Borcherds identity in (B1) is a finite sum. We also note that (B2) does
not contain a condition on $a_{(n)}1$ for $n\leq-2$ . However, if $a_{(-2)}1$ are specified for
all $a\in V$ , in other words, if we know the endomorphism

$T$ : $ V\rightarrow$ $V$

$a-$ $a_{(-2)}1$ ,

then $a_{(n)}1$ are uniquely determined by $T$ as we will see in (4.2.2) below.
It is sometimes convenient to introduce the generating series

$Y(a, z)=\sum_{n\in \mathbb{Z}}a_{(n)}z^{-n-1}$

and consider the map

$Y$ : $ V\rightarrow$ (End $V$ ) $[[z, z^{-1}]]$

$a-$ $Y(a, z)$

Then the vertex algebra structure is specified by the triple (V, 1, $Y$ ). Note that the
axiom (BO) says that the series $Y(a, z)$ is a field on $V$ for each $a\in V$ .

Let $V$ and $W$ be vertex algebras. A linear map $f$ : $V\rightarrow W$ is said to be
a homomorphism of vertex algebras if $f(1)=1$ and $f(a_{(n)}b)=f(a)_{(n)}f(b)$ hold
for all $a,$ $b\in V$ and $n\in \mathbb{Z}$ . The latter condition is also written as $f(Y(a, z)b)=$

11This identity is nothing but the Cauchy-Jacobi identity of Frenkel-Lepowsky-Meurman [FLM,
(8.8.29) and (8.8.41)], while the special case (4.3.3) is due to Borcherds [B1]; we here follow the
terminology in [K].
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$Y(f(a), z)f(b)$ . A homomorphism of vertex algebras is said to be an isomorphism

of vertex algebras if it is a linear isomorphism.
For a vertex algebra $V$ , we set

$V_{(n)}V=Span\{a_{(n)}b|a, b\in V\}$ .

Note that $V=V_{(-1)}V$ by (B2).

4.2 Consequences of axioms

For the convenience of the reader, we derive various properties of vertex algebras
from the axioms. First, putting $a=b=\backslash c=1$ and $p=q=r=-1$ in (B1), we
immediately see

(4.2. 1) $1_{(-2)}1=0$ , $i.e.$ , $T1=0$ .

Then the substitution $b=c=1$ and $p=0,$ $q=-2,$ $r=n$ shows by (B2)

$(a_{(n)}1)_{(-2)}1=-na_{(n-1)}1$ .

Therefore, for $n\leq-1$ , we inductively deduce

$a_{(n)}1=T^{(-n-1)}a$

where $\tau^{(k)}=T^{k}/k!$ . Thus (B2) is completed as

(4.2.2) $a_{(n)}1=\left\{\begin{array}{ll}0, & (n\geq 0),\\T^{(-n-1)}a, & (n\leq-1).\end{array}\right.$

Now, let $b=c=1,p=-1,$ $q=n,$ $r=0$ in (B1). Then, by (B2) and (4.2.1), we
have

(4.2.3) 1 $(n)a=\{$
$0$ , $(n\neq-1)$ ,

$a$ , $(n=-1)$ .

Next, let $b=1,p=n,$ $q=0,$ $r=-2$ in (B1) and replace $c$ by $b$ . Then by (4.2.3),

(4.2.4) $(Ta)_{(n)}b=-na_{(n-1)}b$ .

Further, $c=1,$ $p=0,$ $q=-2,$ $r=n$ yields by (B2)

(4.2.5) $a_{(n)}(Tb)=T(a_{(n)}b)+na_{(n-1)}b$ .
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Namely, $[T, a_{(n)}]=-na_{(n-1)}$ , called the translation covariance. Then comparing
(4.2.4) and (4.2.5) we see that $T$ is a derivation for all the products:

$T(a_{(n)}b)=(Ta)_{(n)}b+a_{(n)}(Tb)$ .

Finally, $c=1,p=-1,$ $q=0,$ $r=n$ gives rise to

(4.2.6) $b_{(n)}a=\sum_{i=0}^{\infty}(-1)^{n+i+1}T^{(x)}(a_{(n+i)}b)$

which is called the skew symmetry.

Note that the relation (4.2.4) shows that $V_{n-1)}V\subset V_{(n)}V$ if $n\neq 0$ , thus

. . . $\subset V_{(-3)}V\subset V_{(-2)}V\subset V_{(-1)}V=V$, $ V_{(0)}V\subset V_{(1)}V\subset V_{(2)}V\subset\cdots$

In terms of the generating series $Y(a, z)$ , the properties $(4.2.2)-(4.2.6)$ are
rewritten as follows:

$Y(a, z)1=e^{Tz}a$ , $Y(1, z)=id_{V}$ , $Y$ (Ta, $z$ ) $=\partial_{z}Y(a, z)$ ,

$[T, Y(a, z)]=\partial_{z}Y(a, z)$ , $Y(b, z)a=e^{Tz}Y(a, -z)b$ .

Remark 4.2.1. Let $V$ be a vertex algebra satisfying the following condition: For
any $a\in V$ , there exists a nonnegative integer $n_{0}$ such that $a_{(n)}V=0$ for all $n\geq n_{0}$ .
Then, by (4.2.5) we actually have $a_{(n)}V=0$ for all $n\geq 0$ .

Note 4.2.2. The structure of a vertex algebra as in the remark is described as
follows ([B1]): It has a structure of commutative associative algebra with respect
to the multiplication defined by $ab=a_{(-1)}b$ , and $T$ is a derivation (cf. Subsection
8.4). Conversely, any commutative associative algebra with a derivation $T$ has a
vertex algebra structure with respect to

$a_{(n)}b=\left\{\begin{array}{ll}0 & (n\geq 0),\\(T^{(-n-1)}a,)b & (n\leq-1).\end{array}\right.$

Any finite-dimensional vertex algebra is described in this way ([B2, $p.416]$ ), since
it obviously satisfies the condition in the remark.
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4.3 Structure of Borcherds identity

Let $B(p, q, r)$ denote one of the three terms of the Borcherds identity:

$B(p, q, r)=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(r+i)}b)_{(p+q-i)^{C}}$ , $\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)a_{(p+r-i)}(b_{(q+i)}c)$ ,

or $\sum_{i=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)b_{(q+r-i)}(a_{(p+i)}c)$ .

Then, straightforward calculation shows

(4.3. 1) $B(p+1, q, r)=B(p, q+1, r)+B(p, q, r+1)$ .

Therefore, the Borcherds identity for two of the indices $(p+1, q, r),$ $(p, q+1, r)$ and
$(p, q, r+1)$ imply the Borcherds identity for the other index. This proves

Proposition 4.3.1. The Borcherds identity for all $p$ and $q$ with fixed $r$ and for all
$q$ an$dr$ with fix$edp1m$ply the Borcherds identi $ty$ for all $p,$ $q$ and $r$ .

Now let us consider special cases of the Borcherds identity. Setting $r=0$ and
$p=0$ respectively, we have

(4.3.2) $[a_{(p)}, b_{(q)}]=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(i)}b)_{(p+q-i)}$

and

(4.3.3) $(a_{(r)}b)_{(q)}=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{(r-i)}b_{(q+i)}-(-1)^{r}b_{(q+r-i)}a_{(i)})$

called the commutator formula and the associativity formula. Here we have omitted
the overall $c$ . We next take an $r_{0}$ such that $a_{(r)}b=0$ for all $r\geq r_{0}$ . Then for such
$r$ , we have,

(4.3.4) $\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{(p+r-i)}b_{(q+i)}-(-1)^{r_{b_{(q+r-i)}a_{(p+i)}}})=0$ , $(r\geq r_{0})$

which is called the commutativity. This exactly means that the fields $Y(a, z)$ and
$Y(b, z)$ are mutually local for any $a,$ $b\in V$ . Finally, take a $p_{0}$ such that $a_{(p)}c=0$

for all $p\geq p_{0}$ . Then, for such $p$ , we have

(4.3.5) $\sum_{\iota=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(r+i)}b)_{(p+r-i)}c=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)a_{(p+r-i)}(b_{(q+i)}c)$ , $(p\geq p_{0})$
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called the duality or the associativity. This time we can not omit $c$ because the
choice of $p_{0}$ depends on it.

The relations $(4.3.2)-(4.3.5)$ are rewritten in terms of generating series as:

$[a_{(p)}, Y(b, z)]=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)Y(a_{(i)}b, z)z^{p-i}$ ,

$Y(a_{(r)}b, z)=Y(a, z)_{(r)}Y(b, z)$ ,

$Y(a, y)Y(b, z)(y-z)^{r}=Y(b, z)Y(a, y)(y-z)^{r}$ , $(r\geq r_{0})$ ,

$Y(Y(a, y)b,$ $z$ ) $(y+z)^{p}c=Y(a, y+z)Y(b, z)(y+z)^{p}c$ , $(p\geq p_{0})$ .

Remark 4.3.2. (4.3.3) and (4.3.4) in particular shows that the fields $Y(a, z)$ and
$Y(b, z)$ on $V$ are mutually local with OPE

$Y(a, y)Y(b, z)\sim\sum_{i=0}^{\infty}\frac{Y(a_{(i)}b,z)}{(y-z)^{i+1}}$ .

As an immediate consequence of Proposition 4.3.1, we have

Proposition 4.3.3. The axiom $(Bl)$ is equivalent to $ei$ther (4.3.2) or (4.3.4) an $d$

either (4.3.3) or (4.3.5).

We here note the remarkable correspondence between the coefficients and in-
dices in the Borcherds identity and the coefficients and exponents of the expansions:

$(x-y)^{r}(y-z)^{q}(x-z)^{p}=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(x-y)^{r+i}(y-z)^{p+q-i}$ ,

$\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(x-z)^{p+r-i}(y-z)^{q+i}$ , and $\sum_{i=0}^{\infty}(-1)^{r+i}\left(\begin{array}{l}r\\i\end{array}\right)(y-z)^{q+r-i}(x-z)^{p+i}$ .

With this resemblance in mind, we see the relation (4.3.1) corresponds to

$(x-y)^{r}(y-z)^{q}(x-z)^{p+1}$

$=(x-y)^{r}(y-z)^{q+1}(x-z)^{p}+(x-y)^{r+1}(y-z)^{q}(x-z)^{p}$ .

Note 4.3.4. In [K], it is considered a vector space equipped with bilinear binary
operations $(a, b)-a_{(n)}b$ for nonnegative integers $n$ and a linear map $T:V\rightarrow V$

satisfying (BO), (4.2.4),(4.2.6), and (4.3.2), and is called a conformal algebra 12.
The same notation is also considered independently in [P] and is called a vertex
Lie algebra.

12The axioms for a conformal algebra in the sense of [K] is nothing to do with a conformal
structure.
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4.4 Some categorical constructions

Let us describe the notion of subalgebras and quotient algebras of a vertex algebra
V.

A vertex subalgebra of $V$ is a subspace of $V$ containing the vacuum vector 1 of
$V$ closed under the binary operations of $V$ . In other words, a subspace $U$ of $V$ is
a vertex subalgebra if it is equipped with a structure of a vertex algebra such that
the inclusion $U\rightarrow V$ is a homomorphism of vertex algebras. The image of any
homomorphism of vertex algebras is a vertex subalgebra.

For example, let $G$ be a group that acts on $V$ as automorphism of a vertex
algebra. Then the fixed-point space $V^{G}=$ {$a\in V|g(a)=a$ , for all $g\in G$} is a
vertex subalgebra.

An ideal of $V$ is a subspace $J\subset V$ such that $J_{(n)}V\subset J$ for all $n\in \mathbb{Z}$ . The
kernel of any homomorphism of vertex algebras is an ideal. If $J$ is an ideal of $V$ ,
then $TJ=J_{(-2)}1\subset J$ . Hence, by the skew symmetry,

$V_{(n)}J\subset\sum_{i=0}^{\infty}T^{i}(J_{(n+i)}V)\subset\sum_{i=0}^{\infty}T^{i}J\subset J$

for any $n\in \mathbb{Z}$ .
Therefore, for an ideal $J\subset V$ , the vertex algebra structure on $V$ induces the

one on the quotient space $V/J$ . The vertex algebra $V/J$ is called a quotient vertex
algebra of $V$ . In other words, a quotient space $W$ of $V$ is a quotient vertex algebra if
it is equipped with a structure of a vertex algebra such that the projection $V\rightarrow W$

is a homomorphism of vertex algebras.
We will describe the notion of the direct product and the tensor product of

vertex algebras. Let (V, $1_{V},$ $Y_{V}$ ) and (V’, $1_{V^{\prime}},$ $Y_{V^{\prime}}$ ) be vertex algebras.
The direct product $V\times V^{\prime}$ of vector spaces has a structure of a vertex algebra

by setting

$1_{V\times V^{\prime}}=(1_{V}, 1_{V^{\prime}})$ , $(a, a^{\prime})_{(n)}(b, b^{\prime})=(a_{(n)}b, a_{(n)}^{\prime}b^{\prime})$ .

The vertex algebra $V\times V^{\prime}$ is called the direct product of vertex algebras $V$ and
$V^{\prime}$ . Then the projections

$V-V\times V^{\prime}\rightarrow V^{\prime}$

are homomorphisms of vertex algebras, which give a product in the category of
vertex algebras.
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On the other hand, consider the tensor product $V\otimes V^{\prime}$ of vector spaces. We
set

$1_{V\otimes V^{\prime}}=1_{V}\otimes 1_{V^{\prime}}$ ,
$(a\otimes a^{\prime})_{(n)}(b\otimes b^{\prime})=\sum_{i\in \mathbb{Z}}(a_{(i)}b)\otimes(a_{(n-i-1)}b^{\prime})$ .

Note that the latter is written in terms of the generating series as

$Y_{V\otimes V^{\prime}}(a\otimes a^{\prime}, z)(b\otimes b^{\prime})=Y_{V}(a, z)b\otimes Y_{V^{\prime}}(a^{\prime}, z)b^{\prime}$

where $Y_{V\otimes V^{\prime}}(a\otimes a^{\prime}, z)=\sum_{n\in \mathbb{Z}}(a\otimes a^{\prime})_{(n)}z^{-n-1}$ . Then by Theorem 2.3.1, $ Y_{V\otimes V^{\prime}}(a\otimes$

$a^{\prime},$ $z$ ) and $Y_{V\otimes V^{\prime}}(b\otimes b^{\prime}, z)$ are mutually local field on $V\otimes V^{\prime}$ with the associativity

$Y_{V\otimes V^{\prime}}(a\otimes a^{\prime}, z)_{(n)}Y_{V\otimes V^{\prime}}(b\otimes b^{\prime}, z)$

$=\sum_{x\in \mathbb{Z}}(Y_{V}(a, z)_{(i)}Y_{V}(b, z))\otimes(Y_{V^{\prime}}(a^{\prime}, z)_{(n-x-1)}Y_{V^{\prime}}(b^{\prime}, z))$

$=\sum_{i\in \mathbb{Z}}Y_{V}(a_{(i)}b, z)\otimes Y_{V^{\prime}}(a_{(n-i-1)}^{\prime}b^{\prime}, z)$

$=Y_{V\otimes V^{\prime}}((a\otimes a^{\prime})_{(n)}(b\otimes b^{\prime}), z)$ ,

which imply the Borcherds identity by Proposition 4.3.3. Hence $(V\otimes V^{\prime}, 1_{V\otimes V^{\prime}}, Y_{V\otimes V^{\prime}})$

is a vertex algebra, called the tensor product of vertex algebras $V$ and $V^{\prime}$ . Then the
subspaces $\{a\otimes 1_{V^{\prime}}|a\in V\}$ and $\{1_{V}\otimes a^{\prime}|a\in V^{\prime}\}$ are vertex subalgebras identified
with $V$ and $V^{\prime}$ respectively. The inclusions

$V\rightarrow V\otimes V^{\prime}-V^{\prime}$

are homomorphisms of vertex algebras characterized by the following universal
property:

Proposition 4.4.1. Let $V$ and $V^{\prime}$ be vertex algebras and let $i$ : $V\rightarrow V\otimes V^{\prime}$ ,
$i^{\prime}$ : $V^{\prime}\rightarrow V\otimes V^{\prime}$ be th$eem$beddings. Then, for any vert$ex$ algebra $W$ and any
homomorphisms $f$ : $V\rightarrow W$ an $df^{\prime}$ : $V^{\prime}\rightarrow W$ satisfying $[f(V)_{(m)}, f’(V^{\prime})_{(n)}]=0$

for all $m,$ $n\in \mathbb{Z}$ , there exists a unique homomorphism $g:V\otimes V^{\prime}\rightarrow W$ such that
$g\circ i=f$ and $9\circ i^{\prime}=f^{\prime}$ .

Proof The uniqueness follows from

$g(u\otimes u’)=g((u\otimes 1)_{(-1)}(1\otimes u^{\prime}))$

$=g(u\otimes 1)_{(-1)}g(1\otimes u^{\prime})$

$=(g\circ i)(u)_{(-1)}(g\circ i)(u^{\prime})$

$=f(u)_{(-1)}f^{\prime}(u^{\prime})$ .



4. Axioms and their consequences 43

For the existence, let $g$ be the linear map defined by $g(u\otimes u^{\prime})=f(u)_{(-1)}f^{\prime}(u^{\prime})$ .

Then obviously it satisfies $9\circ i=f$ and $9\circ i^{\prime}=f^{\prime}$ . It is a homomorphism of vertex
algebras; by $f(u)_{(n)}f^{\prime}(u^{\prime})=0,$ $(n\geq 0),$ $f(u)_{(-1)}f^{\prime}(u^{\prime})=f^{\prime}(u^{\prime})_{(-1)}f(u)$ and the
Borcherds identity for $p=0,$ $q=n,$ $r=-1$ , we have

$g((u\otimes u^{\prime})_{(n)}(v\otimes v^{\prime}))=\sum_{i\in \mathbb{Z}}g((u_{(i)}v)\otimes(u_{(n-i-1)}^{\prime}v^{\prime}))$

$=\sum_{i\in \mathbb{Z}}f(u_{(i)}v)_{(-1)}f^{\prime}(u_{(n-i-1)}^{\prime}v^{\prime})$

$=\sum_{i\in \mathbb{Z}}f^{\prime}(u^{\prime})_{(n-i-1)}(f^{\prime}(v^{\prime})_{(-1)}(f(u)_{(i)}f(v))$

$=\sum_{i\in \mathbb{Z}}f^{\prime}(u^{\prime})_{(n-i-1)}(f(u)_{(i)}(f^{\prime}(v^{\prime})_{(-1)}f(v)))$

$=\sum_{i\geq 0}f^{\prime}(u^{\prime})_{(n-i-1)}(f(u)_{(i)}(f(v)_{(-1)}f^{\prime}(v^{\prime})))$

$+\sum_{i\geq 0}f(u)_{(-1-i)}(f^{\prime}(u^{\prime})_{(n+i)}(f(v)_{(-1)}f^{\prime}(v^{\prime})))$

$=(f(u)_{(-1)}f^{\prime}(u^{\prime}))_{(n)}(f(v)_{(-1)}f^{\prime}(v^{\prime}))$

$=g(u\otimes u^{\prime})_{(n)9}(v\otimes v^{\prime})$ .

$\square $

4.5 Vertex algebras of local fields

We now return to the situation of Section 3. Let $M$ be a vector space and consider
the fields on $M$ .

A set of fields on $M$ is said to be pairwise mutually local if any pair of fields in
the set, not necessarily distinct, are mutually local.

Now, let $A(z),$ $B(z)$ and $C(z)$ be mutually local fields on $M$ , while $I(z)$ the
identity field. Then we have already shown that there exists a nonnegative integer
$n_{0}$ such that $A(z)_{(n)}B(z)=0$ for all $n\geq n_{0}(2.1.2)$ , that the Borcherds identity
holds (Corollary 3.2.2):

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(A(z)_{(r+i)}B(z))_{(p+q-i)}C(z)$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A(z)_{(p+r-i)}(B(z)_{(q+i)}C(z))-(-1)^{r}B(z)_{(q+r-i)}(A(z)_{(p+i)}C(z)))$
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and that we have (1.4.5)

$A(z)_{(n)}I(z)=\left\{\begin{array}{ll}0 & (n\geq 0),\\A(z) & (n=-1).\end{array}\right.$

They are precisely Borcherds’ axioms for a vertex algebra. Therefore, we have

established the following theorem13.

Theorem 4.5.1. Let $M$ be a vector space, and let $\mathcal{O}$ be a vector space consisting
of fields on $M$ which are pairwise mutually local. If $\mathcal{O}$ is clos$ed$ under the residue
products and contains the identity field $I(z)$ , then th $e$ residue products equip $V=$
$\mathcal{O}$ with a $str$ucture of vertex algebra with the $vac$uum vector $1=I(z)$ .

By a vertex algebra of local fields on $M$ , we mean a vector space of pairwise
mutually local fields on $M$ containing the identity field on which a vertex algebra
structure is provided by the residue products.

Note 4.5.2. In [LZ1]. Lian and Zuckerman introduced the notion of a quantum
operator algebra. In terms of our notations and terminologies, a quantum operator
algebra is a pair $(M, \mathcal{O})$ of a vector space $M$ and a space of fields $\mathcal{O}$ containing
the identity fields such that $\mathcal{O}$ is closed under the residue products. A quantum
operator algebra is said to be commutative if any pair of fields in $\mathcal{O}$ are mutually
local in our sense. Therefore, Theorem 4.5.1 shows that a commutative quantum
operator algebra gives rise to a vertex algebra of local fields.

Definition 4.5.3. The space { $ S\rangle$ generated by a set of fields $S$ is the linear span of
the fields constructed by successive application of the residue products to the fields
in $S$ as well as the identity field $I(z)$ .

The space \langle $S$ } is the smallest space closed under the residue products that
contains $S\cup\{I(z)\}$ .

Consider the space { $ S\rangle$ generated by $S$ . By successive use of Lemma 2.1.4, we
have

Proposition 4.5.4. If a set $S$ of fields is pairwise mutually local, then so is the
space \langle $S$ }.

In particular, let $S$ be a set of pairwise mutually local fields and let $\mathcal{O}$ be
the space { $ S\rangle$ generated by $S$ . Then $\mathcal{O}$ is closed under the residue products and

13The special case for a maximal pairwise local space of fields is given by Li [Li2, Theorem
3.2.10]. However, his proof indeed applies to the statement in the theorem.
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contains the identity field; it is a vertex algebra. It follows from the associativity
formula (4.3.3) and the formulas (1.4.2), (1.4.3) and (1.4.4) that the space $\langle S\rangle$ is
the linear span of the fields of the form

$A^{1}(z)_{(n_{1})}A^{2}(z)_{(n_{2})}\cdots A^{\ell}(z)_{(n_{\ell})}I(z)$

where $n_{1},$
$\ldots,$

$n_{\ell-1}\in \mathbb{Z},$ $n_{\ell}\in \mathbb{Z}_{<0},$ $A^{1}(z),$
$\ldots,$

$A^{\ell}\in S$ . Here we understand the
nested products as $A(z)_{(m)}B(z)_{(n)}C(z)=A(z)_{(m)}(B(z)_{(n)}C(z))$ .

Remark 4.5.5. Let $V_{0}$ be a vector space and suppose given a series of binary op-
erations satisfying (BO) and (B1). Then the image $\mathcal{V}_{Y_{0}}$ of the corresponding map
$Y_{0}$ : $V_{0}\rightarrow(EndV_{0})[[z, z^{-1}]]$ is pairwise mutually local by (4.3.4). Therefore the
space $ V=\{\mathcal{V}_{Y_{O}}\rangle$ generated by $\mathcal{V}_{Y_{()}}$ is a vertex algebra with respect to the residue
products by the theorem. Thus we have constructed a canonical map from $V_{0}$ to a
vertex algebra $V$ , which preserves the binary operations by (4.3.3). In particular,
if $Y_{0}$ is injective, then $V_{0}$ is canonically embedded in a vertex algebra.

Note 4.5.6. Li’s original proof of the above theorem is as follows. For each $ A(z)\in$

$\mathcal{O}$ , consider

$ Y(A(z), \zeta)=\sum_{n\in \mathbb{Z}}A(z)_{(n)}\zeta^{-n-1}\in$
(End $\mathcal{O}$ ) $[[\zeta, \zeta^{-1}]]$ .

Then he shows that the map $Y$ : $\mathcal{O}\rightarrow(End\mathcal{O})[[\zeta, \zeta^{-1}]]$ satisfies Goddard’s ax-
ioms $(GO)-(G3)$ (see Subsection 6.2) where $V=\mathcal{O},$ $1=I(z)$ and $T=\partial_{z}$ . (In
particular, the locality (G1) follows from one of his result which we have explained
in Proposition 3.4.3.) Then by the equivalence of Goddard’s axioms and Borcherds’
axioms, which he shows by direct calculation (cf. Note 6.2.2), the result follows.

4.6 Modules for a vertex algebra

Let $V$ be a vertex algebra. Following Borcherds [B1], we define the notion of a
module for $V$ , or a V-module, as follows:

Definition 4.6.1. A V-module is a vector space $M$ equipped with countably many
bilinear maps

$V\times M$ $\rightarrow$ $M$

$(a, v)$ $\mapsto$
$a_{[n]}v,$

$(n\in \mathbb{Z})$

satisfying the following conditions:
(MO) For each pair $(a, v)\in V\times M$ , there exists a nonnegative integer $n_{0}$ such that
$a_{1^{n]}}v=0$ for all $n\geq n_{0}$ .
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(M1) For all $a.b\in V,$ $v\in M$ and $p,$ $q,$
$r\in \mathbb{Z}$ ,

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(r+\iota)}b)_{[p+q-x]}v$

$=\sum_{x=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)[p+r-i][q+i][q+r-i][p+\iota]^{v)}$ .

(M2) For any $v\in M$ ,

1 $[n]v=\left\{\begin{array}{ll}0 & (n\neq-1),\\v & (n=-1).\end{array}\right.$

In particular, $V$ itself is a V-module by setting $a_{[n]}b=a_{(n)}b$ , called the adjoint
module.

We note that (M1) for $b=1,p=0,$ $q=n,$ $r=-2$ together with (M2) implies

(4.6.1) $(Ta)_{[n]}v=-na_{[n-1]}v$ .

All the results in Subsection 4.3 hold for the Borcherds identity (M1) for a
V-module. For example,

(4.6.2) $[a_{[p]}, b_{[q]}]=\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(i)}b)_{[p+q-i]}$

in the analogue of (4.3.2),

(4.6.3) $(a_{(r)}b)_{[q]}=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{[r-i]}b_{[q+\iota]}-(-1)^{r}b_{[q+r-\iota]}a_{[\iota]})$

is the analogue of (4.3.3), and

(4.6.4) $\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(ab-(-1)^{r}b_{[q+r-i]^{a}[P+i]})=0$ , $(r\geq r_{0})$

is the analogue of (4.3.4). Here $r_{0}$ is an integer such that $a_{(r)}b=0$ for all $r\geq r_{0}$ .
Then (4.6.3) and (4.6.4) for all $p,$ $q,$

$r\in \mathbb{Z}$ imply the Borcherds identity (M1).
Now, let $M$ be a V-module and set $Y_{M}(a, z)=\sum_{n\in \mathbb{Z}}a_{[n]}z^{-n-1}$ for each $a\in V$ .

Then (4.6.3) and (4.6.4) are respectively written as

(4.6.5) $Y_{M}(a_{(r)}b, z)=Y_{M}(a, z)_{(r)}Y_{M}(b, z)$ ,

(4.6.6) $(y-z)^{r}[Y_{M}(a, y), Y_{M}(b, z)]=0,$ $(r\geq r_{0})$ .
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Then (MO) and (4.6.6) show that $\mathcal{O}_{M}=\{Y_{M}(a, z)|a\in V\}$ is a space of pairwise
mutually local fields, and (4.6.5) implies that $\mathcal{O}_{M}$ is closed under the residue prod-
ucts. Note that (M2) says that $Y_{M}(1, z)$ is the identity field. Hence, by Theorem
4.5.1, $\mathcal{O}_{M}$ is a vertex algebra of local fields on $M$ . Then (4.6.5) also says that the
map $Y_{M}$ : $V\rightarrow \mathcal{O}_{M}$ is a surjective homomorphism of vertex algebras.

Conversely, let $M$ be a vector space and let $\mathcal{O}$ be a vertex algebra of local fields
on $M$ . We set $A(z)_{[n]}v=A_{n}v,$ $(n\in \mathbb{Z})$ for $A(z)\in \mathcal{O}$ and $v\in M$ . Then, since $\mathcal{O}$ is
pairwise mutually local,

$\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A(z)_{[p+r-i]}B(z)_{[q+i]}-(-1)^{r}B(z)_{[q+r-i]}A(z)_{[p+i]})v$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A_{p+r-i}B_{q+i}-(-1)^{r}B_{q+r-i}A_{p+i})v=0$ .

On the other hand, by the definition (1.4.1) of the residue products,

$(A(z)_{(r)}B(z))_{[q]}v$

$=\sum_{i=0}^{\infty}(-1)^{x}\left(\begin{array}{l}r\\i\end{array}\right)(A_{r-i}B_{q+i}-(-1)^{r}B_{q+r-i}A_{i})v$

$=\sum_{i=0}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(A(z)_{[r-i]}B(z)_{[q+i]}-(-1)^{r}B(z)_{[q+r-i]}A(z)_{[i]})v$ .

Therefore, since (4.6.3) and (4.6.4) imply $(M1)$ , and $(MO)$ and $(M2)$ are obvious,
$M$ is a $\mathcal{O}$-module. Therefore, any homomorphism $f$ : $V\rightarrow \mathcal{O}$ gives rise to a
V-module structure on M. (By replacing $\mathcal{O}$ by the image of $f$ , we may suppose
that $f$ is surjective). Thus we have established the following also stated in [Li2]:

Proposition 4.6.2. Let $V$ be $a$ vertex algebra and let $M$ be a vector space. Then,
giving a V-module structure on $M$ is equivalent to giving a homomorphism of vertex
algebras from $V$ to a vertex algebra of local $fi$elds on $M$ .

Note 4.6.3. In view of Note 4.5.2, this proposition says that a commutative quan-
tum operator algebra is nothing but a pair of a vertex algebra and a module for
it.

We close this section with a brief account of intertwiners (cf. [TK],[FHL]).

Definition 4.6.4. Let $L,$ $M,$ $N$ be modules for a vertex algebra $V$ . An intertwiner
of type $(_{LM}N)$ is a set of countably many bilinear maps

$L\times M$ $\rightarrow$ $N$

$(u, v)$ – $u_{\{q\}}v$
$q\in\Lambda+\mathbb{Z}$
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where $\Lambda$ is a finite subset of $k$ , satisfying the following conditions:
(IO) For each pair $(u, v)\in L\times M$ and $\lambda\in\Lambda$ , there exists an $n_{0}$ such that $u_{\{q\}}v=0$

if $q\in\lambda+n_{0}+\mathbb{N}$ .

(I 1) For all $a\in V.u\in L,$ $v\in M,$ $p,$ $r\in \mathbb{Z},$ $q\in\Lambda+\mathbb{Z}$

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{[r+i]}u)_{\{p+q-i\}}v$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{[p+r-i]}u_{\{q+\iota\}}v-(-1)^{r}u_{\{q+r-i\}[p+i]}av)$ .

(I2) For all $(u, v)\in L\times M$ and $q\in\Lambda+\mathbb{Z}$ ,

$(Tu)_{\{q\}}v=-qu_{\{q-1\}}v$ .

In particular, for a V-module $M$ , the maps

$V\times M$ $\rightarrow$ $M$

$(a, v)$ – $a_{[n]}v$ , $n\in \mathbb{Z}$

give an intertwiner of type $(_{VM}M)$ .

All the results in Subsection 4.3 also hold for the Borcherds identity (I 1) for an
intertwiner, such as

$(a_{[r]}u)_{\{q\}}=\sum_{\iota=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{[r-i]}u_{\{q+i\}}-(-1)^{r}u_{\{q+r-i\}}a_{[i]})$ ,

$\sum_{l=0}^{\infty}(-1)^{\iota}\left(\begin{array}{l}r\\i\end{array}\right)(a_{1-i]}u_{\{q+i\}}p+7’-(-1)^{r}u_{\{q+r-\iota\}}a_{[p+i]})=0$ , $(r\geq r_{0})$ .

In terms of the generating series $I(u, z)=\sum_{q}u_{\{q\}}z^{-q-1}$ , they are respectively
written as

$I(a[r]u, z)={\rm Res}_{y=0}Y_{N}(a, y)I(u, z)(y-z)^{r}-{\rm Res}_{y=0}I(u, z)Y_{M}(a, y)(y-z)^{r}$ and

$(y-z)^{r}(Y_{N}(a, y)I(u, z)-I(u, z)Y_{M}(a, y))=0,$ $(r\geq r_{0})$ ,

which might be written as

$I(a_{1^{r]}}u, z)=Y(a, z)_{(r)}I(u, z)$ and

$(y-z)^{r}[Y(a, y), I(u, z)]=0$

symbolically.
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5 State-field correspondence

In this section, we will describe the state-field correspondence of a vertex algebra
and the characterization of vertex algebras due to Lian-Zuckerman. Throughout
this section, we suppose given a vector space $V$ and a nonzero vector $|I$ } $\in V$ .

5.1 Creative fields

We begin with the notion of creative fields. Let $M$ be a vector space and suppose
given a nonzero vector $|I\rangle$ $\in M$ .

Definition 5.1.1. A field $A(z)$ on $M$ is creative with respect to $|I$ } if $A(z)|I$ } $\in$

$M[[z]]$ .

In other words, $A(z)$ is creative if and only if $A_{n}|I$ } $=0$ for all $n\geq 0$ .
We define $\tilde{\mathcal{O}}=\tilde{\mathcal{O}}(M, |I\rangle)$ to be the set of all creative fields on $M$ with respect

to $|I\rangle$ . For a creative field $A(z)\in\tilde{\mathcal{O}}$ , we set

$|A\}=\lim_{z\rightarrow 0}(A(z)|I\rangle)=A_{-1}|I\rangle$

and call it the state corresponding to the field $A(z)$ .
Consider the map

$s$ : $\tilde{\mathcal{O}}$

$\rightarrow$ $M$

$A(z)$ – $|A\rangle$

which assigns the state to a creative field.

Lemma 5.1.2. The space $\overline{\mathcal{O}}$ is $closed$ under the residue products and we have

$ s(A(z)_{(m)}B(z))=A_{m}|B\rangle$

for all $A(z),$ $B(z)\in\tilde{\mathcal{O}}$ .

Proof. For $A(z),$ $B(z)\in\tilde{\mathcal{O}}$ , we have

$(A(z)_{(m)}B(z))|I\rangle$

$=\sum_{n\in \mathbb{Z}}(\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}m\\i\end{array}\right)(A_{m-i}B_{n+i}-(-1)^{m}B_{m+n-i}A_{i}))|I\rangle z^{-n-1}$

$=\sum_{n\leq-1}(\sum_{i=0}^{-n-1}(-1)^{i}\left(\begin{array}{l}m\\i\end{array}\right)A_{m-i}B_{n+i}|I\})z^{-n-1}$ .



50 II Axioms for avertex algebra

Hence $A(z)_{(m)}B(z)$ belongs to $\tilde{\mathcal{O}}$ and we have

$ s(A(z)_{(m)}B(z))=\lim_{z\rightarrow 0}(A(z)_{(m)}B(z)|I\})=A_{m}B_{-1}|I\rangle=A_{m}|B\rangle$ .

$\square $

The following lemma, which will be used in the next section, is a part of the
statement known as Goddard’s uniqueness theorem:

Lemma 5.1.3. Let $\mathcal{O}$ be a subspace of $\tilde{\mathcal{O}}$ which is pairwise $mutu$ally local. Then,
if the map $s|0$ : $\mathcal{O}\rightarrow M$ is $s\dot{u}$rjective, then th $e$ map

$s|0$ : $\mathcal{O}$
$\rightarrow$ $M[[z]]$

$A(z)$ $\leftrightarrow$ $A(z)|I$ }

is injective.

Proof Suppose $ A(z)|I\rangle$ $=0$ and take any $u\in M$ . Since $s|0$ is surjective, there is
a field $U(z)\in \mathcal{O}$ such that $|U\rangle$ $=s(U(z))=u$ . Then, by the locality,

$z^{n}A(z)u=\lim_{y\rightarrow 0}(z-y)^{n}A(z)U(y)|I\rangle=\lim_{y\rightarrow 0}(z-y)^{n}U(y)A(z)|I\}=0$

for sufficiently large $n$ . Since $u$ is arbitrary, we have $A(z)=0$ . $\square $

5.2 State-field correspondence

Let $V$ be a vertex algebra with the vacuum vector $|I$ }. Consider the generating
series $Y(a, z)=\sum_{n\in \mathbb{Z}}a_{(n)}z^{-n-1}$ and put

$\mathcal{V}_{Y}=\{Y(a, z)|a\in V\}$ .

Then the axiom (B2) says that $\mathcal{V}_{Y}$ is a subspace of $\overline{\mathcal{O}}=\overline{\mathcal{O}}(V, |I\rangle )$ and the map

$Y$ : $V$ $\rightarrow$ $\mathcal{V}_{Y}$

$a$ – $Y(a, z)$

is the inverse of the state map

$s|_{\mathcal{V}_{Y}}$ : $\mathcal{V}_{Y}\rightarrow V$.

In particular, they are isomorphisms of vector spaces.

Remark 5.2.1. Since the map $Y$ is recovered from the space $\mathcal{V}_{Y}$ as the inverse of

$\mathcal{V}_{Y}\subset\tilde{\mathcal{O}}s|_{\mathcal{V}_{Y}},$

$avertex$ algebra structure (V, $|I\},$ $Y$ ) is uniquely determined by the subspace
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Now, we have $Y(a_{(n)}b, z)=Y(a, z)_{(n)}Y(b, z)$ by (4.3.3) and $Y(|I\}, z)=I(z)$

by (4.2.3). Therefore, we obtain the following theorem:

Theorem 5.2.2 (State-field correspondence). Let (V, $|I\rangle,$ $Y$ ) be a $ver$tex al-

gebra. Then the residue products equip $\mathcal{V}_{Y}$ with a $str$ucture of a vertex alge $bra$

with the vacuum vector being the $id$entity fi$eldI(z)$ such that the map

$s|_{\mathcal{V}_{Y}}$ : $\mathcal{V}_{Y}\rightarrow V$

is an isomorphism of vertex algebras.

Note that the formula (4.2.4) means that the differentiation $\partial_{z}$ corresponds to
the translation operator $T$ under the state-field correspondence.

Now, let $M$ be a vector space and suppose given a nonzero vector $|I$ } $\in M$ . Let
$\mathcal{O}$ be a vertex algebra of local fields on $M$ which is creative with respect to $|I$ }.
Suppose that the state map

$s|0$ : $\mathcal{O}\rightarrow M$

is injective. Set $V=s(\mathcal{O})\subset M$ . Then, since the map is an isomorphism onto $V$ ,

we can introduce a structure of a vertex algebra on $V$ through this isomorphism:

$|A\}_{(n)}|B\rangle=s(A(z)_{(n)}B(z))$ .

Then, by Lemma 5.1.2, we have

$|A\}_{(n)}|B\}=A_{n}|B\}$ , $i.e.$ , $Y(|A\}, z)=A(z)$ .

Hence

Theorem 5.2.3. Let $\mathcal{O}$ be a $ver$tex algebra of local fields on $M$ which is $cr$eative
with respect to $|I\rangle$ $\in M$ . If the state map $s|0$ is injective, then th $e$ image $V=s(\mathcal{O})$

$h$as a unique structure of a vertex algebra with the vacuum vector $|I\rangle$ such that

$Y(|A\}, z)=A(z)$

for any $|A\rangle$ $\in V$ , which is isomorphic to $\mathcal{O}$ as vertex algebras, and this endows $M$

with astructure of aV-module.

5.3 Characterization of the image (I)

Let us characterize vertex algebra structures on $V$ with the vacuum vector $|I\rangle$ by

means of the subspaces $\mathcal{V}_{Y}=\{Y(a, z)|a\in V\}$ of $\tilde{\mathcal{O}}=\tilde{\mathcal{O}}(V, |I\})$ .

We consider the following set of conditions on a subspace $\mathcal{V}\subset\tilde{\mathcal{O}}$ :
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(L1) $\mathcal{V}$ is pairwise mutually local.

(L2) $\mathcal{V}$ is closed under the residue products.

(L3) The map $s|v$ : $\mathcal{V}\rightarrow V$ is an isomorphism of vector spaces.

Proposition 5.3.1. If a su\’ospace $\mathcal{V}\subset\tilde{\mathcal{O}}$ satisfies $(Ll)-(L3)$ , then the residue
products equip $\mathcal{V}$ with a structure of a vertex algebra with the $vacu$um vector
$b$eing the identity field $I(z)$ .

Proof Let V $\subset\overline{O}$ satisfy $(L1)-(L3)$ . Then, since $\mathcal{V}$ is pairwise mutually local by
(L1), the residue products satisfy (BO) and (B1) by (2.1.2) and Corollary 3.4.2.
Now let $I(z)$ be the unique field in $\mathcal{V}$ such that $ s(I(z))=|I\rangle$ . Then, for any
$A(z)\in \mathcal{V}$ , we have

$s(A(z)_{(n)}I(z))=A_{n}|I\rangle=\left\{\begin{array}{ll}0 & (n\geq 0),\\|A\rangle & (n=-1)\end{array}\right.$

by Lemma 5.1.2 and the creativity of $A(z)\in \mathcal{V}$ . Since $A(z)_{(n)}I(z)\in \mathcal{V}$ by (L2), it
follows from (L3) that

$A(z)_{(n)}I(z)=\left\{\begin{array}{ll}0 & (n\geq 0),\\A(z) & (n=-1),\end{array}\right.$

which is nothing else but (B2). Hence the residue products equip $\mathcal{V}$ with the
structure of a vertex algebra with the vacuum vector being $I(z)$ . In particular, by
(4.2.3),

$I_{n}|A\}=s(I(z)_{(n)}A(z))=\left\{\begin{array}{ll}0 & (n\neq-1),\\|A\} & (n=-1).\end{array}\right.$

Since $|A\rangle$ is arbitrary in $V$ , we see that $I(z)$ is the identity field. $\square $

Therefore, by Theorem 5.2.3, we obtain the following theorem stated by Lian-
Zuckerman14 [LZ2, Theorem 5.6]:

Theorem 5.3.2. Let $V$ be a vector space, and let $|I$ } $\in V$ be a nonzero vector.
If a $su$bspace $\mathcal{V}\subset\tilde{\mathcal{O}}=\overline{\mathcal{O}}(V, |I\})$ satisfies $(Ll)-(L3)$ , then th$ere$ exists a unique
vertex alge $bra$ struct $ure$ on $V$ with the vacuum vector $|I$ } such that $\mathcal{V}=\mathcal{V}_{Y}$ , where
the map $Y$ is given by the inverse of $s|_{\mathcal{V}}$ .

14To be precise, Lian-Zuckerman assumed in addition that $V$ contains the identity field. How-
ever, it follows from the other assumptions as we saw in Proposition 5.3. 1
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Conversely, if (V, $|I\},$ $Y$ ) is a vertex algebra, then the space $\mathcal{V}=\mathcal{V}_{Y}\subset\overline{\mathcal{O}}$ satisfies
$(L1)-(L3)$ , Therefore, the conditions $(L1)-(L3)$ on a subspace $\mathcal{V}\subset\tilde{\mathcal{O}}$ characterize
vertex algebra structures on $V$ with the vacuum vector $|I\rangle$ . More precisely,

Corollary 5.3.3. The correspondence $Y\mapsto \mathcal{V}_{Y}=\{Y(a, z)|a\in V\}$ from the
se $t$ of vertex algebra structures on $V$ with th $e$ vacuum vector $|I$ } to the set of th $e$

subspaces $\mathcal{V}\subset\tilde{\mathcal{O}}$ satisfying $(Ll)-(L3)$ is bijective, and the inverse correspondence
is given by $\mathcal{V}-Y_{\mathcal{V}}=(s|_{\mathcal{V}})^{-1}$ .

In other words, giving a vertex algebra structure (V, $|I\rangle,$ $Y$ ) is equivalent to
giving a subspace $\mathcal{V}\subset\tilde{\mathcal{O}}$ satisfying $(L1)-(L3)$ .

6 Goddard’s axioms and the existence theorem

In this section, we will describe the characterization of vertex algebras by the
axioms essentially given by Goddard [G], where the translation operator $T$ plays
an essential role. We also describe the existence theorem due to Frenkel-Kac-Radul-
Wang as a consequence of still another characterization.

Throughout this section, we suppose given a vector space $V$ and a nonzero
vector $|I\rangle$ $\in V$ .

6.1 Translation covariance

Let us first consider the role played by the translation operator. Suppose given an
endomorphism $T:V\rightarrow V$ such that $ T|I\rangle$ $=0$ .

Definition 6.1.1. A field $A(z)$ is translation covariant with respect to $T$ , if

(6.1.1) $[T, A(z)]=\partial A(z)$

is satisfied.

Remark 6.1.2. The property (6.1.1) is equivalent to

$e^{yT}A(z)e^{-yT}=A(y+z)|_{|y|<|z|}$ ,

where the right-hand side means

$A(y+z)|_{|y|<|z|}=\sum_{n\in \mathbb{Z}}A_{n}(y+z)^{n}|_{|y|<|z|}=\sum_{n\in \mathbb{Z}}\sum_{i=0}^{\infty}\left(\begin{array}{l}n\\i\end{array}\right)A_{n}y^{i}z^{n-i}$ .
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We say that a set of fields $S$ is translation covariant if all the fields in $S$ are
translation covariant with respect to the same $T$ .

Lemma 6.1.3. If two fields $A(z)$ and $B(z)$ are translation covariant, then so are
the residue products $A(z)_{(n)}B(z)$ .

Proof. It is obvious by $[T, A(z)_{(n)}B(z)]$ $=$ $[T, A(z)]_{(n)}B(z)+A(z)_{(n)}[T, B(z)]$

and $\partial(A(z)_{(n)}B(z))=\partial A(z)_{(n)}B(z)+A(z)_{(n)}\partial B(z)$ . $\square $

Now consider the map

$\iota$ : $V[[z]]$ $\rightarrow$ $V$

$u(z)$ – $u(0)$

which assigns the initial value $u(O)=u_{-1}$ to a series $u(z)=\sum_{n\leq-1}u_{n}z^{-n-1}$ . If
a field $A(z)$ is creative and translation covariant, then the series $A(z)|I$ } $\in V[[z]]$

satisfies the differential equation

(6.1.2) $\partial_{z}(A(z)|I\})=T(A(z)|I\})$

whose solution is uniquely determined by the initial value $\iota(A(z)|I\rangle)=|A\rangle$ (cf. $[K$ ,
Remark 4. $4a$]). More precisely,

Lemma 6.1.4. If a space of $Ii$elds $\mathcal{V}$ is creative and translation covariant, then the
map

$\iota|_{\mathcal{V}|I\rangle}$ : $\mathcal{V}|I\rangle$ $\rightarrow$ $V$

$A(z)|I\}$ – $|A\rangle$

is injective.

Proof. By the assumptions, we have

$\sum_{l=0}^{\infty}iA_{-\iota-1}|I\rangle z^{x-1}=\partial A(z)|I\rangle=[T, A(z)]|I\}=TA(z)|I\}=\sum_{i=0}^{\infty}TA_{-i-1}|I\}z^{-i}$ .

Equating the coefficients, $(i+1)A_{-i-2}|I$ } $=TA_{-i-1}|I\rangle$ , $(i\geq 0)$ . Therefore, $if|A$ } $=$

$0$ , then we inductively deduce $ A_{-i-1}|I\rangle$ $=0,$ $(i=0,1, \ldots)$ , namely $ A(z)|I\rangle$ $=$

$0$ . $\square $

Remark 6.1.5. If $A(z)$ is creative and translation covariant, then, by solving the
differential equation (6.1.2), we have $ A(z)|I\rangle$ $=e^{zT}|A$ }.
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6.2 Goddard’s axioms

Suppose given a linear map

$Y$ : $ V\rightarrow$ (End $V$ ) $[[z, z^{-1}]]$

$ a-\rangle$ $Y(a, z)$
’

and consider the following set of axioms15 on (V, $|I\rangle,$ $Y$):

(GO) For any $a,$ $b\in V,$ $Y(a, z)b\in V((z))$ .

(G1) For any $a,$ $b\in V,$ $Y(a, z)$ and $Y(b, z)$ are mutually local.

(G2) For any $a\in V,$ $Y(a, z)|I$ } is a formal power series with the constant term $a$ .

(G3) There exists an endomorphism $T:V\rightarrow V$ such that $T|I$ } $=0$ and

$[T, Y(a, z)]=\partial Y(a, z)$

for all $a\in V$ .

Let (V, $|I\},$ $Y$ ) satisfy the axioms $(GO)-(G3)$ . For each $a\in V$ , we define the
endomorphism $ a_{(n)}\in$ End $V$ by the expansion $Y(a, z)=\sum_{n\in \mathbb{Z}}a_{(n)}z^{-n-1}$ . Now,
let $a,$ $b\in V$ , and consider the series $Y(a, z)_{(n)}Y(b, z)$ and $Y(a_{(n)}b, z)$ . Then they
are creative and translation covariant. Since

$\lim_{z\rightarrow 0}Y(a, z)_{(n)}Y(b, z)|I\}=a_{(n)}b=\lim_{z\rightarrow 0}Y(a_{(n)}b, z)|I\}$ ,

we have $ Y(a, z)_{(n)}Y(b, z)|I\rangle$ $=Y(a_{(n)}b, z)|I$ } by lemma 6.1.4. Then by Lemma
5.1.3 applied to $\mathcal{V}=\{Y(a, z)|a\in V\}$ , we obtain the associativity formula

$Y(a, z)_{(n)}Y(b, z)=Y(a_{(n)}b, z)$ ,

which, together with the locality, implies the Borcherds identity (B1)

$\sum_{i=0}^{\infty}\left(\begin{array}{l}p\\i\end{array}\right)(a_{(r+i)}b)_{(p+q-i)^{C}}$

$=\sum_{i=0}^{\infty}(-1)^{i}\left(\begin{array}{l}r\\i\end{array}\right)(a_{(p+r-i)}(b_{(q+i)}c)-(-1)^{r}b_{(q+r-i)}(a_{(p+i)}c))$ .

l5These are essentially the axioms considered by Goddard [G]. More precisely, he assumed
$Y(a, z)|I\}=e^{zT}a$ instead of $[T, Y(a, z)]=\partial Y(a, z)$ in (G3). However, they are equivalent under
the axioms $(GO)-(G2)$ by Lemma 5.13 and Remark 6.1.5. (cf. [FKRW, Section 3], [ $K$ , Subsection
1.3].)
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by Proposition 4.3.3.
The other implications are easy, and we have (cf. [Li, Proposition 2.2.4], $[K$ ,

Proposition 4.8]):

Theorem 6.2.1. Let $V$ be a vector space, an $d$ let $|I\rangle$ $\in V$ be a $n$onzero vector.
Then, a $lin$ear map

$Y$ : $V\rightarrow(EndV)[[z, z^{-1}]]$

gives rise to a vertex $ algebr\partial$ structure on $V$ with th$evacu$um vector $|I$ } if an $d$

only if (V, $|I\},$ $Y$ ) satisfies Goddard’s axioms $(GO)-(G3)$ .

Note 6.2.2. Li’s proof of this result is as follows. Let (V, $|I\rangle,$ $T$ ) satisfy $(GO)-(G3)$ .
First note that $e^{zT}Y(a, y)=Y(a, y+z)e^{zT}$ by the translation covariance (G3).
Then, for any $a.b\in V$ , we have

$(y-z)^{m}Y(b, z)Y(a, y)|I\rangle=(y-z)^{m}Y(a, y)Y(b, z)|I\rangle$

$=(y-z)^{m}Y(a, y)e^{zT}b=(y-z)^{m}e^{zT}Y(a, y-z)b$

for $m\gg O$ . Letting $y=0$ and dividing the both sides by $(-z)^{m}$ , we have $Y(b, z)a=$

$e^{zT}Y(a, -z)b$ . Then for any $a,$ $b\in V$ , we have

$(x+z)^{m}Y(a, x+z)Y(b, z)c$

$=(x+z)^{m}Y(a, x+z)e^{zT}Y(c, -z)b=(x+z)^{m}e^{zT}Y(a, x)Y(c, -z)b$

$=(x+z)^{m}e^{zT}Y(c, -z)Y(a, x)b=(x+z)^{m}Y(Y(a, x)b,$ $z$ ) $c$

for $m\gg 0$ , which is the duality (cf. $[G$ , Theorem 3]). Finally, he shows by
calculation involving the delta function that the locality and the duality imply the
Borcherds identity. This last step is simplified by our consideration in Subsection
4.3 (cf. Proposition 4.3.3).

6.3 Characterization of the image (II)

In Subsection 5.3, we gave a set of conditions on a subspace $\mathcal{V}$ of $\tilde{\mathcal{O}}=\tilde{\mathcal{O}}(V, |I\rangle)$

to be the image $\mathcal{V}_{Y}$ of a vertex algebra (V, $|I\rangle,$ $Y$ ). Let us rewrite them using the
translation covariance.

To this end, let us consider the map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ . It decomposes as

$\mathcal{V}$ $\rightarrow$ $\mathcal{V}|I$ } $\rightarrow$ $V$

$A(z)$ – $ A(z)|I\rangle$ – $|A\rangle$ .

Then by combining Lemma 5.1.3 and Lemma 6.1.4, we have
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Lemma 6.3.1. Let $\mathcal{V}$ be a subspace of $\tilde{\mathcal{O}}$ . If the map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ is surjective,
and if $\mathcal{V}$ is pairwise mutually local and translation covariant, then the map $s|_{\mathcal{V}}$ is
bijective.

The fbllowing proposition illustrates the role of $T$ .

Proposition 6.3.2. If $\mathcal{V}\subset\tilde{\mathcal{O}}$ is pairwise mutually local and the map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow$

$V$ is surjective, then the following conditions are equivalent:

(a) $\mathcal{V}$ is clos$ed$ under the residue products an $d$ the map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ is bijective.

(b) $\mathcal{V}$ is translation covariant.

Proof. Suppose that the condition (a) holds. Then $\mathcal{V}$ satisfies $(L1)-(L3)$ , and it
coincides with the image $\mathcal{V}_{Y}$ of a vertex algebra (V, $|I\},$ $Y$ ) by Theorem 5.3.2. Hence
$\mathcal{V}$ is translation covariant.

Conversely, suppose that (b) holds. Then the map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ is bijective
by Lemma 6.3.1. Now, let $\tilde{\mathcal{V}}=\{\mathcal{V}\rangle$ be the space of fields generated by $\mathcal{V}$ . Then, $\tilde{\mathcal{V}}$

is pairwise mutually local and translation covariant, so we have $s|_{\tilde{\mathcal{V}}}$ : $\tilde{\mathcal{V}}\rightarrow V$ is
also bijective. Therefore $\mathcal{V}=\overline{\mathcal{V}}$ and $\mathcal{V}$ is closed under the residue products. $\square $

Thus we are led to the following set of conditions on a subspace $\mathcal{V}\subset\tilde{O}$ of
creative fields:

(T1) $\mathcal{V}$ is pairwise mutually local.

(T2) The map $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ is surjective.

(T3) $\mathcal{V}$ is translation covariant.

Then the above proposition says that the set of conditions $(T1)-(T3)$ is equiv-
alent to the set of conditions $(L1)-(L3)$ . Therefore, by Theorem 5.3.2,

Theorem 6.3.3. Let $V$ be a vector space, and let $|I\rangle$ $\in V$ be a nonzero vector.
If a subspace $\mathcal{V}\subset\tilde{\mathcal{O}}$ satisfies $(Tl)-(T3)$ , then there exists a unique vertex algebra
structure on $V$ with the vacuum $ve$ctor $|I\rangle$ such that $\mathcal{V}=\mathcal{V}_{Y}$ , where the map $Y$ is
given by th $e$ inverse of $s|_{\mathcal{V}}$ : $\mathcal{V}\rightarrow V$ .

6.4 Existence theorem

An immediate consequence of the last theorem is the following existence theorem
([FKRW, Proposition 3.1], $[K$ , Theorem 4.5]):
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Corollary 6.4.1 (Existence theorem). Let $V$ be a vector space, and let $|I\rangle$ $\in$

$V$ \’oe a nonzero vector. If a $subsetS$ of $\tilde{\mathcal{O}}=\tilde{\mathcal{O}}(V, |I\})$ satis$Ii$es

(S1) $S$ is pairwise mutually local.

(S2) The set $\{A_{-g_{1}-1}^{1}\cdots A_{-j_{k}-1}^{k}|I\rangle|k,j_{1}, \ldots,j_{k}\in \mathbb{N}, A^{1}(z), \ldots , A^{k}(z)\in S\}$

spans $V$ .

(S3) $S$ is translation covariant for $some$ endomorphism $T:V\rightarrow V$ .

Then there exis $ts$ a unique vertex algebra structure on $V$ with the vacuum vector
$|I\rangle$ such that $Y(|A^{\lambda}\}, z)=A^{\lambda}(z)$ for any $A^{\lambda}(z)\in S$ .

Just apply the theorem to $\mathcal{V}=\{S\rangle$ to get the corollary. We note that the map
$Y$ is given by

$Y(A_{-j_{1}-1}^{\lambda_{1}}\cdots A_{-j_{k}-1}^{\lambda_{k}}|I\rangle, z)=\circ\circ\partial^{(j_{1})}A^{\lambda_{1}}(z)\cdots\partial^{(j_{k})}A^{\lambda_{k}}(z)_{0}^{o}$ ,

which span the space $\mathcal{V}$ .


