
Example 6.21 ([27]). For the 3-manifold $M_{n,k}$ obtained from $S^{3}$ by integral

surgery along $(2, n)$ torus knot with $k$ framing, the universal perturbative in-

variant $\Omega(M_{n,k})$ is given by

$\Omega(M_{n,k})$ $=$ $\exp(’\iota^{\prime^{\prime^{\prime^{\prime^{\prime--}}\backslash _{\backslash _{\backslash }}}}}\backslash \backslash \backslash \backslash _{\sim\sim-}\prime^{\prime}’$

$+\frac{1}{2^{7}\cdot 3^{2}}(12n^{4}-12kn^{3}+3k^{2}n^{2}-15n^{2}+12kn-4k^{2}+4)^{\prime--------},’..’’\prime^{\prime^{\prime}}\backslash --------’\backslash \backslash ----.\backslash _{\backslash }\prime^{\prime}\backslash ’\backslash $,

$+$ (terms of degree $\geq 3$) $)$ .

In general $\Omega(M)$ can be expressed as the exponential of alinear sum of connected

chord diagrams; see [27].

7 Finite type invariants and the universal per-

turbative invariant

7.1 Finite type invariants of integral homology 3-spheres

Let $M$ be an oriented integral homology 3-sphere, that is, $H_{*}(M;\mathbb{Z})=H_{*}(S^{3}; \mathbb{Z})$ .
A framed link $\mathcal{L}=(L, f)$ is an unoriented link $L=\bigcup_{i=1}^{n}L_{i}$ in $M$ with framing
$f=$ $(f_{1}, f_{2}, \cdots , f_{n})$ , with $f_{i}\in \mathbb{Z}$ . We call $\mathcal{L}$ algebraically split if the linking
number of $L_{i}$ and $L_{j}$ is zero for each pair $(i, j)$ . We call $\mathcal{L}$ unit-framed if all
framings of $\mathcal{L}are\pm 1$ . By $M_{\mathcal{L}}$ we denote the closed oriented 3-manifold obtained
from $M$ by Dehn surgery along $\mathcal{L}$ with respect to the framing.

Remark 7.1. Let $M$ be an integral homology 3-sphere and $\mathcal{L}$ a framed link in
$M$ . Then the following two conditions are equivalent:

(1) $\mathcal{L}$ is algebraically split and unit-framed.

(2) $M_{\mathcal{L}^{\prime}}$ is an integral homology 3-sphere for any sublink $\mathcal{L}$
’ in $\mathcal{L}$ .

Pmof. If $\mathcal{L}$ is algebraically split and unit-framed, then we can easily verify the

condition (2). Conversely, suppose that the condition (2) holds. Then we have
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$f_{i}=\pm 1$ since $M_{\mathcal{L}_{i}}$ is an int $e$gral homology 3-sphere, where $\mathcal{L}_{i}$ is a sublink $(L_{i}, f_{i})$

of $\mathcal{L}$ . Further the linking number of $L_{i}$ and $L_{j}$ is zero since $M_{\mathcal{L}_{i}\cup \mathcal{L}_{j}}$ is an integral

homology 3-sphere. Therefore $\mathcal{L}$ is algebraically split and unit-framed. $\square $

In the following of this section, we assume that a framed link $\mathcal{L}$ is alge-

braically split and unit-framed. Let $\mathcal{M}$ be the vector space over $\mathbb{C}$ freely spanned

by homeomorphism classes of oriented integral homology 3-spheres. We put

$(M, \mathcal{L}):=\sum_{\mathcal{L}\subset \mathcal{L}}(-1)^{\#\mathcal{L}}M_{\mathcal{L}}\in \mathcal{M}$
,

where the sum runs over all sublinks $\mathcal{L}$ in $\mathcal{L}$ including the empty link. Further

let $\mathcal{M}_{d}$ be the vector subspace of $\mathcal{M}$ spanned by $(M, \mathcal{L})$ such that $M$ is an
integral homology 3-sphere, and $\mathcal{L}$ is an algebraically split and unit-framed link

with $d$ components in $\mathcal{M}$ .
Recall that a Vassiliev invariant of degree $d$ is a linear map $\mathcal{K}\rightarrow \mathbb{C}$ which

vanishes in $\mathcal{K}_{d+1}$ , where $\mathcal{K}_{d+1}$ is the vector subspace spanned by linear sums
of $2^{d+1}$ knots obtained by crossing changes at $d+1$ crossings. Here, instead of

“crossing”, we consider “Dehn surgery” to obtain the vector subspace $\mathcal{M}_{d+1}$ of
$\mathcal{M}$ . In analogue of the definition of Vassiliev invariants, we have

Definition 7.2. A map $v$ : $\mathcal{M}\rightarrow \mathbb{C}$ is called a finite type invariant of degree $d$

if $v|_{\mathcal{M}_{d+1}}=0$ .

Though the property of finite type for integral homology 3-spheres might

be defined in different ways, we should expect that the definition is related to

chord diagrams in the same way as Vassiliev invariants. In fact, we have the

following theorem for our finite type invariant defined above.

Theorem 7.3 ([8]). We have $\mathcal{M}_{3d+1}/\mathcal{M}_{3d+2}=0$ and $\mathcal{M}_{3d+2}/\mathcal{M}_{3d+3}=0$ .

Further there exists a surjection

$\mathcal{A}(\phi)^{(d)}\rightarrow \mathcal{M}_{3d}/\mathcal{M}_{3d+1}$ ,

where $\mathcal{A}(\phi)^{(d)}$ is a subspace of $\mathcal{A}(\phi)$ spanned by chord diagrams of degree $d$ .
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We show a sketch of the proof of the theorem below. We begin with the

following lemma.

Lemma 7.4. Let $\mathcal{K}\cup \mathcal{L}$ be an algebraically split and unit-fram$ed$ link in an
integral homology 3-sphere $M$ . Suppose $\#\mathcal{K}=1$ and $\#\mathcal{L}=d$ . Then we have
$(M, \mathcal{L})=(M_{\mathcal{K}}, \mathcal{L})$ in $\mathcal{M}_{d}/\mathcal{M}_{d+1}$ .

Pmof. Since $(M, \mathcal{L})-(M_{\mathcal{K}}, \mathcal{L})=(M, \mathcal{K}\cup \mathcal{L})$ belongs to $\mathcal{M}_{d+1}$ , we obtain this

lemma. $\square $

Lemma 7.5. For any $(M, \mathcal{L})$ in $\mathcal{M}_{d}$ there exists some framed link $\mathcal{L}$
’ in the

3-sphere $S^{3}$ such that $(M, \mathcal{L})=(S^{3}, \mathcal{L}’)$ in $\mathcal{M}_{d}/\mathcal{M}_{d+1}$ .

Pmof. This lemma is shown using the above lemma for a sequence of surgeries

along knots, getting $S^{3}$ from M. $\square $

Therefore $\mathcal{M}_{d}/\mathcal{M}_{d+1}$ is spanned by $(S^{3}, \mathcal{L})$ such that $\#\mathcal{L}=d$ . In the

following of this proof, it is sufficient to consider the equivalence relation among

framed links in $S^{3}$ given by $\mathcal{M}_{d+1}$ . Here we denote the equality $(S^{3}, \mathcal{L})=$

$(S^{3}, \mathcal{L})$ in $\mathcal{M}_{d}/\mathcal{M}_{d+1}$ by $\mathcal{L}\sim \mathcal{L}$ .

Lemma 7.6.

$L_{i}$ $L_{i}$ $L_{i}$ $L_{i}$ $L_{i}L_{i}$ $L_{j}L_{j}$ $L_{i}L_{i}$ $L_{j}L_{j}$

(7.1)

Pmof. Use the following relation,

(7.2)

where the middle picture implies the 3-manifold after Dehn surgery along the

trivial knot winding around the crossing. $\square $

Recall that, in the case of knots, we collapsed the chords and obtain singular

knots with d-crossings in Proposition 4.3, to get a linear map $\varphi$ : $\mathcal{A}(S^{1})\rightarrow$

$\mathcal{K}_{d}/\mathcal{K}_{d+1}$ . Instead of $\varphi$ , we consider the following map in this case.
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Proposition 7.7 ([30]). The map

$\psi$ : $\mathbb{Q}\left\{\begin{array}{l}theuni- trivalentgraphssuchthat\\\# edge=dandeachtrivalent\\vertexhasacyclicorder\end{array}\right\}\rightarrow \mathcal{M}_{d}/\mathcal{M}_{d+1}$

is well defined, and surjective.

Pmof. For a uni-trivalent graph $D$ , we make a link $L$ as follows. For a trivalent

vert$ex$ we associate the Borromean ring in the following way. We use a given

cyclic order and have a ribbon graph by replacing a vertex with a disk and

replacing an edge with a band. Further we replace the disk by the Borromean

ring and replace the band by its boundaries as

(7.3)

For a univalent vertex we consider the following correspondence.

$|\rightarrow\Vert$ (7.4)

Then, for a uni-trivalent graph $D$ with $d$ edges, we obtain a link $L$ with $d$

components.

We define $\psi(D)$ to be the class in $\mathcal{M}_{d}/\mathcal{M}_{d+1}$ represented by $(S^{3}, \mathcal{L})\in \mathcal{M}$ ,

where the framed link $\mathcal{L}$ is the link $L$ given above $with+1$ framings. By Lemma

7.6, $\psi(D)$ does not depend on the embedding of the ribbon graph. For the proof

of surjectivity, see [30]. $\square $

Pmof of Theorem 7.3. We define a map $d$ of

$\mathbb{Q}\left\{\begin{array}{llll}the & uni- trivalent & graphs & tsuchhat\\ & \# edge=dand & each & trivalent\\ & hvertexas & cayclic & order\end{array}\right\}$

to itself by
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where the above formula implies that we replace each dashed trivalent vertex by

the linear sum in the right hand side; if there are $k$ trivalent vertices, we obtain

a linear sum of $2^{k}$ uni-trivalent graphs by the map. Then $\psi\circ d$ is a surjection.

Further it takes graphs with univalent vertices to zero, and it also takes the AS

and IHX relations for trival$e$nt vertices to zero; see [8] for the detailed proof.

Hence $\psi\circ d$ induces the required map $\mathcal{A}(\phi)^{(d)}\rightarrow \mathcal{M}_{3d}/\mathcal{M}_{3d+1}$ . $\square $

In the same way as the case of Vassiliev invariants, we have the following

identification,

{the finite type invariants of degree $d$} $=(\mathcal{M}/\mathcal{M}_{d+1})^{*}$ .

Hence, by taking the dual of formulas in Theorem 7.3, we obtain

Corollary 7.8. We have

{the finite type invariants of degree $3d$}
$=$ {the finite type invariants of degree $3d+1$ }
$=$ {the finite type invariants of degree $3d+2$}.

Furthermore there exists an injection

$(\mathcal{A}(\phi)^{(d)})^{*}+\sim\frac{\{thefinitetypeinvariantsofdegree3d\}}{\{thefinitetypeinvariantsofdegree3d+1\}}$ .

For a finite type invariant $v$ of degree $3d$ , we call its image in $(\mathcal{A}(\phi)^{(d)})^{*}$ the

weight system of $v$ .

7.2 Universality of the universal perturbative invariant

among finite type invariants

In this section we show the following theorem. The procedure here is analogous

to that in Section 4.

Theorem 7.9 ([22]). The surjective map

$\mathcal{A}(\emptyset)^{(d)}\rightarrow \mathcal{M}_{3d}/\mathcal{M}_{3d+1}$

given in Theorem 7.3 is an isomorphism.
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As a corollary, we have

Corollary 7.10. For any non-negative integer $d$ and any finite type invariant
$v$ of degr$eed$ , there exists a map $W$ : $\mathcal{A}(\emptyset)\rightarrow \mathbb{C}$ such that $v(M)=W(\Omega(M))$

for any integral homology 3-sphere $M$ .

The proof of the corollary is obtained in the same way as the case of Vassiliev

invariants. The corollary implies that any finite type invariant factors through
$\Omega$ . Therefore we call $\Omega$ the universal finite type $inva’\dot{v}ant$.

Pmof of Theorem 7.9. We denote by $M_{D}$ the image of a chord diagram $D$ by

the above surjection given in Theorem 7.3. As in Section 4, we can reduce the

proof to the following formulas,

$\Omega(M_{D})=D+$ ($terms$ of degree $>d$), (7.5)

$\Omega(\mathcal{M}_{3d+3})\subset \mathcal{A}(\phi)^{(\geq d+1)}$ , (7.6)

for any $D\in \mathcal{A}(\phi)^{(d)}$ and $M_{D}\in \mathcal{M}_{3d}$ ; as for (7.6) note $\mathcal{M}_{3d+1}=\mathcal{M}_{3d+3}$ by

Theorem 7.3. By Lemma 7.11 below, we obtain (7.5) noting $\Omega(M)^{(\leq d)}=\Omega_{d}(M)$

for integral homology spheres $M$ , see [27]. We omit the proof of (7.6); see [22]

for its proof.6 $\square $

Lemma 7.11. If $D\in \mathcal{A}(\emptyset)^{(d)}$ , then we have

$\Omega_{d}(M_{D})=D\in \mathcal{A}(\phi)/D_{>d}$

Oudine of the proof. As in the proof of Theorem 7.3, we break trivalent vertices

of a trivalent graph $D$ to obtain a linear sum of uni-trivalent graphs. Further,

as in the proof of Proposition 7.7, we replace it with the linear sum of links $L_{D}$ ;

we show the procedure pictorially as

,
$’$

’,
,

$D$

(7.7)

$L_{D}$

6It is not a trivial corollary of Lemma 7.11; note that $\mathcal{M}_{3d+3}$ is spanned, not by $\{M_{D}\}$

for $D\in \mathcal{A}(\phi)^{(d+1)}$ , but by $\{M_{D}\}\cup M_{3d+6}$ .
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We put $L_{D}=\sum_{L}\epsilon_{L}L$ , where $\epsilon_{L}=\pm 1$ . Let $\mathcal{L}_{D}$ be $L_{D}$ with all framings $+1$ .

Thus, by construction of $M_{D}$ , we have

$M_{D}=(S^{3}, \mathcal{L}_{D})=\sum_{\mathcal{L}}^{2^{2d}}\epsilon_{\mathcal{L}}\sum_{\mathcal{L}\subset \mathcal{L}}^{2^{3d}}(-1)^{\#\mathcal{L}^{\prime}}S_{\mathcal{L}}^{3}$ , (7.8)

where $2d$ is the number of vertices, $3d$ is the number of edges of $D$ , and $\mathcal{L}$ is a

sublink of $\mathcal{L}$ .
Here the range of the first summation $\sum^{2^{2d}}$ in (7.8) implies the set of choices;

whether we break $e$ach of $2d$ trivalent vertices of $D$ or not. Further, as for the

second summation $\sum^{2^{3d}}$ , the choices are whether we choose each of $3d$ edges

of $D$ , or remove it. By regarding in such a way, the two summations become

independent, and we replac$e$ the order of them as

$M_{D}=\sum\sum^{2^{3d}}\epsilon_{\mathcal{L}}(-1)^{\#\mathcal{L}}S_{\mathcal{L}}^{3}2^{3d}$ .

If $\mathcal{L}$
’ is a proper sublink of $\mathcal{L}$ (namely, there is an edge which is not chosen),

then the second summation

$\sum\epsilon_{\mathcal{L}}(-1)^{\#\mathcal{L}}S_{\mathcal{L}}^{3}2^{3d}$

vanishes, since the Borromean ring becomes unlink if one of the components of

the Borromean ring is removed; we consider the Borromean ring corresponding

to a vert$ex$ at an end of the removed edge. We see that the right two pictures

in (7.7) cancel together, if we remove one of the middle three components.

Therefore the sum reduces to the sum for $\mathcal{L}=\mathcal{L}$ as

$M_{D}=\sum_{\mathcal{L}}\epsilon_{\mathcal{L}}(-1)^{\#\mathcal{L}}S_{\mathcal{L}}^{3}$
.

By the linearity of $\Omega_{d}$ we have

$\Omega_{d}(M_{D})=\sum_{\mathcal{L}}\epsilon_{\mathcal{L}}(-1)^{d}\frac{\iota_{d}\check{Z}(\mathcal{L})}{\iota_{d}\check{Z}(U_{+})^{3d}}$

$=(-1)^{d}\frac{\iota_{d}\check{Z}(\mathcal{L}_{D})}{\iota_{d}\check{Z}(U_{+})^{3d}}$ .
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Hence, to obtain the required formula, it is sufficient to show

$\iota_{d}\check{Z}(U_{+})^{3d}=(-1)^{d}+$ ($terms$ of degree $>0$), (7.9)

$\iota_{d}\check{Z}(\mathcal{L}_{D})=D+$ ($terms$ of degree $>d$). (7.10)

For the proof of (7.9), see [27]. Further we obtain (7.10) by Lemma 7.12 below.
$\square $

Lemma 7.12.

$\check{Z}(\mathcal{L}_{D})=$ $\Vert\Vert\Vert^{\prime}\Vert^{l\backslash }\Vert\Vert$ $+$ ($terms$ of $\#$ {trivalent vertices} $\geq 2$ )

Pmof. We obtain the formula by long calculation along the definition of $\hat{Z}$ . For

example, for the dashed $\theta$ curve $D$ , we show rough pictures of the calculation

below. Recall that $\mathcal{L}_{D}$ is a linear sum of links with 3 components in this case
(with $3d$ components in general).

$\text{ト_{}-------}^{\prime}’\backslash \prime^{\prime}\backslash _{\sim}---’-----\cdot\backslash ’\backslash ’\backslash \leftrightarrow$ $\dot{\text{ト}}-----\grave{\{}\backslash _{\backslash _{\backslash -\cdot\prime}}i\prime^{\prime^{\prime-\sim_{\backslash }}}\backslash $ $6^{\iota}\vdash_{i}\backslash ’\backslash \prime^{\prime}----------:\backslash -----\cdot’-----.’\backslash \backslash $

$D$
$\hat{Z}(\mathcal{L}_{D})\sim\check{Z}(\mathcal{L}_{D})$

For the detailed proof, see [22]. $\square $

8 Quantum invariants and the universal pertur-

bative invariant

8.1 Quantum $SO(3)$ invariant constructed from quantum

invariants of framed links

Let $V_{m}$ be the $m$ dimensional irreducible representation of $sl_{2}$ and $M$ the 3-

manifold obtained from $S^{3}$ by Dehn surgery along a framed link $L$ .

Theorem 8.1 ([12]). Let $r$ be an odd integer $\geq 3$ , and put $q=\exp(2\pi\sqrt{-1}/r)$ .

Then
$\ovalbox{\tt\small REJECT}(\sum[m]Q^{sl_{2};V_{m}}(U_{+}))^{\sigma+}(L)(\sum^{\sum[m]Q^{sl_{2};V_{m}}}[m]Q^{sl_{2};V_{m}}(U_{-}))^{\sigma-}\in \mathbb{C}$
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