
$v$ : $\mathcal{K}_{d}\rightarrow \mathbb{C}$ . Further this map induces a linear map $\mathcal{K}_{d}/\mathcal{K}_{d+1}\rightarrow \mathbb{C}$ , since $v$ is

of degree $di.e.,$ $v|_{\mathcal{K}_{d+1}}=0$ . By composing $\varphi$ , we obtain the weight system $W_{k}$

of $v$ . Further we have the inverse $[\hat{Z}]$ of $\varphi$ by Theorem 4.5. These maps are
written in a diagram as:

$\mathcal{K}$
$\supset$ $\mathcal{K}_{d}$

$projection\downarrow$

$\mathcal{K}_{d}/\mathcal{K}_{d+1}$

$\rightarrow^{v}$
$\mathbb{C}$

$0\nearrow 0$ $\uparrow W_{d}$

$\leftarrow^{o\varphi}$
$\mathcal{A}(S^{1})^{(d)}$

$\rightarrow^{[z^{\hat}]}$

where we obtain the commutativity of this diagram by Theorem 4.5 and the

definition of the weight system. Thus we have $(v-W_{d}\circ[\hat{Z}])|_{\mathcal{K}_{d}}=0$ in the

diagram. Hence the map

$v-W_{d^{\circ[z]}}^{\wedge}$ : $\{knots\}\rightarrow \mathbb{C}$

is a Vassiliev invariant of degree $d-1$ . We put $W_{d-1}$ to be the weight system

of $v-W_{d}\circ[\hat{Z}]$ .

For $k=d-2$ , we put $W_{d-2}$ to be the weight system of $v-(W_{d}+W_{d-1})\circ[\hat{Z}]$ ;

it is a Vassiliev invariant of degree $d-2$ by the same argument as above.

Fork $=d-3,$ $d-4,$ $\cdots,$ $wecangoonsimilarlyfortherest$ . $\square $

5 Vassiliev invariants and quantum invariants

We have seen the relations between quantum invariants and the modified Kont-

sevich invariant in Section 3, and between Vassiliev invariants and the modified

Kontsevich invariant in Section 4. In this section, we see a relation between

quantum invariants and Vassiliev invariants.

Theorem 5.1 ([4]). For a framed knot $K$ , the coefficient of $h^{d}$ in $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$

is a Vassiliev invariant of degree $d$ as an invariant of $K$ .

Pmof. In a construction of $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$ , we associate positive and negative

crossings with R-matrices $\mathcal{R}+and\mathcal{R}_{-}$ , respectively. These two R-matrices
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coincide at $h=0$ . Thereby $\mathcal{R}_{+}-\mathcal{R}_{-}$ is a matrix whose entries are divisible by

$h$ in $\mathbb{C}[[h]]$ , and this $\mathcal{R}_{+}-\mathcal{R}_{-}$ corresponds to a singular point of a singular knot

in the definition of Vassiliev invariants given in Section 4. If $K$ is a singular knot

with $d+1$ singular points, $Q^{\mathfrak{g},R}(K)$ is divisible by $h^{d+1}$ . Hence the coefficient

of $h^{d}$ is $0$ for such singular knots. $\square $

Theorem 5.2 ([33, Theorem 5.1]). The weight system of the Vassiliev in-

variant
$ K\vdash\rangle$ the coefficient of $h^{d}$ in $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$

is equal to the weight system $W_{\mathfrak{g},R}$ derived from the substitution of $\mathfrak{g}$ and $R$

into chord diagrams.

Pmof. We give another proof than that in [33].

By results in Section 3, we have the following commutative diagram.

$\mathcal{K}$

$\hat{z}\swarrow$ $0$
$\searrow Q^{g,R}(\cdot)|_{q=\epsilon^{h}}$ (5.1)

$\mathcal{A}(S^{1})$

$\hat{W}_{\mathfrak{g},R}\rightarrow$

$\mathbb{C}[[h]]$

By restricting it to $\mathcal{K}_{d}$ and $\mathcal{K}_{d+1}$ , we obtain the following commutative diagrams

(5.2) and (5.3), respectively.

$\mathcal{K}_{d}$

$\hat{z}\swarrow$ $0$
$\searrow Q^{\mathfrak{g},R}(\cdot)|_{q=e^{h}}$ (5.2)

$\mathcal{A}(S^{1})^{(\geq d)}$

$\hat{W}_{\mathfrak{g},R}\rightarrow$

$h^{d}\cdot \mathbb{C}[[h]]$ ,

$\mathcal{K}_{d+1}$

$\hat{z}\swarrow$ $0$
$\searrow Q^{\mathfrak{g},R}(\cdot)|_{q=\epsilon^{h}}$ (5.3)

$\mathcal{A}(S^{1})^{(\geq d+1)}$

$\hat{W}_{\mathfrak{g},R}\rightarrow$

$h^{d+1}\cdot \mathbb{C}[[h]]$ .

By dividing the diagram (5.2) by (5.3), we obtain the following commutative
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diagram:

$\mathcal{K}_{d}/\mathcal{K}_{d+1}$

$\varphi\nearrow$
$0\swarrow[\hat{Z}]$ $O$ $\searrow v$ (5.4)

$\mathcal{A}(S^{1})^{(d)}$

$ W_{\mathfrak{g},R}\rightarrow$

$\mathbb{C}$

where $v$ is the map obtained by dividing the right maps in (5.2) and (5.3) as

$\mathcal{K}_{d}/\mathcal{K}_{d+1}\rightarrow\frac{h^{d}\cdot \mathbb{C}[[h]]}{h^{d+1}\cdot \mathbb{C}[[h]]}\cong \mathbb{C}$ , (5.5)

and $\varphi$ is the map given in Proposition 4.3. Note that, for a singular knot
$K\in \mathcal{K}_{d}$ , the image $v(K)$ is equal to the coefficient of $h^{d}$ in $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$ .

Taking the dual of the above diagram (5.4), we have the following commu-
tative diagram:

$\frac{\{theVassi1ievinvariantsofdegreed\}}{\{theVassi1ievinvariantsofdegreed-1\}}$

$\varphi\swarrow$ $0$ $\nwarrow v$

$(\mathcal{A}(S^{1})^{(d)})^{*}$

$ W_{\mathfrak{g},R}\leftarrow$

$\mathbb{C}$

We compare two images of $1\in \mathbb{C}$ in $(\mathcal{A}(S^{1})^{(d)})^{*}$ . On one hand, $v^{*}(1)$ is the
Vassiliev invariant induced by the linear map (5.5). Hence the image of $v^{*}(1)$

in $(\mathcal{A}(S^{1})^{(d)})^{*}$ is equal to the former weight system in the statement of the
theorem. On the other hand, the image of $1\in \mathbb{C}$ by $W_{\mathfrak{g},R^{*}}$ is the map $W_{\mathfrak{g},R}$

itself. The required equality is the equality of these two images of 1; it is derived
from the commutativity of the above diagram. $\square $

Summary for results in Sections 2 to 5. As mentioned in Section $0$ , we
gave three kinds of invariants of knots; quantum invariants, finite type invari-

ants (Vassiliev invariants) and the universal quantum invariant (the modified
Kontsevich invariant), and showed the relations between them in Sections 2 to

5, see Figure 5.

The modified Kontsevich invariant has two universalities. One is the univer-
sality among quantum invariants; for each Lie algebra $\mathfrak{g}$ and each representation
$R$ of it, the quantum $(\mathfrak{g}, R)$ invariant $Q^{\mathfrak{g},R}$ is expressed as

$Q^{\mathfrak{g},R}=\hat{W}_{\mathfrak{g},R}\circ\hat{Z}$
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Definition 4.1
the quantum $(\mathfrak{g}, R)$ invariant $\underline{Theorem5.2}$ Vassiliev invariants
$Q^{\mathfrak{g},R}(K)\in \mathbb{Z}[q^{1/2N}, q^{-1/2N}]$ $v:\{knots\}\rightarrow \mathbb{C}$

the modified Kontsevich invariant
$\hat{Z}(K)\in \mathcal{A}(S^{1})$

Theorem 2.2

Figure 5.1: Three kinds of invariants of knots and the relations between them

with the weight system $\hat{W}_{\mathfrak{g},R}$ derived from the substitution of $\mathfrak{g}$ and $R$ into

chord diagrams. The other is the universality among Vassiliev invariants; each

Vassiliev invariant $v$ is expressed as

$v=W\circ\hat{Z}$

with some weight system $W$ .
As a corollary of the two universalities, we obtain a relation between quan-

tum invariants and Vassiliev invariants; the coefficients of the quantum $(\mathfrak{g}, R)$

invariant are Vassiliev invariants and their weight systems are equal to $W_{\mathfrak{g},R}$ .

6 The universal perturbative invariant of 3-manifolds

So far we have dealt with invariants of knots and links. From now on we will

consider invariants of 3-manifolds. The purpose of this section is to construct an
invariant of 3-manifolds which has the universal property that the perturbative

quantum invariants of 3-manifolds recover from it. So we call it the universal

perturbative invariant of 3-manifolds.

6.1 Properties of $\hat{Z}(L)$

We will construct invariants from $\hat{Z}(L)$ in Section 6.4. To show the invariance

under Kirby moves, we need the following properties of $\hat{Z}(L)$ .
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