
completing this case.
Lastly, we show that the invariant $\hat{W}(\hat{Z}(L))$ satisfies the third formula (3.10),

using formulas obtained above. We have

$(q^{1/2}-q^{-1/2})\hat{W}(\hat{Z}(\uparrow))\hat{W}(\hat{Z}(O))$

$=(q^{1/2}-q^{-1/2})\hat{W}(\hat{Z}(\uparrow O))$

$=q^{1}/\hat{W}(\hat{Z}($

$=q^{1/2N}q^{(N-1/N)/2}\hat{Z}(\uparrow)-q^{-1/2N}q^{-(N-1/N)/2}\hat{Z}(\uparrow)$

$=(q^{N/2}-q^{-N/2})\hat{Z}(\uparrow)$ .

Hence we have $\hat{W}(\hat{Z}(O))=[N]$ . $\square $

4 The modified Kontsevich invariant and Vas-

siliev invariants

4.1 Vassiliev invariants of framed knots

We denote framed knots with even5 framings simply by knots in this section.

Let $\mathcal{K}$ be the vector space freely spanned by knots over $\mathbb{C}$ . A singular knot is an
immersion of $S^{1}$ into $S^{3}$ whose singularities are transversal double points. We

regard a singular knot as an element in $\mathcal{K}$ by linearly removing each singularity

by the following relation

for example, see Figure 4.1. We define the subspace $\mathcal{K}_{d}$ of $\mathcal{K}$ by

$\mathcal{K}_{d}=span$ { $the$ singular knots with $d$ singular points}.

5The framing of a framed knot usually changes by even, by a crossing change. Hence we

consider framed knots only with even framings. If we considered framed knots only with odd

framings, we obtain the same results as in this section. This suggestion is due to Thang Le.
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Figure 4.1: A singular knot belongs to $\mathcal{K}$

Definition 4.1. A map $v$ : $\mathcal{K}\rightarrow \mathbb{C}$ is called a Vassiliev invariant of degree $d$ , if

$v|_{\mathcal{K}_{d+1}}=0$ .

Remark 4.2. By the above definition, we have the following identification

{the Vassiliev invariants of degree $d$} $=(\mathcal{K}/\mathcal{K}_{d+1})^{*}$ .

We denote by $\mathcal{A}(S^{1})^{(d)}$ the subspace of $\mathcal{A}(S^{1})$ spanned by the chord diagrams

of degree $d$ .

Proposition 4.3. There exists the following natural surjection $\varphi$ ,

$\varphi$ : $\mathcal{A}(S^{1})^{(d)}\rightarrow \mathcal{K}_{d}/\mathcal{K}_{d+1}$ .

Pmof. Before giving the required map, we define a map

$\hat{\varphi}$ : {the chord diagrams with $d$ chords and no dashed trivalent vertices}
$\rightarrow \mathcal{K}_{d}/\mathcal{K}_{d+1}$

Let $D$ be a chord diagram with $d$ chords and no trivalent vertices. By collapsing

each chord in $D$ to a point, we obtain a singular $S^{1}$ . Let $K_{D}$ be an embedding of

the singular $S^{1}$ in $S^{3}$ ; for example, see Figure 4.2. Any singular knots obtained

from $D$ in such a way are equivalent to each other by finite sequence of crossing

changes. Note that, if two singular knots with $d$ singular points are different by

a crossing change, they are equivalent to each other in $\mathcal{K}_{d}$ modulo $\mathcal{K}_{d+1}$ . Hence
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D K $D$

Figure 4.2: Collapsing the chords

the equivalence class $[K_{D}]$ in $\mathcal{K}_{d}/\mathcal{K}_{d+1}$ does not depend on embeddings of the

singular $S^{1}$ , and we obtain a well-defined map $\hat{\varphi}$ .

Further we show that $\hat{\varphi}$ induces the required map $\varphi$ as follows. Let $D$ be

a chord diagram of degree $d$ . By using the STU relation, $D$ is equivalent to a

linear sum of chord diagrams with $d$ chords and no trivalent vertices. We put

$\varphi(D)$ to be the linear sum of the images of such chord diagrams by $\hat{\varphi}$ . It is

sufficient to show that $\varphi(D)$ does not depend on the way of removing trivalent

vertices in $D$ by the STU relation. If two chord diagrams without trivalent

vertices are related by finite sequence of the STU relation, they are related by

the $4T$ relation shown in Figure 4.3, see [3]. The embedding of singular knots

corresponding to the terms in the $4T$ relation cancel with each other as in Figure

4.4. Therefore the map $\varphi$ is well defined. $\square $

$(_{\backslash }\backslash \backslash ,^{\prime}(\backslash \backslash /\lambda_{j_{\backslash }}.r_{\vee^{J_{\backslash }^{\prime\backslash }}\vee^{J^{\prime}}}^{----,,\backslash _{j_{\backslash }}.r_{----\neq}^{\prime}\searrow}\backslash \backslash \backslash J_{\backslash }^{\backslash }\backslash \sim 4^{\prime}’\backslash r^{x^{J},\prime}\vee^{\backslash }\backslash j_{\backslash }’-,-.\backslash /-.J^{\prime}\backslash +_{J^{\prime:},}=0’-/$

,

Figure 4.3: The $4T$ relation

We obtain the following corollary by taking the dual of the map $\varphi$ .

Corollary 4.4. There exists a natural injection $\varphi^{*}$ ,

$(\mathcal{A}(S^{1})^{(d)})^{*}\leftrightarrow\frac{\{theVassi1ievinvariantsofdegreed\}}{\{theVassi1ievinvariantsofdegreed-1\}}\varphi$ .
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Figure 4.4: The $4T$ relation vanishes by $\hat{\varphi}$ .

Pmof. As in Remark 4.2, we identify {the Vassiliev invariants of degree $d$} and

{the Vassiliev invariants of degree $d-1$ } with $(\mathcal{K}/\mathcal{K}_{d+1})^{*}$ and $(\mathcal{K}/\mathcal{K}_{d})^{*}$ respec-

tively. Hence the right hand side is equal to $(\mathcal{K}/\mathcal{K}_{d+1})^{*}/(\mathcal{K}/\mathcal{K}_{d})^{*}=(\mathcal{K}_{d}/\mathcal{K}_{d+1})^{*}$ .

By taking the dual of $\varphi$ , we have the required injection. $\square $

For a Vassiliev invariant $v$ of degree $d$ , we call its image in $(\mathcal{A}(S^{1})^{(d)})^{*}$ by

the above injection $\varphi^{*}$ the weight system of $v$ .

4.2 Universality of the modified Kontsevich invariant among

Vassiliev invariants

Recall that the modified Kontsevich invariant $\hat{Z}$ was constructed as the universal

invariant among quantum invariants. On the other hand, the map $\varphi$ is defined

above, independently of $\hat{Z}$ , though $\varphi$ is also related to chord diagrams. In

Theorem 4.5 below, we show $\hat{Z}$ induces the inverse of $\varphi$ as

$\mathcal{A}(S^{1})^{(d)}\Leftrightarrow\varphi \mathcal{K}_{d}/\mathcal{K}_{d+1}$ .
$[\hat{Z}]$

The theorem is remarkable in a viewpoint of giving a direct connection between

the “universal quantum invariant” and Vassiliev invariants via chord diagrams.

Theorem 4.5 ([20]). Let $\hat{Z}$ be the modified Kontsevich invariant and $\varphi$ the

map defined in Proposition 4.3.
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(1) $\hat{Z}$ induces a well-defined linear map $[\hat{Z}]$ : $\mathcal{K}_{d}/\mathcal{K}_{d+1}\rightarrow \mathcal{A}(S^{1})^{(d)}$ .

(2) $[\hat{Z}]\circ\varphi$ is equal to the identity map on $\mathcal{A}(S^{1})^{(d\rangle}$ .

(3) $\varphi\circ[\hat{Z}]$ is equal to the identity map on $\mathcal{K}_{d}/\mathcal{K}_{d+1}$ .

To prove this theorem, we need the following lemma.

Lemma 4.6. Let $D$ be a chord diagram with $d$ chords and no trivalent vertices,

and $K_{D}$ the element of $\mathcal{K}_{d}$ obtained by collapsing chords into singular points as
in the proof of Proposition 4.3. Then we have

$\hat{Z}(K_{D})=D+$ ($terms$ of degree $>d$ ).

Pmof. By the definition of $\hat{Z}$ , we have

$\hat{Z}(\times)=\hat{Z}(\nwarrow\nearrow_{\backslash })-\hat{Z}(\times)$

$=\times+\frac{1}{24}-X+\cdots$

We obtain $\hat{Z}(K_{D})$ as

$\hat{Z}(,\times\times_{2}----\times)=\times\times.\sim\cdot--\times+\frac{1}{24}X_{-}X_{\backslash }.--\cdot-\times’’’’.\sim$

.

$’.$

$+\cdots$ ,

where the chord diagram $D$ appears again as the first term in the right hand
side, and the other terms have degrees more than $d$ . This implies the required

formula. $\square $

Pmof of Theorem 4.5. We define $\mathcal{A}(S^{1})^{(\geq d)}$ to be the subspace of $\mathcal{A}(S^{1})$ spanned

by the chord diagrams of degree $\geq d$ . The image of $\mathcal{K}_{d}$ by $\hat{Z}$ is in $\mathcal{A}(S^{1})^{(\geq d)}$ by

Lemma 4.6; note that we remove trivalent vertices in a chord diagram before

applying the lemma. Hence $\hat{Z}$ induces a map $\mathcal{K}_{d}\rightarrow \mathcal{A}(S^{1})^{(\geq d)}$ . By composing

the projection $\mathcal{A}(S^{1})^{(\geq d)}\rightarrow \mathcal{A}(S^{1})^{(d)}$ , we obtain a map $\mathcal{K}_{d}\rightarrow \mathcal{A}(S^{1})^{(d)}$ . This
map takes $\mathcal{K}_{d+1}$ to $0$ , since $\hat{Z}(\mathcal{K}_{d+1})\subset \mathcal{A}(S^{1})^{(\geq d+1)}$ by Lemma 4.6. It follows
that $\hat{Z}$ induces a well-defined map $\mathcal{K}_{d}/\mathcal{K}_{d+1}\rightarrow \mathcal{A}(S^{1})^{(d)}$ ; we denote it by $[\hat{Z}]$ ,

completing the proof of (1).

We have
$\hat{Z}(\varphi(D))=D+$ ($terms$ of degree $>d$),
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by applying Lemma 4.6 after removing trivalent vertices in $D$ . Further we
project it into $\mathcal{A}(S^{1})^{(d)}$ when defining $[\hat{Z}]$ . Hence we have $[\hat{Z}](\varphi(D))=D$ ,

completing the proof of (2).

As for (3), since $\varphi$ is surjective, it suffices to show $\varphi\circ[\hat{Z}]\circ\varphi=\varphi$ . It holds

by (2). $\square $

There exists the inverse of $\varphi$ by Theorem 4.5. Hence we have

Corollary 4.7. The natural surjection $\varphi$ : $\mathcal{A}(S^{1})^{(d)}\rightarrow \mathcal{K}_{d}/\mathcal{K}_{d+1}$ is an isomor-

phic linear map.

Further we have

Corollary 4.8. For any positive integer $d$ and any Vassiliev invariant $v$ of de-

gree $d$ , there exists the map $W$ : $\mathcal{A}(S^{1})\rightarrow \mathbb{C}$ satisfying $v(K)=W(\hat{Z}(K))$ for

any knot $K$ and $W|_{A(S^{1})^{(\geq d+1)}}=0$ .

Remark 4.9. The above corollary implies that any Vassiliev invariant $v$ factors
$\hat{Z}$ with some $W,$ $i.e.$ , we have the following commutative diagram.

{knots} $\rightarrow^{v}$
$\mathbb{C}$

$\hat{z}\searrow$ $\nearrow w$

$\mathcal{A}(S^{1})$

Conversely, if we have $\hat{Z}$ and a weight system $W$ which vanishes in $\mathcal{A}(S^{1})^{(\geq d+1)}$ ,

we obtain a Vassiliev invariant as the composition of them. Hence we can call
$\hat{Z}$ the universal Vassiliev invariant.

Pmof of Comllary 4.8. Let $v$ be a Vassiliev invariant of degree $d$ . We give
$W_{k}$ : $\mathcal{A}(S^{1})^{(k)}\rightarrow \mathbb{C}$ by induction on $k$ as follows, and obtain the required

weight system by putting $W=\sum_{k}W_{k}$ .

For $k>d$ , we put $W_{k}=0$ .

For $k=d$ , we put $W_{k}$ to be the weight system of the Vassiliev invariant $v$ .

For $k=d-1$ , we make a Vassiliev invariant of degree $d-1$ from $v$ and $W_{d}$

as follows. As a restriction of the Vassiliev invariant $v$ , we have a linear map
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$v$ : $\mathcal{K}_{d}\rightarrow \mathbb{C}$ . Further this map induces a linear map $\mathcal{K}_{d}/\mathcal{K}_{d+1}\rightarrow \mathbb{C}$ , since $v$ is

of degree $di.e.,$ $v|_{\mathcal{K}_{d+1}}=0$ . By composing $\varphi$ , we obtain the weight system $W_{k}$

of $v$ . Further we have the inverse $[\hat{Z}]$ of $\varphi$ by Theorem 4.5. These maps are
written in a diagram as:

$\mathcal{K}$
$\supset$ $\mathcal{K}_{d}$

$projection\downarrow$

$\mathcal{K}_{d}/\mathcal{K}_{d+1}$

$\rightarrow^{v}$
$\mathbb{C}$

$0\nearrow 0$ $\uparrow W_{d}$

$\leftarrow^{o\varphi}$
$\mathcal{A}(S^{1})^{(d)}$

$\rightarrow^{[z^{\hat}]}$

where we obtain the commutativity of this diagram by Theorem 4.5 and the

definition of the weight system. Thus we have $(v-W_{d}\circ[\hat{Z}])|_{\mathcal{K}_{d}}=0$ in the

diagram. Hence the map

$v-W_{d^{\circ[z]}}^{\wedge}$ : $\{knots\}\rightarrow \mathbb{C}$

is a Vassiliev invariant of degree $d-1$ . We put $W_{d-1}$ to be the weight system

of $v-W_{d}\circ[\hat{Z}]$ .

For $k=d-2$ , we put $W_{d-2}$ to be the weight system of $v-(W_{d}+W_{d-1})\circ[\hat{Z}]$ ;

it is a Vassiliev invariant of degree $d-2$ by the same argument as above.

Fork $=d-3,$ $d-4,$ $\cdots,$ $wecangoonsimilarlyfortherest$ . $\square $

5 Vassiliev invariants and quantum invariants

We have seen the relations between quantum invariants and the modified Kont-

sevich invariant in Section 3, and between Vassiliev invariants and the modified

Kontsevich invariant in Section 4. In this section, we see a relation between

quantum invariants and Vassiliev invariants.

Theorem 5.1 ([4]). For a framed knot $K$ , the coefficient of $h^{d}$ in $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$

is a Vassiliev invariant of degree $d$ as an invariant of $K$ .

Pmof. In a construction of $Q^{\mathfrak{g},R}(K)|_{q=e^{h}}$ , we associate positive and negative

crossings with R-matrices $\mathcal{R}+and\mathcal{R}_{-}$ , respectively. These two R-matrices
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