
Figure 2.1: The chord diagram $\Theta$

Invariance under RII. The invariance is derived from $R\cdot R^{-1}=R^{-1}\cdot R=1$ .
Invariance under RIII. We obtain the invariance by the hexagon relations

(2.6).

$\square $

3 The modified Kontsevich invariant and quan-

tum invariants

In this section we show that quantum invariants recover from the modified

Kontsevich invariant; we expect the recovery because of the following historical

development from quantum invariants to the modified Kontsevich invariant.

T. Kohno [16] gave an expression of quantum invariants using an iterated in-

tegral solution of the Knizhnik-Zamolodchikov equation [15]. Based on Kohno’s

work, Drinfeld [7] led the universal version of the Knizhnik-Zamolodchikov equa-

tion; the solution of it consists of chord diagrams, not depending on a Lie algebra

and its representation, and the ordinary solution recovers from the “universal”
solution by substituting a Lie algebra and its representation to chord diagrams.

After that, Kontsevich gave a definition of an invariant (the Kontsevich in-

variant) of knots using the universal solution written by the iterated integral.

Further J. Murakami and Le [25] gave a combinatorial construction of the in-

variant (the modified Kontsevich invariant), modifying the invariant for framed

links; we denote it by $\hat{Z}(L)$ for an oriented framed link $L$ . Therefore quantum

invariants should recover from the modified Kontsevich invariant by substituting

a Lie algebra and its representation into chord diagrams.
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3.1 Substitution of Lie algebra and its representation into

a chord diagram

In this section we define a map from the set of chord diagrams to the complex

number field $\mathbb{C}$ by substitution of a Lie algebra and its representation into chord

diagrams. For the definition of the map, see also [2]. We call this map the weight

system derived from substitution of the Lie algebra and the representation.

Let $\mathfrak{g}$ be a simple Lie algebra, $R$ its irreducible representation and $X$ a closed

l-manifold. We define a map $W_{\mathfrak{g},R}$ : $\mathcal{A}(X)\rightarrow \mathbb{C}$ as follows. For a chord diagram
$D$ depicted in the plane, we draw horizontal lines (after deforming the chord

diagram into a suitable position in the plane, if necessary) so that each part

between two adjacent horizontal lines includes one vertex or one maximal or

minimal point of the chord diagram as shown in the formulas (3.1) to (3.5); for

an example see Figure 3.1. We put two lines on the top and the bottom of the

diagram.

Figure 3.1: Horizontal lines on a chord diagram

We associate a tensor product of copies of $\mathfrak{g},$
$R$ and $R^{*}$ , where $R^{*}$ denotes the

dual representation of $R$ , to each horizontal line as follows. On the horizontal

line the chord diagram $D$ has sections of dashed chords and solid lines. We

associate $\mathfrak{g}$ to a section of a dashed chord, $R$ a section of an upward solid line

and $R^{*}$ a section of a downward solid line, and associate the tensor product of

them to the horizontal line. Further we associate the trivial representation $\mathbb{C}$
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to the horizontal line which has no sections of the chord diagram.

We give a linear map between two tensor products corresponding to two

adjacent horizontal lines as follows,

$:::::\prime^{--}\backslash \backslash -$

$:i::::\backslash --$

,

$’\backslash i_{\backslash }:$

:

$’’$

’
$\backslash \backslash \backslash $

$R$

$\uparrow$ (3.1)

$\mathfrak{g}\otimes R$

$R^{*}$

$\uparrow$ (3.2)

$\mathfrak{g}\otimes R^{*}$

$\mathbb{C}$

$\uparrow$ (3.3)

$\mathfrak{g}\otimes \mathfrak{g}$

$\mathfrak{g}\otimes \mathfrak{g}$

$\uparrow$ (3.4)

$\mathbb{C}$

$\mathfrak{g}$

$\uparrow$ (3.5)

$\mathfrak{g}\otimes \mathfrak{g}$

where the first map is defined to be the representation, the second map the dual

representation, the third map the Killing form, the fourth map its dual4 and
the last map the Lie bracket.

By composing the linear maps, we have a linear map as

$\mathbb{C}\rightarrow\cdots\rightarrow \mathfrak{g}\otimes \mathfrak{g}\otimes R\otimes R^{*}\rightarrow\cdots\rightarrow \mathbb{C}$ .

We define $W_{\mathfrak{g},R}(D)$ to be the image of 1 in $\mathbb{C}$ by the composed map $\mathbb{C}\rightarrow \mathbb{C}$ .
In order to see that $W_{\mathfrak{g},R}(D)$ does not depend on the position of $D$ in the

plane in the above definition, we give another definition of $W_{\mathfrak{g},R}$ as follows. Let
$\overline{4We}$take the dual with respect to the Killing form, which is a non-degenerate bilinear form
on the simple Lie algebra.
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$\{\mathfrak{g}_{a}\}_{a\in I}$ be an orthonormal basis with respect to the Killing form on $\mathfrak{g}$ and $f_{bcd}$

the structure constants of $\mathfrak{g}$ relative to the basis $\{\mathfrak{g}_{a}\}$ . For a chord diagram
$D$ , we label each dashed edge by an element of $I$ . We associate the structure

constant $f_{bcd}$ to a trivalent dashed vertex such that the three edges around the

vertex are labeled by $b,$ $c$ and $d$ , and associate the base $\mathfrak{g}_{a}$ to a univalent dashed

vertex labeled by $a$ . We define $W_{\mathfrak{g},R}(D)$ to be the sum of the product of all

labeled structure constants and the traces on $R$ of the product of the labeled

basis along solid lines, where we take the sum over all labeling. For example,

we have

$W_{\mathfrak{g},R}(\wedge^{\vee\backslash }=^{\prime\backslash :}\backslash )=\sum_{a,b,c,d=1}^{dim\mathfrak{g}}f_{bcd}trace(\rho(\mathfrak{g}_{a})\rho(\mathfrak{g}_{b})\rho(\mathfrak{g}_{a})\rho(\mathfrak{g}_{c})\rho(\mathfrak{g}_{d}))--\wedge^{\prime}:\backslash ’---\backslash \backslash $ ,

where $\rho$ denotes the representation $\mathfrak{g}\rightarrow End(R)$ .

Lemma 3.1. The map $W_{\mathfrak{g},R}$ : $\mathcal{A}(X)\rightarrow \mathbb{C}$ is well defined.

Pmof. The above two definitions of $W_{\mathfrak{g},R}$ are equivalent; it is shown by com-

puting the composed linear map in the first definition by using the basis in the

second definition. Hence, for a given chord diagram $D$ , the value $W_{\mathfrak{g},R}(D)$ is

well defined. It is sufficient to show that $W_{\mathfrak{g},R}$ is invariant under the AS, IHX

and STU relations.

Firstly, we get invariance under the AS relation by the anti-symmetry of the

Lie bracket, [X, $Y$] $=-[Y, X]$ .
Secondly, we get invariance under the IHX relation by the Jacobi identity

$[[X, Y],$ $Z$] $+[[Y, Z],$ $X$] $+[[Z, X],$ $Y$ ] $=0$ , (3.6)

as follows. By taking in $W_{\mathfrak{g},R}$ both sides of the IHX relation, we have linear

maps $\mathfrak{g}^{\otimes 3}\rightarrow \mathfrak{g}$ ;

$X\otimes Y\otimes Z\leftrightarrow[[X, Y],$ $Z$]

$X\otimes Y\otimes Z\vdash\div[X, [Y, Z]]-[Y, [X, Z]]$ ,

with respect to $X,$ $Y,$ $Z\in \mathfrak{g}$ shown in Figure 3.2. These two maps are equal to

each other by (3.6).
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Figure 3.2: The IHX relation derived from the Jacobi identity

Lastly, we get invariance under the STU relation by the defining relation of

representations $\rho([X, Y])=\rho(X)\rho(Y)-\rho(Y)\rho(X)$ ; for a corresponding picture

see Figure 3.3. $\square $

Figure 3.3: The STU relation derived from the definition of representation

Remark 3.2. If $X$ is not closed (for example, as in Figure 3.4), for a chord

diagram $D$ on $X$ , the map $W_{\mathfrak{g},R}(D)$ is defined to be an intertwiner between

two representations of $\mathfrak{g}$ corresponding to the top and the bottom horizontal

lines in the first definition of $W_{\mathfrak{g},R}$ . Here we call a linear map between two

representations compatible with the action of $\mathfrak{g}$ an intertwiner.

3.2 Recovery of the quantum $(\mathfrak{g}, R)$ invariant from the

modified Kontsevich invariant

For each representation $R$ of $\mathfrak{g}$ and an oriented framed link $L$ , we have the

quantum $(\mathfrak{g}, R)$ invariant $Q^{\mathfrak{g},R}(L)$ in $\mathbb{Z}[q^{1/2N}, q^{-1/2N}]$ where $N$ is the rank of
$\mathfrak{g}$ ; for example, see [40] for its definition. In this section, we show recovery

of the quantum invariant by the map $\hat{W}_{\mathfrak{g},R}$ : $\mathcal{A}(u^{l}S^{1})\rightarrow \mathbb{C}[[h]]$ defined by
$\hat{W}_{\mathfrak{g},R}(D)=W_{\mathfrak{g},R}(D)h^{deg(D)}$ for a chord diagram $D$ , where $W_{\mathfrak{g},R}$ is the weight

system derived from substitution of $\mathfrak{g}$ and $R$ ; recall that the degree $deg(D)$ is
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Figure 3.4: The linear map between the top and bottom horizontal lines becomes

an intertwiner

half the number of univalent and trivalent vertices of the chord diagram $D,$ $i.e$ .
$deg(D)$ is half the number of the chords after removing trivalent vertices from

$D$ by the STU relation.

Theorem 3.3. For any framed link $L$ , we have

$\hat{W}_{\mathfrak{g},R}(\hat{Z}(L))=Q^{\mathfrak{g},R}(L)|_{q=e^{h}}$ .

We have a conceptual proof of the theorem, along the historical development

of the modified Kontsevich invariant, see the beginning of Section 3. This

approach is justified by using the uniqueness of category of quasi-Hopf algebras.

See [26, Theorem 10] and [11, Theorem XX.8.3] for rigorous proofs of Theorem

3.3 in this approach.

By a direct combinatorial approach using the skein relation, J. Murakami

and T. T. Q. Le [25] showed Theorem 3.3 in the case that $R$ is the vector rep-

resentation $V$ of $sl_{N}$ . In this section we give a combinatorial proof of Theorem

3.3 in that case along the proof in [25]. We denote $W_{sl_{N},V}$ simply by $W$ in this

section.

We show the following lemma before we prove the theorem.

Lemma 3.4. The following equation holds,

$W()---()=-\frac{1}{N}W()$ $()+W(\times)$ ,
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where both sides belong to $Hom_{sl_{N}}(V\otimes V\rightarrow V\otimes V)$ .

Pmof. The dimension of $Hom_{sl_{N}}(V\otimes V\rightarrow V\otimes V)$ is 2, and $W()$ $()$ and

$W(\times)$ are linearly independent; it is shown by the same method as below.

Hence we put

$W()---()=aW()$ $()+bW(\times)$ . (3.7)

We derive two relations from the above equation as follows.

On one hand, by closing the right string in the pictures in (3.7), we obtain

$W(\}-O)=aW(|O)+bW(p)$ .

If a chord diagram includes a solid circle with one dashed univalent vertex, it

vanishes by $W$ , since any intertwiner from the adjoint representation of the

Lie algebra $sl_{N}$ to the trivial representation is equal to the zero map; recall

the definition of the weight system $W$ given in Section 3.1. Hence we have

$W(\}-O)=0$ . Further we have $W(|O)=NW(|)$ , since $W(O)$ is equal to

the dimension of the vector representation $V$ . Therefore we have $aN+b=0$ .
On the other hand, by closing the right string after changing two bottom

ends in the pictures in (3.7), we obtain

$W(t_{\wedge^{\backslash }}^{\sim}’\backslash \dot{i})=aW(p)+bW(|O)$ .

The left hand side equals $W( t^{\sim}\vee^{\backslash }’\backslash \dot{j})=(N-1/N)W(|)$ ; note that $N-1/N$ is

the eigenvalue of the Casimir element of $sl_{N}$ on the vector representation $V$ .

Therefore, we have $N-1/N=a+bN$ .

Hence we have $a=-1/N$ and $b=1$ . Substituting them into (3.7) we obtain

the required formula. $\square $

Pmof of Theorem 3.3. We denote $Q^{sl_{N},V}(L)$ simply by $Q(L)$ in this proof. The

quantum invariant $Q(L)$ is characterized by the following three relations,

$q^{1/2N}Q(\times)-q^{-1/2N}Q(\times)=(q^{1/2}-q^{-1/2})Q()()$ , (3.8)
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$Q(\dagger_{\rho)=q^{(N-1/N)/2}Q(\uparrow)}$ ,

$Q(O)=[N]=\frac{q^{N/2}-q^{-N/2}}{q^{1/2}-q-1/2}$

(3.9)

(3.10)

where we call the first relation skein relation. It is sufficient to show that
$\hat{W}(\hat{Z}(L))$ also satisfies the above three formulas.

Firstly, we show the skein relation (3.8) for $\hat{W}(\hat{Z}(L))$ . We put

$H=)---($ , $ P=\times$ and $ 1=\uparrow$ $\uparrow$ .

By the definition of $\hat{W}$ and $\hat{Z}$ we have

$\hat{W}(\hat{Z}(\times))=\hat{W}(P(1+\frac{1}{2}H+\frac{1}{8}H^{2}+\cdots+\frac{1}{n!\cdot 2^{n}}H^{n}+\cdots))$

$=W(P(1+\frac{h}{2}H+\frac{h^{2}}{8}H^{2}+\cdots+\frac{h^{n}}{n!\cdot 2^{n}}H^{n}+\cdots))$

$=W(Pe^{hH/2})$ .

By the above lemma, this equals $W(Pe^{h(P-1/N)/2})$ . Then we have

$e^{h/2N}\hat{W}(\hat{Z}(\times))=W(Pe^{hP/2})$ .

In the same way as above, we have

$e^{-h/2N}\hat{W}(\hat{Z}(\times))=W(Pe^{-hP/2})$ .

From the above two equations, the left hand side of the skein relation is equal to

$W(Pe^{hP/2}-Pe^{-hP/2})$ . Note that every term in the expansion has even power

of $P$ . Since $P^{2}=1$ , the left hand side is equal to $W(e^{h/2}-e^{-h/2})$ . This is equal

to the right hand side of the skein relation.

Secondly, we show that the invariant $\hat{W}(\hat{Z}(L))$ satisfies the second formula

(3.9). Applying the following relation

$W(t_{--J}-\sim’\backslash \backslash )=(N-\frac{1}{N})W(\uparrow)$

to the formula (2.7), we obtain

$\hat{W}(\hat{Z}(b))=e^{h(N-1/N)/2}\hat{W}(\hat{Z}(\uparrow))$ ,

29



completing this case.
Lastly, we show that the invariant $\hat{W}(\hat{Z}(L))$ satisfies the third formula (3.10),

using formulas obtained above. We have

$(q^{1/2}-q^{-1/2})\hat{W}(\hat{Z}(\uparrow))\hat{W}(\hat{Z}(O))$

$=(q^{1/2}-q^{-1/2})\hat{W}(\hat{Z}(\uparrow O))$

$=q^{1}/\hat{W}(\hat{Z}($

$=q^{1/2N}q^{(N-1/N)/2}\hat{Z}(\uparrow)-q^{-1/2N}q^{-(N-1/N)/2}\hat{Z}(\uparrow)$

$=(q^{N/2}-q^{-N/2})\hat{Z}(\uparrow)$ .

Hence we have $\hat{W}(\hat{Z}(O))=[N]$ . $\square $

4 The modified Kontsevich invariant and Vas-

siliev invariants

4.1 Vassiliev invariants of framed knots

We denote framed knots with even5 framings simply by knots in this section.

Let $\mathcal{K}$ be the vector space freely spanned by knots over $\mathbb{C}$ . A singular knot is an
immersion of $S^{1}$ into $S^{3}$ whose singularities are transversal double points. We

regard a singular knot as an element in $\mathcal{K}$ by linearly removing each singularity

by the following relation

for example, see Figure 4.1. We define the subspace $\mathcal{K}_{d}$ of $\mathcal{K}$ by

$\mathcal{K}_{d}=span$ { $the$ singular knots with $d$ singular points}.

5The framing of a framed knot usually changes by even, by a crossing change. Hence we

consider framed knots only with even framings. If we considered framed knots only with odd

framings, we obtain the same results as in this section. This suggestion is due to Thang Le.
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