
An Introduction to Linear Logic:
Expressiveness and Phase Semantics

Mitsuhiro Okada
Department of Philosophy, Keio University

Abstract

We first point out some nature of linear logic, in comparison with tra-
ditional logics, in Introduction (\S 1), then give the syntax and the intuitive
meaning of the syntax in \S 2. We give phase semantics of linear logic and
a phase semantic proof for the completeness and cut-elimination theorems
(at once) in \S 3. We formulate a concurrent process calculus as a conserva-
tive subsystem of linear logic and give some examples of concurrent process
specification by linear logic in \S 4. In \S 5 we give a simplified phase semantics
and the completeness for a fragment of linear logic, in which some concurrent
process models such as Petri nets can be formulated.

1 Introduction
In the traditional logic, either in the classical logic or the intuitionistic logic, the
following logical inference is admitted:

$\frac{C\rightarrow AC\rightarrow B}{C\rightarrow A\wedge B}$

Here, $A\rightarrow B$ is read as “If $A$ then $B’ and\wedge is$ read as “and”. Then, the above
inference says: From the two promises “If $C$ then $A$ ’ and “If $C$ then $B’$ , one can
conclude “If $C$ then $A$ and $B’$ . This is obviously true for the usual mathematical
reasoning. For example,

$\frac{f(x)<a\rightarrow b<xf(x)<a\rightarrow x<c}{f(x)<a\rightarrow b<xandx<c}$

However, when we try to apply this inference rule to the two promises; “If one has
one dollar then one gets a chocolate package” and “If one has one dollar then one
gets a candy package”, then one may have the following inference:

$\ovalbox{\tt\small REJECT} onehas\$l\rightarrow onegetsachocolateonehas\$l\rightarrow onehas\$l-\rightarrow onegetsachocolateand$

a
$onegetscandy$

acandy
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A naive reading of this inference leads to a wrong conclusion “If one has one dol-
lar then one gets both a chocolate package and a candy package”. In fact, the
following are implicitly assumed when the traditional logical rules are applied to
some statements; (1) the statements are independent of temporality, i.e., the logic
can treat only (eternal’ knowledge which is independent of time. (2) the logical
implication $‘‘\rightarrow$ is independent of any consumption relation or any causal rela-
tion. These assumptions are appropriate when we treat the ordinary mathematics.
Hence, the traditional logical inferences can be used for mathematical reasoning
in general. However, when we would like to treat concurrency-sensitive matters
or the resource-consumption relation we need to be careful to apply the logical
inference rules. The above example gives one of such situations. In particular,
when we would like to study the mathematical structures of information or com-
putation in computer science, information science, etc., we often need to elaborate
the traditional logical inferences since concurrency-sensitive setting and concepts
for consumption of computational resources or of resources for information pro-
cessing are often very essential in computer science and the related fields. Linear
logic proposed by Girard is considered one of the basic logical systems which would
provide a logical framework for such a new situation occurring in computer science
and its related fields 1 For example, instead of the traditional logical connective
$\wedge(and’)$ , linear logic provides two different kinds of logical connectives\otimes and&,
where $A\otimes B$ means $A$ and $B$ hold in parallel (at the same time)” while A&B
means “either $A$ or $B$ can be chosen to hold (as you like) but only one of them at
once”. The traditional logical $implication\rightarrow is$ replaced by the linear implication
$-\triangleleft$ , where $A-\triangleleft B$ means “by the consumption of $A,$ $B$ holds”. The logical inference
rule for\otimes and&are;

$\frac{C-\circ AD-\circ B}{C,D-\circ A\otimes B}$ $\frac{C-\circ AC-\infty B}{C-\circ A\& B}$

When we apply “If one has $1 then one gets a chocolate package” and “If one
has $1 then one gets a candy package” to the two promises of the left inference
rule for $\otimes$ , then we can conclude “one has {$1, $1} $-\circ$ one gets (a chocolate $\otimes$

a candy)”, which means “If one has two $l’s (namely, $2) then one gets both a
chocolate package and a candy package at the same time”, and if we apply the
same two promises to the right rule for&, we can conclude “one has $1 $-0$ one gets
(a chocolate&a candy)”, which means “If one has $1 then one gets either one of
a chocolate package and a candy package as you like”.

On the other hand, the infinite amount of a resource of $A$ is expressed as $!A$ ,
with the help of modal operator ! in linear logic. ( $!A$ is such a resource that one
can consume $A$ as many times as one wants without any loss of $!A.$ ) By using this
modal operator ! one can express the traditional logical truth (i.e., eternal truth)
inside the framework of linear logic. Hence, linear logic contains the traditional
logic (with the help of modal operator), and linear logic is considered a refined

1 There are some other approaches in which the traditional first order logic is refined in order
to capture actions and changes of states. Situation calculus proposed by J. McCarthy[22] is one
of such approaches.
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form, or a fine-grained of the traditional logic, rather than a logic different from
the traditional logic.

The following table shows some correspondences between the logical connectives
of linear logic and the traditional logical connectives/rules.

As seen in the above example, the traditional logical $connective\wedge(and’)$ splits
into two different connectives, $\otimes,$ &, in linear logic, and the traditional logical con-
nective $\vee(or’)$ into two different connectives, $\eta,$ $\oplus$ . The traditional structural
inference rules (which are explicit in Gentzen’s Sequent Calculus formulation of tra-
ditional logics) are now represented by the modality connectives !, ?. The meaning
of these logical connectives of linear logic will be given with the list of linear logic
inference rules in the next section.

2 Syntax of Linear Logic
2.1 Syntax of Linear Logic and Naive Operational Semantics
We introduce the vocabularies of the language of Linear Logic as follows;

(1) logical connectives; $\otimes$ ( $multiplicative$-and” or “tensor-product”),
$\eta$ (multiplicative-or’ or “par”),
&(‘‘additive-and’’ or “with”),
$\oplus$ (additive-or’ or “plus”),
$A^{\perp}$ (the “linear negation” of $A$),
$-0$ (linear implication”),
! (bang’ or “of course”), ? (why not”)

(2) logical constants; $0$ , 1, $T$
$,$

$\perp$

(3) propositional variables; $P,$ $Q$ , R. . . , $P_{0},$ $P_{1},$ $P_{2},$
$\ldots$
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The formulas are constructed from logical constants $and/or$ propositional vari-
ables by logical connectives, as follows;

(1) If $A$ is a logical constant or propositional variable, then $A$ is a formula.
(2) if $A$ is a formula, then so is $(A^{\perp})$ .
(3) if $A$ and $B$ are formulas, then so are $(A\otimes B),$ (A $\eta B$ ), $(A-\circ B)$ ,

(A&B), $(A\oplus B)$ .

The outermost parenthesis is often deleted. For example, $(P\otimes 1)-\circ(\perp\eta(Q\oplus R))$

is a formula. We use meta-symbols $A,$ $B,$
$\ldots$ to express formulas. Finite sequence

of formulas (possibly the empty sequence) are denoted by $\Gamma,$ $\triangle,$

$\ldots$ . When $\Gamma$ is
$A_{1},$

$\ldots,$
$A_{n}$ , by $!\Gamma$ we mean $!A_{1},$

$\ldots,$
$!A_{n}$ , by $?\Gamma$ we mean $?A_{1},$

$\ldots,$
$?A_{n}$ , and by

$\Gamma^{\perp}$ we mean $A_{1}^{\perp},$

$\ldots,$
$A_{n}^{\perp}$ . $((\cdots((A_{1}\otimes A_{2})\otimes A_{3})\otimes\cdots)\otimes A_{n})$ is abbreviated by

$A_{1}\otimes\cdots\otimes A_{n}$ . We may also delete some parentheses of a formula if there is no
ambiguity from the context. A sequent is an expression of the form $\Gamma\vdash\Delta$ .

We introduce the notion of inference rule. There are two kinds of inference
rules;

$\frac{\Gamma_{1}\vdash\Delta_{1}}{\Gamma\vdash\Delta’}$ $\frac{\Gamma_{1}\vdash\Delta_{1}\Gamma_{2}\vdash\Delta_{2}}{\Gamma\vdash\Delta’}$

The former has only one upper sequent $\Gamma_{1}\vdash\Delta_{1}$ , while the latter has two upper
sequents $\Gamma_{1}\vdash\Delta_{1}$ and $\Gamma_{2}\vdash\Delta_{2}$ . Both have only one lower sequent $\Gamma\vdash\Delta’$ . We
also consider a special kind of inference rules for which there is no upper sequent.
Such a special kind of inference rule is called an “axiom sequent”.

The following are the inference rules for (Classical) Linear Logic.

Definition 1 (Inference rules for Classical Linear Logic) Below, $A$ and $B$

represent arbitrary formulas and $\Gamma,$ $\Delta,$ $\Gamma$ ‘, $\Delta$ represent arbitrary (finite) sequence
of formulas, including the case of empty sequence.

$\bullet$ Axiom sequent
$Lo$gical axiom sequent

$A\vdash A$

Logical constants
$\vdash 1$ $\Gamma\vdash\Delta,$ $T$

$\perp\vdash$ $0,$ $\Gamma\vdash\Delta$

$\bullet$ Rules for constants

$\frac{\Gamma\vdash\Delta}{1,\Gamma\vdash\Delta}$ $\frac{\Gamma\vdash\Delta}{\Gamma\vdash\Delta,\perp}$

$\bullet$ Exchange
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Exchange-left

$\Gamma,$ $A,$ $B,$ $\Gamma^{\prime}\vdash\triangle$

$\Gamma,$ $B,$ $A,$ $\Gamma’\vdash\Delta$

$\bullet$ Cut-rule

Exchange-right

$\Gamma\vdash\triangle,$ $A,$ $B,$ $\triangle$ ’

$\Gamma\vdash\Delta,$ $B,$ $A,$ $\Delta$ ’

$\frac{\Gamma\vdash\Delta,AA,\Gamma\vdash\Delta^{\prime}}{\Gamma,\Gamma\vdash\triangle,\triangle}$

$\bullet$ Multiplicative
$\otimes$-left

$\frac{A,B,\Gamma\vdash\Delta}{A\otimes B,\Gamma\vdash\Delta}$

$\eta$-left

$A,$ $\Gamma\vdash\Delta$ $B,$ $\Gamma\vdash\Delta^{\prime}$

$A\eta B,$ $\Gamma,$ $\Gamma\vdash\Delta,$ $\Delta$ ’

$\otimes$-right

$\Gamma\vdash\Delta,$ $A$ $\Gamma^{\prime}\vdash\Delta’,$ $B$

$\Gamma,$ $\Gamma’\vdash\Delta,$ $\Delta^{\prime},$ $A\otimes B$

$\eta$-right

$\Gamma\vdash\Delta,$ $A,$ $B$

$\overline{\Gamma\vdash\Delta,A\eta B}$

$\bullet$ Additive

&-left

$\frac{A,\Gamma\vdash\Delta}{A\& B,\Gamma\vdash\Delta}$

$\frac{B,\Gamma\vdash\Delta}{A\& B,\Gamma\vdash\Delta}$

$\oplus$-left

$\frac{A,\Gamma\vdash\Delta B,\Gamma\vdash\Delta}{A\oplus B,\Gamma\vdash\Delta}$

&-right

$\frac{\Gamma\vdash\Delta,A\Gamma\vdash\Delta,B}{\Gamma\vdash\Delta,A\& B}$

$\oplus$-right

$\frac{\Gamma\vdash\Delta,A}{\Gamma\vdash\Delta,A\oplus B}$

$\bullet$ Linear Implication

-o-left
$\Gamma\vdash\Delta,$ $A$ $B,$ $\Gamma\vdash\Delta^{\prime}$

$A-oB,$ $\Gamma,$ $\Gamma\vdash\Delta,$ $\Delta$ ’

$\frac{\Gamma\vdash\Delta,B}{\Gamma\vdash\Delta,A\oplus B}$

-o-right

$\frac{A,\Gamma\vdash\Delta,B}{\Gamma\vdash\Delta,A-oB}$

$\bullet$ Linear Negation
$\perp$-left

$\frac{\Gamma\vdash\Delta,A}{A^{\perp},\Gamma\vdash\Delta}$

$\perp$ -right

$\frac{A,\Gamma\vdash\Delta}{\Gamma\vdash\Delta,A^{\perp}}$
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$\bullet$ Modality
?-left (promotion)

$\frac{A!\Gamma\vdash?\Delta}{?A,!\Gamma\vdash?\Delta}$

!-left
(dereliction-left)

$\frac{A,\Gamma\vdash\Delta}{!A,\Gamma\vdash\Delta}$

(contraction-left)

$\frac{!A,!A,\Gamma\vdash\Delta}{!A,\Gamma\vdash\Delta}$

(weakening-left)

$\frac{\Gamma\vdash\Delta}{!A,\Gamma\vdash\Delta}$

!-right (promotion)

$\frac{!\Gamma\vdash?\Delta,A}{!\Gamma\vdash?\Delta,!A}$

?-right
(dereliction-right)

$\frac{\Gamma\vdash\Delta,A}{\Gamma\vdash\Delta,?A}$

(contraction-right)

$\frac{\Gamma\vdash\Delta,?A,?A}{\Gamma\vdash\Delta,?A}$

(weakening-right)

$\frac{\Gamma\vdash\Delta}{\Gamma\vdash\Delta,?A}$

A proof is a tree structure where each leaf (i.e., each top node) is an instance
of axiom sequent and each inner node is an instance of inference rule. A sequent
$\Gamma\vdash\Delta$ is said “provable” if there exists a proof whose last sequent (i.e. the root) is
$\Gamma\vdash\Delta$ . We says $A$ is provable” if $sequent\vdash A$ is provable.

The following are examples of a proof of $(A\otimes B)^{\perp}-\circ((A^{\perp})\eta(B^{\perp}))$ and a
proof of $(!A)\otimes(!B)\vdash!(A\otimes B)$ .

$\underline{A\vdash A}\perp$ $\underline{B\vdash B}\perp$

-right -right

$\frac{\frac{\vdash A,A^{\perp}}{\vdash A^{\perp},A}exchange-right\frac{\vdash B,B^{\perp}}{\vdash B^{\perp},B}}{\frac{\frac{\frac{\vdash A^{\perp},B^{\perp},A\otimes B}{(A\otimes B)^{\perp}\vdash A^{\perp},B^{\perp}}\perp}{(A\otimes B)^{\perp}\vdash(A^{\perp})\eta(B^{\perp})}-le}{\vdash(A\otimes B)^{\perp}-o((A^{\perp})\eta(B^{\perp}))}\eta-f}\bigotimes_{t}-right-0-rightrightexchange$

-right

$\frac{\frac!-\iota_{eft\frac{B\vdash B}{\otimes BA\otimes B)!B\vdash BB)^{!-}}}!A\vdash AA\vdash A}{\frac{\frac{!A,!B\vdash A}{!A,!B\vdash!(A\otimes}}{(!A)\otimes(!B)\vdash!(}}\otimes-rightright\otimes-left!-left$

Exercise 1 The following are provable in (Classical) Linear Logic. Here, $A\equiv B$

means $(A-\circ B)\otimes(B-oA)$ . Give a proof for each.
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(1) $\vdash A^{\perp\perp}\equiv A$ (Double negation law)
(2) $\vdash A\eta A^{\perp}$ (Excluded middle)
(3) $\vdash(A\otimes B)^{\perp}\equiv(A^{\perp})\eta(B^{\perp})$ (De Morgan law)
(4) $\vdash(A\eta B)^{\perp}\equiv(A^{\perp})\otimes(B^{\perp})$ (De Morgan law)
(5) \vdash (A&B)\perp \equiv (A\perp )\oplus (B\perp ) (De Morgan law)
(6) \vdash (A\oplus B)\perp \equiv (A\perp )&(B\perp ) (De Morgan law)
(7) $\vdash(!A)^{\perp}\equiv?(A^{\perp})$ (De Morgan law)
(8) $\vdash(?A)^{\perp}\equiv!(A^{\perp})$ (De Morgan law)
(9) $\vdash A\otimes(B\oplus C)\equiv(A\otimes B)\oplus(A\otimes C)$ (Distributive law)
(10) $\vdash A\eta$ (B&C)\equiv (A $\eta$ B)&(A $\eta C$) (Distributive law)
(11) \vdash (!A)\otimes (!B)\equiv !(A&B)
(12) $\vdash(?A)\eta(?B)\equiv?(A\oplus B)$

(13) $\vdash A-oB\equiv A^{\perp}\eta B$

In particular, when $\Delta$ consists of at most one formula, a sequent $\Gamma\vdash\Delta$ is
sometimes called an intuitionistic sequent. Intuitionitsic Linear Logic is defined in
the same way as Linear Logic. We do not include $\eta$ nor ? as a logical connective
in Intuitionistic Linear Logic. The sequents are restricted to the intuitionistic
sequents. Here, due to the restriction of the right hand-side of a sequent, exchange-
right is not needed. And due to the lack of $\eta$ and ?, we do not need $\eta$-left, $\eta$-right,
?-left and ?-right in Intuitionistic Linear Logic.

The following logical rules (for intuitionistic sequents) are the inference rules
of Intuitionistic Linear Logic. We list the right-introduction rules for each logical
connective and, at the same time, we give a natural meaning of each logical con-
nective induced from each right-rule (by the operational meaning of each rule), in
a parenthesis. (We do not include the axioms and rules for logical constants for
simplicity.)

Definition 2 (Inference rules for Intuitionistic Linear Logic)

$\bullet$ $\otimes$-right rule

$\Gamma\vdash A$ $\Delta\vdash B$

$\Gamma,$ $\Delta\vdash A\otimes B$

(If $A$ can be generated by using resource $\Gamma$ and if $B$ can be generated by
using resource $\Delta$ , then $A\otimes B$ (A and $B$ in parallel) can be generated by
using resource $\Gamma$ and $\Delta.$ )

$\bullet$ &-right rule

$\frac{\Gamma\vdash A\Gamma\vdash B}{\Gamma\vdash A\& B}$

(If $A$ can be generated by using resource $\Gamma$ and if $B$ can be generated by
using resource $\Gamma$ , then A&B (whichever $A$ or $B$ ) can be generated by using
resource $\Gamma.$ )
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. $\oplus$-right rule

$\frac{\Gamma\vdash A}{\Gamma\vdash A\oplus B}$

(If $A$ can be generated by resource $\Gamma$ , then $A\oplus B$ (either $A$ or $B$ ) can be
generated by using resource F.)

$\bullet$ $\oplus$-right rule

$\frac{\Gamma\vdash B}{\Gamma\vdash A\oplus B}$

(If $B$ can be generated by resource $\Gamma$ , then $A\oplus B$ (either $A$ or $B$ ) can be
generated by using resource $\Gamma.$ )

$\bullet$ -o-right rule

$\frac{A,\Gamma\vdash B}{\Gamma\vdash A-\circ B}$

(If $B$ can be generated by using resource $A$ and $\Gamma$ , then $A-\circ B$ (the state
that $B$ is generated by consuming $A$ ) can be generated by using resource $\Gamma.$ )

Now, $A^{\perp}$ (the linear-negation of $A$ ) is defined as $ A-\circ\perp$ . Then the above
-o-rule induces the following-rule.

$\bullet\perp$ -right rule

$A,$ $\Gamma\vdash\perp$

$\Gamma\vdash A^{\perp}$

( $If\perp$ (contradiction) can be generated by using resource $A$ and $\Gamma$ , then $A^{\perp}$

(the state that the contraction is generated by consuming $A$ ) can be generated
by using resource F.)

Next, we list the left rules, (and we show how to justify each left rule in terms
of the interpretation of the logical connectives introduced above by the right rules).

$\bullet$ $\otimes$-left rule

$\frac{A,B,\Gamma\vdash C}{A\otimes B,\Gamma\vdash C}$

(Assume $A\otimes B$ and F. By the about interpretation of $A\otimes B,$ $A$ and $B$ hold
in parallel. Hence, $A,$ $B$ , and $\Gamma$ hold in parallel. On the other hand, we
assume by the upper sequent that $C$ can be generated by using $A,$ $B$ and F.
Therefore, $C$ can be generated.)
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$\bullet$ &-left rule

$\frac{A,\Gamma\vdash C}{A\& B,\Gamma\vdash C}$ $\frac{B,\Gamma\vdash C}{A\& B,\Gamma\vdash C}$

(For the first rule, we assume by the upper sequent that $C$ can be generated
by $A$ and $\Gamma$ . Assume A&B and $\Gamma$ hold. A&B means whichever between $A$

and $B$ can be generated. Hence, in particular, $A$ can be generated. Therefore,
$A$ and $\Gamma$ can be generated, Hence, with the help of the assumption for the
upper sequent, $C$ can be generated. For the second rule, the argument is
similar.)

$\bullet$ $\oplus$-left rule

$\frac{A,\Gamma\vdash CB,\Gamma\vdash C}{A\oplus B,\Gamma\vdash C}$

(Assume by the upper sequents that $C$ can be generated by $A$ and $\Gamma$ and
that $C$ can be generated by $B$ and F. Now we assume $A\oplus B$ and $\Gamma$ . $A\oplus B$

means either $A$ or $B$ can be generated. We argue by cases; assume that $A$

can be generated. Then $A$ and $\Gamma$ hold. Hence, by the help of the assumption
for the first upper sequent, $C$ can be generated; assume that $B$ can be gen-
erated. Then $B$ and $\Gamma$ hold. Hence, by the help of the assumption for the
second upper sequent, $C$ can be generated. Hence, for either case, $C$ can be
generated.)

$\bullet$ -o-left rule

$\Gamma\vdash A$ $B,$ $\Delta\vdash C$

$A-\triangleleft B,$ $\Gamma,$ $\Delta\vdash C$

(Assume that $A$ can be generated by $\Gamma$ , and that $C$ can be generated by $B$

and $\Delta$ . Assume that $A-\triangleleft B,$ $\Gamma$ , and $\Delta$ are generated. There $A-oB$ means $B$

is generated by consuming $A’$ . Since $\Gamma$ is assumed, with the help of the first
assumption, $A$ can be generated. Therefore, with $A-\circ B,$ $B$ can be generated.
Hence, with the help of the second assumption, $C$ can be generated.)

$\bullet\perp$ -left rule

$\frac{\Gamma\vdash A}{A^{\perp},\Gamma\vdash}$

(If $A$ can be generated by using resource $\Gamma$ , then $\perp$ (the contradiction) can
be generated by using resource $A^{\perp}$ (not $A$ ) and $\Gamma.$ )
Note that $\Delta\vdash is$ provable if and only if $\Delta\vdash\perp$ . Hence, we identify the above
lower sequent with $A^{\perp},$ $\Gamma\vdash\perp$ .

The following rule is called “cut-rule”.
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$\bullet$ cut-rule

$\frac{\Gamma\vdash AA,\Delta\vdash B}{\Gamma,\Delta\vdash B}$

(If $A$ can be generated by using resource $\Gamma$ and if $B$ can be generated by
using resource $A$ and $\Delta$ , then $B$ can be generated by using resource $\Gamma$ and
$\Delta.)$

Now we add the following modality rules for ! (bang). We first give the right-
rule, then give the three left-rules.

$\bullet$ $]_{-}right$ rule

$!A_{1},$
$\ldots,$

$!A_{n}\vdash B$

$!A_{1},$
$\ldots,$

$!A_{n}\vdash!B$

(We interpret !A as an infinite resource for $A$ , which could be understood as
a kind of copy machine to produce arbitrarily many $A’ s$ including zero $A’ s$ .
Assume that ! $A_{1},$

$\ldots$ , ! $A_{n}$ hold. Hence, $A_{1},$
$\ldots,$

$A_{n}$ can be generated as one
wants. By the assumption for the upper sequent, $B$ can be generated from
! $A_{1},$

$\ldots$ , ! $A_{n}$ . Since those ! $A_{1},$
$\ldots$ , ! $A_{n}$ can produce the necessary amount

for generating $B$ as many times as one wants, one can generate as many $B’ s$

as one wants, which is the safe effect to generate $!B.$ )

$\bullet$ Dereliction

$A,$ $\Gamma\vdash C$

$!A,$ $\Gamma\vdash C$

(Assume that $C$ can be generated from $A$ and $\Gamma$ . Assume that ! $A$ and $\Gamma$ are
generated. ! $A$ can produce as many $A’ s$ as one wants, hence, in particular,
one $A$ can be generated from ! $A$ . Therefore, $A$ and $\Gamma$ can be generated.
Therefore, with the first assumption, $C$ can be generated.)

$\bullet$ Weakening

$\frac{\Gamma\vdash C}{!A,\Gamma\vdash C}$

(Assume that $C$ is produced from F. Assume that ! $A$ and $\Gamma$ are produced.
There, ! $A$ can produce as many $A’ s$ as one wants (including zero $A’ s$ ). Hence,
zero $A’ s$ can be produced from ! $A$ . Therefore, $\Gamma$ can be produced from ! $A$

and F. By the first assumption, $C$ can be produced.)

$\bullet$ Contraction
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$\frac{!A,!A,\Gamma\vdash C}{!A,\Gamma\vdash C}$

(Assume that ! $A$ , ! $A$ and $\Gamma$ can produce $C$ . Since any number of $A’ s$ pro-
duced by the two ! $A’ s$ can be produced by a single $!A$ . Hence, $C$ can be
produced from ! $A$ and $\Gamma.$ )

$\bullet$ Axiom sequent

$A\vdash A$

(The justification of this is obvious.)

$A$ $\eta B$ is interpreted as $(A^{\perp}\otimes B^{\perp})^{\perp}(i.e.,$ $A^{\perp}$ and $B^{\perp}$ in parallel” implies
the contradiction). ? $A$ is interpreted as $($ ! $(A^{\perp}))^{\perp}$ . The sequent of the form
$A_{1},$

$\ldots,$
$A_{n}\vdash B_{1},$ $\ldots B_{m}$ is interpreted as $A_{1}\otimes\cdots\otimes A_{n}\vdash B_{1}\eta\cdots\eta B_{m}$ . Then,

the classical linear logic rules can also be justified with the above interpretations.

In terms of the above intuitive (operational) meaning of the linear logical con-
nectives, one may specify a course menu of a restaurant as follows;

Lafont’s Restaurant2
Today’s course menu

((Vegetable Soup\oplus Consomm\’e Soup) &Salad)
\otimes (Fish&Meat) $\otimes!(Coffee)$ \otimes ($2 $-0$ (Cake&Ice Cream))

The above means: The customer gets either Soup or Salad as an entry (entr\’ee)
as the customer chooses, where, when Soup is chosen, either Vegetable Soup or
Consomm\’e Soup will be served depending on the day (which cannot be chosen by
the customer). The customer also gets a main dish for which $he/she$ can choose
either a fish dish or a meat dish as $he/she$ wishes. $He/She$ also gets Coffee, which
can be refilled as many times as $he/she$ wishes (including O-time, which means that
$he/she$ could skip Coffee). $He/She$ also gets a dessert if $he/she$ will pay extra 2
dollars, by which $he/she$ can choose either Cake or Ice Cream.

The Classical Linear Logic is often represented by the one-sided sequent calculus
formulation. The Right-Only sequent calculus of Classical Linear Logic is obtained
from the above two-sided system by ignoring the left hand side formulas in a sequent
and deleting all left-rules. With the absence of the left hand formulas of-right rule
and of the-left rule, one cannot express any rule $for*^{\perp}$ in the one-sided sequent
calculus. However, one can consider $P^{\perp}$ as an atomic formula if $P$ is atomic, and
$A^{\perp}$ as an abbreviation of its De Morgan dual if $A$ is a complex formula; namely,

2 This kind of example was first introduced by Y. Lafont in his lecture, as far as the author
knows. Here, the example is modified by the author.
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$(A\otimes B)^{\perp}\equiv defA^{\perp}\eta B^{\perp},$ $(A \eta B)^{\perp}\equiv defA^{\perp}\otimes B^{\perp}$ , (A&B)\perp $\equiv defA^{\perp}\oplus B^{\perp}$ ,
$(A\oplus B)^{\perp}\equiv def$ A\perp &B\perp , $($ ! $A)^{\perp}\equiv def$ ? $A^{\perp}$ , $($ ? $A)^{\perp}\equiv def$ ! $A^{\perp}$ . Then one does
not need any inference rules for $A^{\perp}$ . Since $A-\circ B$ can be defined as $A^{\perp}\eta B$ in
Classical Linear Logic (see Exercise 1 (13)), we do not need the rules for-o, either.
The logical axiom sequent and the cut-rule is expressed as;

$\vdash A,$
$A^{\perp}$

$\frac{\vdash\Gamma,A\vdash A^{\perp},\Delta}{\vdash\Gamma,\Delta}$

It is easily seen that $\Gamma\vdash\Delta$ is provable in the two-sided Classical Linear Logic
if and only $if\vdash\Gamma^{\perp},$ $\Delta$ is provable in the Right-Only Classical Linear Logic. See
Appendix 2 for the full list of the Right-Only Sequent Calculus rules.

Similarly, we can also represent Classical Linear Logic as the Left-Only sequent
calculus in the obvious manner.

We shall use the Right-Only formulation for our proof of the completeness the-
orem and the cut-elimination theorem in Section 3, and the Left-Only formulation
for specifications of concurrent processes, in Section 4.

3 Phase Semantics, Completeness and Cut-
Elimination of Linear Logic

3.1 Phase Semantics
In this subsection, we first introduce phase semantics, due to Girard[9], then in
the next subsection we give two fundamental theorems, the completeness theorem
and the cut-elimination theorem, at once by the use of phase semantics. The phase
semantics is considered the linear logic version of the Tarski-style traditional logical
semantics for the classical logic.

Let $M$ be a commutative monoid, namely, $M$ has the unit element 1 and a
binary $operator*\cdot*such$ that (1) for any $a,$ $b\in M,$ $a\cdot b\in M,$ (2) for any $a\in M$ ,
1 $\cdot a=a\in M,$ (3) for any $a,$ $b,$ $c\in M,$ $(a\cdot b)\cdot c=a\cdot(b\cdot c),$ (4) for any $a,$ $b\in M$ ,
$a\cdot b=b\cdot a$ . $Let\perp be$ a special subset of $M$ , called bottom. We have the definition
of the linear negation;

For any $\alpha\subseteq M$ , let $\alpha^{\perp}$ be { $b$ : for all $ a\in\alpha a\cdot b\in\perp$ } $=\{b:\alpha\cdot b\subseteq\perp\}$ .

$\perp^{\perp}$ is denoted by 1. Let $I=1\cap J$ where $J$ is a submonoid of $M$ which satisfies
the weak idempotent property $\forall a\in J\{a\}^{\perp\perp}\subseteq\{a\cdot a\}^{\perp\perp}$ . In particular, $J$ can be
$\{a\in M : aa=a\}$ .

The following is easily proved.

Lemma 1 For any $\alpha\subseteq M,$ $\beta\subseteq M$ ,

1. $\alpha\subseteq\alpha^{\perp\perp}$

2. $(\alpha^{\perp\perp})^{\perp\perp}\subseteq\alpha^{\perp\perp}$
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3. $\alpha\subseteq\beta\Rightarrow\alpha^{\perp\perp}\subseteq\beta^{\perp\perp}$

4. $\alpha^{\perp\perp}\cdot\beta^{\perp\perp}\subseteq(\alpha\cdot\beta)^{\perp\perp}$ .

$\alpha\subseteq M$ is called a fact iff $\alpha^{\perp\perp}=\alpha$ . The set of facts is denoted by $D_{M}$ (or $D$ if
$M$ is already fixed). Then, as easily seen, for any $\alpha\subseteq P,$

$\alpha^{\perp\perp}$ is the smallest fact
that includes $\alpha$ , and for any facts $\alpha$ and $\beta,$ $\alpha\cap\beta$ is a fact. $\alpha^{\perp\perp\perp}=\alpha^{\perp}$ , hence $\alpha^{\perp}$

is a fact for any $\alpha\subseteq P$ . We define the following operators and constants;

1 $=$ $\perp^{\perp}(=\{1\}^{\perp\perp})$ , where 1 denotes the unit element of $M$ .
$0$ $=$ $T^{\perp}$ , whereT $=M$ .
$\alpha\&\beta$ $=$ $\alpha\cap\beta$

$\alpha\oplus\beta$ $=$ $(\alpha\cup\beta)^{\perp\perp}$

$\alpha\otimes\beta$ $=$ $(\alpha\cdot\beta)^{\perp\perp}$

$\alpha\eta\beta$ $=$ $(\alpha^{\perp}\cdot\beta^{\perp})^{\perp}$

$!\alpha$ $=$ $(I\cap\alpha)^{\perp\perp}$

$?\alpha$ $=$ $(I\cap\alpha^{\perp})^{\perp}(=(!\alpha^{\perp})^{\perp})$ .

Note that the above operators are closed under the facts $D_{M}$ . $(M,$ $I,$ $\perp,$ $1,0,$ $T,$ $\&,$ $\oplus,$ $\otimes,$ $\eta$

, !, ?) is called a phase space. We also denote this as $(M, I, \perp)$ .

On a phase space, as in Girard[9], the interpretation $A^{*}$ of a formula $A$ is
defined to be a fact in the following way when an assignment (a valuation) $\varphi$ of
facts for (propositional) variables occurring in $A$ is given. We call this value $A^{*}$

the inner-value of $A$ through this paper:

$R^{*}$ $=$ $\varphi(R)$ for assignment (valuation) $\varphi$ : $A- Form\rightarrow D$ ,
where A-Form stands for the set of atomic formulas.

$(A^{\perp})^{*}$ $=$ $(R^{*})^{\perp}$

(A&B)* $=$ A*&B*
$(A\oplus B)^{*}$ $=$ $A^{*}\oplus B^{*}$

$(A\otimes B)^{*}$ $=$ $A^{*}\otimes B^{*}$

$(A\eta B)^{*}$ $=$ $A^{*}\eta B^{*}$

$(?A)^{*}$ $=$ $?(A^{*})$

$(!A)^{*}$ $=$ $!(A^{*})$ .

It is obvious that any inner value $A^{*}$ is a fact. 3

A formula $A$ is said to be true if $1\in A^{*}$ , where 1 is the unit element of un-
derlying monoid $M$ . For a given phase space $(M, I, \perp)$ and a given assignment $\varphi$ ,
$(M, I, \perp, \varphi)$ is called a phase model.

Since the Right-Only one-sided sequent calculus formulation is simpler than the
two-sided formulation and usually used for the syntax of classical linear logic, we
shall use the Right-Only formulation in the rest of this Section. Recall that $A^{\perp}$

3 One can easily extend these interpretations to the case of the first order quantifiers (by inter-
preting these as additive operators), as usual. For the higher order extension, see Okada[25][26].
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is defined as the De Morgan dual (except for the case where $A$ is atomic), and
$(A^{\perp})^{*}=(A^{*})^{\perp}$ is derived from $(R^{\perp})^{*}=(R^{*})^{\perp}$ with other definition of the inner
value above. In the same way as in Girard[9], we have

Theorem 1 (Soundness Theorem (Girard[9])) If a formula $A$ is provable in
(first order) linear logic, then $A$ is true (namely, $1\in A^{*}$ ) for any classical phase
model. More generally, if a $sequent\vdash A_{1},$

$\ldots,$
$A_{n}$ is provable, then $A_{1}\eta\cdots\eta A_{n}$

is true, namely $1\in A_{1}^{*}\eta\ldots\eta A_{n}^{*}$ , or equivalently, $A_{1}^{*\perp}\cdot\cdots\cdot A_{n}^{*\perp}\subseteq\perp for$ any
phase model.

Proof. The proof is carried out by induction on the length (i.e., the number of
the inference rules) of a proof $of\vdash A_{1},$

$\ldots,$
$A_{n}$ . (We use the properties in Lemma

1 repeatedly without explicit mentioning.) In the proof below, when $\Gamma$ or $\Delta$ is
empty, $\Gamma^{*}$ or $\Delta^{*}$ is interpreted $as\perp$ (hence, $\Gamma^{*\perp}$ or $\Delta^{*\perp}$ is interpreted $as\perp^{\perp}=1$ .

(Base Case) When the length is $0$ , namely the proof is composed of one axiom
sequent.

(Case 1) When it is of the $form\vdash A,$ $A^{\perp}$ . It suffices to show $ A^{*\perp}\cdot A^{*\perp\perp}\subseteq\perp$ , which
is obvious by the definition of $\alpha^{\perp}$ .

(Case 2) When it is of the form $\vdash\Delta$ , T. It suffices to show $\Delta^{*\perp}\cdot T^{*\perp}\subseteq\perp$ . since
$T^{*}=M,$ $\Delta^{*\perp}\cdot T^{*\perp}\subseteq M\cdot T^{*\perp}=T^{*}\cdot T^{*\perp}\subseteq\perp$ .

(Case 3) When it is of the $form\vdash 1$ . It suffices to show $ 1^{\perp}\subseteq\perp$ , which is obvious
since $ 1^{\perp}=\perp$ by definition.

(Induction Steps) We prove by cases of the last inference rule of the proof.

(Case 1) When the last inference $is\otimes$-rule of the form;

$\frac{\vdash\Gamma,A\vdash\Delta,B}{\vdash\Gamma,\Delta,A\otimes B}$

By the induction hypothesis, $\Gamma^{*\perp}\cdot A^{*\perp}\subseteq\perp$ and $\Delta^{*\perp}\cdot B^{*\perp}\subseteq\perp$ . Hence, $\Gamma^{*\perp}\subseteq$

$A^{*\perp\perp}=A^{*}$ and $\triangle^{*\perp}\subseteq B^{*\perp\perp}=B^{*}$ . Therefore, $\Gamma^{*\perp}\cdot\Delta^{*\perp}\subseteq A^{*}\cdot B^{*}$ . Hence,
$\Gamma^{*\perp}\cdot\triangle^{*\perp}\cdot(A\otimes B)^{*\perp}=\Gamma^{*\perp}\cdot\triangle^{*\perp}\cdot(A^{*}\cdot B^{*})^{\perp}\subseteq(A^{*}\cdot B^{*})(A^{*}\cdot B^{*})^{\perp}\subseteq\perp$ .

(Case 2) When the last inference is $\eta$-rule of the form;

$\frac{\vdash\Delta,A,B}{\vdash\Delta,A\eta B}$

By the induction hypothesis, $\Delta^{*\perp}\cdot A^{*\perp}\cdot B^{*\perp}\subseteq\perp$ . Hence, $\Delta^{*\perp}\cdot$ $(A \eta B)^{*\perp}=$

$\Delta^{*\perp}\cdot(A^{*\perp}\cdot B^{*\perp})\subseteq\perp$ .

(Case 3) When the last inference is&-rule of the form;
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$\frac{\vdash\Delta,A\vdash\Delta,B}{\vdash\Delta,A\& B}$

By the induction hypothesis, $\Delta^{*\perp}\cdot A^{*\perp}\subseteq\perp$ and $\Delta^{*\perp}\cdot B^{*\perp}\subseteq\perp$ . Hence,
$\Delta^{*\perp}\subseteq A^{*\perp\perp}=A^{*}$ and $\Delta^{*\perp}\subseteq B^{*\perp\perp}=B^{*}$ . Therefore, $\Delta^{*\perp}\subseteq A^{*}\cap B^{*}$ . Hence,
$\Delta^{*\perp}$ . (A&B)*\perp $=\Delta^{*\perp}\cdot(A^{*}\cap B^{*})^{\perp}\subseteq\perp$ .

(Case 4) When the last inference $is\oplus$-rule of the form;

$\frac{\vdash\Delta,A}{\vdash\Delta,A\oplus B}$

By the induction hypothesis, $\Delta^{*\perp}\cdot A^{*\perp}\subseteq\perp$ . Hence, $\Delta^{*\perp}\subseteq A^{*\perp\perp}=A^{*}$ . Hence,
$\Delta^{*\perp}\subseteq A^{*}\subseteq A^{*}\cup B^{*}\subseteq(A^{*}\cup B^{*})^{\perp\perp}=A^{*}\oplus B^{*}$ . Therefore, $\Delta^{*\perp}\cdot(A^{*}\oplus B^{*})^{\perp}\subseteq\perp$ .

(Case 5) When the last inference is ?-rule of the form;

$\frac{\vdash\Gamma,A}{\vdash\Gamma,?A}$

By the induction hypothesis, $\Gamma^{*\perp}\cdot A^{*\perp}\subseteq\perp$ . Hence, $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)\subseteq\perp$ . There-
fore, $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)^{\perp\perp}\subseteq\perp$ .

(Case 6) When the last inference is ?-rule of the form;

$\frac{\vdash\Gamma,?A,?A}{\vdash\Gamma,?A}$

By the induction hypothesis, $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)\cdot(A^{*\perp}\cap I)\subseteq\perp$ , hence, $\Gamma^{*\perp}$

$\{aa|a\in A^{*\perp}\cap I\}\subseteq\perp$ . On the other hand, for any $a\in J$ and for any
$m\in M,$ $ maa\in\perp\Rightarrow ma\in\perp$ . Therefore, $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)\subseteq\perp$ . Hence,
$\Gamma^{*\perp}\cdot(?A)^{*\perp}=\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)^{\perp\perp}\subseteq\perp$ .

(Case 7) When the last inference is ?-rule of the form;

$\frac{\vdash\Gamma}{\vdash\Gamma,?A}$

By the induction hypothesis, $\Gamma^{*\perp}\subseteq\perp$ . Hence, $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)\subseteq\Gamma^{*\perp}\cdot 1\subseteq\Gamma^{*\perp}\subseteq\perp$ .
Therefore $\Gamma^{*\perp}\cdot(A^{*\perp}\cap I)^{\perp\perp}\subseteq(\Gamma^{*\perp}\cdot(A^{*\perp}\cap I))^{\perp\perp}\subseteq\perp^{\perp\perp}=\perp$ .

(Case 8) When the last inference is [-rule of the form;

$\frac{\vdash?\Gamma,A}{\vdash?\Gamma,!A}$

Let $?\Gamma$ be $?B_{1},$
$\ldots,$

$?B_{m}$ . By the induction hypothesis, $(B_{1}^{*\perp}\cap I)^{\perp\perp}\cdot\cdots\cdot(B_{m}^{*\perp}\cap$

$ I)^{\perp\perp}\cdot A^{*\perp}\subseteq\perp$ . Hence, $(B_{1}^{*\perp}\cap I)\cdot\cdots\cdot(B_{m}^{*\perp}\cap I)\subseteq A^{*\perp\perp}$ . On the other hand,
$(B_{1}^{*\perp}\cap I)\cdots\cdot\cdot(B_{m}^{*\perp}\cap I)\subseteq 1\cdots\cdot\cdot 1\subseteq 1$ . $(B_{1}^{*\perp}\cap I)\cdots\cdot\cdot(B_{m}^{*\perp}\cap I)\subseteq J\cdots\cdot\cdot J\subseteq J$ (since
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$J$ is a submonoid). Therefore, $(B_{1}^{*\perp}\cap I)\cdots\cdot\cdot(B_{m}^{*\perp}\cap I)\subseteq A^{*}\cap 1\cap J=A^{*}\cap I$ . Hence,
$(B_{1}^{*\perp}\cap I)\cdot\cdots\cdot(B_{m}^{*\perp}\cap I)\cdot(A^{*}\cap I)^{\perp}\subseteq\perp$ , therefore, $(?B_{1})^{*\perp}\cdot\cdots\cdot(?B_{m})^{*\perp}\cdot(!A)^{*\perp}\subseteq\perp$ .

(Case 9) When the last inference is the cut-rule of the form;

$\frac{\vdash\Gamma,A\vdash\Delta,A^{\perp}}{\vdash\Gamma,\Delta}$

By the induction hypothesis, $\Gamma^{*\perp}\cdot A^{*\perp}\subseteq\perp$ and $\Delta^{*\perp}\cdot A^{*}\subseteq\perp$ . Hence, $\Gamma^{*\perp}\subseteq$

$A^{*\perp\perp}=A^{*}$ and $\Delta^{*\perp}\subseteq A^{*\perp}$ . Therefore, $\Gamma^{*\perp}\cdot\Delta^{*\perp}\subseteq A^{*}\cdot A^{*\perp}\subseteq\perp$ .

The cases for exchange rules and the rule for constant $\perp$ are obvious and
$left\blacksquare$

to the reader.

For the two-sided sequent calculus of classical linear logic, the soundness proof
can be carried out in the same way as above, by induction on the length of proof.
Here, for a given proof of $B_{1},$

$\ldots,$
$B_{m}\vdash A_{1},$

$\ldots,$
$A_{n}$ , we show $ 1\in B_{1}^{*\perp}\eta\cdots\eta$

$B_{m}^{*\perp}\eta A_{1}^{*}\eta\cdots\eta A_{n}^{*}$ or equivalently, $B_{1}^{*}\cdot\cdots\cdot B_{m}^{*}$ . $ A_{1}^{*\perp}\cdot\cdots\cdot A_{n}^{*\perp}\subseteq\perp$ .

3.2 Completeness Theorem and Cut-Elimination Theorem

In this subsection we give a strong form of the completeness theorem of linear logic
with respect to the phase semantics. Our Completeness theorem also implies the
Cut-elimination theorem.

Theorem 2 (Completeness Theorem (Girard[9])) If a (first order) formula
$A$ is true for any phase model, $A$ is provable in (first order) linear logic.

On the other hand, we give the following slightly refined form of the above
Completeness theorem;

Theorem 3 (Strong Completeness Theorem (Okada[25] [26])) If a formula
$A$ is true for any phase model, $A$ is provable in (first order) linear logic without
the cut-rule.

We construct a canonical phase model $(M, I, \perp, \varphi)$ for which truth of a formula
$A$ implies its cut-free provability. We take the commutative free monoid generated
by the set of formulas and denote it as $M$ . An element of $M$ is a multiset of formulas
where multiple occurrences of a formula of the form ?A counts only once. For
example, $\{A, A, A, ?B, ?B, C\}$ is identified with $\{A, A, A, ?B, C\}$ . The construction
of the phase space is the same as in Girard[9] in his completeness proof, except
that we use cut-free provability instead of provability in the definition of $[A]$ below.
For any formula A (of linear logic), we define $[A]=\{\Delta : \vdash_{cf}\Delta, A\}$ , where
$\vdash_{cf}$ means “cut-free provable”. We call $[A]$ the outer value of A in this paper.
$\perp=[\perp]=\{\Delta : \vdash_{cf}\Delta, \perp\}=\{\Delta : \vdash_{cf}\Delta\}$ ; the unit element 1 of $M$ is $\phi$ (the empty
sequence). $I$ is defined as { $?\Gamma$ : $\Gamma$ is an arbitrary sequence of formulas}, where $?\Gamma$

means $?A_{1},$
$\ldots,$

$?A_{n}$ if $\Gamma\equiv A_{1},$
$\ldots$ , $A_{n}$ . Finally, the assignment $\varphi$ of the canonical

model is defined as $\varphi(R)=[R]$ for any atomic $R$ .
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Lemma 2 (Main Lemma (Okada[25] [26])) For any formula $A,$ $A^{*}\subseteq[A]$ .

It is easy to see that this Main Lemma directly implies the Strong Complete-
ness; if formula $A$ is true, then $\phi\in A^{*}$ . On the other hand, $A^{*}\subseteq[A]$ , hence
$\phi\in[A]$ , which means $A$ is cut-free provable”.

By combining this with the soundness theorem, we have

Theorem 4 (The Cut-Elimination Theorem (Girard[9], cf. Okada[25] [26]))
If $A$ is provable (with the cut-rule) then it is provable without cut.

Remark: We can actually prove $A^{*}=[A]$ if we interpret $[A]$ as { $\Gamma$ $:\vdash\Gamma,$ $A$ is prov-
able with the cut-rule}, which was the essential part of the original completeness
proof by Girard[9]. On the other hand, we have taken a more restricted interpre-
tation $[A]=$ { $\Gamma$ : $\vdash\Gamma,$ $A$ is provable without the cut-rule} $=\{\Gamma : \vdash_{cf}\Gamma, A\}$

and show a weaker version of the corresponding lemma (Main Lemma). (However,
after having proved the cut-elimination theorem, it can be shown that $A^{*}=[A].$ )

Lemma 3 If $A^{*}\subseteq[A]$ , then $A\in A^{*\perp}$ .

Proof. Assume $A^{*}\subseteq[A]$ . Then $A\cdot A^{*}\subseteq A\cdot[A]\subseteq[\perp]$ . Therefore $A\in A^{*\perp}$ . $\blacksquare$

Lemma 4 $[A]^{\perp\perp}=[A]$ for any formula A. (Therefore, any outer value is a fact.)

Proof. Since $[A]\subseteq[A]^{\perp\perp}$ is trivial, we prove $[A]^{\perp\perp}\subseteq[A]$ . Let $\Gamma\in[A]^{\perp\perp}$ . By
definition, $\forall\Delta\in[A]^{\perp}\vdash_{cf}\Gamma,$ $\triangle$ . On the other hand, $A\in[A]^{\perp}$ is trivial. Hence
$\vdash_{cf}\Gamma,$ $A$ , therefore $\Gamma\in[A]$ .

Now we prove the Main Lemma.

Proof of Main Lemma. The proof of this is carried by induction on the com-
plexity of formula $A$ .
(Case 1) When $A$ is atomic. $A^{*}=[A]$ by definition.

(Case 2) When $A$ is the form $R^{\perp}$ for atomic $R$ . If $\Gamma\in R^{*\perp}$ , then by the definition
of $R^{*\perp},$ $R^{*}\Gamma\subseteq[\perp]$ . On the other hand, $R^{\perp}\in[R]=R^{*}$ . Hence $R^{\perp},$ $\Gamma\in[\perp]$ ,
therefore $\Gamma\in[R^{\perp}]$ .

(Case 3) When $A$ is of the form $B\otimes C$ . By the induction hypothesis, $ B^{*}\cdot C^{*}\subseteq$

$[B]\cdot[C]$ . On the other hand,

$\frac{\vdash_{cf}B,\Gamma\vdash {}_{cf}C,\Delta}{\vdash_{cf}B\otimes C,\Gamma,\Delta}$

Hence, $[B]\cdot[C]\subseteq[B\otimes C]$ . Therefore, $B^{*}\cdot C^{*}\subseteq[B\otimes CJ$ . Since $[B\otimes C]$ is a fact,
$B^{*}\otimes C^{*}=(B^{*}C^{*})^{\perp\perp}\subseteq[B\otimes C]^{\perp\perp}=[B\otimes C]$ .
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(Case 4) When $A$ is of the form $B\eta C$ . Assume that $\Gamma\in(B^{*\perp}\cdot C^{*\perp})^{\perp}$ . Hence,
$\Gamma\cdot(B^{*\perp}\cdot C^{*\perp})\subseteq[\perp]$ . On the other hand, by the induction hypothesis, $B^{*}\subseteq[B]$

and $C^{*}\subseteq[C]$ . Hence by Lemma 3, $B\in B^{*\perp}$ and $C\in C^{*\perp}$ , hence $B,$ $ C\in$

$B^{*\perp}\cdot C^{*\perp}$ . Therefore, $\Gamma,$ $B,$ $C\in[\perp]$ . Since

$\frac{\vdash_{cf}\Gamma,B,C}{\vdash_{cf}\Gamma,B\eta C}$

it follows $\Gamma\in[B\eta C]$ .

(Case 5) When $A$ is of the form B&C. By the induction hypothesis, $B^{*}\subseteq[B]$

and $C^{*}\subseteq[C]$ . Hence B*&C* $=B^{*}\cap C^{*}\subseteq[B]\cap[C]$ . On the other hand,

$\frac{\vdash_{cf}B,\Gamma\vdash {}_{cf}C,\Gamma}{\vdash_{cf}B\& C,\Gamma}$

Hence, $[B]\cap[C]\subseteq$ [B&C]. Therefore, the claim holds.

(Case 6) When $A$ is of the form $B\oplus C$ . By the induction hypothesis, $ B^{*}\cup C^{*}\subseteq$

$[B]\cup[C]$ . On the other hand,

$\frac{\vdash_{cf}B,\Gamma}{\vdash_{cf}B\oplus C,\Gamma}$ $\frac{\vdash {}_{cf}C,\Gamma}{\vdash_{cf}B\oplus C,\Gamma}$

Hence $[B]\cup[C]\subseteq[B\oplus C]$ . Therefore, $B^{*}\cup C^{*}\subseteq[B\oplus C]$ . Since $\mathbb{I}B\oplus C$] is a
fact, $B^{*}\oplus C^{*}=(B^{*}\cup C^{*})^{\perp\perp}\subseteq[B\oplus C]^{\perp\perp}=[B\oplus C]$ .

(Case 7) When $A$ is of the form $!B$ . Assume $?\Gamma\in(I\cap B^{*})$ . By the induction
hypothesis, $B^{*}\subseteq[B]$ . Hence $?\Gamma\in[B]$ . Since

$\vdash_{cf}?\Gamma,$ $B$

$\vdash_{cf}?\Gamma,$ $!B$ ,

$?\Gamma\in[!B]$ . Therefore, $(I\cap B^{*})\subseteq[!B]$ . Hence $!B^{*}=(I\cap B^{*})^{\perp\perp}\subseteq[!B]^{\perp\perp}=[!B]$ .

(Case 8) When $A$ is of the form $?B$ . Assume $\Gamma\in?B^{*}=(I\cap B^{*\perp})^{\perp}$ . Hence,
$\Gamma\cdot(I\cap B^{*\perp})\subseteq[\perp]$ . On the other hand, by the induction hypothesis, $B^{*}\subseteq[B]$ .
Hence, by Lemma 3, $B\in B^{*\perp}$ . Since

$\vdash_{cf}B,$
$\Delta$

$\vdash_{cf}?B,$
$\triangle$ ,

$?B\in B^{*\perp}$ . Hence, $?B\in I\cap B^{*\perp}$ . Therefore, $\Gamma,$ $?B\in[\perp]$ . Hence, $\Gamma\in[?B]$ .

The cases for constants are proved in the similar way and left to the reader. $\blacksquare$

The Main Lemma may be expressed in the following form.

Lemma 5 (Main Lemma, modified version) For any formula $A,$ $ A^{\perp}\in A^{*}\subseteq$

$[A]$ .
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Proof. The second half is the Main Lemma itself. $A^{\perp}\in A^{*}$ is proved by Lemma
3with the help of the Main Lemma. $\blacksquare$

For the two-sided sequent calculus of classical linear logic, the canonical model
can be constructed in the same way as above. Here, the outer value $[A]$ is defined
as [$AI=$ { $\Gamma^{\perp},$ $\Delta$ : $\Gamma\vdash\Delta,$ $A$ is provable without cut-rule}. Then, the modified
form of the Main Lemma (Lemma 5 above) can be proved by induction on the
complexity of formula $A$ , in the way similar to the proof of the Main Lemma.
Then, the completeness theorem and the cut-elimination theorem are derived from
the Main Lemma in the same way as above.

4 Linear Logic as Concurrent Process Calculus by
the Proof Search Paradigm

4.1 The Proofs-as-Processes Correspondences in the Proof-
Search Paradigm

As explained in Introduction (\S 1) and \S 2, the linear logic inference rules capture
the time-sensitivity4 (e.g. parallelism) and resource-sensitivity. In this Section
we shall show such an example from theory of concurrent processes, using some
message-passing (or token-passing) models, by providing a correspondence between
a certain class of linear logic proofs and a certain class of concurrent processes.

In this Section, we consider the following correspondence between the logical
notions and the notions from the concurrency theory. We identify each logical
connective symbols with an action name, and each logical inference rule (on a logi-
cal connective) with a state-transition (by the corresponding action). Under these
identifications, each logical formula corresponds to a specification of a concurrent
process.

For simplicity, we consider only the Left-Only one-sided sequent calculus of
linear logic in this Section.

$\bullet$ $A\otimes B$ (Parallel-action) Process $A$ and process $B$ are started in parallel.
$\bullet$ $\alpha\otimes B$ (Sending-action) Token (or message) $\alpha$ is sent off, and process $B$ is

started (at the same time).

$\bullet$ $\alpha-\circ B$ (Receiving-action) Token $\alpha$ is received, and process $B$ is started.
More generally, $\alpha_{1}\otimes\cdots\otimes\alpha_{n}-oB$ means; tokens $\alpha_{1},$

$\ldots,$
$\alpha_{n}$ are received, and

process $B$ is started.

$\bullet$ $!A$ (Bang-action) A copy of $A$ is produced as many as needed, and a copy $A$

is started.
4 More precisely, the original form of linear logic can capture concurrency and in order to

capture time fully some temporal notion should be introduced in linear logic (see [17] for such an
example).
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$\bullet$ $A\oplus B$ (Choice-action) $A$ or $B$ is chosen, and start the chosen one.

$\bullet$ $0$ (Abort-action) The whole process is forced to be terminated.

The process types (or, types) are the formulas constructed from a given set
$\{\alpha_{1}, \alpha_{2}, \ldots\}$ of tokens (which corresponds to the set of atomic formulas) by the
above logical connectives and constant $0$ . Here, $A-\triangleleft B$ is a process type only if $A$

is a conjunction of tokens of the form $\alpha_{1}\otimes\cdots\otimes\alpha_{n}$ (including the case $n=1$ ) and
$B$ is a process type.

Aprocess schedule of type $\Gamma_{0}$ is afinite or infinite sequence $S\equiv\Gamma_{0},$ $\Gamma_{1},$ $\Gamma_{2},$
$\ldots$

where $\Gamma_{i}$ is a finite multiset of process types (i.e., formulas) and $\Gamma_{i+1}$ is the result
of a transition from $\Gamma_{i}$ . Here, the set of transition are expressed in terms of the
logical inference rules of the Left-Only one-sided sequent calculus whose formulas
are restricted to the process types. In this Section we consider $\Gamma$ as a multiset of
formulas for any (Left-Only) sequent $\Gamma\vdash$ , namely, we identify $\Gamma\vdash and\Gamma^{\prime}\vdash for$ any
$\Gamma‘\vdash$ obtained from $\Gamma\vdash$ by finitely many uses of the exchange rule. Hence we do
not assume the exchange rule in the syntax.

Each action corresponds to a logical inference, by reading each logical inference
rule bottom-up (i.e., upwards).. (Parallel-action)

$\frac{\Gamma,P,Q,\Delta\vdash}{\Gamma,P\otimes Q,\Delta\vdash}$

(Parallel-action $P\otimes Q$ invokes two processes $P$ and $Q$ in parallel. Here, $\Gamma$

and $\Delta$ represent finite multisets of processes in the environment.)

A special form of this inference rule represents the Sending-action.

$\bullet$ (Sending-action)

$\frac{\Gamma,\alpha,P,\Delta\vdash}{\Gamma,\alpha\otimes P,\triangle\vdash}$

(Sending-action $\alpha\otimes P$ sends a token $\alpha$ and invokes the subprocess $P.$ )

The following rule is a special case of the inference rule for -o-left.

$\bullet$ (Receiving-action)

$\frac{\Gamma,Q,\Delta\vdash}{\Gamma,\alpha,\alpha-oQ,\triangle\vdash}$

(Receiving-action $\alpha-\triangleleft Q$ receives a token $\alpha$ (when $\alpha$ exists in the environment)
and invokes $Q.$ )

The following is a slightly generalized version of the receiving action.
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$\frac{\Gamma,Q,.\triangle.\vdash}{\Gamma,\alpha_{1},\ldots,\alpha_{n},(\alpha_{1}\otimes\cdot\otimes\alpha_{n})-oQ,\triangle\vdash}$

(Receiving-action $(\alpha_{1}\otimes\cdots\otimes\alpha_{n})-oQ$ receives tokens $\alpha_{1},$
$\ldots,$

$\alpha_{n}$ (when
these are in the environment) and invoke $Q.$ )

$\bullet$ (Choice-action)

$\frac{P,\triangle\vdash}{P\oplus Q,\triangle\vdash}$ $\frac{Q,\Delta\vdash}{P\oplus Q,\Delta\vdash}$

(Choice-action P&Q can choose either $P$ or $Q$ , and invokes it.)

$\bullet$ (Bang-action)

$\frac{\Gamma,P,!P,\triangle\vdash}{\Gamma,!P,\Delta\vdash}$

( $!P$ produces a copy $P$ and invokes it.)

The following actions correspond to axiom sequents,
$\bullet$ Ligical Axioms (Abort-action)

$\Gamma,$ $0,$ $\triangle\vdash$

(The process terminates as an invalid process when $0$ appears.)

We may also consider non-logical axiom sequents, which correspond to the
“Overflow-Buffer action”. For example, the following expresses that the buffer to
hold $\alpha’ s$ gets an overflow when the buffer receives more than or equal to n-many
$\alpha’ s$ .

$\bullet$ Non-logical axioms (overflow abort-action)

(The process terminates as an invalid process when n-many $\alpha’ s$ appears for
a fixed $n.$ )

Although the above inference rules are restricted comparing with the full-linear
logic system, it is a conservative subsystem of linear logic with respect to the
restricted language (i.e., the restricted form of formulas introduced above) (cf.
e.g. Andreoli and R. Pareschi[3], Kobayashi-Yonezawa[18] and Okada[27]). In
particular, the above inference rules generate only cut-free proofs (in the sense
that we do not use the cut-inference rule).

Under the above interpretation of a proof as a process, it is natural to extend
the notion of proof. For example, an infinite proof construction is traditionally con-
sidered as an unprovable proof or incomplete proof, but it is natural to include the
infinite proof search/construction as a proof in order to treat an infinite (reactive)
process.
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$\underline{\frac{\beta,\gamma^{2}\vdash}{\beta^{2},\beta-0\gamma^{2}\vdash}}$

$\alpha,$
$\alpha-0\beta^{2},$ $\beta-0\gamma^{2}\vdash$

The above proof shows the following; process $\alpha-\circ\beta^{2}$ (which receives $\alpha$ and sends
two tokens $\beta$), process $\beta-0\gamma^{2}$ (which receives $\beta$ and sends $\gamma^{2}$ ) and token $\alpha$ are in
the initial state (of the input tokens); then, two $\gamma’ s$ and one $\beta$ are produced and
the process finishes.

On the other hand, the following infinite proof shows the following; A reactive
process which receives $\alpha$ and sends $\beta$ and another reactive process which sends
(possibly infinite) $\alpha’ s$ as inputs. Then, as the outputs, $\beta’ s$ are produced infinitely.

:
:

$!\alpha,$ $!(\alpha-0\beta),$ $\beta^{n}\vdash$

$11$

$\frac{\frac{!\alpha,!(\alpha-0\beta),\beta\vdash}{!\alpha,\alpha,\alpha-0\beta,!(\alpha-0\beta)\vdash}}{\frac{!\alpha,\alpha,!(\alpha-0\beta)\vdash}{!\alpha,!(\alpha-0\beta)\vdash}}$

The following shows the relationship between various notions on proof and
various notions on process representations. We name $P,$ $Q$ for the two receiving
actions.

$\frac{\Gamma,\beta^{2}\vdash}{\Gamma,\alpha,\alpha-0\beta^{2}\vdash}P$ $\frac{\Gamma,\gamma^{2}\vdash}{\Gamma,\beta,\beta-0\gamma^{2}\vdash}Q$

Here, with the same end-sequent (i.e., a specification of the process) $\alpha^{2},$ $(\alpha-0$

$\beta^{2})^{2},$ $(\beta-0\gamma^{2})^{4}$ , we could construct the following three different proofs, which
corresponds three different (sequential) schedulings of process.

$\underline{\gamma^{8}\vdash}QQQ$

$Q$

$P$

$\overline{\alpha^{2},(\alpha-0\beta^{2})^{2},(\beta-0\gamma^{2})^{4}\vdash}P$

The above proof corresponds to the process schedule PPQQQQ.

$\underline{\gamma^{8}\vdash}Q$

$Q$

$Q$

$P$

$Q$

$\overline{\alpha^{2},(\alpha-0\beta^{2})^{2},(\beta-0\gamma^{2})^{4}\vdash}P$



LINEAR LOGIC: EXPRESSIVENESS AND PHASE SEMANTICS 277

The above proof corresponds to the process schedule PQPQQQ.

$\underline{\gamma^{8}\vdash}Q$

$Q$

$P$

$Q$

$\frac{Q}{\alpha^{2},(\alpha-0\beta^{2})^{2},(\beta-0\gamma^{2})^{4}\vdash}P$

The above proof corresponds to the process schedule PQQPQQ.

One could also consider a parallel proof figure, which allows parallel application
of more than one logical inference rules at once.

$\underline{\gamma^{8}\vdash}QQ$

$\frac{\alpha\vdash\alpha\frac{\alpha\vdash\alpha\beta\vdash\beta\overline{\beta^{3},(\beta-0\gamma^{2})^{3},\gamma^{2}\vdash}}{\alpha,(\alpha-0\beta^{2}),\beta^{2},(\beta-0\gamma^{2})^{4}\vdash P}}{\alpha^{2},(\alpha-0\beta^{2})^{2},(\beta-0\gamma^{2})^{4}\vdash}P,$

$QQ$

This proof figure represents directly the concurrent process schedule $P(P//Q)QQQ$ .
(Here, $P//Q$ means that $P$ and $Q$ occur in parallel.)

The first two (sequential) schedules, PPQQQQ and PQPQQQ, are viewed as
the two possible sequentialized forms of this parallel schedule.

A very fascinating way of representing a process would be the way in which
inessential differences due to different representations in the scheduling level of a
process are ignored. One way of such a fascinating representation can be obtained
by using the notion of proof net. A proof net is a graphic representation of linear
logic proof where inessential repetitions of the occurrence of formulas are deleted.
A short introduction of proof nets may be found in the Appendix 2 of Girard-
Lafont-Taylor[ll] and Girard[10]. With a proof net representation, the above all
three schedules are identified as the same process. A proof net representation iden-
tifies the inessential differences appearing on the levels of the sequential and of the
parallel schedulings.

$\overline{|}|$ $\overline{||}$

$\alpha$ $\alpha-0\beta^{2}\alpha$ $\alpha-0\beta^{2}$

Proof net
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We call this process representation which corresponds to a proof net a trace of
a process. It is actually closely related to the notion of trace in the concurrency
model theory.

It is sometimes very natural that reaching to an axiom is interpreted as a
failure of a process, or a dead-lock of a process, under the bottom-up proof-search
(or proof-construction) interpretation.

The notion of fairness in the usual proof-search paradigm (or the automated
theorem-proving theory) exactly corresponds to the notion of fairness (of a process
schedule) in the concurrency theory, under our proofs-as-processes interpretation.
A fairness (in a proof-search) means that each formula (which could be treated) in
a given environment will be treated eventually.

For example, the following proof-search (proof-construction) strategy fails to
complete the proof (without reaching any axiom sequent) when the strategy never
treat $\alpha$ .

:
$\alpha,$ $\alpha-\circ 0,$

$\ldots,$
$\alpha-\circ 0,$ ! $(\alpha-\circ 0)\vdash$

.
$\alpha,$ $\alpha-\circ 0,$ $\alpha-\circ 0,$ ! $(\alpha-\circ 0)\vdash$

$\frac{\alpha,\alpha-\circ 0,!(\alpha-\circ 0)\vdash}{\alpha,!(\alpha-\circ 0)\vdash}$

Such a strategy is an example of unfair proof-search strategy. A fair strategy
treats every possible formula to treat for applying inference rules, hence treats $\alpha$

eventually. Then

$\frac{0,\alpha-\circ 0,\ldots,\alpha.-00,!(\alpha-\circ 0)\vdash}{\alpha,\alpha-\circ 0,\alpha-\circ 0,..,\alpha-00,!(\alpha-\circ 0)\vdash}$

.

and reaches an axiom sequent, in this case.

Under these correspondences, an incomplete and fair proof corresponds to a
deadlock-free and fair process schedule, which is often called a safe process schedule.

Definition 3 A process schedule is fair if all possible actions are taken eventually
if the process schedule is an infinite sequent. Any terminating (i.e., finite) process
schedule is defined to be fair. A process schedule of type $\Gamma$ is called deadlock-free
if it is not aborted, i.e., if it does not reach any abort action. A process schedule
of type $\Gamma$ is called safe if it is fair and deadlock-free. (In particular, all fair infinite
processes schedules and all deadlock-free finite process schedules are safe, according
to this definition.)

Now assume that all axioms are logical axioms, namely that there is no axioms
for overflow abort-action. Then the following is a statement corresponding to the
G\"odel’s completeness theorem (of the traditional logics).
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Theorem 5 (Completeness) A specification $\Gamma$ is consistent in Linear Logic if
and only if there exists a safe process schedule of type F. 5

Here, $\Gamma$ is consistent” means that no contradiction is derived from $\Gamma(i.e.,\Gamma\vdash\perp$

is not provable.)

Proof. By the cut-elimination theorem for Linear Logic, $\Gamma\vdash\Delta$ is provable iff
$\Gamma\vdash$ is provable without cut. Hence, for any process type $\Gamma,$ $\Gamma\vdash\perp is$ not provable
iff $\Gamma\vdash$ does not reach any axiom-sequent by the above-listed transition rules, for
any proof search strategy (including the fair ones), which means there exists a safe
process schedule of type $\Gamma$ .

Note that the above transition rule for receiving-action is interpreted as the
following combination of-o left rule and the logical axiom sequent $\alpha\vdash\alpha$ in Linear
Logic;

$\alpha\vdash\alpha\Gamma,Q,\Delta\vdash\Gamma,\alpha,$

$\alpha-oQ,\Delta\vdash$ ,
$\frac{\alpha_{1}\vdash.\alpha_{1}\cdots\alpha_{n}.\vdash.\alpha_{n}\Gamma,Q,\Delta\vdash}{\Gamma,\alpha_{1},..,\alpha_{n},(\alpha_{1}\otimes\cdot\otimes\alpha_{n})-oQ,\triangle\vdash}$

4.2 Some simple examples of concurrent process specifica-
tion

We consider some examples of specifications with using Kahn’s regular dataflow
nets with bounded buffer-sizes, which give basic models of concurrent process com-
putation (cf. Kahn[16]).

Example 1.

Dataflow specification

Here channel $\beta$ has a bounded buffer of size 3, (which means that channel $\beta$ can
store up to three tokens and that when channel $\beta$ gets more than three tokens, the
whole process of this network stops by the overflow of channel $\beta$). Process (1) $P(2)$

is a process to receive one token through channel $\alpha$ then to send two tokens through
5 One could use &, instead $of\oplus$ , for a choice action (with the same inference form as that of

$\oplus$-choice action). Then the completeness is stated as “a specification $\Gamma$ is consistent if and only
if all process schedules of type $\Gamma$ are deadlock-free”.
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channel $\beta$ . Process (1) $Q(2)$ is a process to receive one through channel $\beta$ then to
send two through channel $\gamma$ .

Now we assume that two input tokens at (the buffer in) channel $\alpha$ and that
other channels are empty at the beginning. The network is specified by formula
(by regarding a token as an atom (atomic formula)),

$(\alpha-o(\beta\otimes\beta))\otimes(\beta-o(\gamma\otimes\gamma))$ .

In this Section, we use $\delta^{n}$ to abbreviate $6\bigotimes_{\sim}\delta\otimes\cdots CD\delta$ . Hence, the above formula
$n$ -many

may be written as $(\alpha-\circ\beta^{2})\otimes(\beta-\circ\gamma^{2})$ .

The bounded buffer constraint (for the bounded buffer size $\beta^{3}$ ) is specified by
an additional (non-logical) axiom

$\Gamma,$ $\beta,\beta,$ $\beta,$ $\beta\vdash$

Now consistency is checked by the following setting with the input.

$\alpha,$ $\alpha,$
$(\alpha-0\beta^{2})\otimes(\beta-0\gamma^{2})\vdash$

There are several schedules;

1. Two $\alpha$ are passed to $P$ , and $P$ produces four $\beta’ s$ . Then the process stops by
the buffer over-flow.

2. One $\alpha$ is received by $P$ , and two $\beta’ s$ are sent from $P$ , then one $\beta$ is taken
by $Q$ and two $\gamma’ s$ are produced. Then, another one $\alpha$ is taken by $P$ and two
more $\beta’ s$ are sent. Now three $\beta’ s$ are in the buffer. Then each $\beta$ is taken one
by $Q$ and six more $\gamma’ s$ are produced.

3. The first half is the same as 2. When the second $\alpha$ is taken by $P$ , concurrently
the one $\beta$ left is taken by $Q$ , and two more $\gamma’ s$ are produced. Then the rest
are treated in the similar way as 2.

Schedule 1 corresponds to a (complete) proof, which means an invalid process,
i.e., the process by this schedule is aborted (by the OVER-FLOW-BUFFER ac-
tion). Proof net $A$ below corresponds to the trace of this process. Schedules 2 and
3 are different schedules but the same trace, which corresponds to the same proof
net $B$ , (however, different in the proof figures level). Note that, if one set up the
size of the bounded buffer of channel $\beta$ as 3, instead of 4, schedule 2 becomes an
aborted process, which corresponds to a new complete proof net, which is different
from the two. That means that in this case not only the schedules of process but
also the traces of process become different.
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$B$

$!(\alpha-0\beta^{2})$

$\gamma^{8}$

$1$

$\beta-0\gamma^{2}\beta-0\gamma^{2}\beta-0\gamma^{2}\beta-0\gamma^{2}$

$!(\beta-\circ\gamma^{2})$

Proof net

Example 2. Consider the dataflow diagram below;

Dataflow specification

We assume that channels $\beta,$
$\gamma,$

$\delta$ have bounds of buffer size, 4, 4, 3, respectively,
while channels $\alpha,$ $\eta,$

$\lambda$ have no bound. Process $P_{1}$ receives two messages (tokens)
from the channel $\alpha$ and produces two tokens to channel $\beta$ and one token to channel
$\gamma$ concurrently. This is specified as $!(\alpha\otimes\alpha)-o(\beta\otimes\beta\otimes\gamma)$ , which may also be written
as $!(\alpha^{2}-\circ\beta\otimes\gamma)$ . The modality ! means this process can be repeated infinitely
many times. $P_{2}$ is waiting for 3 tokens through channel $\beta$ then is sending two tokens
through channel $\delta$ , namely $!(\beta^{3}-0\delta^{2})$ . $P_{3}$ is waiting for two tokens through channel
$\gamma$ then sending one token through channel $\eta$ . $P_{3}$ is specified by $!(\gamma^{2}-0\eta)$ . When
$P_{4}$ receives two tokens from channel $\delta$ and two from $\eta$ concurrently, it produces
one output token through channel $\lambda$ . $P_{4}$ is written as $!(\delta^{2}\otimes\eta^{2}-\circ\lambda)$ . Then the
whole network is described as $\Gamma$ , which is

! $(\alpha^{2}-0\beta^{2}\otimes\gamma),$ ! $(\beta^{3}-0\delta^{2}),$ ! $(\gamma^{2}-0\eta),$ ! $(\delta^{2}\otimes\eta^{2}-0\lambda)$ .

We consider a stream input (written as $!\alpha$ ) at channel $\alpha$ , which generates infinitely
many tokens one by one through channel $\alpha$ . Now consider an input channel state
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$m$ , say $!\alpha,$ $\beta^{2},$ $\eta^{3}$ . This means that the network is started with channel state $m$ ,
i.e., two tokens at channel $\beta$ , three tokens at channel $\eta$ and an (infinite) token
generator (infinite stream input) at channel $\alpha$ . Then by the completeness theorem,
the fact that $m,$

$\Gamma$ is consistent with the bounded buffer axioms for $\beta^{4}$ , for $\gamma^{4}$ and
for $\delta^{3}$ in the system $S$ is equivalent to the fact that there is a safe process of $m,$

$\Gamma$ .
(Here, the commas between formulas mean concurrency.)

Example 3. If one wants to share the two buffers $\delta$ and $\gamma$ , one can simply change
$\delta(3)$ to $\gamma(7)$ and $\gamma(4)$ to $\gamma(7)$ on the dataflow graph above. Then the correspond-
ing specification formula is obtained by replacing $\delta$ in $\Gamma$ by $\gamma$ . This type of shared
channels makes a specification of Petri net possible. A place name of a Petri net
corresponds to a channel name. (We shall give the definition and an example of
Petri net in the next Section.)

Example 4. Next, when we specify process $P_{1}$ and process $P_{4}$ as an arbitrary choice
and a merge, the specification $\Gamma$ is changed to

! $(\alpha^{2}-0\beta^{2}\&\gamma),$ ! $(\beta^{3}-0\delta^{2}),$ ! $(\gamma^{2}-0\eta),$ ! $(\delta^{2}\oplus\eta^{2}-0\lambda)$ .

Here, the choice process $P_{1}$ receives two tokens from channel $\alpha$ then send either
two tokens to channel $\beta$ or one token to channel $\gamma$ . The merge process $P_{4}$ sends
one token to channel $\lambda$ when it receives either two tokens from channel 6 or one
token from channel $\eta$ .

Example 5. An exclusive pair channels, namely a pair $(\alpha, \beta)$ of channels which pass
only one token either through channel $\alpha$ or through channel $\beta$ can be expressed
expressed by the three axioms;

$\Gamma,$
$\alpha,$

$\beta\vdash$ $\Gamma,$
$\alpha,$

$\alpha\vdash$ $\Gamma,$ $\beta,$ $\beta\vdash$

Using these constraint axioms, one can define a conditional choice process. For
example, the specification of a deterministic choice process, which sends $\gamma^{3}$ if $\alpha$ is
received, and which sends $6^{2}$ if $\beta$ is received, is written as; $(\alpha-0\otimes(\gamma^{3}))\oplus(\beta-0\otimes(\delta^{2}))$ .

5 Naive Phase Semantics and Completeness of the
Petri Net Specification

We consider the following subsystem $S_{0}$
6 of Intuitionistic Linear Logic. A formula

of the form $a_{1}\otimes\cdots\otimes a_{n}$ for atoms (atomic formulas) $a_{1},$
$\ldots,$

$a_{n}$ is called a marking
in this section. The formulas of $S_{0}$ is restricted in the way that for $A-oB,$ $A$ is a
marking. The formulas of $S_{0}$ is defined as;

6 By virtue of the cut-elimination theorem of the Intuitionistic Linear Logic $S_{0}$ is shown to be
a conservative subsystem of Intuitionistic Linear Logic. Namely, for any sequent $\Gamma\vdash A$ of the
language of $S_{0}$ , the following are equivalent; (1) $\Gamma\vdash A$ is provable in $S_{0},$ (2) $\Gamma\vdash A$ is provable in
Intuitionistic Linear Logic.
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(1) if $a$ is an atom, then $a$ is a formula,

(2) if $A$ and $B$ are formulas, then so is $A\otimes B$ , A&B and $A\oplus B$ ,

(3) if $m$ is a marking and $A$ is a formula then $ m-\infty$ $A$ is a formula,

We do not assume the linear negation as a basic logical connectives (since it is
definable as $ A^{\perp}\equiv A-0\perp$ ). We do not use modality !, either.

The inference rules of $S_{0}$ are those of Intuitionistic Linear Logic restricted to
the above subclass of formulas, in particular, $-\circ$ rules are as follows, due to the
restriction on $-\circ$ of (3) above;

( $-\circ$-left)

$\Gamma\vdash m$ $A,$ $\Delta\vdash B$

$m-oA,$ $\Gamma,$ $\Delta\vdash B$

( $-\circ$-right)

$\frac{m,\Gamma\vdash A}{\Gamma\vdash m-oA}$

where $m$ is a marking.

The purpose of this Section is to provide a natural and simple semantics for
the provability of $S_{0}$ . We also extend $S_{0}$ by adding non-logical axiom sequents
essentially of the form $m\vdash n$ (for markings $m$ and $n$ ), by which a Petri net spec-
ification can be naturally formulated, and we apply our simple semantics to this
extended $S_{0}$ . As well-known, a naive phase space semantics such as interpreting
$\alpha\oplus\beta$ as $\alpha\cup\beta$ is sound with respect to intuitionistic linear logic but that it is
not complete; for example, the distributive rule between &and $\oplus is$ true in this
model, but cannot be provable by the linear logic. (The soundness of a naive phase
semantics has been used in the literature of applications of linear logic to Petri
net specifications (cf. Engberg and Winske1[8], Marti-Oliet and Messeguer[21]).)
Hence, usually in order to obtain the completeness of linear logic, one needs a cer-
tain stronger closure conditions on the operator definitions of the phase semantics.
(For example, the classical $\oplus is$ defined by $\alpha\oplus\beta=(\alpha\cup\beta)^{\perp\perp}$ . The intuitionis-
tic $\oplus is$ , for example, defined by $\alpha\oplus\beta=$ the smallest fast which contains $\alpha U\beta$ ,
with some suitable closure conditions for the facts. Cf. Abrusci[2], Troelstra[32],
Okada[26].) However, from the point of view of practical application of system $S_{0}$ ,
including Petri net specifications, it is hard to understand any intuitive meaning
with these closure conditions. A natural question is whether or not the naive and
more intuitive phase semantics is complete with respect to this fragment of linear
logic. We shall show in this Section that the more naive definitions of linear oper-
ators provide a meaningful Completeness theorem for system $S_{0}$ and its extended
systems.

A Petri net is $(P, N)$ , where $P$ is a set of places and $N$ . is a set of transitions.
A multiset $m$ over $P$ is called a marking. $\mathbb{J}I_{P}$ stands for the set of markings of
$P$ . A transition $t\in N$ is of the form $(m_{1} : m_{2})$ for markings $m_{1}$ and $m_{2}$ . For
markings $m,$ $m$ , and a transition $t=$ $(m_{1} : m_{2})\in N,$ $m[t>m^{\prime}(m$ is one step
reachable from $m$ ) means that $t$ fires from $m$ to $m^{\prime}$ , that is; $m[t>m$ iff $\exists m$ $\in M$
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($m=mm_{1}$ and $m=mm_{2}$ ). A reachability relation $m\rightarrow m$ is the transitive
and reflexive closure of the one step reachability. The downwards $closure\downarrow m$ of $m$

means $\{m\in M:m^{\prime}\rightarrow m\}$ .
The following is an example ofa Petri net:

Vending Machine7

Here Petri net $(P, N)$ is defined as; the set of places (i.e., tokens) $P=\{q, \$, i, c\}$ ,
the set of transitions $N=$ {Buy-Ice Cream-l, Buy-Ice Cream-2, Buy-Cake-l, Buy-
Cake-2, change} $=$ $\{(\$ : i, q), (q, q, q : i), (q, \$ : c), (q, q, q, q, q : c), (\$ : q, q, q, q)\}$ ,
represented by the following linear logical formulas;

Buy-Ice Cream-l : $-0 $i\otimes q$

Buy-Ice Cream-2 : $q\otimes q\otimes q-\circ i$

Buy-Cake-l : q\otimes $-o $c$

Buy-Cake-2 : $q\otimes q\otimes q\otimes q\otimes q-\circ c$

change : $-o $q\otimes q\otimes q\otimes q$

We also often regard the transition set $N$ itself as a Petri net.
As seen in the above, a transition of a Petri net can be represented by a linear

logic formula of the form $m_{1}\otimes\cdots\otimes m_{k}-\triangleleft n_{1}\otimes\cdots\otimes n_{k}$ . We identify the set $N$

of transition of a Petri net $(P, N)$ and the corresponding set of the linear logic
formulas, and denote the linear logical formulas as $N$ . We extend system $S_{0}$ by
adding non-logical axiom sequents $a_{1},$ $\ldots,$

$a_{n}\vdash b_{1}\otimes\ldots\otimes b_{m}$ for all $ a_{1}\otimes\cdots\otimes a_{n}-\circ$

$b_{1}\otimes\cdots\otimes b_{m}\in N$ . We denote this system as $S_{0}(N)$ . When all $n$ of $m-\circ n\in N$ is
a single atom, Petri net $N$ is called a strict Petri net. Hence, for a strict Petri net
$N$ , the non-logical axiom sequent of $S(N)$ is of the form $a_{1},$ $\ldots,$

$a_{n}\vdash b$ for atoms
$a_{1},$

$\ldots,$
$a_{n}$ and $b$ .

For a cut inference $J$ occurring in an $S_{0}(N)$ -proof, if the left cut formula or the
right cut formula of a cut inference $J$ comes from an occurrence of a non-logical
axiom sequence $a_{1},$ $\ldots,$

$a_{n}\vdash b_{1}\otimes\cdots\otimes b_{m}$ , then the occurrence of cut inference $J$

7 This Vending Machine example is taken from Mart\’i-Oliet and Meseguer[21] with a slight
modification.
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is called a non-free cut. Otherwise, an occurrence of cut inference is called a free
cut. There are two cases of non-free cut, as shown below.

$\bullet$ A non-free cut $J$ (Case 1)

an N-axiom sequent
$a_{1},$

$\ldots,$ $a_{i-1},$ $a_{i},$ $a_{i+1},$ $\ldots,$
$a_{n}\vdash b_{1}\otimes\cdots\otimes b_{m}$

: .
:. $\cdot$ .
$:$

. .
$\frac{\Delta\vdash a_{i}a_{\dot{i}},\Gamma\vdash B}{\Delta,\Gamma\vdash B}J$

:
. :.

:
$\bullet$ A non-free cut $J$ (Case 2)

an N-axiom sequent
$a_{1},$

$\ldots,$
$a_{n}\vdash b_{1}\otimes\cdots\otimes b_{m}$

. : .. . :.
$:$

..
$\frac{\Delta\vdash b_{1}\otimes\cdots\otimes b_{m}b_{1}\otimes\cdots\otimes b_{m},\Gamma\vdash B}{\Delta,\Gamma\vdash B}J$

:. :.
:

Then the following cut-elimination theorem holds. See the end of this subsection
for a proof.

Fact 1 (Cut-Elimination Theorem)

1. If $\Gamma\vdash A$ is provable in $S_{0}$ , then $\Gamma\vdash A$ is provable without cut-rule in $S_{0}$ .
2.

$S_{0}(N)If\Gamma\vdash.$

$A$ is provable in $S_{0}(N)$ , then $\Gamma\vdash A$ is provable without free-cut in

$(M_{P}, \otimes, \&, \oplus, -0)$ is a naive phase space on $P$ where $M$ is the commutative free
monoid generated by a set $P$ . Every subset of $M_{P}$ is called a fact in a naive phase
model on $M$ . In this Section, an element of $P$ is called a token (place name) and
an element of $M_{P}$ , i.e., a multiset over $P$ , a marking.

On a naive phase space $(M_{P}, \otimes, \&, \oplus, -0)$ , the interpretation of the linear op-
erators &(with), $\oplus(and),$ $\otimes(tensor)$ and $-0$ (linear implication) are defined as
follows; For any facts $\alpha$ and $\beta$ ,

Ll. $\alpha\&\beta=\alpha\cap\beta$

L2. $\alpha\oplus\beta=\alpha\cup\beta$
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L3. $\alpha\otimes\beta=\alpha\beta$

L4. $\alpha-0\beta=\{n:\forall m\in\alpha mn\in\beta\}$ .

The interpretation $A^{*}$ of a formula $A$ is defined to be a fact in the following
way, when an assignment of facts for atoms (atomic formulas) occurring in $A$ is
given. We call this value $A^{*}$ the inner-value of $A$ .

$(A-\circ B)$ $=$ $A^{*}-oB^{*}$

$(A^{\perp})^{*}$ $=$ $(A^{*})^{\perp}$

(A&B)* $=$ A*&B*
$(A\oplus B)^{*}$ $=$ $A^{*}\oplus B^{*}$

$(A\otimes B)^{*}$ $=$ $A^{*}\otimes B^{*}$

$1^{*}$ $=$ $1=the$ smallest fact which contains $1\in M$ ,
(which is {1} in the case of a naive phase model.)

Now we show the soundness and completeness of our fragment $S_{0}$ of linear logic
with respect to the naive phase models.

First, we note that, as well-known, soundness holds for the naive semantics, not
only for our fragment, but also for full-system of intuitionistic linear logic, as well
known.

Theorem 6 (Soundness Theorem) If $A_{1},$
$\ldots,$

$A_{n}\vdash B$ is provable in $S_{0}$ , then
for any naive phase model, $A_{1}^{*}\cdot\cdots\cdot A_{n}^{*}\subseteq B^{*}$ .

Proof. The proof is carried by induction on the length of a given $S_{0}$ -proof. For
the case where the left hand-side of the sequent is empty (of the form $\vdash B$), we
interpret this as $1\vdash B$ . $\blacksquare$

Now we apply this to Petri net specifications, as an example. Recall that a Petri
net transition $N$ is specified by a set of transition formulas of the form $m_{i}-\circ n_{i}$ ,
where $m_{i}$ and $n_{i}$ are markings, i.e., $\otimes$-conjunctions of tokens. Here we identify a
place name (of Petri net) with a token.

For a Petri net $N=\{m_{i}-on_{i}\}_{i=1,\ldots,k}$ , a free commutative monoid $M_{P}$ , a set
$\alpha\subseteq M_{P}$ satisfies the N-downward closure property if $ m_{j}l\in\alpha$ then $ n_{i}l\in\alpha$ for any
$i=1,$ $\ldots,$

$k$ ; in other words, $\downarrow m\subseteq\alpha$ for any $ m\in\alpha$ , in the Petri net terminology.
For a strict Petri net $N$ , a strict N-phase space $(M_{P}, N, \otimes, \&, \oplus, -0)$ is defined

in the same way as a naive phase space $(M_{P}, \otimes, \&, \oplus, -\circ)$ , where a fact of a strict
N-phase space is such a subset $\alpha\subseteq M_{P}$ which satisfies the N-downward closure
property.

For a Petri net $N$ , an N-phase space $(M_{P}, N, \otimes, \&, \oplus, -\circ)$ is defined in the same
way asastrict N-phase space, wherea fact of an N-phase space isasubset $\alpha\subseteq P$

which satisfies the N-downward closure property. For $\alpha\subseteq M_{P}$ , the smallest fact
which includes $\alpha$ is denoted by $Cl(\alpha)$ . Then, the definition L3 of the operator $\otimes$

on a N-phase space needs to be modified as; for any facts $\alpha$ and $\beta$ ,

L3’. $\alpha\otimes\beta=Cl(\alpha\beta)$ .
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Note that the N-downward closure property is preserved for all operators $\alpha\&\beta=$

$\alpha\cap\beta,$ $\alpha\oplus\beta=\alpha\cup\beta,$ $\alpha\otimes\beta=\alpha\beta$ and $\alpha-\circ\beta$ for a strict N-phase space, and
is preserved for all operators with the above modification $\alpha\otimes\beta=Cl(\alpha\beta)$ for an
N-phase space.

Since the N-downward closure property for the facts implies the soundness for
the non-logical axiom sequents (i.e., $m^{*}\subseteq n^{*}$ for any $m-on\in\cdot N$ ), we can easily
see that the Soundness Theorem for $S_{0}$ is generalized to that for $S_{0}(N)$ .

Theorem 7 (Soundness Theorem) If $A_{1},$
$\ldots,$

$A_{n}\vdash B$ is provable in $S_{0}(N)$ for
a Petri net $N$ (for a strict Petri net $N$ , respectively), $ A_{1}^{*}\cdot$ . . . . $A_{n}^{*}\subseteq B^{*}$ in any
N-phase model (in any strict N-phase model, respectively).

A marking (i.e., a multiset of tokens) $m$ is called a precondition of an specifi-
cation formula $A$ if $A$ is satisfied for input $m$ . The interpretation of each linear
logic operator has a direct meaning for a specification formulas of processes given
in Section 2. When $a^{*}$ for atom (token) $a$ is interpreted as a set of input tokens to
fire $a,$

$A^{*}$ is a set of input tokens to realize specification $A$ . The above soundness
theorem means that a precondition of $A_{1},$

$\ldots,$
$A_{n}$ , namely a set of input tokens to

realize $A_{1},$
$\ldots,$

$A_{n}$ , is also a precondition of $B$ , namely a set of input tokens to re-
alize A. (Then the notion of precondition above is understood as the precondition
of the reachability in the sense of Petri nets.) Then the above soundness theorem
implies that if $A\vdash B$ is provable in $S_{0}(N)$ then for any Petri net including the
transition relation $N$ any precondition of $A$ is a precondition of $B$ , in particular, if
$A$ is amarking, the condition $A$ itself is aprecondition of $B$ .

For completeness proof we construct a canonical model on the domain of the
set of marks (under the identification between a sequence of atoms and their $\otimes-$

conjunctive form). Now we introduce the outer value $[A]$ of a formula $A$ as follows.
In the rest of this Section we identify a marking $a_{1}\otimes\cdots\otimes a_{n}$ and a multiset

$\{a_{1}, \ldots, a_{n}\}$ .

Definition 4 The outer-value $[A]$ of $A$ is of the form $\{m : m\vdash A\}$ , where $m$ is
a mark, $i.e.,$ $m$ is a sequence ($i.e$ . a multiset) of atoms.

The inner value $A^{*}$ of a formula $A$ is given in the way defined before by setting
that for each atom (token) $a$ , the inner value is defined to be $[a]$ .

Lemma 6 (Main Lemma) For any formula $A,$ $A^{*}=[A]$ .

Then, the completeness theorem follows immediately from this.

Theorem 8 (Completeness (Okada)) If formula $A$ is true for any naive phase
space, $A$ is provable.

If $A$ is valid, then $A$ is true in our canonical model, hence $\emptyset\in A^{*}$ , therefore
$\emptyset\in[A]$ by the Main Lemma, which $means\vdash A$ , i.e., $A$ is provable.
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Now we consider an application of our Completeness proof to a Petri net system
$S_{0}(N)$ . When a Petri net is specified by a set of transitions $N=\{m_{i}-\triangleleft n_{i}\}_{i}$ , we
consider the following modification of the outer value;

Definition 5 The outer-value $[A]$ of $A$ for Petri net $N$ is of the form { $m$ : $m\vdash A$

is provable in $S_{0}(N)$ }, where $m$ is a marking, $i.e.,$ $m$ is a sequence ($i.e$ . a multiset)
of atoms.

Then the previous completeness proof works as it is. In particular, the canonical
model satisfies the downwards closure condition. Hence, the following Complete-
ness theorem holds;

Theorem 9 (Completeness for Petri net $N$ (Okada)) If $A-\triangleleft B$ is valid for
any N-phase model (for any strict N-phase model, respectively), then $A\vdash B$ is
provable in $S_{0}(N)$ for a Petri net $N$ (for a strict Petri net $N$ , respectively).

Proof of Main Lemma. The proof of this is carried by induction on the complex-
ity of a formula $A$ . We recall that we use marking expression $m,$ $n$ for expressing
both a finite set of atoms and $the\otimes$-conjunction of that set, without distinguish-
ing the two explicitly. For example, $m$ may be $a_{1},$ $\ldots$ , $a_{n}$ as well as $a_{1}\otimes\cdots\otimes a_{n}$

depending on the context.

(Case 1) When $A$ is atomic. $A^{*}=[A]$ by definition.

(Case 2) $A$ is the form $m\rightarrow C$ , where $m$ is a mark; we prove $m^{*}-oC^{*}=[B-oC]$ .

(2.1) $m^{*}-\circ C^{*}\subseteq[m-oC]$ .

Assume that $n\in m^{*}-oC^{*}$ .
By the definition of $m^{*}-\circ C^{*}$ , for any $l\in m^{*},$ $nl\in C^{*}$ .
On the other hand, it is easily seen that $m\in m^{*}$ , and by the induction hypothesis,
$C^{*}\subseteq[C]$ . Hence, $n,$ $m\in[C]$ . On the other hand,

$\overline{\overline{n\vdash m-\circ C}}n,$

$m\vdash C$

$by\otimes$-left rules and $-0$-right rule.

Therefore, $n\in[m-oC]$ .

(2.2) $[m-oC]\subseteq m^{*}-\circ C^{*}$

Assume that $n\in[m-oC]$ . Hence $n,$ $m\vdash C$ . It suffices to show that for any
$l\in m^{*},$ $l,$ $n\in C^{*}$ .
If $l\in m^{*}$ , since $m^{*}=[mI$ by the induction hypothesis, $l\vdash m$ . Hence $n,$ $l\vdash C$ , i.e.,
$l,$ $n\in[C]$ . On the other hand, $[C]=C^{*}$ by the induction hypothesis.
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(Case 3) A*&B* $=[A\& B]$ .

(3.1) A*&B* $\subseteq[A\& B]$ .
By the induction hypothesis, $A^{*}=[A]$ and $B^{*}=[B]$ . Hence A*&B* $=A^{*}\cap B^{*}=$

$[A]\cap[B]$ .
On the other hand,

$\frac{m\vdash Am\vdash B}{m\vdash A\& B}$

Hence, $[AJ\cap[BJ\subseteq[A\& B]$ .

(3.2) [A&B]A*&B*
Assume that $ m\in$ [A&B]. Then by analysis of cut-free proof of m\vdash A&B, $m\vdash A$

and $m\vdash B$ , since $m$ is a mark. Then, by the induction hypothesis, [$AI=A^{*}$ and
$[B]=B^{*}$ . Hence, $m\in A^{*}\cap B^{*}$ .

(Case 4) $A^{*}\oplus B^{*}=[A\oplus B]$

(4.1) $A^{*}\oplus B^{*}\subseteq[A\oplus B]$

Assume that $m\in A^{*}\oplus B^{*}$ . By definition and the induction hypothesis, $ m\in$

$A^{*}\cup B^{*}=[A]\cup[B]$ , which is included in $[A\oplus B]$ .
The last set inclusion is true because

$\frac{m\vdash A}{m\vdash A\oplus B}$ $\frac{m\vdash B}{m\vdash A\oplus B}$

(Case 5) $A^{*}\otimes B^{*}=[A\otimes BJ$

The set inclusion of the left hand side into the right hand side is obtained in
the same way as above, namely by using the induction hypothesis and the right
introduction rule $of\otimes$ .

The reverse direction is obtained by analyzing the possible free cut-free proofs
of $A\otimes B$ , by using the fact that there is no additional axioms.

With the presence of non-logical axiom sequents $N$ for a strict Petri net $N$ , the
above argument also holds, where we analyze the possible free-cut free proofs of
$A\otimes B$ for the reverse case.

With the presence of non-logical axiom sequents $N$ for a Petri net $N$ , we modify
the proof of (Case 5) as follows.

First we show $A^{*}\otimes B^{*}\subseteq[A\otimes B]$ . By the induction hypothesis $A^{*}\otimes B^{*}=$

$Cl(A^{*}\cdot B^{*})=Cl([A]\cdot[B])$ . On the other hand, $[A]\cdot[B]\subseteq[A\otimes B]$ and $[A\otimes B]$

is N-downward closed. Hence, $Cl([A]\cdot[B])\subseteq[A\otimes B]$ .
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For $[A\otimes B]\subseteq A^{*}\otimes B^{*}$ , assume $n\in[A\otimes B]$ , then we show $n\in A^{*}\otimes B^{*}$ .
$n\vdash A\otimes B$ is provable. By analyzing the free-cut free proofs of $n\vdash A\otimes B$ , we
can see that if $A\otimes B$ is not a marking, there are markings $n_{1}$ and $n_{2}$ such that
$n=n_{1}n_{2}$ and $n_{1}\vdash A$ and $n_{2}\vdash B$ . Then, $n=n_{1}n_{2}\in[A][B]=A^{*}\cdot B^{*}$ by the
induction hypothesis, and the claim holds. If $A\otimes B$ is a marking, then $[A\otimes B]$

is the smallest fact which includes $[A][B](=A^{*}\cdot B^{*})$ . Hence $[A\otimes B]=A^{*}\otimes B^{*}$ . $\blacksquare$

In the above proof, we analyzed the cut-elimination proofs (of $S_{0}$ and of $S_{0}(N)$ ),
in order to prove the $[A]\subseteq A^{*}$ direction. So we assumed the Fact 1 (the cut-
elimination theorem). However, the Fact 1 (the cut-elimination theorem) can be
proved in the same way as in Section 3. Here, we can follow all the above arguments
(for $A^{*}\subseteq[A]$ ) in the above proof of the Main Lemma for the $A^{*}\subseteq[A]$ direction,
for which we did not use the cut-elimination theorem. The rest of the argument to
prove the Fact 1 from $A^{*}\subseteq[A]$ with the help of the soundness theorem is exactly
the same as that in Section 3.

For Further Study in Linear Logic
The first paper [9] of linear logic (which was introduced by J. Y. Girard in 1987) is
self-contained and is now still useful and stimulating for the reader. The characteriza-
tion theorem for the proof nets in [9] was simplified by Danos-Regnier[6]. Lafont[19] is
a good reference to proof nets and their generalized form, interaction nets. A short in-
troduction of proof nets may be also found in Appendix 2 of [11] as well as Girard[10].
Girard[10], Troelstra[32] and Scedrov[29] are good introductory surveys of linear logic.
In particular, Girard[10] (as well as Girard[9]) contains a good introduction to coherent
semantics, which is a basic denotational semantics for proofs of linear logic, while phase
semantics is a basic Tarski-style semantics for provability of linear logic. A short but very
informative explanation on the underlying idea of coherent semantics (in the traditional
type-theoretical context) may be found in [11]. Scedrov[29] contains a good introduction
on the subject of decidability and computational complexity problems for various sub-
systems of linear logic. (Takeuti[31] is also a good introductory textbook on this subject
treating one of Kanovich’s results, but is written only in Japanese.) Troelstra[32] contains,
among others, an introduction to category-theoretical models of linear logic. Blass[5] and
Abramsky-Jagadeesan[l] are good introductory references to game semantics. [23] is a
collection of papers on the logic-programming paradigm (or, proof-search paradigm) of
linear logic (although most of the papers are refined and published elsewhere later). [12]
and [13] are collections of papers in various fields of linear logic, in which the reader can
find further references to the recent work of linear logic, and to their connections to type
theory, proof theory, and mathematics.

APPENDIX 1
Here we recall the (traditional) classical logic in the sequent calculus formulation
for the comparison with linear logic. see Takeuti[30] for the detail.



LINEAR LOGIC: EXPRESSIVENESS AND PHASE SEMANTICS 291

We introduce the language of traditional logic as follows;

(1) logical connectives; $\wedge(and),$ $\vee$ (or), $\neg$ (not), $\rightarrow(implies)$ ,
(2) logical constants; $T$ (true), $\perp$ (false),
(3) propositional variables; $P,$ $Q$ , R. . . , $P_{0},$ $P_{1},$ $P_{2},$

$\ldots$

The formulas are constructed from logical constants $and/or$ propositional vari-
ables by logical connectives, in the same way as in Section 2. Note that the tradi-
tional classical logic does not have the modal connectives ! nor ?.

We use meta-symbols $A,$ $B,$
$\ldots$ to express formulas. Finite multisets of formulas

(possibly the empty multiset) are denoted by $\Gamma,$ $\triangle,$

$\ldots$ . A Sequent is an expression
of the form $\Gamma\vdash\triangle$ , as in Section 2. The axiom sequent and the $\neg$-left, $\neg$-right,
$\rightarrow$-left, $\rightarrow$-right, exchange-left, exchange-right, and cut-rules are the same as those
of the classical linear logic rules in Section 2, where $A^{\perp}$ is now replaced by $\neg A$ and
$A-\triangleleft B$ is replaced by $A\rightarrow B$ . Instead of the modality rules (the rules for ! and
?), we impose the following structural rules to all (non-modal) formulas.

Weakening-left Weakening-right

$\frac{\Gamma\vdash\triangle}{A,\Gamma\vdash\triangle}$ $\frac{\Gamma\vdash\Delta}{\Gamma\vdash\Delta,A}$

Contraction-left Contraction-right

$\frac{A,A,\Gamma\vdash\triangle}{A,\Gamma\vdash\Delta}$
$\frac{\Gamma\vdash\triangle,A,A}{\Gamma\vdash\Delta,A}$

For the rules $of\wedge and$ of $\vee$ , we can take either the additive rules (i.e. of&and of
$\oplus$ , respectively), or the multiplicative rules (i.e. $of\otimes and$ of $\eta$ , respectively). With
the presence of the above additional structural rules, it is easily verified that the
additive rules and the multiplicative rules are equivalent (namely, one is a derived
rule of the other). For example, the additive representation of the rules $for\wedge and$

V are as follows.

$\wedge$ -left $\wedge$ -right

$\frac{A,\Gamma\vdash\triangle}{A\wedge B,\Gamma\vdash\triangle}$
$\frac{\Gamma\vdash\Delta,A\Gamma\vdash\triangle,B}{\Gamma\vdash\triangle,A\wedge B}$

$\frac{B,\Gamma\vdash\Delta}{A\wedge B,\Gamma\vdash\triangle}$

$\vee$ -left $\vee$ -right

$\frac{A,\Gamma\vdash\triangle B,\Gamma\vdash\Delta}{A\vee B,\Gamma\vdash\Delta}$
$\frac{\Gamma\vdash\Delta,A}{\Gamma\vdash\Delta,A\vee B}$

$\frac{\Gamma\vdash\Delta,B}{\Gamma\vdash\Delta,A\vee B}$
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APPENDIX 2 Syntax of Right-Only One-Sided Classical Lin-
ear Logic
Axiom and Inference Rules of Right-Only Classical Linear Logic are as follows.

$\bullet$ Axiomm
Logical axioms sequent

$\vdash A,$
$A^{\perp}$

Logical constants

$\vdash 1$ $\vdash\Gamma,$ $T$

$\frac{\vdash\Gamma}{\vdash\Gamma,\perp}$

$\bullet$ Structural Rules

Exchange-rule
$\vdash\Gamma,$ $A,$ $B,$ $\Delta$

$\vdash\Gamma,$ $B,$ $A,$ $\Delta$

$\bullet$ Multiplicative
$\otimes$-rule

$\frac{\vdash\Gamma,A\vdash\Delta,B}{\vdash\Gamma,\Delta,A\otimes B}$

$\bullet$ Additive
&-rule

$\frac{\vdash\Gamma,A\vdash\Gamma,B}{\vdash\Gamma,A\& B}$

$\bullet$ Modality
!-rule

$\frac{\vdash?\Gamma,A}{\vdash?\Gamma,!A}$

Cut-rule

$\frac{\vdash\Gamma,A\vdash\Delta,A^{\perp}}{\vdash\Gamma,\Delta}$

$\eta$-rule

$\frac{\vdash\Gamma,A\eta B}{\vdash\Gamma,A,B}$

$\oplus$-rule

$\frac{\vdash\Gamma,A}{\vdash\Gamma,A\oplus B}$

$\frac{\vdash\Gamma,B}{\vdash\Gamma,A\oplus B}$

?-rule

$\frac{\vdash\Gamma,A}{\vdash\Gamma,?A}$

$\frac{\vdash\Gamma,?A,?A}{\vdash\Gamma,?A}$

$\frac{\vdash\Gamma}{\vdash\Gamma,?A}$
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