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1 Introduction

This is an introduction to proof theory of nonclassical logic, which is directed at
people who have just started the study of nonclassical logics, using proof-theoretic
methods. In our paper, we will discuss only its proof theory based on sequent
calculi. So, we will discuss mainly cut elimination and its consequences. As this
is not an introduction to sequent systems themselves, we will assume a certain
familiarity with standard sequent systems LK for the classical logic and LJ for the
intuitionistic logic. When necessary, readers may consult e.g. Chapter 1 of Proof
Theory [43] by Takeuti, Chapters 3 and 4 of Basic Proof Theory [45] by Troel-
stra and Schwichtenberg, and Chapter 1 of the present Memoir by M. Takahashi
[41] to supplement our paper. Also, our intention is not to give an introduction
of nonclassical logic, but to show how the standard proof-theoretic methods will
work well in the study of nonclassical logic, and why certain modifications will be
necessary in some cases. We will take only some modal logics and substructural
logics as examples, and will give remarks on further applications. Notes at the end
of each section include some indications for further reading.

An alternative approach to proof theory of nonclassical logic is given by using
natural deduction systems. As it is well-known, natural deduction systems are
closely related to sequent calculi. For instance, the normal form theorem in natural
deduction systems corresponds to the cut elimination theorem in sequent calculi.
So, it will be interesting to look for results and techniques on natural deduction
systems which are counterparts of those on sequent calculi, given in the present
paper.

The present paper is based on the talk given at $MSJ$ Regional Workshop on
Theories of Types and Proofs at Tokyo Institute of Technology in September, 1997,
and also on the introductory talk on proof theory in Logic Summer School 1998, at
Australian National University in January, 1998. The author would like to express
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his thanks to M. Takahashi for offering him a chance of writing an introductory
paper in this field, and to Bayu Surarso, M. Bunder, R. Gor\’e, A. Maruyama, T.
Shimura and M. Takano for their helpful comments.

1.1 What is proof theory?

The main concern of proof theory is to study and analyze structures of proofs.
A typical question in it is “what kind of proofs will a given formula $A$ have, if it
is provable?”, or “is there any standard proof of $A?$ . In proof theory, we want to
derive some logical properties from the analysis of structures of proofs, by antici-
pating that these properties must be reflected in the structures of proofs. In most
cases, the analysis will be based on combinatorial and constructive arguments. In
this way, we can get sometimes much more information on the logical properties
than with semantical methods, which will use set-theoretic notions like models,
interpretations and validity.

On the other hand, the amount of information which we will get from these
syntactic analyses depends highly on the way of formalizing a given logic. That
is, in some formulations structures of proofs will reflect logical properties more
sensitively than in others. For instance, Hilbert-style formal systems were popular
in the first half of this century, which consist usually of many axiom schemes with a
few rule of inference, including modus ponens. This formulation is in a sense quite
flexible and is convenient for representing various logics in a uniform way. On the
other hand, the arbitrariness of the choice of axioms of a given logic in Hilbert-style
formulation tells us the lack of sensitivity to logical properties, although to some
extent the proof theory based on Hilbert-style formal systems had been developed.

Then, G. Gentzen introduced both natural deduction systems and sequent cal-
culi for the classical logic and the intuitionistic one in the middle of $1930s$ . The
main advantage of these two kinds of systems comes from the fact that there is a
standard proof of a given formula as long as it is provable. This fact is certified by
normal form theorem in natural deduction systems and by cut elimination theorem
in sequent calculi. Moreover, it turned out that “standard” proofs reflect some
of logical properties quite well. For instance, one can derive the decidability, and
moreover the decision procedure, for a propositional logic by using the existence
of (standard’ proofs. In this way, we can get much more information on logical
properties from proofs in these formulations. This fact has led to the success of
proof theory based on natural deduction systems and sequent calculi, in particular
to consistency proofs of Peano arithmetic and its extensions.

1.2 Proof-theoretic methods in nonclassical logic

Our goal of the present paper is to show the usefulness (and the limitations)
of proof-theoretic methods by taking appropriate examples from sequent calculi
for nonclassical logic, in particular for modal and substructural logics. As will be
explained later, proof-theoretic methods will give us deeper results than semantical
ones do, in particular in their computational aspects. For instance, the cut elimi-
nation theorem for a propositional logic implies often its decidability, and the proof
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will give us an effective decision procedure (see Sections 4 and 5). Also, Mae-
hara’s method of proving Craig’s interpolation theorem will give us an interpolant
effectively (see Section 6).

The study of computational aspects of logics is particularly important in their
applications. Modal logics cover epistemic logics, deontic logics, dynamic logics,
temporal logics and so on, which will give theoretical foundations of artificial in-
telligence and software verification. Also, substructural logics include linear logic
and Lambek calculus, which will give us a theoretical basis of concurrent processes
(see [31]) and categorial grammar, respectively. This is the reason why we will
focus on modal and substructural logics in the present paper.

We note here that most of automatic theorem provers at present are designed
and implemented on the basis of Hilbert-style formal systems because of the mod-
ularity of these systems, while many of interactive theorem provers are based on
Gentzen-style systems.

But, when we gain, we may also lose. As mentioned above, proof-theoretic
methods work well mostly in the case where the existence of “standard” proofs is
guaranteed. But as a matter of fact, this happens to hold only for a limited number
of nonclassical logics. On the other hand, one may have much more interest in
the study of a class of nonclassical logics, than in that of particular logics. In
such a case, proof-theoretic methods will be useless. Semantical and algebraic
methods will work well instead, although results obtained by them will usually
lack constructive and computational features. For example, Maksimova proved in
[27] that the interpolation theorem holds only for seven intermediate propositional
logics, i.e. logics between the intuitionistic logic and the classical. We can use
proof-theoretic methods to show that the interpolation theorem holds for each of
these seven logics. But, when we show that the interpolation theorem doesn’t hold
for any other logics, there will be no chance of using these proof-theoretic methods.
In this sense, we can say that proof-theoretic methods and semantical ones are
complementary to each other. In fact, sometimes it happens that a general result
shown by a semantical method was originally inspired by a result on particular
logics proved by a proof-theoretic method.

The present paper consists of eight sections. In Section 2, we will introduce
sequent calculi for logics discussed in this paper. Among others, sequent calculi
for standard substructural logics will be given. As this is an introductory paper,
extensions of sequent calculi like labelled deduction systems, display logics and
systems for hypersequents will not be treated here. Cut elimination theorem will
be discussed in Section 3. After a brief outline of the proof for LJ, we will indicate
how we should modify the proof when we show the cut elimination theorem for
substructural logics. An important consequence, and probably the most important
consequence, of cut elimination theorem is the subformula property. In the end
of Section 3, we will introduce Takano’s idea of proving the subformula property
of sequent calculi for some modal logics, for which the cut elimination theorem
doesn’t hold.
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In Sections 4 and 5, the decision problem will be discussed. It will be shown that
the contraction rule will play an essential role in decidability. In many cases, Craig’s
interpolation theorem can be derived from the cut elimination theorem by using
Maehara’s method. This is outlined in Section 6. Another application of the cut
elimination theorem in the author’s recent joint paper [30] with Naruse and Bayu
Surarso gives a syntactic proof of Maksimova’s principle of variable separation.
The topic is outlined in Section 7. A short, concluding remark is given in the last
section.

1.3 Notes

We will give here some basic literature on proof theory. Hilbert-Ackermann [20]
developed the first, comprehensive study of proof theory based on a Hilbert-style
formulation. In his paper [17] in 1935 Gentzen introduced both natural deduction
systems and sequent calculi for the classical logic and the intuitionistic. The paper
became the main source of studies on proof theory developed later. As for further
information on natural deduction, see e.g. [37, 40, 45, 10]. Another way of for-
malizing logics, which is closely related to one using sequent calculi, is the tableau
method. For the details, see e.g. [16]. As for recent developments of proof theory
in general, consult [6].

2 Sequent Calculi for Nonclassical Logic

We will introduce several basic systems of sequent calculi discussed in our paper.
First, we will introduce sequent calculi LK and LJ for the classical predicate logic
and the intuitionistic one, respectively. Then, we will introduce some of sequent
calculi for modal logics, by adding rules or initial sequents for the modal operator
$\square $ , and also sequent calculi for substructural logics, by deleting some of structural
rules either from LK or from LJ.

2.1 Sequent calculi LK and LJ

We assume here that the language $\mathcal{L}$ of LK and LJ consists of logical con-
nectives $\wedge,$ $\vee,$ $\supset$ and $\neg$ and quantifiers $\forall$ and $\exists$ . The first-order formulas of $\mathcal{L}$

are defined in the usual way. A sequent of LK is an expression of the form
$A_{1},$

$\ldots,$
$A_{m}\rightarrow B_{1},$

$\ldots,$
$B_{n}$ , with $m,$ $n\geq 0$ . As usual, Greek capital letters $\Sigma,$ $\Lambda,$ $\Gamma$

etc. denote (finite, possibly empty) sequence of formulas. Suppose that a sequent
$\Sigma\rightarrow\Pi$ is given. Then, any formula in $\Sigma(\Pi)$ is called an antecedent (a succedent)
of the sequent $\Sigma\rightarrow\Pi$ .

In the following, we will introduce first a formulation of the sequent calculus
LK, which is slightly different but not in an essential way from the usual one.
Initial sequents of LK are sequents of the form $A\rightarrow A$ . Rules of inference of LK
consist of the following;

Structural rules:
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Weakening rule:

$\frac{\Gamma,\Sigma\rightarrow\triangle}{\Gamma,A,\Sigma\rightarrow\triangle}(w\rightarrow)$

Contraction rule:

$\frac{\Gamma,A,A,\Sigma\rightarrow\triangle}{\Gamma,A,\Sigma\rightarrow\Delta}(c\rightarrow)$

Exchange rule:

$\frac{\Gamma,A,B,\Sigma\rightarrow\triangle}{\Gamma,B,A,\Sigma\rightarrow\Delta}(e\rightarrow)$

Cut rule:

$\frac{\Gamma\rightarrow\Lambda,\Theta}{\Gamma\rightarrow\Lambda,A,\Theta}(\rightarrow w)$

$\frac{\Gamma\rightarrow\Lambda,A,A,\Theta}{\Gamma\rightarrow\Lambda,A,\Theta}(\rightarrow c)$

$\frac{\Gamma\rightarrow\Lambda,A,B,\Theta}{\Gamma\rightarrow\Lambda,B,A,\Theta}(\rightarrow e)$

.

$\frac{\Gamma\rightarrow A,\Theta\Sigma,A,\Pi\rightarrow\Delta}{\Sigma,\Gamma,\Pi\rightarrow\triangle,\Theta}$

Rules for logical connectives:

$\frac{\Gamma\rightarrow A,\Theta\Pi,B,\Sigma\rightarrow\Delta}{\Pi,A\supset B,\Gamma,\Sigma\rightarrow\triangle,\Theta}(\supset\rightarrow)$ $\frac{\Gamma,A\rightarrow B,\Theta}{\Gamma\rightarrow A\supset B,\Theta}(\rightarrow\supset)$

$\frac{\Gamma,A,\Sigma\rightarrow\Delta}{\Gamma,A\wedge B,\Sigma\rightarrow\triangle}(\wedge 1\rightarrow)$ $\frac{\Gamma,B,\Sigma\rightarrow\Delta}{\Gamma,A\wedge B,\Sigma\rightarrow\triangle}(\wedge 2\rightarrow)$

$\frac{\Gamma\rightarrow\Lambda,A,\Theta\Gamma\rightarrow\Lambda,B,\Theta}{\Gamma\rightarrow\Lambda,A\wedge B,\Theta}(\rightarrow\wedge)$

$\frac{\Gamma,A,\Sigma\rightarrow\Delta\Gamma,B,\Sigma\rightarrow\Delta}{\Gamma,A\vee B,\Sigma\rightarrow\triangle}(\vee\rightarrow)$

$\frac{\Gamma\rightarrow\Lambda,A,\Theta}{\Gamma\rightarrow\Lambda,A\vee B,\Theta}(\rightarrow\vee 1)$ $\frac{\Gamma\rightarrow\Lambda,B,\Theta}{\Gamma\rightarrow\Lambda,A\vee B,\Theta}(\rightarrow\vee 2)$

$\frac{\Gamma\rightarrow A,\Theta}{\neg A,\Gamma\rightarrow\Theta}(\neg\rightarrow)$ $\frac{\Gamma,A\rightarrow\Theta}{\Gamma\rightarrow\neg A,\Theta}(\rightarrow\neg)$

Rules for quantifiers:

$\frac{\Gamma,A[t/x],\Sigma\rightarrow\Delta}{\Gamma,\forall xA,\Sigma\rightarrow\triangle}(\forall\rightarrow)$ $\frac{\Gamma\rightarrow\Lambda,A[z/x],\Theta}{\Gamma\rightarrow\Lambda,\forall xA,\Theta}(\rightarrow\forall)$

$\frac{\Gamma,A[z/x],\Sigma\rightarrow\Delta}{\Gamma,\exists xA,\Sigma\rightarrow\Delta}(\exists\rightarrow)$ $\frac{\Gamma\rightarrow\Lambda,A[t/x],\Theta}{\Gamma\rightarrow\Lambda,\exists xA,\Theta}(\rightarrow\exists)$

.
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Here, $A[z/x](A[t/x])$ is the formula obtained from $A$ by replacing all free occur-
rence of $x$ in $A$ by an individual variable $z$ (a term $t$ , respectively), but avoiding
the clash of variables. Also, in rules for quantifiers, $t$ is an arbitrary term and $z$ is
an arbitrary individual variable not occurring in the lower sequent. (Usually, the
cut rule is considered to be one of the structural rules. For convenience sake, we
will not include it among the structural rules in our paper. )

Sequents of the sequent calculus LJ for the intuitionistic logic are expressions
of the form $A_{1},$

$\ldots,$
$A_{m}\rightarrow B$ where $m\geq 0$ and $B$ may be empty. Initial sequents

and rules of inference of LJ are obtained from those of LK in the above, first by
deleting both $(\rightarrow c)$ and $(\rightarrow e)$ and then by assuming moreover that both $\Lambda$ and $\Theta$

are empty and that $\Delta$ consists of at most one formula. Proofs and the provability
of a given sequent in LK or LJ are defined in a usual way. As usual, we say that
a formula $A$ is provable in LK (LJ), if the $sequent\rightarrow A$ is provable in it. For
formulas $A$ and $B$ , we say that $A$ is logically equivalent to $B$ in LK (LJ) when
both $A\supset B$ and $B\supset A$ are provable in LK (LJ, respectively).

In the following, sometimes we will concentrate only on propositional logics. In
such a case, LK and LJ mean the sequent calculi in the above, which deal only
with sequents consisting of propositional formulas and which have only rules for
logical connectives. To emphasize this, we call them, propositional LK and LJ.

2.2 Adding modal operators

We will discuss two types of nonclassical logic in this paper. Logics of the
first type can be obtained from classical logic by adding new logical operators
or connectives. Particularly interesting nonclassical logics of this type are modal
logics. Modal logics usually have unary logical operators $\square $ and $O$ , called modal
operators. There are many variations of modal logics. Some will contain many
modal operators and some will be based on logics other than classical logic.

We will discuss here sequent calculi for some standard modal propositional logics
as a typical example. In both of them, we assume that $OA$ is an $abbr\in wiation$ of
$\neg\square _{\neg}A$ . Thus, we suppose that our language $\mathcal{L}_{\square }$ for modal logics consists of (the
propositional part of) $\mathcal{L}$ with a unary operator $\square $ , which is usually read as “it is
necessary” and called the necessity operator. Now, consider the following axiom
schemes:

$K:\square (A\supset B)\supset(\square A\supset\square B)$ ,
$T:\square A\supset A$ ,
4: $\square A\supset\square \square A$ ,
5: $OA\supset\square OA$ .

A Hilbert-style system for the modal logic $K$ is obtained from any Hilbert-style
system for the classical propositional logic (with modus ponens as its single rule of
inference) by adding the axiom scheme $K$ and the following rule of necessitation;

from $A$ infer $\square A$ .
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Hilbert-style systems for modal logics KT, KT4 and KT5 are obtained from $K$

by adding $T,$ $T$ and 4, and $T$ and 5, respectively. Traditionally, KT4 and KT5
are called S4 and S5, respectively.

Now, we will introduce sequent calculi for these modal logics. A sequent calculus
GK for $K$ is obtained from LK by adding the following rule;

$\frac{\Gamma\rightarrow A}{\square \Gamma\rightarrow\square A}(\square )$

.

Here, $\square \Gamma$ denotes the sequence of formulas $\square A_{1},$
$\ldots,$

$\square A_{m}$ when $\Gamma$ is $A_{1},$
$\ldots,$

$A_{m}$ .
Moreover, $\square \Gamma$ is the empty sequence when $\Gamma$ is empty. Consider moreover the
following three rules;

$\frac{A,\Gamma\rightarrow\Delta}{\square A,\Gamma\rightarrow\Delta}(\square \rightarrow)$

$\frac{\square \Gamma\rightarrow A}{\square \Gamma\rightarrow\square A}(\rightarrow\square 1)$

.
$\frac{\square \Gamma\rightarrow\square \Delta,A}{\square \Gamma\rightarrow\square \Delta,\square A}(\rightarrow\square 2)$

.

Note here that the rule $(\square )$ can be derived when we have both $(\square \rightarrow)$ and
$(\rightarrow\square 1)$ and that $(\rightarrow\square 1)$ is obtained from $(\rightarrow\square 2)$ by assuming that $\Delta$ is empty.
The sequent calclus GKT is obtained from GK by adding the rule $(\square \rightarrow)$ . The
sequent calculi GS4 and GS5 are obtained from LK by adding the rules $(\square \rightarrow)$

and $(\rightarrow\square 1)$ , and the rules $(\square \rightarrow)$ and $(\rightarrow\square 2)$ , respectively. We can show the
following.

Theorem 1 For any formula $A,$ $A$ is provable in $K$ if and only $if\rightarrow A$ is provable
$in$ GK. This holds also between KT and GKT, between S4 and GS4, and between
S5 and GS5.

2.3 Deleting structural rules

Nonclassical logics of the second type can be obtained either from classical
logic or from intuitionistic logic, by deleting or restricting structural rules. They
are called substructural logics. Lambek calculus for categorial grammar, linear logic
introduced by Girard in 1987, relevant logics, $BCK$ logics (i.e. logics without
contraction rules) and Lukasiewicz’s many-valued logics are examples of substruc-
tural logics. Lambek calculus has no structural rules and linear logic has only
exchange rules. Relevant logics have usually the contraction rules, but lack weak-
ening rules. Lukasiewicz’s many-valued logics form a subclass of logics without
contraction rules.

Our basic calculus FL (called the full Lambek calculus) is, roughly speaking,
the system obtained from the the sequent calculus LJ by deleting all structural
rules. We will also extend our language for the following reasons.
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In the formulation of the classical and the intuitionistic logic, we will sometimes
introduce propositional constants like $Tand\perp to$ express the constantly true propo-
sition and false proposition, respectively. When we have these constants, we will
take the following sequents as the additional initial sequents:

1. $\Gamma\rightarrow T$

2. $\Gamma,$ $\perp,$
$\Sigma\rightarrow\Delta$

where $\Gamma,$
$\Sigma$ and $\Delta$ may be empty. (We can dispense with $T$ , as it is logically

equivalent to $\perp\supset\perp$ . ) It is easy to see that for any formula $A$ which is provable
in LK or LJ, $A$ is logically equivalent to $T$ in it. Note here that we need the
weakening rule to show that $T\supset A$ is provable, though $A\supset T$ follows always
from the above 1. We can also show by the help of the weakening rule that $\neg A$ is
logically equivalent to $A\supset\perp in$ either of LK and LJ.

These facts suggest to us that we may need special considerations for logics
without the weakening rule. To make the situation clearer, let us introduce two
more propositional constants $t$ and $f$, and assume the following initial sequents and
rules of inference for them:

3. $\rightarrow t$

4. $f\rightarrow$

$\frac{\Gamma,\Sigma\rightarrow\Delta}{\Gamma,t,\Sigma\rightarrow\Delta}(tw)$ $\frac{\Gamma\rightarrow\Lambda,\Theta}{\Gamma\rightarrow\Lambda,f,\Theta}(fw)$

These initial sequents and rules mean that $t(f)$ is the weakest (strongest)
proposition among provable formulas (contradictory formulas, respectively) and
that $\neg A$ is logically equivalent to $A\supset f$ . It can be easily seen that $t$ and $T$ (and
also $f$ and $\perp$ ) are logically equivalent to each other, when we have the weakening
rule.

In LK, we can show that a sequent $A_{1},$
$\ldots,$

$A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is provable if
and only if the sequent $A_{1}\wedge\ldots\wedge A_{m}\rightarrow B_{1}\vee\ldots\vee B_{n}$ is provable. Thus, we
can say that commas in the antecedent of a given sequent mean conjunctions, and
commas in the succedent mean disjunctions. But, to show the equivalence of the
above two sequents, we need both weakening and the contraction rules. Thus, in
substructural logics we cannot always suppose that commas express conjunctions
or disjunctions.

To supplement this defect, we may introduce two, additional logical connectives
$*and+$ . The $connective*is$ usually called a multiplicative conjunction (in linear
logic) or a fusion (in relevant logics), for which we assume the following rules of
inference:

$\frac{\Gamma\rightarrow A,\Lambda\Sigma\rightarrow B,\Theta}{\Gamma,\Sigma\rightarrow A*B,\Lambda,\Theta}(\rightarrow*)$ $\frac{\Gamma,A,B,\Sigma\rightarrow\Delta}{\Gamma,A*B,\Sigma\rightarrow\Delta}(*\rightarrow)$

Also, the $connective+is$ called the multiplicative disjunction, which is the dual of
$*$ , for which we assume the following rules of inference:
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$\frac{\Gamma\rightarrow\Pi,A,B,\Sigma}{\Gamma\rightarrow\Pi,A+B,\Sigma}(\rightarrow+)$ $\frac{\Gamma,A\rightarrow\Lambda\Sigma,B\rightarrow\Theta}{\Gamma,\Sigma,A+B\rightarrow\Lambda,\Theta}(+\rightarrow)$

Then, it is not hard to see that a sequent $A_{1},$
$\ldots,$

$A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is provable
if and only if $A_{1}*$ . . . $*A_{m}\rightarrow B_{1}+\ldots+B_{n}$ is provable. Note that we cannot
introduce $+in$ sequent calculi in which succedents of sequents consist of at most
one formula.

Now, we will give a precise definition of our propositional calculus FL. The
system FL is obtained from the propositional part of LJ by first deleting all struc-
tural rules and then by adding initial sequents and rules for propositional constants
$T,$ $\perp,$ $t$ and $f$ , and also those for the logical $connective*$ .

In FL, we can show that a sequent $A*B\rightarrow C$ is provable if and only if the
sequent $A\rightarrow B\supset C$ is provable. In sequent calculi like FL, where we don’t assume
the exchange rule, it will be natural to introduce another implication, say $\supset^{\star}$ , for
which it holds that $A*B\rightarrow C$ is provable if and only if the sequent $B\rightarrow A\supset\star C$

is provable. For this purpose, it suffices to assume the following rules of inference:

$\frac{A,\Gamma\rightarrow B}{\Gamma\rightarrow A\supset\star B}(\rightarrow\supset^{\star})$
$\frac{\Gamma\rightarrow A\Pi,B,\Sigma\rightarrow\Delta}{\Pi,\Gamma,A\supset\star B,\Sigma\rightarrow\Delta}(\supset\star\rightarrow)$

We will consider extensions of FL which are obtained by adding some of the struc-
tural rules. Let $e,$ $c$ , and $w$ denote the exchange, the contraction and the weakening
rules, respectively. By taking any combination of suffixes $e,$ $c$ , and $w$ , we denote
the calculus obtained from FL by adding structural rules corresponding to these
suffixes. (We allow to add neither $(\rightarrow c)$ nor $(\rightarrow e)$ . Also, we may add $(\rightarrow w)$

only if $\Lambda,$ $\Theta$ is empty. ) For instance, $FL_{e\tau v}$ denotes the system FL with both
the exchange and the weakening rules. The system $FL_{e}$ is a sequent calculus for
intuitionistic linear logic. Also, $FL_{ec\tau v}$ is essentially equivalent to LJ. Note that
the exchange rule is admissible in $FL_{clV}$ by the help of either rules for conjunction
or rules for multiplicative conjunction. On the other hand, we can show that the
cut elimination theorem doesn’t hold for it, similarly to the case for $FL_{c}$ (see
Lemma 7). So, we will leave the system $FL_{ClV}$ out of consideration in the rest of
the paper.

Each of the calculi given above determines a substructural logic which is weaker
than intuitionistic logic, since it is essentially a system obtained from LJ by deleting
some structural rules. In the same way as this, we can define a propositional
calculus $CFL_{e}$ as the system obtained from the propositional part of LK by first
deleting both the weakening and the contraction rules (but not the exchange rules)
and then by adding initial sequents and rules for propositional constants $T,$ $\perp,$ $t$

and $f$ , and also those for the logical $connective*and+$ .
The system $CFL_{e}$ is a sequent calculus for (classical) linear logic (without Gi-

rard’s exponentials introduced in [18]), and is essentially equivalent to the system
called MALL. By adding the weakening rule and the contraction rule, respectively,
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to $CFL_{e}$ , we can get systems, $CFL_{e\tau v}$ and $CFL_{ec}$ . (In subsystems of LK, differ-
ences of the order of formulas in the antecedents and the succedents in some rules
of inference like $(\rightarrow*)$ may give us essentially different systems, when we don’t
assume the exchange rule. For this reason, we consider here only extensions of
$CFL_{e}$ . ) We call the extensions of either FL or $CFL_{e}$ , mentioned in the above,
each of which is obtained by adding some of structural rules, basic substructural
logics.

When we lack either the weakening rule or the contraction rule, we cannot show
the following distributive law in general;

$A\wedge(B\vee C)\rightarrow(A\wedge B)\vee(A\wedge C)$ .

Relevant logics form a subclass of substructural logics which usually have the con-
traction rule, but don’t have the weakening rule. Moreover, we assume the distribu-
tive law in many of them. This fact causes difficulties in obtaining cut-free systems
for them and also certain complications in applying proof-theoretic methods to
them. (See 5.4. Also, see [34]. )

Sometimes in the following, to avoid unnecessary complications, we will identify
agiven sequent calculus fora logicL with the logicL itself when no confusion will
occur.

2.4 Notes

For more information on the calculi LK and LJ and also on basic proof theory
for them, consult [43]. A small, nonessential difference in the formulation of these
systems is the order of occurrences of formulas in antecedents or in succedents in
rules. This is because we want to use these rules also for sequent calculi without
the exchange rules.

To get general information on modal logic, see e.g. [5, 22, 8]. Sequent calculi for
S4 and S5 are introduced and discussed by Curry, Maehara, Ohnishi-Matsumoto
and Kanger etc. from the middle of $1950s$ . Tableau calculi for modal logics are
closely related to the sequent calculi for them. A concise survey of tableau calculi
for modal logic is given in Gor\’e [19]. For information on historical matters on
calculi for modal logics, consult e.g. Zeman [47].

Until now, there is no textbook on substructural logics. The book “Substruc-
tural Logics” [11], which consists of papers on various fields within the scope of
substructural logics, will show that the study of substructural logics is a crossover
of nonclassical logics. Girard’s paper [18] on linear logic contains a lot of ideas and
his view on the subject. Troelstra’s book [44], on the other hand, will show clearly
where the study of linear logic stands in the study of logic developed so far. See
also the paper by Okada [31] in the present Memoir. As for relevant logics, consult
either two volumes of Anderson and Belnap’s book $[1, 2]$ or a concise survey by
Dunn [12]. In $[35, 32]$ , one can see some proof-theoretic approaches to substructural
logics, in particular, logics without the contraction rule. For general information
on Lambek calculus, see [29].
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3 Cut Elimination Theorem

Gentzen proved the following cut elimination theorem for both LK and LJ, which
is a fundamental result in developing proof theory based on sequent calculi.

Theorem 2 For any sequent $S$, if $S$ is provable in LK, it is provable in LK without
using the cut rule. This holds also for LJ.

A proof with no applications of the cut rule is called a cut-free proof. When the
cut elimination theorem holds for a sequent system $L$ , we say that $L$ is a cut-free
system. In this section, we will first explain basic ideas of the proof of the cut
elimination theorem by taking LJ as an example. Then, we will show that a slight
modification of the proof gives us the cut elimination theorem for most of basic
substructural logics.

When the cut elimination theorem holds, we can restrict our attention only to
cut-free proofs and analyses of cut-free proofs sometimes bring us important logical
properties hidden in proofs, as will be explained later. This is the reason why the
cut elimination theorem is considered to be fundamental.

3.1 Elimination of the cut rule in LJ

In this subsection, we will explain the idea of elimination of applications of the
cut rule and give the outline of the proof. Here, we will consider the cut elimination
theorem for LJ. The cut elimination for LK can be shown in the same way.

Suppose that a proof $P$ of a sequent $S$ is given. (In this case, $S$ is called
the endsequent of the proof P. ) We will try to modify the proof $P$ by removing
applications of the cut rule in it, but without changing its endsequent $S$ . We note
first that the cut rule is not a derivable rule in the system obtained from LJ by
deleting the cut rule. That is, it is impossible to replace the cut rule in a uniform
way by repeated applications of other rules, as each application of the cut rule will
play a different role in a given proof. Therefore, we have to eliminate the cut rule
depending on how it is applied.

Thus, it will be necessary to eliminate applications of the cut rule inductively.
Now, take one of uppermost applications of the cut rule in $P$ , i.e. an application of
the cut rule such that the subproof of $P$ over each of its upper sequents $(\Gamma\rightarrow A$

and $A,$ $\Pi\rightarrow D$ in the following case) contains no cut, which we suppose, is of the
following form;

$\frac{\Gamma\rightarrow AA,\Pi\rightarrow D}{\Gamma,\Pi\rightarrow D}$ (cut)

Recall here that the formula $A$ in the above cut is called the cut formula of this
application of the cut rule. Let $k_{1}$ (and $k_{2}$ ) be the total number of sequents
appearing in the proof of the left upper sequent $\Gamma\rightarrow A$ (and the right upper
sequent $A,$ $\Pi\rightarrow D$ , respectively). Then, we call the sum $k_{1}+k_{2}$ , the size of the
proof above this cut rule.
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Our strategy of eliminating this cut is either pushing the cut up or replacing the
cut formula by a simpler one. We will explain this by giving some examples.

1. Pushing the cut up.

Consider the following cut, for instance.

$\frac{\frac{B,\Gamma\rightarrow A}{B\wedge C,\Gamma\rightarrow AB\wedge C,\Gamma}A,\Pi\rightarrow D}{\Pi\rightarrow D}$

(cut)

This cut can be replaced by the following, which has the same endsequent, but the
size of the proof above the cut rule becomes smaller by one;

$\frac{B,\Gamma\rightarrow AA,\Pi\rightarrow D}{\frac{B,\Gamma,\Pi\rightarrow D}{B\wedge C,\Gamma,\Pi\rightarrow D}}$

(cut)

2. Replacing the cut formula by a simpler one.

Let us consider the following cut.

$\frac{\frac{\Gamma}{}\rightarrow B\Gamma\rightarrow C\frac{B,\Pi\rightarrow D}{\rightarrow DB\wedge C,\Pi\rightarrow D}\Gamma\rightarrow B\wedge C}{\Gamma,\Pi}$

(cut)

This cut can be replaced by the following, which has the same endsequent, but
clearly the cut formula below is simpler than that in the above;

$\frac{\Gamma\rightarrow BB,\Pi\rightarrow D}{\Gamma,\Pi\rightarrow D}$ (cut)

Now, by applying these two kinds of replacement (which we call reductions)
repeatedly, we will eventually come to such an application of the cut rule that
either at least one of the upper sequents is an initial sequent, or the cut formula is
introduced by the weakening rule just above the cut rule. In the former case, the
cut rule will be either of the following forms;

$\frac{\Gamma\rightarrow AA\rightarrow A}{\Gamma\rightarrow A}$ (cut)

or of the following;

$\frac{A\rightarrow AA,\Pi\rightarrow D}{A,\Pi\rightarrow D}$ (cut)

In either case, the lower sequent is the same as one of upper sequents, and hence
is provable without using this application of the cut rule. Similarly, we can show
that the lower sequent is provable without using the cut rule, when the cut formula
is introduced by the weakening rule.
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So far, so good. But, there is only one case where the above reduction does not
work. This is caused by the contraction rule. In fact, consider the following cut;

$\frac{\Gamma\rightarrow A\frac{A,A,\Pi\rightarrow D}{\rightarrow DA,\Pi\rightarrow D}}{\Gamma,\Pi}(cut)(c\rightarrow)$

One may reduce this to;

$\frac{\Gamma\rightarrow A\frac{\Gamma\rightarrow AA,A,\Pi\rightarrow D}{A,\Gamma,\Pi\rightarrow D(}}{\frac{\Gamma,\Gamma,\Pi\rightarrow D}{\Gamma,\Pi\rightarrow D}some(}cut)e\rightarrow)(c\rightarrow)(cut)$

Here, while the size of the proof above the upper application of the cut rule becomes
smaller, the one above the lower application will not. Thus, some modifications of
the present idea will be necessary.

3.2 Mix rule

To overcome the above difficulty, Gentzen took the following modified form of
the cut rule, called the mix rule, instead of the cut rule.

Mix rule:

$\frac{\Gamma\rightarrow A,\ominus\Pi\rightarrow\Delta}{\Gamma,\Pi_{A}\rightarrow\Delta,\Theta_{A}}$ (mix)

where $\Pi$ has at least one occurrence of $A$ , and both $\Pi_{A}$ and $\Theta_{A}$ are sequences of
formulas obtained from $\Pi$ and $\Theta$ , respectively, by deleting all occurrences of $A$ .
(For LJ, we assume that $\Theta$ is empty and $\triangle$ consists of at most one formula. ) We
call the formula $A$ , the mix formula of the above application of the mix rule.

Let $LK^{\uparrow}$ and $LJ^{\uparrow}$ be sequent calculi obtained from LK and LJ by replacing
the cut rule by the mix rule. We can show the following.

Lemma 3 For any sequent $S,$ $S$ is provable in $LK^{\uparrow}(LJ^{\uparrow})$ if and only if it is
provable in LK (LJ, respectively ).

Proof. We will show this for $LJ^{\uparrow}$ and LJ. To show this, it is enough to prove that
the cut rule is derivable in $LJ^{\uparrow}$ and conversely that the mix rule is derivable in LJ.
First, consider the following cut;

$\frac{\Gamma\rightarrow AA,\Pi\rightarrow D}{\Gamma,\Pi\rightarrow D}$

Then, the following figure shows that this cut is derivable in $LJ^{\uparrow}:$
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$\frac{\Gamma\rightarrow AA,\Pi\rightarrow D}{\frac{\Gamma,\Pi A\rightarrow D}{\Gamma,\Pi\rightarrow D}}(mix)some(w\rightarrow)$

Conversely, take the following mix;

$\frac{\Gamma\rightarrow A\Pi\rightarrow\Delta}{\Gamma,\Pi_{A}\rightarrow D}$

Then, this mix is derivable in LJ, as the following figure shows.

$\frac{\Gamma\rightarrow A\frac{\Pi\rightarrow D}{AA,\prod_{\rightarrow D}A\rightarrow D}}{\Gamma,\Pi}some(c(cut)\rightarrow)(e\rightarrow)$

Now, we will return back once again to the beginning. So, we suppose that
a proof $P$ of a sequent $S$ in LJ is given. By using the way in the proof of the
above Lemma, we can get a proof $Q$ of a sequent $S$ in $LJ^{\uparrow}$ , which may contain
some applications of the mix rule, but no applications of the cut rule. This time,
we will try to eliminate applications of the mix rule inductively, by taking one
of uppermost applications of the mix rule in Q. Each reduction introduced in the
previous subsection works completely well after this modification. In particular,

$\frac{\Gamma\rightarrow A}{\Gamma,\Pi}(mix)\frac{A,A,\Pi\rightarrow D}{A^{\rightarrow D}A,\Pi\rightarrow D}(c\rightarrow)$

will be reduced to;

$\frac{\Gamma\rightarrow AA,A,\Pi\rightarrow D}{\Gamma,\Pi_{A}\rightarrow D}$ (mix)

Clearly, the size of the latter proof becomes smaller than that of the former. But,
the replacement of the cut rule by the mix rule forces us to introduce a new notion
of the “simplicity” of a proof. To see this, let us consider the following application
of the mix rule, where we assume that $A\wedge B$ doesn’t occur in $\Gamma$ .

$\frac{\Gamma\rightarrow A\wedge B}{\Gamma}\frac{}{A\bigwedge_{\rightarrow}B,A\wedge B\rightarrow D,D}\frac{A,B\rightarrow D}{A,A\wedge B\rightarrow D}$

(mix)

The above application of the mix rule can be replaced by the following;
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$\frac{\Gamma\rightarrow A\wedge B\frac{A,B\rightarrow D}{A,A\wedge B\rightarrow D\rightarrow D}}{A,\Gamma}$

(mix)

$\frac{\Gamma\rightarrow A\wedge B\overline{A\wedge B,\Gamma\rightarrow D}}{\frac{\Gamma,\Gamma\rightarrow D}{\Gamma\rightarrow D}some(c\rightarrow)}(mix)(e\rightarrow)$

It is easy to see that the size of the proof above the lower application of the mix
rule becomes greater than before. Hence, we need to introduce the notion of the
rank, instead of the size, to measure the simplicity of the proof. Roughly speaking,
the rank of a given application of the mix rule with the mix formula $C$ is defined
as follows. We consider such bmnches in a given proof that start from a sequent
$S$ which contains an occurrence of $C$ in the succedent and ends at the left upper
sequent of this mix. (The occurrence of $C$ in $S$ must be an ancestor of the mix
formula C. ) The left rank $r_{1}$ of this mix rule is the maximal length of these
branches. Similarly, the right $mnkr_{2}$ is the maximal length of branches which end
at the right upper sequent of this mix. Then, we call the sum $r_{1}+r_{2}$ , the rank of
this mix rule. (As for the precise definition of the rank, see [43]. )

In the above case, the right rank $r_{2}$ of the mix rule is 2 in the upper proof. On
the other hand, both of the right ranks of the two applications of the mix rule are
1 in the lower proof, while all of the left ranks are the same.

What remains to show is whether the procedure described in the above will
eventually terminate. For a given formula $A$ , define the grade of $A$ by the number
of occurrences of logical connectives in it. Take one of uppermost applications of
the mix rule in a given Q. Define the grade of this application of the mix by the
grade of its mix formula.

Then, we can show that after any of these reductions, either the grade becomes
smaller, or the rank becomes smaller while the grade remains the same. Thus,
by using the double induction on the grade and the rank, we can derive that each
uppermost application of the mix is eliminable. This completes the proof of the
mix elimination theorem of $LJ^{\uparrow}$ . So, we have a proof $R$ of $S$ in $LJ^{\uparrow}$ without any
application of the mix rule. It is obvious that $R$ can be regarded as a proof of $S$

in LJ without any application of the cut rule. Thus, we have the cut elimination
theorem for LJ.

3.3 Cut elimination theorem for nonclassical logics

By modifying the proof of the cut elimination theorem for LK and LJ in the
previous subsection, we can get the cut elimination theorem for some important
nonclassical logics. For sequent calculi for modal logics introduced in Section 2, we
have the following.

Theorem 4 The cut elimination theorem holds for GK, GKT and GS4.



222 H. ONO

On the other hand, the cut elimination theorem doesn’t hold for GS5, as the
following Lemma shows.

Lemma 5 The sequent $p\rightarrow\coprod_{\neg}\square \neg p$ is provable in GS5, but is not provable in
GS5 without applying the cut rule.

Proof. The following is a proof of $p\rightarrow\square \neg\square \urcorner p$ in GS5.

$\square \neg p\rightarrow\square \neg p$ $p\rightarrow p$

$\frac{\ovalbox{\tt\small REJECT}\rightarrow\neg\neg p,\neg p\overline{\neg u\neg p,u\neg p}\frac{\overline{\neg p,p\rightarrow}}{\square \neg p,p\rightarrow p}}{p\rightarrow u\neg u\neg}(cut)$

Now, suppose that $p\rightarrow\square \neg\square \neg p$ has a cut-free proof. Then, consider the last
inference in the proof. By checking the list of rules of inference of GS5 (except
the cut rule, of course), we can see that only the weakening rule and the contraction
rule are possible. By repeating this, we can see that this cut-free proof contains
only sequents of the form, $p\rightarrow,$ $\rightarrow\square \neg\square \neg p$ and $p,$ $\ldots,p\rightarrow\square \neg\square \neg p,$

$\ldots,$
$\square \neg\square \neg p$ .

Thus, it can never contain any initial sequent. This is a contradiction.

For basic substructural logics, we have the following.

Theorem 6 Cut elimination holds for FL, $FL_{e},$ $FL_{w},$ $FL_{ew},$ $FL_{ec}$ , and $FL_{ecw}$ .
It holds also for $CFL_{e},$ $CFL_{ew},$ $CFL_{ec}$ and $CFL_{ecw}$ .

We will give here some remarks on Theorem 6. As the discussions in 3.1 show,
it suffices for us to show the cut elimination theorem (not the mix elimination
theorem) directly for basic substructural logics without the contraction rule, i.e.
FL, $FL_{e},$ $FL_{v},$ $FL_{e\backslash v},$ $CFL_{e}$ and $CFL_{ew}$ , by using double induction on the grade
and the length. For, the source of obstacles in proving the cut elimination theorem
directly is the contraction rule.

Next, consider substructural logics $FL_{ec}$ and $CFL_{ec}$ , each of which has both
the exchange and the contraction rules, but not the weakening rule. As we have
shown in 3.2 (see the proof of Lemma 3), we need both the weakening and the
contraction rules, to replace the cut by the mix rule. But, this difficulty can be
overcome by introducing a generalized form of the mix rule. For example, the
generalized form of the mix rule for $FL_{ec}$ is given as follows;

$\frac{\Gamma\rightarrow A\Pi\rightarrow C}{\Gamma,\Pi_{A}\rightarrow C\sim}$ (g–mix)

where $\Pi$ has at least one occurrence of $A$ , and $\tilde{\Pi}_{A}$ is a sequence of formulas obtained
from $\Pi$ by deleting at least one occurrence of $A$ .

This replacement of the cut rule by the generalized mix rule works well only
when we have the exchange rule. In fact, we have the following.
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Lemma 7 Cut elimination doesn’t hold for $FL_{c}$ . In fact, it doesn’t hold even for
the implicational fragment of $FL_{c}$ .

3.4 Some consequences of the cut elimination theorem

There are many important consequences of the cut elimination theorem. As
decidability and the interpolation theorem will be discussed in detail in the later
sections, we will here discuss some other consequences.

1) Subformula property

The first important consequence of the cut elimination theorem is the subformula
property. Recall here that any formula of the form $A[t/x]$ is regarded as a subfor-
$mulaofbothof\forall xAand\exists xAforanytermt$ .

Theorem 8 In a cut-free proof of LK, any formula appearing in it is a subformula
of some formula in the endsequent. Hence, if a sequent $S$ is provable in LK then
there is a proof of $S$ such that any formula appearing in it is a subformula of some
formula in $S$.

Proof. To show this, it is enough to check that in every rule of inference of LK
except the cut, every formula appearing in the upper sequent(s) is a subformula of
some formulas in the lower sequent. (This doesn’t hold always for the cut rule, as
the cut formula may not be a subformula of some formulas in the lower sequent. )

This argument holds also for every cut-free system discussed in 3.3. The impor-
tance of the subformula property will be made clear in the rest of this paper. We
say that a proof in a sequent calculus $L$ has the subformula property if it contains
only formulas which are subformulas of some formulas in its endsequent. Also, we
say that the subformula property holds for $L$ when any provable sequent $S$ in $L$ has
a proof of $S$ with the subformula property.

2) Conservativity

The next result is on conservative extensions. Suppose that $\{0_{1}, \ldots, 0_{n}\}$ is a set
of logical connectives and quantifiers of our language. Let $J=\{0_{1}, \ldots, 0_{n}\}$ . By
the J-fragment of LK, we mean the sequent calculus whose initial sequents and
rules of inference are the same as those of LK except that we will take only rules
of inference for logical connectives in $J$ . A formula $A$ is said to be a J-formula
when it contains only logical connectives and quantifiers from $J$ . We can show the
following.

Theorem 9 For any nonempty set $J$ of logical connectives and quantifiers, LK $is$

a conservative extension of the J-fragment of LK. More precisely, for any sequent
$S$ consisting only of J-formulas, $S$ is provable in LK if and only if it is provable in
the J-fragment of LK. In particular, the predicate calculus LK is a conservative
extension of the propositional calculus LK.
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Proof. The if-part of the Theorem is trivial. So suppose that a sequent $S$ which
consists only of J-formulas is provable in LK. Consider a cut-free proof $P$ of $S$ in
LK. By the subformula property of LK, $P$ contains only J-formulas. Then we can
see that there is no chance of applying a rule of inference for a logical connective
or a quantifier other than those from $J$ . Thus, $P$ can be regarded as a proof in the
J-fragment of LK.

By this theorem, it becomes unnecessary to say in which fragment of LK a
given sequent is provable, as long as it is provable in LK. It is easy to see that
this theorem holds for any other system as long as the subformula property holds
for it.

3) Disjunction property

A logic $L$ has the disjunction property when for any formulas $A$ and $B$ , if $A\vee B$ is
provable in $L$ then either $A$ or $B$ is provable in it. Classical logic doesn’t have the
disjunction property, as $p\vee\neg p$ is provable but neither of $p$ and $\neg p$ are provable.
On the other hand, the following holds.

Theorem 10 Intuitionistic logic has the disjunction property.

Proof. Suppose that the $sequent\rightarrow A\vee B$ is provable in LJ. It suffices to show
that $either\rightarrow Aor\rightarrow B$ is provable in it. Consider any cut-free proof $Pof\rightarrow A\vee B$ .
Then the last inference in $P$ will be either $(\rightarrow w)$ or $(\rightarrow\vee)$ . If it is $(\rightarrow w)$ then
the upper sequent must be $\rightarrow$ . But this is impossible. Hence, it must be $(\rightarrow\vee)$ .
Then the upper sequent is $either\rightarrow Aor\rightarrow B$ . This completes the proof.

By using the similar argument, we have the following.

Theorem 11 Each of FL, $FL_{e},$ $FL_{w},$ $FL_{ew}$ and $FL_{ec}$ has the disjunction prop-
erty.

As mentioned before, classical logic doesn’t have the disjunction property. Then,
where does the above argument break for classical logic? The answer may be ob-
tained easily by checking the proof $of\rightarrow p\vee\neg p$ in LK. In this case, the last
inference is $(\rightarrow c)$ . This suggests that we can use the same argument as in the
above when we have no contraction rules. Thus, we have the following result, in
addition.

Theorem 12 Both $CFL_{e}$ and $CFL_{ew}$ have the disjunction property.

An immediate consequence of the above theorem is that the $sequent\rightarrow p\vee\neg p$

is not provable in $CFL_{ew}$ . Note that $CFL_{elV}$ is obtained from $FL_{e\tau v}$ by adding
$\neg\neg A\rightarrow A$ as additional initial sequents. On the other hand, the system obtained
from $FL_{e\tau v}$ by $adding\rightarrow A\vee\neg A$ as initial sequents becomes classical logic.

In the same way as in LK, we can show that $CFL_{ec}$ doesn’t have the disjunction
property. On the other hand, we note that the presence of the contraction rule
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$(\rightarrow c)$ doesn’t cause always the failure of the disjunction property. For instance,
consider the sequent calculus LJ’ for the intuitionistic logic, which is obtained
from LK by restricting $(\rightarrow\neg),$ $(\rightarrow\supset)$ and $(\rightarrow\forall)$ to those for LJ. Though LJ’ is a
cut-free system with $(\rightarrow c)$ , it has still the disjunction property.

3.5 Subformula property revisited

As shown in the above, the cut elimination theorem doesn’t hold for the sequent
calculus GS5. On the other hand, we can show the following.

Theorem 13 The sequent calculus GS5 has the subformula property.

To show this, we will introduce the notion of acceptable cuts, which sometimes
are called analytic cuts, as follows. An application of the following cut rule is
acceptable

$\frac{\Gamma\rightarrow A,\Theta A,\Pi\rightarrow\Delta}{\Gamma,\Pi\rightarrow\ominus,\triangle}$

if the cut formulaA isasubformula ofaformula in F, $\Theta,$ $\Pi,$ $\Delta$ .

Then, we can show the following result, from which Theorem 13 follows imme-
diately.

Theorem 14 For any sequent $S$, if $S$ is provable in GS5, then there exists a proof
of $S$ in GS5 such that every application of the cut rule in it is acceptable.

Note that the proof of $p\rightarrow\coprod_{\neg}\square \neg p$ given in the proof of Lemma 5 contains
an application of the cut rule, but it is an acceptable one. To show the theorem,
we need to eliminate each non-acceptable application of the cut rule. This can be
done in the same way as the proof of the cut elimination theorem. Similar results
holds also for some other modal logics.

The importance of this result lies in the fact that most consequences of the
cut elimination theorem are obtained from the subformula property. Thus, we can
rephrase this fact in the following way: The most important proof-theoretic property
is the subformula property, and the most convenient way of showing the subformula
property is to show the cut elimination theorem.

3.6 Notes

To get the detailed information on the proof of the cut elimination theorem
and on the consequences of it, both [43] and [45] will be useful. The result of
Lemma 5 was noticed by Ohnishi and Matsumoto in their joint paper 1959. Several
people including S. Kanger, G. Mints, M. Sato, M. Ohnishi etc., introduced cut-free
systems for S5.

Theorem 6 is shown in [35] and [32]. A generalized form of the mix rule was
introduced in the paper [23]. On the other hand, the negative result on $FL_{c}$ is
discussed in [4]. The subformula property for GS5 and the related systems are
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discussed in Takano’s paper [42]. The proof is based on a deep proof-theoretic
analysis. Recently, he succeeded to extend his method to some intuitionistic modal
logics, i.e. modal logics based on the intuitionistic logic. Related results are ob-
tained by Fitting $[15, 16]$ , in which semantical methods are used. Further study in
this direction seems to be promising.

4 Decision Problems for the Classical and the In-
tuitionistic Logics

In this and the next sections, we will discuss decision problems of various logics.
A given logic $L$ is said to be decidable if there exists an algorithm that can decide
whether a formula $A$ is provable in $L$ or not, for any $A$ . It is undecidable if it is not
decidable. The decision problem of a given logic $L$ is the problem as to whether $L$

is decidable or not. In this section, we will show the decidability of classical and
intuitionistic propositional logics as a consequence of the cut elimination theorem
for propositional calculi for both LK and LJ by using Gentzen’s method. In
the next section, we will show that most of basic substructural logics without
the contraction rule are decidable even if they are predicate logics. On the other
hand, we can show that a certain complication will occur in decision problems for
substructural logics with the contraction rule but without the weakening rule.

4.1 Basic ideas of proving decidability

We will explain here a method of checking the provability of a given sequent in
propositional LK, which is due to Gentzen. The decision algorithm for proposi-
tional LJ can be obtained similarly. Suppose that a sequent $\Gamma\rightarrow\Delta$ is given. We
will try to search for a proof of this sequent. If we succeed to find one, $\Gamma\rightarrow\triangle$ is
of course provable, and if we fail, then it is not provable. But, as there may be
infinitely many possible proofs of it, how can we know that we have failed?

Thus, it is necessary to see whether we can restrict the range of search of
proofs, hopefully to finitely many proofs, or not. Now let us consider the following
restrictions on proofs.
1) Proofs with the subformula property, in particular cut-free proofs: For LK, this
is possible, since we have the cut elimination theorem for LK. Thus, if $\Gamma\rightarrow\Delta$ is
provable in LK then there must exist a (cut-free) proof such that any sequent in
it consists only of formulas which are subformulas of some formulas in $\Gamma\rightarrow\Delta$ .
2) Proofs with no redundancies: Here, we say that a proof $P$ has redundancies if the
same sequent appears twice in a branch of P. Every proof having some redundancies
can be transformed into one with no redundancies. In fact, a redundancy of $\Sigma\rightarrow\Pi$

in the following proof
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$\Sigma\rightarrow\Pi P_{0}$

:
$\Sigma\rightarrow\Pi$

$P_{1}$

$\Gamma\rightarrow\Delta$

can be eliminated as follow;

$P_{0}$

$\Sigma\rightarrow\Pi$

$P_{1}$

$\Gamma\rightarrow\Delta$ .

But, the above two conditions are not enough to reduce the number of all
possible proofs to finitely many. To see this, suppose that a given sequent $D,$ $\Lambda\rightarrow\Theta$

satisfies the condition that it consists only of subformulas of some formulas in
$n$

$\Gamma\rightarrow\Delta$ . Then, any sequent of the form $\sim D,$
$\ldots,$

$D,$ $\Lambda\rightarrow\Theta$ also satisfies this for
any natural number $n$ .

Thus we need to add an additional condition. A sequent $\Sigma\rightarrow\Pi$ is reduced
if every formula in it occurs at most three times in the antecedent and also at
most three times in the succedent. In particular, we say that a sequent $\Sigma\rightarrow\Pi$ is
l-reduced if every formula in the antecedent (the succedent) occurs exactly once
in the antecedent (the succedent, respectively).

A sequent $\Gamma^{t}\rightarrow\triangle^{t}$ is called a contraction of a sequent $\Gamma\rightarrow\triangle$ if it is obtained
from $\Gamma\rightarrow\triangle$ by applying the contraction and exchange rule repeatedly. For in-
stance, the sequent $A,$ $C\rightarrow B$ is a contraction of a sequent $A,$ $C,$ $A,$ $A\rightarrow B$ . Now,
we can show easily that for any given sequent $\Gamma\rightarrow\triangle$ , there exists a (1- )reduced
sequent $\Gamma^{*}\rightarrow\Delta^{*}$ , which is a contraction of $\Gamma\rightarrow\triangle$ , such that $\Gamma\rightarrow\triangle$ is provable
in LK if and only if $\Gamma^{*}\rightarrow\Delta^{*}$ is provable in LK. In fact, if a formula $C$ appears
more than three times either in $\Gamma$ or in $\Delta$ then we can reduce the number of oc-
currences of $C$ to three (or, even to one) by applying the contraction rule (and
the exchange rule, if necessary) repeatedly. In this way, we can get a (1- )reduced
sequent $\Gamma^{*}\rightarrow\triangle^{*}$ . Conversely, by applying the weakening rule to $\Gamma^{*}\rightarrow\Delta^{*}$ as
many times as necessary, we can recover $\Gamma\rightarrow\Delta$ . Thus, there exists an effective
way of getting a (l-)reduced sequent $S$ ’ for a given sequent $S$ , whose provability is
the same as that of $S$ . So, it suffices to get an algorithm which can decide whether
a given reduced sequent is provable or not. We have the following.

Lemma 15 Suppose that $\Gamma\rightarrow\Delta$ is a sequent which is provable in LK and that
$\Gamma^{*}\rightarrow\triangle^{*}$ is any l-reduced contraction of $\Gamma\rightarrow\triangle$ . Then, there exists a cut-free
proof of $\Gamma^{*}\rightarrow\Delta^{*}$ in LK such that every sequent appearing in it is reduced.
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Proof. Let us take a cut-free proof $P$ of $\Gamma\rightarrow\triangle$ . We will prove our lemma by
induction on the length of $P$ , i.e. the maximum length of branches in $P$ which start
from an initial sequent and end at the endsequent of P. This is trivial when $\Gamma\rightarrow\Delta$

is an initial sequent. Suppose that $\Gamma\rightarrow\triangle$ is the lower sequent of an application of
a rule $I$ . When $I$ has a single upper sequent, it must be of the following form:

$\frac{\Lambda\rightarrow\Theta}{\Gamma\rightarrow\Delta}(I)$

Let $\Lambda^{*}\rightarrow\Theta^{*}$ be any l-reduced contraction of $\Lambda\rightarrow\Theta$ . Then, by the hypothesis
of induction, there exists a cut-free proof of $\Lambda^{*}\rightarrow\Theta^{*}$ such that every sequent
appearing in it is reduced. Let $\Gamma^{\prime}\rightarrow\Delta$ ’ be the sequent obtained by applying
the rule $I$ to $\Lambda^{*}\rightarrow\Theta^{*}$ . (When $I$ is either $(c\rightarrow)$ or $(\rightarrow c)$ , we cannot apply it
to $\Lambda^{*}\rightarrow\Theta^{*}$ . In this case, we take $\Lambda^{*}\rightarrow\Theta^{*}$ for $\Gamma\rightarrow\triangle^{l}$ . ) By checking the
form of every rule of LK, we can see that $\Gamma^{\prime}\rightarrow\Delta$ is reduced. So, by applying the
contraction and the exchange rule if necessary, we can get any l-reduced contraction
of $\Gamma\rightarrow\Delta$ . Clearly, this proof consists only of reduced sequents. The same argument
holds also in the case where $I$ has two upper sequents.

Thus, we can add the third restriction on proofs.
3) Proofs consisting only of reduced sequents

Here we will add an explanation of the reason why the number “three” appears
in the definition of reduced sequents. Let us consider the case when $I$ (in the
above proof) is $(\supset\rightarrow)$ ;

$\frac{\Gamma\rightarrow A,\ominus\Pi,B,\Sigma\rightarrow\triangle}{\Pi,A\supset B,\Gamma,\Sigma\rightarrow\triangle,\Theta}I$

Moreover, suppose that $A\supset B$ occurs once in $\Gamma$ and once in $\Pi,$ $\Sigma$ . Then, the
antecedent of the lower sequent will contain three occurreces of $A\supset B$ . To make
the lower sequent reduced, we have to admit three occurreces of the same formula.

Now, we are ready for showing the decidability of propositional LK. Take any
sequent $\Gamma\rightarrow\triangle$ . We can assume that it is reduced. We will check whether there
is a proof of it satisfying all of these three restrictions or not. By 1) and 3), the
proof, if it exists at all, consists only of reduced sequents such that every formula
in it must be a subformula of a formula in $\Gamma\rightarrow\triangle$ . Clearly, the number of such
reduced sequents is finite. Moreover, by the restriction 2), the number of possible
proofs of $\Gamma\rightarrow\triangle$ must be finite. Thus, our decision algorithm is to generate all
possible proofs one by one and to check whether it is a correct proof of $\Gamma\rightarrow\Delta$ or
not. If we can find one correct proof, $\Gamma\rightarrow\Delta$ is of course provable in LK. If we
cannot find it among them, we can say that it is not provable.

To get a possible proof, we will try to construct it from the endsequent upward.
The last inference must be either one of structural rules or one of rules for logical
connectives. In the latter case, the logical connective for which a rule is applied
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must be an outermost logical connective of a formula in the endsequent. Therefore,
there are finitely many possiblities. We will repeat this again for sequents which
are obtained already in this way. Note that a possible proof will branch upward, in
general, and therefore it is necessary to continue the above construction to the top
of each branch. When we reach a sequent which doesn’t produce any new sequent,
we will check whether it is an initial sequent or not. If we can find at least one
non-initial sequent among them, we fail. This procedure is sometimes called, the
proof-search algorithm. Thus, we have the following

Theorem 16 Both classical and intuitionistic propositional logics are decidable.

Here are two examples of possible proofs $of\rightarrow p\vee(p\supset q)$ . The left one is a
failed one and the right one is a correct proof.

$\frac{\frac{p\rightarrow q}{\rightarrow p\supset q}(}{\rightarrow p\vee(p\supset q)}(\rightarrow\vee 2)\rightarrow\supset)$

$\frac{\frac{\frac{\frac{\frac{p\rightarrow p}{p\rightarrow p,q}}{\rightarrow p,p\supset q}((\rightarrow}{\rightarrow p,p\vee(p\supset q)}(\rightarrow\rightarrow\supset)w)}{\rightarrow p\vee(p\supset q),p\vee(p\supset q)}}{\rightarrow p\vee(p\supset q)}(\rightarrow c)\vee 2)(\rightarrow\vee 1)$

For modal logics introduced in Section 2, we can use essentially the same deci-
sion procedure as that for LK and therefore have the following.

Theorem 17 Any of modal propositional logics $K$ , KT, S4 and S5 is decidable.

Note that here the subformula property, but not the cut elimination theorem,
is essential in the proof of the decidability mentioned above. Thus, the decidability
of S5 follows from Theorem 13.

4.2 Digression –a simplified decision algorithm for the classical propo-
sitional logic

In the previous subsection, we have given an algorithm which decides the prov-
ability of a given sequent $S$ in LK. Moreover, the algorithm gives us a cut-free proof
of $S$ when it is provable. But the algorithm contains a thorough search of proofs
satisfying certain conditions and thus needs trial and error. For propositional LK,
we can give a simpler decision algorithm, as shown below. This algorithm might
be quite instructive, when one learns how to construct a cut-free proof of a given
sequent if it is provable.

On the other hand, for practical purposes a lot of work has been done on
efficient algorithms of deciding whether a given sequent is provable in LK or not,
or equivalently whether a given formula is tautology or not.

For a given sequent $S$ , define decompositions of $S$ as follows. Any decomposition
is either a sequent or an expression of the form $\langle S_{1} ; S_{2}\rangle$ for some sequents $S_{1}$ and
$S_{2}$ .



230 H. ONO

Decompositions

1. { $\Gamma,$ $\Pi\rightarrow A,$ $\triangle;\Gamma,$ $B,$ $\Pi\rightarrow\Delta\rangle$ is a decomposition of $\Gamma,$ $A\supset B,$ $\Pi\rightarrow\Delta$ ,
2. $A,$ $\Gamma\rightarrow\Delta,$ $B,$ $\Theta$ is a decomposition of $\Gamma\rightarrow\Delta,$ $A\supset B,$ $\Theta$ ,
3. $\Gamma,$ $A,$ $B,$ $\Pi\rightarrow\Delta$ is a decomposition of $\Gamma,$ $A\wedge B,$ $\Pi\rightarrow\Delta$ ,
4. { $\Gamma\rightarrow\Delta,$ $A,$ $\Theta;\Gamma\rightarrow\Delta,$ $B,$ $\Theta\rangle$ is a decomposition of $\Gamma\rightarrow\Delta,$ $A\wedge B,$ $\Theta$ ,
5. { $\Gamma,$ $A,$ $\Pi\rightarrow\Delta;\Gamma,$ $B,$ $\Pi\rightarrow\Delta\rangle$ is a decomposition of $\Gamma,$ $A\vee B,$ $\Pi\rightarrow\triangle$ ,
6. $\Gamma\rightarrow\Delta,$ $A,$ $B,$ $\Theta$ is a decomposition of $\Gamma\rightarrow\Delta,$ $A\vee B,$ $\Theta$ ,
7. $\Gamma,$ $\Pi\rightarrow A,$ $\Delta$ is a decomposition of $\Gamma,$ $\neg A,$ $\Pi\rightarrow\Delta$ ,
8. $A,$ $\Gamma\rightarrow\Delta,$ $\Theta$ is a decomposition of $\Gamma\rightarrow\Delta,$ $\neg A,$ $\Theta$ .

Note that a sequent may have more than one decomposition. For instance, the
sequent $A\supset B\rightarrow C\vee D$ has two decompositions $A\supset B\rightarrow C,$ $D$ and $\{\rightarrow A,$ $ C\vee$

$D;B\rightarrow C\vee D\}$ . When $S’(\langle S_{1} ; S_{2}\rangle)$ is a decomposition of $S$ , we say that $S$ is
decomposed into $S$ ( $\langle S_{1}$ ; $S_{2}\}$ , respectively).

Lemma 18 Suppose that $S$ is decomposed into $S$ (or $\{S_{1}$ ; $ S_{2}\rangle$ ). Then, the fol-
lowing holds.
1) The number of all occurrences of logical connectives in $S$’ (or in each of $S_{1}$ and
$S_{2})$ is smaller than that in $S$ .
2) If $S$ is provable in LK then so is $S$ ’ (or, both $ofS_{1}$ and $S_{2}$ ).
3) If $S$ ’ (or, both $ofS_{1}$ and $S_{2}$ ) is provable in LK without applying the cut rule,
then so is $S$ .

Proof. 1) can be shown by checking the definition of decompositions. 2) and 3)
are proved by the help of the cut rule, and of both the contraction and weakening
rules, respectively.

We will consider now repeated applications of decompositions. For instance,
suppose that $S$ is decomposed into { $S_{1}$ ; $ S_{2}\rangle$ , $S_{1}$ into $S_{3}$ , and then $S_{2}$ into $\langle S_{4} ; S_{5}\rangle$ .
Then, we will express these decompositions by the following figure:

$S\Rightarrow\langle S_{1} ; S_{2}\rangle\Rightarrow\{S_{3}; S_{2}\}\Rightarrow\{S_{3}$ ; $\langle S_{4}; S_{5}\rangle\rangle$

We will call such a figure, a decomposition figure of $S$ and each expression
in a decomposition figure, like $\langle S_{3} ; \{S_{4} ; S_{5}\}\rangle$ , a d-expression. (It might be more
instructive to draw a tree-like figure than a decomposition figure. )

The above Lemma tells us that by any application of decompositions, each se-
quent in a d-expression is either unchanged or simplified. Therefore, after some
applications of decompositions, we will get a d-expression in which no more de-
composition is applicable to any of sequents. We will call such a d-expression, a
terminal d-expression. Moreover, we call a decomposition figure (of $S$ ) whose last
d-expression is terminal, a complete decomposition figure (of $S$ ).

It is easy to see that no decomposition is applicable to a sequent $S^{*}$ if and
only if it consists only of propositional variables, and that a sequent of the form
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$p_{1},$ $\ldots,p_{m}\rightarrow q_{1},$
$\ldots,$

$q_{n}$ with propositional variables $p_{1},$ $\ldots,p_{m},$ $q_{1},$
$\ldots,$

$q_{n}$ is prov-
able in LK if and only if $p_{i}$ is identical with $q_{j}$ for some $i(\leq m)$ and $j(\leq n)$ .

Now, take an arbitrary sequent $S$ and take any one of its complete decomposi-
tion D. Then, by Lemma 182) and 3), $S$ is provable if and only if every sequent in
the terminal d-expression of $D$ is provable. We can decide whether the latter holds
or not, by checking whether every sequent has a common propositional variable
in the antecedent and the succedent or not. This gives us a decision algorithm
for classical propositional logic. We note here that the present algorithm doesn’t
contain any trial and error.

Furthermore, when every sequent in the terminal d-expression of $D$ is provable,
we can construct a cut-free proof of $S$ effectively from $D$ by supplementing some
applications of the contraction and the weakening rules. Here is an example. Con-
sider the $sequent\rightarrow((p\supset q)\supset p)\supset p$ . The following is a complete decomposition
figure of it.

$\rightarrow((p\supset q)\supset p)\supset p\Rightarrow(p\supset q)\supset p\rightarrow p\Rightarrow\langle\rightarrow p,p\supset q;p\rightarrow p\rangle\Rightarrow\langle p\rightarrow p, q;p\rightarrow p\rangle$

Since each of $p\rightarrow p,$ $q$ and $p\rightarrow p$ has a common propositional variable in the
antecedent and the succedent, the above sequent must be provable in LK. In fact,
it has a cut-free proof shown below, which obtained from the above decomposition
figure by supplementing some contraction and weakening rules.

$\frac{\frac{\frac{p\rightarrow p}{p\rightarrow p,q}}{\rightarrow p,p\supset q}(\rightarrow w)p\rightarrow p}{\frac{\frac{(p\supset q)\supset p\rightarrow p,p}{(p\supset q)\supset p\rightarrow p}}{\rightarrow((p\supset q)\supset p)\supset p}(\rightarrow}c)$

The above argument will suggest us an alternative sequent calculus for the
classical propositional logic, which we call $LK^{*}$ . Sequents of $LK^{*}$ are expressions
of the form $\Gamma\rightarrow\Delta$ , where both $\Gamma$ and $\Delta$ are finite multisets of formulas. Initial
sequents of $LK^{*}$ are sequents of the form $A,$ $\Gamma\rightarrow\Delta$ , A. $LK^{*}$ has no structural
rules and no cut rule. It has only the following rules for logical connectives.

Rules for logical connectives of $LK^{*}:$

$\frac{\Gamma\rightarrow\Delta,AB,\Gamma\rightarrow\Delta}{A\supset B,\Gamma\rightarrow\Delta}(\supset\rightarrow)$ $\frac{A,\Gamma\rightarrow\Delta,B}{\Gamma\rightarrow\Delta,A\supset B}(\rightarrow\supset)$

$\frac{A,B,\Gamma\rightarrow\Delta}{A\wedge B,\Gamma\rightarrow\Delta}(\wedge\rightarrow)$ $\frac{\Gamma\rightarrow\Delta,A\Gamma\rightarrow\Delta,B}{\Gamma\rightarrow\Delta,AAB}(\rightarrow\wedge)$

$\frac{A,\Gamma\rightarrow\triangle B,\Gamma\rightarrow\triangle}{A\vee B,\Gamma\rightarrow\Delta}(\vee\rightarrow)$ $\frac{\Gamma\rightarrow\Delta,A,B}{\Gamma\rightarrow\triangle,A\vee B}(\rightarrow\vee)$
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$\frac{\Gamma\rightarrow\triangle,A}{\neg A,\Gamma\rightarrow\triangle}(\neg\rightarrow)$ $\frac{A,\Gamma\rightarrow\triangle}{\Gamma\rightarrow\Delta,\neg A}(\rightarrow\neg)$

From the above argument, the following result follows immediately. (Here, we
will neglect the difference of the definition of sequents in these two systems for
brevity. )

Theorem 19 For any sequent $S,$ $S$ is provable in $LK^{*}$ if and only if it is provable
$in$ LK.

4.3 Undecidability of the classical and the intuitionistic predicate logics

A. Church proved the following in 1936.

Theorem 20 The classical predicate logic is undecidable.

It may be helpful to point out where the decision procedure mentioned in the
previous subsection breaks for the predicate LK. This will be understood by
looking at rules $(\forall\rightarrow)$ and $(\rightarrow\exists)$ for quantifiers. In these rules, corresponding to
a formula of the form $\forall xA$ or $\exists xA$ in the lower sequent, a formula $A[t/x]$ , which is
a subformula (in a broad sense) of $\forall xA$ or $\exists xA$ , appears in the upper sequent for
some term $t$ . But, this $t$ may not appear in the lower sequent, in general. Thus, it
becomes necessary to search for an appropriate $t$ .

When our language $\mathcal{L}$ contains no function symbols, a term in $\mathcal{L}$ is either
an individual variable or an individual constant. Even in this case, we can-
not resolve the above difficulty. For instance, a proof of a sequent of the form
$\forall xA,$ $\Sigma\rightarrow\Pi$ following the above three restrictions contain reduced sequents of the
form $A[u_{1}/x],$

$\ldots,$
$A[u_{n}/x],$ $\Lambda\rightarrow\Theta$ for some $n$ , where each $u_{i}$ is either an individual

variable or an individual constant. Thus, the number of reduced sequents will be
infinite.

Define a mapping $\alpha$ on the set of first-order formulas of $\mathcal{L}$ inductively, as follows.

$\alpha(A)=\neg\neg A$ if $A$ is an atomic formula,
$\alpha(A\wedge B)=\alpha(A)\wedge\alpha(B)$ , $\alpha(A\supset B)=\alpha(A)\supset\alpha(B)$ ,
$\alpha(\neg A)=\neg\alpha(A)$ , $\alpha(A\vee B)=\neg(\neg\alpha(A)\wedge\neg\alpha(B))$ ,
$\alpha(\forall xA)=\forall x\alpha(A)$ , $\alpha(\exists xA)=\neg\forall x\neg\alpha(A)$ .

We can show the following.

Lemma 21 For any first-order formula $A,$ $A$ is provable in LK if and only if $\alpha(A)$

is provable in LJ.

Proof. It is easy to see that $\alpha(A)\supset A$ is provable in LK for any $A$ . Thus, the if-
part of the Lemma follows. We can show that $\neg\neg\alpha(A)\supset\alpha(A)$ is provable in LJ for
any $A$ . Moreover by using induction, we can show that if a sequent $A_{1},$

$\ldots,$
$ A_{m}\rightarrow$

$B_{1},$
$\ldots,$

$B_{n}$ is provable in LK then $\alpha(A_{1}),$
$\ldots,$

$\alpha(A_{m}),$ $\neg\alpha(B_{1}),$
$\ldots,$

$\neg\alpha(B_{n})\rightarrow is$



PROOF-THEORETIC METHODS IN NONCLASSICAL LOGIC 233

provable in LJ. Thus, if $A$ is provable in LK then $\neg\neg\alpha(A)$ and hence $\alpha(A)$ are
provable in LJ.

By Theorem 20 and Lemma 21, we have the following.

Theorem 22 The intuitionistic predicate logic is undecidable.

Proof. Suppose otherwise. Let us take an arbitrary formula $A$ and calculate $\alpha(A)$ .
(This calculation is carried out effectively. ) By using the decision algorithm for the
intuitionistic predicate logic, we check whether $\alpha(A)$ is provable in the intuitionistic
predicate logic or not. Then, by Lemma 21 this enables us to see whether $A$ is
provable in the classical predicate logic or not. But, this contradicts Theorem 20.

4.4 Notes

The decision algorithm mentioned in 4.1 is based on the result by Gentzen [17].
See also [43]. In implementing these algorithms by computers, it becomes necessary
to consider their efficiency. Thus, such an approach as one in 4.2 may be useful.
As for efficient decision algorithms for intuitionistic logic, see also Notes 5.4 in the
next section. As for the details of the proof of Theorem 20, see e.g. [14].

5 Decision Problems for Substructural Logics

5.1 Decidability of substructural logics without the contraction rule

Next, we will discuss the decision problems for basic substructural logics. It
will be natural to start by checking whether our decision algorithm mentioned
in the previous section can be applied to the present case or not. Since the cut
elimination theorem holds for all basic substructural logics but $FL_{c}$ , we can limit
the range of possible proofs to those with the subformula property and of course,
with no redundancies. On the other hand, our discussion on reduced sequents, in
particular the proof of Lemma 15, relies on the presence of both the contraction
and the weakening rules. Here, some modifications or new ideas will be necessary.

First, we will consider basic substructural logics without the contraction rule.
In this case, no essential difficulties will occur, and in fact the decision algorithm
will be much easier than that of LK and LJ. This follows from the following
observation. Let us look at every rule of inference in the propositional LK or LJ
except the cut and the contraction rules. Then, we can see easily that in any of
such rules (either of) its upper sequent(s) is simpler than the lower sequent. Thus,
the number of sequents which can appear in a cut-free proof of a given sequent is
finite, and hence the number of possible sequents is also finite. Thus, we have
the decidability of basic substructural propositional logics without the contraction
rule.
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This argument can be easily extended to the predicate logics, when our language
contains neither function symbols nor individual constants. Consider rules for
universal quantifiers:

$\frac{\Gamma,A[t/x],\Sigma\rightarrow\Delta}{\Gamma,\forall xA,\Sigma\rightarrow\Delta}(\forall\rightarrow)$ $\frac{\Gamma\rightarrow\Lambda,A[z/x],\Theta}{\Gamma\rightarrow\Lambda,\forall xA,\Theta}(\rightarrow\forall)$

In our proof-search algorithm, we must find a suitable upper sequent for a given
lower sequent. In the case of $(\rightarrow\forall)$ , for $z$ , we will take the first individual variable
not appearing in the lower sequent, assuming an enumeration of all individual
variables at the beginning. In the present case, the term $t$ in $(\forall\rightarrow)$ must be an
individual variable. We can show that as a possible upper sequent, it is enough
to consider the sequent of the form $\Gamma,$ $A[t/x],$ $\Sigma\rightarrow\Delta$ such that $t$ is either one of
free variables appearing in the lower sequent or the first individual variable not
appearing in the lower sequent. (In fact, if $t$ is a new variable, we replace it by
the first new variable, which doesn’t affect its provability. ) Rules for existential
quantifiers can be treated in the same way.

Now, consider the proof-search for a given sequent $S$ . Let $y_{1},$ $\ldots,$
$y_{k}$ be all the

free variables in $S$ . For the sake of convenience, we assume that $y_{1},$
$\ldots,$

$y_{k}$ come
as the first $k$ individual variables in our enumeration of all individual variables.
Let $m$ be the number of all quantifiers in $S$ and put $n=k+m$ . Then, by the
above argument, we can see that it is enough to consider sequents consisting of
subformulas of formulas in $S$ whose free individual variables are among the first
$n$ variables in the enumeration. This implies that the number of such sequents is
finite. Therefore, we have shown the decidability of basic substructural predicate
logics without the contraction rule, provided that the language contains neither
function symbols nor individual constants. Though we will not go into the details,
we can extend the decidability result for them, even if our language contains both
function symbols and individual constants. (see [23] for details).

Theorem 23 Any of the substructural predicate logics FL, $FL_{e},$ $FL_{w},$ $FL_{ew}$ ,
$CFL_{e}$ and $CFL_{ew}$ (with function symbols and individual constants) is decidable.

5.2 Decision problems for substructural propositional logics with the
contraction rule

Next we will consider decision problems for substructural logics $FL_{ec}$ and
$CFL_{ec}$ . We will discuss only the decision problem for $FL_{ec}$ in detail, as the case for
$CFL_{ec}$ can be treated similarly. The arguments in this and the next subsections
will be more technical than the previous ones. So, readers may skip the deatails of
the proofs in their first reading and may look only at the results.

First, we will start from the propositional $FL_{ec}$ . As we have shown in the
previous subsection, the main troubles in decision problems were caused by the
contraction rule. In our proof-search for a given sequent $S$ , we must consider the
case where it is obtained from sequents, which are more complicated than $S$ , by
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applying the contraction rule many times. As we have already shown, when we
have moreover the weakening rule, with the help of reduced sequents we can prove
that the number of possible proofs is finite. But, we cannot use reduced sequents
in general.

To overcome this difficulty, we will remove the contraction rule from the system
$FL_{ec}$ and instead of this, modify each rule for logical connectives into one which
contains implicit applications of the contraction rule. We will call the system thus
obtained, $FL_{ec}$ ‘. In order to avoid making the present paper too technical, we
will not give the full details of the system $FL_{ec}^{\prime}$ here, but introduce only its im-
plicational fragment to explain the idea. By our definition, sequents of $FL_{ec}$ are
expressions of the form $\Gamma\rightarrow C$ with a (possibly empty) sequence $\Gamma$ of formulas
and a (possibly empty) formula $C$ . On the other hand, sequents of $FL_{ec}$ are
expressions of the form $\Gamma\rightarrow C$ with a (possibly empty) finite multiset $\Gamma$ of for-
mulas and a (possibly empty) formula C. (This is only for the sake of brevity.
In this way, we can dispense with the exchange rule. ) The system $FL_{ec}^{\prime}$ doesn’t
have the contraction rule. But, except for this, it has almost the same, but slightly
modified rules of inference as those of $FL_{ec}$ . To see the difference between them,
we will now compare the implication rules in these two systems. In the following,
by $\#\Pi(D)$ we will denote the multiplicity of a formula $D$ in a given multiset $\Pi$ , in
other words, the number of occurrences of $D$ in $\Pi$ .

Rules for the implication in $FL_{ec}$

$\frac{\Gamma\rightarrow AB,\Sigma\rightarrow C}{A\supset B,\Gamma,\Sigma\rightarrow C}(\supset\rightarrow)$

On the other hand,

Rules for the implication in $FL_{ec}$

$\frac{\Gamma\rightarrow AB,\Sigma\rightarrow C}{A\supset B,\Pi\rightarrow C}(\supset\rightarrow)$

$\frac{A,\Gamma\rightarrow B}{\Gamma\rightarrow A\supset B}(\rightarrow\supset)$

$\frac{A,\Gamma\rightarrow B}{\Gamma\rightarrow A\supset B}(\rightarrow\supset)$

where $A\supset B,$ $\Pi$ is any multiset which is a contraction of the multiset $A\supset B,$ $\Gamma,$
$\Sigma$

(i.e. $A\supset B,$ $\Pi$ is any multiset obtained from the multiset $A\supset B,$ $\Gamma,$
$\Sigma$ by deleting

some duplicated formulas in it) and which satisfies the following requirements:
1) $\#\Pi(A\supset B)\geq\#_{(\Gamma,\Sigma)}(A\supset B)-2$ when $A\supset B$ belongs to both $\Gamma$ and $\Sigma$ .

Otherwise, $\#\Pi(A\supset B)\geq\#_{(\Gamma,\Sigma)}(A\supset B)-1$ .
2) For any formula $D$ in $\Gamma,$

$\Sigma$ except $A\supset B,$ $\#\Pi(D)\geq\#_{(\Gamma,\Sigma)}(D)-1$ when $D$

belongs to both $\Gamma$ and $\Sigma$ , and $\#\Pi(D)=\#_{(\Gamma,\Sigma)}(D)$ otherwise.

Here is an example of an application of $(\supset\rightarrow)$ of $FL_{ec}^{\prime}$ :

$\frac{A\supset B,C,D\rightarrow AB,A\supset B,C,E\rightarrow F}{A\supset B,C,D,E\rightarrow F}$
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Note that there is some freedom of the choice of $\Pi$ . We can show that the cut
elimination theorem holds for $FL_{ec}^{\prime}$ and that for any formula $A,$ $A$ is provable in
$FL_{ec}$ if and only if it is provable in $FL_{ec}$ .

We have already discussed the notion of proofs with no redundancies. Here, we
need a more general notion. We say that a proof $P$ has redundant contractions if
there exist sequentsS and S’inabranch ofP in sucha way as the following figure
shows;

:
$S$

$S^{\prime}$

:

:

such that $S$ ’ is a contraction of $S$ . The following lemma, which is called Curry’s
Lemma, can be proved by using induction on the length of the proof of $S$ . In the
following discussion, this lemma will play the same role as Lemma 15.

Lemma 24 Suppose that a given sequent $S$ has a cut-free proof of the length $m$ in
$FL_{ec}$ and that $S$ ’ is a contmction of S. Then, $S^{\prime}$ has a cut-free proof in $FL_{ec}$

,

whose length is not greater than $m$ .

By this lemma, we have the following.

Corollary 25 For any sequent $S$ , if $S$ is provable in $FL_{ec}$ then it has a cut-free
proof of $S$ in $FL_{ec}^{\prime}$ which has no redundant contractions.

Proof. We can suppose that $S$ has a cut-free proof $P$ in $FL_{ec}^{\prime}$ . Our corollary
can be shown by using induction on the length of P. Let it be $n$ . Suppose moreover
that $P$ has a redundant contraction shown in the following figure, where $S_{2}$ is a
contraction of $S_{1}$ and the lengths of the subproofs of them (in P) are $m$ and $k$ ,
respectively. Of course, $k<m$ .

:
$S_{1}$

:
$S_{2}$

:
$S$ .

Then, by Curry’s Lemma, there exists a cut-free proof $Q$ of $S_{2}$ with the length $k^{\prime}$

such that $k\leq k$ . So, we can get another proof $P^{\prime}$ of $S$ by replacing the subproof
of $S_{2}$ in $P$ by $Q$ ,
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$Q$

$S_{2}$

$s^{:}$

with the length $n^{\prime}$ such that $n<n$ , since $k^{\prime}\leq k<m$ . Hence, by the hypothesis
of induction we can get a proof of $S$ with no redundant contractions.

5.3 Termination of the proof-search algorithm

Here, we will look over our situation again. In the present case, we cannot limit
the number of sequents in possible proofs to be finite. What we can assume now
is that we can restrict our attention only to proofs with the subformula property
and what is more, to proofs with no redundant contractions. Then, are these two
restrictions on possible proofs enough to make the total number of possible proofs
finite? This is not so obvious. Let us consider the following example. Here, we will
write the sequence $A,$

$\ldots,$
$A$ with $n$ occurrences of $A$ as $A^{n}$ . For a given sequent

$S$ which is $A^{3},$ $B^{2},$ $C^{5}\rightarrow D$ , take three sequents $A^{4},$ $B,$ $C^{4}\rightarrow D,$ $A^{2},$ $B^{3},$ $C^{4}\rightarrow D$

and $A^{5},$ $B^{2},$ $C^{3}\rightarrow D$ . Then, $S$ is not a contraction of any of them. Moreover, any
one of them is not a contraction of any other. Thus, all of them may appear in the
same branch of a possible proof of $S$ with no redundant contractions. So, we will
face the following combinatorial problem.

Suppose that formulas $A_{1},$
$\ldots,$

$A_{m},$ $D$ are given. Consider a sequence $\langle S_{1},$ $S_{2}$ ,
$\rangle$ of sequents such that each member is always of the form $A_{1}^{k_{1}},$

$\ldots,$
$A_{m}^{k_{m}}\rightarrow D$ ,

where each $k_{i}$ is positive. (Any sequence of this kind is sometimes called a sequence
of cognate sequents. ) Moreover, assume that $S_{i}$ is not a contraction of $S_{j}$ whenever
$i<j$ . Our question is; can such a sequence be of infinite length? Or, is the length
of such a sequence always finite? (Note that the replacement of the condition
(whenever $i<j$ ’ by “whenever $i\neq j$

’ doesn’t affect the answer, since the number
of sequents which are contractions of a given $S_{i}$ is obviously finite. )

This problem is mathematically the same as the following. Let $N$ be the set of
all positive integers, and $N^{m}$ be the set of all n-tuples $(k_{1}, \ldots, k_{m})$ such that $k_{i}\in N$

for each $i$ . Define a binary relation $\leq*onN^{m}$ by $(k_{1}, \ldots , k_{m})\leq*(h_{1}, \ldots, h_{m})$ if
and only if $k_{i}\leq h_{i}$ for each $i$ . Clearly, $\leq*is$ a partial order. A subset $W$ of $N^{m}$ is
called an antichain if for any distinct $u,$ $v\in W$ neither $u\leq*v$ nor $v\leq*u$ hold.
Then, are there infinite antichains of $N^{m}$ ? The answer is negative.

Lemma 26 Any antichain of $N^{m}$ is finite.
This result can be proved by various ways. One way is to show the following

lemma, from which the above lemma follows immediately. A partial order $\preceq$ on a
given set $Y$ is well-founded if there are no descending chains in $Y$ , i.e. there are
no elements $\{s_{i}\}_{i\in N}$ in $Y$ such that $s_{i+1}\prec s_{i}$ for each $i$ . A partial order $\preceq$ on a
given set $Y$ is a well partial order if it is well-founded and moreover $Y$ contains no
infinite antichain with respect to $\preceq$ .
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Lemma 27 1) The natural order on $N$ is a well partial order.
2) Suppose that both sets $U$ and $V$ have well partial orders $\leq_{1}$ $and\leq_{2}$ , respectively.
Then, their direct product order $\leq on$ $U\times l^{r}$ is also a well partial order. Here, $\leq$

is defined by $(u, v)\leq(u^{\prime}, v)$ if and only if $u\leq_{1}u^{\prime}$ and $v\leq_{2}v^{\prime}$ .

Corollary 28 Suppose that \langle $S_{1},$ $S_{2},$
$\ldots$ } is a sequence of cognate sequents such that

$S_{i}$ is not a contraction of $S_{j}$ whenever $i<j$ . Then, it is finite.
This result is known under the name of Kripke’s Lemma. Now, let us consider

the following “complete proof-search tree” of a given sequent $S$ . Take any sequent
or any pair of sequents from which $S$ follows by a single application of a rule of
inference (except the cut rule, of course). Write any of them just over $S$ as long
as it consists only of subformulas of formulas in $S$ . We will regard each of them
as an immediate predecessor of $S$ . Then, repeat this again for each immediate
predecessors, and continue this as long as possible. If a sequent is initial, it has
no immediate predecessors. Also, when a sequent thus generated has a contraction
below it, we will not add it in the tree.

Then, it is easy to see that if $S$ is provable then there exists a proof which forms
a subtree of the “complete proof-search tree” of $S$ . We can see that the number of
the branching at each “node” of the complete proof-search tree is finite, since each
sequent has only finitely many, possible upper sequents. Furthermore, the length of
each branch in the complete proof-search tree is finite by Kripke’s Lemma. Thus,
the complete proof-search tree of any $S$ is finite, by the following lemma, called
Konig’s Lemma.

Lemma 29 A tree is finite if and only if the number of the branching at each node
of the tree is finite and the length of each branch in the tree is finite.

Thus, it turns out that a given sequent $S$ is provable if and only if there exists a
proof of $S$ which is a subtree of its complete proof-search tree. Since the complete
proof-search tree is finite, we can check whether it contains a proof of $S$ or not.
Now we have the following.

Theorem 30 Substructural propositional logics $FL_{ec}$ and $CFL_{ec}$ are decidable.

On the other hand, the same difficulties as the classical predicate logic occur in
the decision problems of predicate logics $FL_{ec}$ and $CFL_{ec}$ . In fact, we can show
the following.

Theorem 31 Substructural predicate logics $FL_{ec}$ and $CFL_{ec}$ are undecidable.

5.4 Notes

In 5.2, we have explained a way of incorporating the contraction rule into rules
for logical connectives and as a result, of eliminating the explicit contraction rule.
A similar idea can be applied to intuitionistic propositional logic. But, the system
still contains some circularities in the proof-search, caused by the rule $(\supset\rightarrow)$ . By
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dividing it into several rules, it is possible to remove these circularities and hence,
we can get an efficient decision algorithm for intuitionistic propositional logic. This
was done independently by Hudelmaier and Dyckhoff. See [21] and [13]. See also
[40].

The fact that even predicate logics will be decidable when they have no contrac-
tion rules was mentioned already at the beginning of sixties by H. Wang. As for
the details of proofs in 5.1, see [24] and [23]. On the other hand, the idea of proving
the decidability of propositional logic with the contraction rule was first introduced
by S. Kripke in 1959 and then is extended to $CFL_{ec}$ by R.K. Meyer in his disserta-
tion of 1966. See also [12] and [23]. Lemma 272) is attributed to G. Higman. For
more information on the lemma and the related topics, see e.g. [25]. Our decision
algorithm for logics with the contraction rule relies on Kripke’s Lemma which is
quite nonconstructive, and hence it is quite probable that the computational com-
plexity of the algorithm will be high. Obviously, adding the distributive law will
make the situation worse. In fact, in 1984 A. Urquhart showed the undecidablity
of (even the positive fragment of) the relevant propositional logic $R$ , which is
equivalent to the system $CFL_{ec}$ with the distributive law. (See [46]. ) Restall in
[39] obtained the decidability of some substructural logics using the proof theory
based on display calculi. A survey of decision problems of substructural logics is
given in [34].

6 Interpolation Property

W. Craig proved in 1957 the following result, now called Craig’s interpolation
theorem for classical logic. In the following, $V(D)$ denotes the set of all predicate
symbols in a formula D. (Thus, $V(D)$ denotes the set of all propositional variables
in $D$ when we are concerned with propositional logic. ) When $\Gamma$ is a sequence of
formulas $D_{1},$

$\ldots,$
$D_{m}$ , we define $V(\Gamma)=V(D_{1})\cup\ldots\cup V(D_{m})$ .

Theorem 32 If a formula $A\supset B$ is provable in classical logic then there exists
a formula $C$ such that both $A\supset C$ and $C\supset B$ are provable, and that $ V(C)\subseteq$

$V(A)\cap V(B)$ .

Any formula $C$ satisfying the conditions in the above theorem is called, an
interpolant of $A\supset B$ . Precisely speaking, the above statement contains a certain
inaccuracy as it doesn’t mention the case when the set $V(A)\cap V(B)$ is empty. For,
when our language $\mathcal{L}$ doesn’t contain any predicate (or propositional) constant,
there is no formula $C$ with $V(C)\subseteq V(A)\cap V(B)$ . As a matter of fact, the above
theorem holds even for the case when $V(C)\subseteq V(A)\cap V(B)$ if $\mathcal{L}$ contains one
of $T$ and $\perp$ . On the other hand, when it has neither predicate nor propositional
constants at all, we have to add the following.

When $V(A)\cap V(B)$ is empty, either $\neg A$ or $B$ is provable.
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We will return back to this problem again later. The same result holds also for
intuitionistic logic. Craig’s interpolation theorem is known to be equivalent to
Beth’s definability theorem and also to Robinson’s consistency theorem. (See e.g.
[9] for the details, in which the equivalence is shown by using model-theoretic
methods. )

We say that a logic $L$ has the interpolation property if the statement in the above
theorem holds for L. For intermediate propositional logics, i.e. propositional logics
between intuitionistic logic and classical, L. Maksimova proved in 1977 the following
striking result, which we mentioned already in the Introduction, by reducing it to
the amalgamation property of varieties of Heyting algebras. Note here that there
are uncountably many intermediate propositional logics.

Theorem 33 Only seven intermediate propositional logics have the interpolation
property.

She proved also a similar theorem for modal propositional logics which are
normal extensions of S4.

6.1 Maehara’s method

There are various ways of proving the interpolation property. Craig obtained
the theorem by using semantical methods. In 1960, S. Maehara showed that Craig’s
interpolation theorem for classical logic follows from the cut elimination theorem
for LK. Different from semantical methods, the proof by Maehara’s method will
give us a concrete form of an interpolant of a formula $A\supset B$ , once a cut-free proof
of $A\supset B$ is given.

In the following, we will explain Maehara’s method for intuitionistic logic and
then for other nonclassical logics. Let $LJ^{o}$ be the sequent calculus obtained from
LJ by adding the following initial sequents for propositional constants $T$ and $\perp$

(see subsection 2.3):
1. $\rightarrow T$

2. $\perp\rightarrow$

It is easy to see that the cut elimination theorem holds also for $LJ^{o}$ and hence that
it is a conservative extension of LJ. For any given finite sequence $\Gamma$ of formulas,
we call a pair { $\Gamma_{1}$ ; $\Gamma_{2}\rangle$ of (possibly empty) sequences of formulas $\Gamma_{1}$ and $\Gamma_{2}$ , a
partition of $\Gamma$ , if the mutiset union of $\Gamma_{1}$ and $\Gamma_{2}$ is equal to $\Gamma$ when regarding $\Gamma,$ $\Gamma_{1}$

and $\Gamma_{2}$ as multisets of formulas. Now, we will show the following.

Lemma 34 Suppose that a sequent $\Gamma\rightarrow\triangle$ is provable in $LJ^{o}$ and that { $\Gamma_{1}$ ; $\Gamma_{2}\rangle$

is any partition of F. Then, there exists a formula $C$ such that both $\Gamma_{1}\rightarrow C$ and
$C,$ $\Gamma_{2}\rightarrow\triangle$ are provable in $LJ^{o}$ , and moreover that $V(C)\subseteq l^{\acute}(\Gamma_{1})\cap V(\Gamma_{2}, \triangle)$ .

Proof. Let us also call such a formula $C$ , an interpolant of $\Gamma\rightarrow\Delta$ (with respect
to the partition $\langle\Gamma_{1} ; \Gamma_{2}\rangle$ ). Since the cut elimination theorem holds for $LJ^{o}$ , we can
take a cut-free proof $P$ of $\Gamma\rightarrow\Delta$ . We will prove our theorem by induction on the
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length $n$ of P. Suppose that $n=1$ . In this case, $\Gamma\rightarrow\Delta$ must be an initital sequent.
Let it be $A\rightarrow A$ . It is necessary to consider two partitions of $A$ , i.e. { $ A;\emptyset\rangle$ and
\langle $\emptyset;A$ }. For the former case, we can take $A$ itself for an interpolant. For the latter
case, we can take $T$ for an interpolant, as both $sequents\rightarrow T$ and $T,$ $A\rightarrow A$ are
provable. Similarly, we can show the existence of an interpolant for $both\rightarrow T$ and
$\perp\rightarrow with$ respect to any partition.

Next suppose that $n>1$ . Let $I$ be the last rule of inference in P. By the
hypothesis of induction, we can assume that there exists an interpolant of (each
of) the upper sequent(s) of $I$ with respect to an arbitrary partition. It is necessary
to show that the lower sequent $\Gamma\rightarrow\Delta$ has also an interpolant with respect to any
partition. We need to check this for any rule of inference of $LJ^{o}$ . In the following,
we will show this only when $I$ is either $(\vee\rightarrow)$ or $(\rightarrow\vee)$ .

1) Suppose that $\Gamma$ is $A\vee B,$ $\Gamma^{\prime}$ and that $I$ is an application of $(\vee\rightarrow)$ as follow;

$\frac{A,\Gamma^{\prime}\rightarrow\Delta B,\Gamma^{\prime}\rightarrow\Delta}{A\vee B,\Gamma\rightarrow\triangle}$

1.1) Consider a partition {A $\vee B,$ $\Gamma_{1}$ ; $\Gamma_{2}$ } of $A\vee B,$ $\Gamma^{\prime}$ . Taking a partition { $A,$ $\Gamma_{1}$ ; $\Gamma_{2}\rangle$

of $A,$ $\Gamma$ and a partition $\{B, \Gamma_{1} ; \Gamma_{2}\}$ of $B,$ $\Gamma$ and using the hypothesis of induction,
we can get formulas $C$ and $D$ such that

(1a) both $A,$ $\Gamma_{1}\rightarrow C$ and $C,$ $\Gamma_{2}\rightarrow\Delta$ are provable
(1b) $V(C)\subseteq V(A, \Gamma_{1})\cap V(\Gamma_{2}, \triangle)$

(2a) both $B,$ $\Gamma_{1}\rightarrow D$ and $D,$ $\Gamma_{2}\rightarrow\Delta$ are provable
(2b) $V(D)\subseteq V(B, \Gamma_{1})\cap V(\Gamma_{2}, \triangle)$

Then, by (1a) and (2a) we have that both $A\vee B,$ $\Gamma_{1}\rightarrow C\vee D$ and $C\vee D,$ $\Gamma_{2}\rightarrow\triangle$ are
provable, and moreover by (1b) and (2b) that $V(C\vee D)\subseteq V(A\vee B, \Gamma_{1})\cap V(\Gamma_{2}, \Delta)$ .
Hence, the formula C V $D$ is an interpolant.

1.2) Next, consider a partition $\{\Gamma_{1} ; A\vee B, \Gamma_{2}\}$ of $A\vee B,$ $\Gamma^{\prime}$ . This time, we take
a partition { $\Gamma_{1}$ ; $A,$ $\Gamma_{2}\rangle$ of $A,$ $\Gamma$ and a partition { $\Gamma_{1}$ ; $B,$ $\Gamma_{2}\rangle$ of $B,$ $\Gamma$ . Then, by the
hypothesis of induction, we can get formulas $C$ and $D$ such that

(3a) both $\Gamma_{1}\rightarrow C$ and $C,$ $A,$ $\Gamma_{2}\rightarrow\Delta$ are provable
(3b) $V(C)\subseteq V(\Gamma_{1})\cap V(A, \Gamma_{2}, \Delta)$

(4a) both $\Gamma_{1}\rightarrow D$ and $D,$ $B,$ $\Gamma_{2}\rightarrow\Delta$ are provable
(4b) $V(D)\subseteq V(\Gamma_{1})\cap V(B, \Gamma_{2}, \Delta)$

It follows that both $\Gamma_{1}\rightarrow C\wedge D$ and $C\wedge D,$ $A\vee B,$ $\Gamma_{2}\rightarrow\Delta$ are provable, and
that $V(C\wedge D)\subseteq V(\Gamma_{1})\cap V(A\vee B, \Gamma_{2}, \triangle)$ . Therefore, the formula $C\wedge D$ is an
interpolant in this case.
2) Suppose next that $I$ is an application of $(\rightarrow\vee 1)$ as follows:

$\frac{\Gamma\rightarrow A}{\Gamma\rightarrow A\vee B}$

Let { $\Gamma_{1}$ ; $\Gamma_{2}\rangle$ be any partition of $\Gamma$ . By the hypothesis of induction, there exists a
formula $C$ such that

(5a) both $\Gamma_{1}\rightarrow C$ and $C,$ $\Gamma_{2}\rightarrow A$ are provable
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(5b) $V(C)\subseteq V(\Gamma_{1})\cap V(\Gamma_{2}, A)$

Then, clearly both $\Gamma_{1}\rightarrow C$ and $C,$ $\Gamma_{2}\rightarrow A\vee B$ are provable, and it holds that
$V(C)\subseteq V(\Gamma_{1})\cap V$ ( $\Gamma_{2},$ A $VB$ ). Hence, the formula $C$ is an interpolant. In the
same way, we can treat the case $(\rightarrow\vee 2)$ .

In Lemma 34, take $A\rightarrow B$ for $\Gamma\rightarrow\triangle$ and consider the partition $\langle A;\emptyset\rangle$ of $A$ .
Then, we can show Craig’s interpolation theorem for intuitionistic logic.

Theorem 35 If a sequent $A\rightarrow B$ is provable in $LJ^{o}$ then there exists a formula
$C$ such that both $A\rightarrow C$ and $C\rightarrow B$ are provable in $LJ^{o}$ , and moreover that
$V(C)\subseteq V(A)\cap V(B)$ .

Maehara’s method can be applied also to classical logic. In this case, we need
to modify the definition of partitions as follows, as sequents in LK are of the form
$\Gamma\rightarrow\Delta$ where both $\Gamma$ and $\triangle$ are arbitrary finite sequences of formulas. Suppose
that a sequent $\Gamma\rightarrow\triangle$ is given. Suppose moreover that the mutiset union of $\Gamma_{1}$ and
$\Gamma_{2}$ ( $\Delta_{1}$ and $\Delta_{2}$ ) is equal to $\Gamma$ ( $\Delta$ , respectively) as multisets of formulas. Then
we say that { $(\Gamma_{1} : \Delta_{1});(\Gamma_{2} : \Delta_{2})\rangle$ is a partition of $\Gamma\rightarrow\Delta$ . Instead of Lemma 34,
we show the following lemma, where the sequent calculus $LK^{o}$ is an extension of
LK, obtained in the same way as $LJ^{o}$ .

Lemma 36 Suppose that a sequent $\Gamma\rightarrow\Delta$ is provable in $LK^{o}$ and that {( $\Gamma_{1}$ :
$\Delta_{1});(\Gamma_{2} : \Delta_{2})\rangle$ is any partition of $\Gamma\rightarrow\Delta$ . Then, there exists a formula $C$ such
that both $\Gamma_{1}\rightarrow\Delta_{1},$ $C$ and $C,$ $\Gamma_{2}\rightarrow\Delta_{2}$ are provable in $LK^{o}$ , and moreover that
$V(C)\subseteq V(\Gamma_{1}, \Delta_{1})\cap V(\Gamma_{2}, \triangle_{2})$ .

Now, Craig’s interpolation theorem for classical logic follows immediately from
the above lemma.

Theorem 37 If a sequent $A\rightarrow B$ is provable in $LK^{o}$ then there exists a formula
$C$ such that both $A\rightarrow C$ and $C\rightarrow B$ are provable in $LK^{o}$ , and moreover that
$V(C)\subseteq V(A)\cap V(B)$ .

We note here that the reason why we need to consider arbitrary partitions in
Lemmas 34 and 36 comes from forms of rules for implication and negation. For
instance, consider the following $(\rightarrow\supset)$ :

$\frac{p\wedge r,p\supset q\rightarrow q\vee s}{p\wedge r\rightarrow(p\supset q)\supset(qVs)}$

In this case, though $q$ is an interpolant of the upper sequent, it isn’t an interpolant
of the lower sequent. An interpolant of the lower sequent is $p$ . Thus, if we don’t
consider interpolants corresponding to each partition, the proof using induction
will break down here.

6.2 Eliminating constants
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Consider any interpolant $C$ given in Theorems 35 and 37. When it contains
propositional constants $T$ and $\perp$ , we can simplify the formula $C$ by using the
following logical equivalence. Here, $A\sim B$ means that $A$ is logically equivalent to
$B$ in LJ.

(1) $T\supset E\sim E,$ $\perp\supset E\sim T,$ $E\supset T\sim T,$ $E\supset\perp\sim\neg E$ ,
(2) $T\wedge E\sim E,$ $\perp\wedge E\sim\perp$ ,
(3) $TVE\sim T,$ $\perp\vee E\sim E$ ,
(4) $\neg T\sim\perp,$ $\neg\perp\sim T$ .

By repeating this simplification, $C$ will be transformed into a formula $C^{\prime}$ which is
either a formula without any propositional constant, or a propositional constant
itself. In the former case, we get an interpolant with no propositional constants.

Let us consider the latter case. First, suppose that the set $V(A)\cap V(B)$ is
nonempty in Theorem 35 or in Theorem 37. Then, C’ is logically equivalent to
either $F\supset F$ or $\neg(F\supset F)$ , where $F$ is an arbitrary formula consisting only of
predicate symbols (or propositional variables) in $V(A)\cap V(B)$ . Hence, we can
get an interpolant with no propositional constants also in this case.

But when the set $V(A)\cap V(B)$ is empty, we cannot get such an interpolant.
Let us suppose that C’ is T. In this case, $A\rightarrow T$ and $T\rightarrow B$ are provable. But,
the first one is always provable, and the second is provable if and only $if\rightarrow B$ is
provable. Suppose next that $ C^{\prime}is\perp$ . Then, $A\rightarrow\perp and\perp\rightarrow B$ are provable. The
second sequent is always provable, and the first is provable if and only if $A\rightarrow is$

provable. Thus, we have the following.

Theorem 38 Suppose that a formula $A\supset B$ is provable in LK. If the set $ V(A)\cap$

$V(B)$ is nonempty, there exists a formula $C$ such that both $A\supset C$ and $C\supset B$ are
provable in LK and $V(C)\subseteq V(A)\cap V(B)$ . If the set $V(A)\cap V(B)$ is empty, then
either $\neg A$ or $B$ is provable in LK. This holds also for LJ.

We note here that Craig’s interpolation theorem for classical and intuitionistic
logic doesn’t necessarily imply the theorem for fragments of them. In fact, our
proof of Lemma 34 shows that a conjunctive formula $C\wedge D$ is needed in the case
1.2) where the rule of inference is for the disjunction.

6.3 Digression - least and greatest interpolants

Consider Craig’s interpolation theorem of the form of Theorem 38. It is easy to
see that interpolants of $A\supset B$ are not always determined uniquely (up to logical
equivalence). For instance, consider the following formula which is provable in LJ;

$(p\wedge(p\supset(r\wedge s)))\supset(q\supset(rVs))$ .

We can see that all of formulas $r\wedge s,$ $r,$ $s$ and $r\vee s$ are interpolants of the above
formula.

We say that an interpolant $C$ of a formula $A\supset B$ is least if $C\supset D$ is provable
for any interpolant $D$ of a formula $A\supset B$ , and is greatest if $D\supset C$ is provable
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for any interpolant $D$ of a formula $A\supset B$ . In the above case, we can show that
$r\wedge s$ and $r\vee s$ are least and greatest interpolants, respectively. In fact, we have
the following.

Theorem 39 Suppose that $A\supset B$ is a formula provable in the propositional LK
and that the set $V(A)\cap V(B)$ is nonempty. Then, there exist both least and greatest
interpolants of $A\supset B$ (in LK).

Proof. To show our Theorem, we will use an elementary semantical method. In
fact, the proof in the following will give an alternative proof of Craig’s interpolation
theorem for classical propositional logic. First, we recall an elementary fact that
any formula $A\supset B$ is provable in the classical propositional logic if and only if
it is a tautology, i.e. for any valuation $f,$ $f(A\supset B)=t$ . Here, a valuation is a
mapping from the set of propositional variables (occurring in the formula under
consideration) to the set of truth values $\{t, f\}$ . Let $U$ (and $V$ ) be the set
$V(A)\backslash V(B)$ (and the set $V(B)\backslash V(A)$ , respectively). Let us take an arbitrary
propositional variable $s\in V(A)\cap V(B)$ and fix it.

Now, take any valuation $f$ with the domain $U$ . Let $A_{f}$ be the formula obtained
from $A$ by replacing each variable $p\in U$ by $s\supset s$ if $f(p)=t$ and by $\neg(s\supset s)$ ,
otherwise. (Of course, you may simplify $A_{f}$ by using the logical equivalence. )
Define $A^{*}$ to be the formula $_{f}A_{f}$ , where $f$ runs over all valuations with the
domain $U$ . Similarly, we define the formula $B_{g}$ for any valuation $g$ with the domain
V. Then, define $B_{*}$ to be the formula $\bigwedge_{g}B_{g}$ , where $g$ runs over all valuations with
the domain $V$ .

We will show that $A^{*}$ and $B_{*}$ are least and greatest interpolants, respectively, of
the formula $A\supset B$ . First, it is easily seen that both $V(A^{*})$ and $V(B_{*})$ are subsets
of $V(A)\cap V(B)$ . Suppose that $h$ is an arbitrary valuation with the domain $V(A)$ and
$h$ ’ is the restriction of $h$ to the domain $U$ . Clearly, $h(A)=h(A_{h})$ holds. Therefore,
if $h(A)=t$ then $h(A_{h})=t$ and hence $h(A^{*})=t$ . Thus, $A\supset A^{*}$ is a tautology.
Next, let $f$ and $j$ be arbitrary valuations with the domain $U$ and the domain $V(B)$ ,
respectively. Since $U$ and $V(B)$ are disjoint, we can define a valuation $f_{j}$ with the
domain $V(A)\cup V(B)$ by $f_{j}(p)=f(p)$ if $p\in U$ , and $f_{j}(p)=j(p)$ if $p\in V(B)$ . Since
$A\supset B$ is a tautology, $f_{j}(A\supset B)=t$ for any such $j$ . Since the restriction of $f_{j}$

to $U$ is $f,$ $f_{j}(A)=f_{j}(A_{f})=j(A_{f})$ . Thus, $f_{j}(A\supset B)=j(A_{f}\supset B)$ . Hence, the
formula $A_{f}\supset B$ is a tautology, and therefore is provable in classical logic, for any
$f$ with the domain $U$ . Hence, $A^{*}\supset B$ , which is $_{f}A_{f}\supset B$ by the definition, is
provable. Thus, we have shown that $A^{*}$ is an interpolant. To show that it is least,
assume that $C$ is any interpolant. Obviously, $A\supset C$ is a tautology. Thus, by using
the same argument as mentioned just in the above, we can infer that $A^{*}\supset C$ is
provable. Thus, $A^{*}$ is least. Similarly, we can show that $B_{*}$ is greatest.

The above proof depends on the fact that a given formula is provable in classical
propositional logic if and only if it is a tautology. Thus, it will be hard to apply
the present method to other logics. On the other hand, A.M. Pitts succeeded in
showing that the similar result holds for intuitionistic propositional logic, by using
highly technical, proof-theoretic methods.



PROOF-THEORETIC METHODS IN NONCLASSICAL LOGIC 245

Theorem 40 Suppose that $A\supset B$ is a formula provable in propositional LJ and
that the set $V(A)\cap V(B)$ is nonempty. Then, there exist both least and greatest
interpolants of $A\supset B$ (in LJ).

6.4 Interpolation theorem for modal logics

We can apply Maehara’s method to modal logics discussed in Section 3. There
are two points, of which we should be careful. The first one is to eliminate propo-
sitional constants. In the modal logic $K,$ $\square T$ is logically equivalent to $T$ , and
$\perp\supset\square \perp is$ provable. But, $\square \perp\supset\perp$ (or equivalently, OT) is not provable. Thus,
$K$ (with propositional constants) has the interpolation property of the form of
Theorem 37, but doesn’t have the interpolation property of the form of Theorem 38.
On the other hand, when a modal logic has the axiom scheme $T$ , i.e. $\square A\supset A,$ $\square \perp$

becomes logically equivalent $to\perp$ in it, and hence we can eliminate propositional
constants by using the method mentioned in 6.2.

The second point is that what is needed in applying Maehara’s method is not
the cut elimination theorem, but the subformula property. Thus, we can show that
Craig’s interpolation theorem holds for S5. In the following, we will explain the
details. Let us consider the following acceptable cut rule.

$\frac{\Gamma\rightarrow\Theta,AA,\Pi\rightarrow\triangle}{\Gamma,\Pi\rightarrow\Theta,\Delta}$

Take any partition $\langle(\Gamma_{1}, \Pi_{1} : \Theta_{1}, \Delta_{1});(\Gamma_{2}, \Pi_{2} : \Theta_{2}, \triangle_{2})\rangle$ of $\Gamma,$ $\Pi\rightarrow\Theta,$ $\Delta$ . We
will show that there exists an interpolant $E$ such that both $\Gamma_{1},$ $\Pi_{1}\rightarrow\Theta_{1},$ $\Delta_{1},$ $E$

and $E,$ $\Gamma_{2},$ $\Pi_{2}\rightarrow\Theta_{2},$ $\triangle_{2}$ are provable in S5, and $ V(E)\subseteq V(\Gamma_{1}, \Pi_{1}, \Theta_{1}, \Delta_{1})\cap$

$V(\Gamma_{2}, \Pi_{2}, \Theta_{2}, \Delta_{2})$ .

1) Suppose that $A$ is one of the subformulas of a formula in $\Gamma_{2},$ $\Pi_{2},$ $\Theta_{2},$ $\Delta_{2}$ . Let
us take the partition $\langle(\Gamma_{1} : \Theta_{1});(\Gamma_{2} : \Theta_{2}, A)\rangle$ of $\Gamma\rightarrow\Theta,$ $A$ , and the partition
\langle $(\Pi_{1} : \Delta_{1});(A, \Pi_{2} : \Delta_{2})$ } of $A,$ $\Pi\rightarrow\Delta$ . Then, by the hypothesis of induction, there
exist formulas $C$ and $D$ such that

(1a) both $\Gamma_{1}\rightarrow\Theta_{1},$ $C$ and $C,$ $\Gamma_{2}\rightarrow\Theta_{2},$ $A$ are provable,
(1b) $V(C)\subseteq V(\Gamma_{1}, \Theta_{1})\cap V(\Gamma_{2}, \Theta_{2}, A)$ ,
(2a) both $\Pi_{1}\rightarrow\Delta_{1},$ $D$ and $A,$ $D,$ $\Pi_{2}\rightarrow\Delta_{2}$ are provable,
(2b) $V(D)\subseteq V(\Pi_{1}, \Delta_{1})\cap V(A, \Pi_{2}, \triangle_{2})$ .

By using the first sequents of (1a) and (2a), the sequent $\Gamma_{1},$ $\Pi_{1}\rightarrow\Theta_{1},$ $\Delta_{1},$ $C\wedge D$ is
shown to be provable. Next, by applying the cut rule to the second sequents of (1a)
and (2a) (with the cut formula $A$ ), the sequent $C,$ $D,$ $\Gamma_{2},$ $\Pi_{2}\rightarrow\Theta_{2},$ $\Delta_{2}$ , and hence
$C\wedge D,$ $\Gamma_{2},$ $\Pi_{2}\rightarrow\Theta_{2},$ $\triangle_{2}$ are shown to be provable. Moreover, $ V(C\wedge D)\subseteq(V(C)\cup$

$V(D))\subseteq(V(\Gamma_{1}, \Pi_{1}, \Theta_{1}, \triangle_{1})\cap V(\Gamma_{2}, \Pi_{2}, \Theta_{2}, \Delta_{2}))$ , since $V(A)\subseteq V(\Gamma_{2}, \Pi_{2}, \Theta_{2}, \Delta_{2})$ .
Thus, $C\wedge D$ is an interpolant.

2) Suppose otherwise. That is, $A$ is not a subformula of any formula in $\Gamma_{2},$ $\Pi_{2},$ $\Theta_{2}$ ,
$\Delta_{2}$ . In this case, $A$ must be a subformula of a formula in $\Gamma_{1},$ $\Pi_{1},$ $\Theta_{1},$ $\Delta_{1}$ . Take the
partition $\langle(\Gamma_{1} : \Theta_{1}, A);(\Gamma_{2} : \Theta_{2})\rangle$ of $\Gamma\rightarrow\Theta,$ $A$ , and the partition { $(A, \Pi_{1} : \Delta_{1})$ ;
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$(\Pi_{2} : \Delta_{2})\}$ of $A,$ $\Pi\rightarrow\triangle$ . Then, the hypothesis of induction, there exist formulas
$F$ and $G$ such that

(3a) both $\Gamma_{1}\rightarrow\Theta_{1},$ $A,$ $F$ and $F,$ $\Gamma_{2}\rightarrow\Theta_{2}$ are provable,
(3b) $I^{\gamma}(F)\subseteq l^{\gamma}(\Gamma_{1}, \Theta_{1}, A)\cap V(\Gamma_{2}, \Theta_{2})$ ,
(4a) both $A,$ $\Pi_{1}\rightarrow\Delta_{1},$ $G$ and $G,$ $\Pi_{2}\rightarrow\triangle_{2}$ are provable,
(4b) $V(G)\subseteq l^{\gamma}(A, \Pi_{1}, \Delta_{1})\cap V(\Pi_{2}, \Delta_{2})$ .

By applying the cut rule to the first sequents of (3a) and (4a) with the cut formula
$A$ , we get the sequent $\Gamma_{1},$ $\Pi_{1}\rightarrow\Theta_{1},$ $\Delta_{1},$ $F\vee G$ . Also, by taking the second sequents
of (3a) and (4a), and applying the weakening rules and $(\vee\rightarrow)$ , we get the sequent
$F\vee G,$ $\Gamma_{2},$ $\Pi_{2}\rightarrow\Theta_{2},$ $\Delta_{2}$ . Moreover, using both (3b) and (4b), we can see that $F\vee G$

is an interpolant. Hence, we have the following.

Theorem 41 Craig’s interpolation theorem holds for any of the modal proposi-
tional logics $K$ , KT, S4 and S5.

6.5 Interpolation theorem for substructural logics

Next, consider the interpolation theorem for substructural logics. We will take
the formulation of sequent calculi for basic substructural logics given in Section 2.
First, suppose that our language contains propositional constants. Then, similarly
to the classical and the intuitionistic cases, we can show the following, by using
Maehara’s method.

Theorem 42 Craig’s interpolation theorem holds for substructural logics FL, $FL_{lV}$ ,
$FL_{e},$ $FL_{ew},$ $FL_{ec},$ $CFL_{e},$ $CFL_{elV}$ and $CFL_{ec}$ (in the language with proposi-
tional constants).

We notice that the above theorem holds for both propositional and predicate
logics. To show the theorem for substructural logics without the exchange rule,
like FL and $FL_{w}$ , we need to modify the definition of partitions in the following
way. Let $\Gamma\rightarrow\Delta$ be any sequent (of FL, or $FL_{lV}$ ). Then, a triple { $\Gamma_{1}$ ; $\Gamma_{2}$ ; $\Gamma_{3}\rangle$ is a
partition of $\Gamma$ , if the sequence $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ is equal to $\Gamma$ (without changing the order
of formulas). Then, Theorem 42 follows by showing the following.

Lemma 43 Suppose that a sequent $\Gamma\rightarrow\triangle$ is provable in FL (and $FL_{w}$ ) and
that \langle $\Gamma_{1}$ ; $\Gamma_{2}$ ; F3} is any partition of F. Then, there exists a formula $C$ such that
both $\Gamma_{2}\rightarrow C$ and $\Gamma_{1},$ $C,$ $\Gamma_{3}\rightarrow\Delta$ are provable in FL (and $FL_{w}$ , respectively ),
and moreover that $V(C)\subseteq V(\Gamma_{2})\cap V$ ( $\Gamma_{1}$ , F3, $\Delta$ ).

As we mentioned in 2.3, it is enough to consider two propositional constants $T$

$and\perp$ when a given logic has the weakening rule. Moreover, the following logical
equivalences hold in $FL_{w}$ for the logical $connective*$ ; for any formula $E$ ,

$T*E\sim E,$ $E*T\sim E,$ $\perp*E\sim\perp,$ $ E*\perp\sim\perp$ .
Thus, by using the method discussed in 6.2, we can eliminate propositional con-
stants. Let $FL_{w}^{\prime}$ be the sequent calculus in the propositional language without
propositional constants, obtained from $FL_{w}$ by deleting all initial sequents for
propositional constants and rules of inference for them.
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Corollary 44 Suppose that a formula $A\supset B$ is provable in $FL_{w}^{\prime}$ . If the set
$V(A)\cap V(B)$ is nonempty, there exists a formula $C$ such that both $A\supset C$ and
$C\supset B$ are provable in $FL_{w}^{\prime}$ , and $V(C)\subseteq V(A)\cap V(B)$ . If the set $V(A)\cap V(B)$

is empty, then either $\neg A$ or $B$ is provable in $FL_{w}^{\prime}$ . This holds also for the calculi
$FL_{ew}$ and $CFL_{ew}$ without propositional constants.

On the other hand, we cannot eliminate propositional constants always in other
logics mentioned in Theorem 42. But, as shown in Section 7, when the set $ V(A)\cap$

$V(B)$ is empty, the formula $A\supset B$ is never provable in these basic substructural
(predicate) logics without the weakening rule.

6.6 Notes

For the details of a proof of Craig’s interpolation theorem for classical logic
by Maehara’s method, see e.g. [43]. Theorem 33 and the related result on modal
logics are shown by Maksimova in [27] and [28], respectively.

Theorem 40 by Pitts is given in [36], in which he took a sequent calculus for
intuitionistic propositional logic, introduced independently by Hudelmaier and Dy-
ckhoff. (See Notes 5.4. ) A proof of the interpolation theorem for modal logic
S5 based on the subformula property of the sequent calculus GS5 is mentioned in
[42]. A general result on the interpolation theorem for modal logics formulated in
tableau calculi is given by Rautenberg [38].

Interpolation theorems for various substructural logics are discussed in [35] and
also in [32]. Recently, Bayu Surarso succeeded to extend Maehara’s method and
proved the interpolation theorem for many distributive substructural logics (see
[3]).

7 Variable Sharing and Variable Separation

We will add two more examples from the study of substructural logics which show
the usefulness of proof-theoretic methods. The first one is the variable sharing
property which is known for some relevant logics. The second one is Maksimova’s
principle of variable separation. We can see that the weakening rule plays an
important role in them.

7.1 Variable sharing property of substructural logics without the weak-
ening rule

We say that a logic $L$ has the variable sharing property, when for any formula
$A\supset B$ without propositional constants, if $A\supset B$ is provable in $L$ then $ V(A)\cap$

$V(B)$ is nonempty. It is clear by the definition that if a logic $L$ has the variable
sharing property and $L$ ‘ is weaker than $L$ (i.e. every fromula provable in $L^{\prime}$ is also
provable in L), then $L$ ‘ has also the property. In [1], it is shown that the relevant
propositional logic $R$ has the variable sharing property.
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Theorem 45 The predicate logic $CFL_{ec}$ has the variable sharing property, and a
fortiori any of FL, $FL_{e},$ $FL_{ec}$ and $CFL_{e}$ has the variable sharing property.

We will give here a proof of the above theorem for $FL_{ec}$ . The proof for $CFL_{ec}$

can be shown essentially in the same way. Recall that every sequent in $FL_{ec}$ is
of the form $\Pi\rightarrow\Lambda$ , where $\Lambda$ contains at most one formula. To show the above
theorem, it is enough to prove the following.

Theorem 46 Suppose that $\Gamma\rightarrow A$ is a sequent containing no propositional con-
stants such that $\Gamma$ is nonempty. If $\Gamma\rightarrow A$ is provable in $FL_{ec}$ then $V(\Gamma)\cap V(A)$

is nonempty.

Proof. Suppose that $\Gamma\rightarrow A$ satisfies the conditions in the theorem and is provable
in $FL_{ec}$ . Then, it has a cut-free proof P. Clearly, $P$ contains neither initial sequents
for propositional constants nor rules for propositional constants. We will show that
there exists a branch in $P$ starting from an initial sequent and ending at the sequent
$\Gamma\rightarrow A$ such that every sequent $\Pi\rightarrow\Lambda$ in the branch contains at least two formulas,
i.e. either both of $\Pi$ and $\Lambda$ are nonempty, or $\Lambda$ is empty but $\Pi$ contains at least
two formulas. Of course, $\Gamma\rightarrow A$ contains at least two formulas. For other sequents
in $P$ , we will show this by checking that for any rule of inference of $FL_{ec}$ , if the
lower sequent contains at least two formulas then (at least one of) the upper
sequent(s) contains at least two formulas. (For rules $(\supset\rightarrow)$ and $(\rightarrow*)$ , one of the
upper sequents may not contain two formulas. Of course, the above doesn’t hold
in general when we have the weakening rule. )

Now, let $B$ be any such branch. For any sequent $\Pi\rightarrow\Lambda$ containing at least two
formulas, we say that { $\Pi_{1}$ ; $\Pi_{2},$ $\Lambda\rangle$ is a partition of $\Pi\rightarrow\Lambda$ if the multiset union of
$\Pi_{1}$ and $\Pi_{2}$ is equal to $\Pi$ , and both $\Pi_{1}$ and $\Pi_{2},$ $\Lambda$ are nonempty. By our assumption
on $\Pi\rightarrow\Lambda$ , there exists at least one partition of $\Pi\rightarrow\Lambda$ . We say that a partition
{ $\Pi_{1}$ ; $\Pi_{2},$ $\Lambda\rangle$ shares variables if $V(\Pi_{1})\cap V(\Pi_{2}, \Lambda)$ is nonempty. Then, we can show
the following easily by using induction on the length of the branch B.

For any sequent $\Pi\rightarrow\Lambda$ in $B$ , every partition of $\Pi\rightarrow\Lambda$ shares variables.

In particular, taking $\Gamma\rightarrow A$ for $\Pi\rightarrow\Lambda$ , we have that the partition $\langle\Gamma;A\rangle$ shares
variables. This completes our proof.

7.2 Maksimova’s principle of variable separation

L. Maksimova showed in 1976 the following theorem for some relevant logics,
including $R$ and E.

Suppose that propositional formulas $A_{1}\supset A_{2}$ and $B_{1}\supset B_{2}$ have no
propositional variables in common. If a formula $A_{1}\wedge B_{1}\supset A_{2}\vee B_{2}$ is
provable, then either $A_{1}\supset A_{2}$ or $B_{1}\supset B_{2}$ is provable.

When the above property holds for a given logic $L$ , we say that Maksimova’s
principle of variable sepamtion (or, simply Maksimova’s principle) holds for L.
In this subsection, we will show the following by using proof-theoretic methods.
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Theorem 47 Maksimova’s principle holds for propositional FL, $FL_{e},$ $FL_{ecf}FL_{w}$ ,
$FL_{ew},$ $CFL_{e},$ $CFL_{ec}$ and $CFL_{ew}$ .

Consult the paper [30] for the details of the proof of this theorem. While the
proof of Maksimova’s principle for logics with the weakening rule in [30] needs their
interpolation property, we can prove Maksimova’s principle for logics without the
weakening rule without using the interpolation property explicitly. So, there might
be some relations between Maksimova’s principle and Craig’s interpolation theorem
(of the form mentioned in Corollary 44 ) $ $ at least when a logic has the weakening
rule. In this respect, it will be worthwhile to note a result by Maksimova which says
that for any intermediate propositional logic $L$ , if $L$ has the Craig’s interpolation
property then Maksimova’s principle holds for it.

To see this relation, let us consider Maksimova’s principle for classical logic.
Suppose that formulas $A_{1}\supset A_{2}$ and $B_{1}\supset B_{2}$ have no propositional variables
in common and that the sequent $A_{1}\wedge B_{1}\rightarrow A_{2}VB_{2}$ is provable in LK. Then
$A_{1},$ $B_{1}\rightarrow A_{2},$ $B_{2}$ is also provable and hence $A_{1},$ $\neg A_{2}\rightarrow\neg B_{1},$ $B_{2}$ is provable. By
using Craig’s interpolation theorem for classical logic in the (generalized) form of
Theorem 38, we can infer that either $A_{1},$ $\neg A_{2}\rightarrow or\rightarrow\neg B_{1},$ $B_{2}$ is provable. Hence,
either $A_{1}\rightarrow A_{2}$ or $B_{1}\rightarrow B_{2}$ is provable in classical logic.

As an example of logics without the weakening rule, we will take $FL_{ec}$ and will
give a sketch of the proof of Maksimova’s principle for it. For the sake of brevity,
we assume that our language doesn’t contain any propositional constants. In the
following, for a formula $D,$ $S(D)$ denotes the set of all subformulas of $D$ and for
a sequence $C_{1},$

$\ldots,$
$C_{m}$ of formulas, $S(C_{1}, \ldots, C_{m})$ denotes $S(C_{1})\cup\ldots\cup S(C_{m})$ .

Finally, for a sequent $\Gamma\rightarrow\Delta,$ $S(\Gamma\rightarrow\Delta)$ denotes $S(\Gamma)\cup S(\Delta)$ .

Lemma 48 Suppose that formulas $A_{1}\supset A_{2}$ and $B_{1}\supset B_{2}$ have no propositional
variables in common. If $\Pi\rightarrow\Lambda$ is a sequent satisfying the following three condi-
tions;
1) $S(\Pi\rightarrow\Lambda)\subseteq(S(A_{1}\wedge B_{1})\cup S(A_{2}VB_{2}))$ ,
2) $ S(\Pi\rightarrow\Lambda)\cap(S(A_{1})\cup S(A_{2}))\neq\emptyset$ ,
3) $ S(\Pi\rightarrow\Lambda)\cap(S(B_{1})\cup S(B_{2}))\neq\emptyset$ ,
then it is not provable in $FL_{ec}$ .

Proof. Let us suppose that $\Pi\rightarrow\Lambda$ is provable. Then there exists a cut-free proof
$P$ of $\Pi\rightarrow\Lambda$ . By checking every application of a rule in $P$ , we can see that if the
lower sequent satisfies the above three conditions then at least one of its upper
sequents satisfies these three conditions. Thus, at least one of the initial sequents
in $P$ must also satisfy them. Obviously, this is a contradiction.

Corollary 49 Suppose that $A_{1}\supset A_{2}$ and $B_{1}\supset B_{2}$ have no propositional variables
in common. Moreover, suppose that $P$ is a cut-free proof of $\Pi\rightarrow\Lambda$ in $FL_{ec}$ such
that $S(\Pi\rightarrow\Lambda)\subseteq(S(A_{1}\wedge B_{1})\cup S(A_{2}\vee B_{2}))$ and $ S(\Pi\rightarrow\Lambda)\cap(S(A_{1})\cup S(A_{2}))\neq\emptyset$ .
Then every sequent $\Gamma^{\prime}\rightarrow\Delta^{\prime}$ appearing in $P$ satisfies the following condition $(*)$ :
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$(*)\emptyset S.(\Gamma^{\prime}\rightarrow\triangle)\subseteq(S(A_{1}\wedge B_{1})\cup S(A_{2}\vee B_{2}))$
and $ S(\Gamma^{\prime}\rightarrow\triangle)\cap(S(A_{1})\cup S(A_{2}))\neq$

Hence, there are no applications of the following rules of inference in $P$ ;

$\frac{\Gamma,B_{1},\Sigma\rightarrow\Delta}{\Gamma,A_{1}\wedge B_{1},\Sigma\rightarrow\Delta}(\wedge 2\rightarrow)$ $\frac{\Gamma\rightarrow A_{1}\Gamma\rightarrow B_{1}}{\Gamma\rightarrow A_{1}\wedge B_{1}}(\rightarrow\wedge)$

$\frac{\Gamma,A_{2},\Sigma\rightarrow\Delta\Gamma,B_{2},\Sigma\rightarrow\Delta}{\Gamma,A_{2}\vee B_{2},\Sigma\rightarrow\triangle}(\vee\rightarrow)$ $\frac{\Gamma\rightarrow B_{2}}{\Gamma\rightarrow A_{2}\vee B_{2}}(\rightarrow\vee 2)$

Proof. We can prove that if the lower sequent of a rule $I$ satisfies the condition
$(*)$ then (both of) the upper sequent(s) will satisfy the condition $(*)$ , for each rule
$I$ in P. In fact, this can be shown by checking each rule of $FL_{ec}$ . Since $\Pi\rightarrow\Lambda$

satisfies $(*)$ , every sequent in $P$ must satisfy $(*)$ . Next suppose that any one of the
rules in our corollary is applied in P. Then, from the form of these rules it follows
that at least one of the upper sequent(s), say $S$ , contains either $B_{1}$ or $B_{2}$ . On the
other hand, the sequent $S$ must satisfy also $(*)$ . Thus, $S$ satisfies all of the three
conditions in Lemma 48. Clearly, this is a contradiction since $S$ must be provable.

Theorem 50 Maksimova’s principle holds for $FL_{ec}$ . More precisely, suppose that
formulas $A_{1}\supset A_{2}$ and $B_{1}\supset B_{2}$ have no propositional variables in common. Then
the following holds.
1) If the $sequentA_{1}\wedge B_{1}\rightarrow A_{2}\vee B_{2}$ is provable, then $eitherA_{1}\rightarrow A_{2}$ or $B_{1}\rightarrow B_{2}$

is provable.
2) If the sequent $A_{1}\wedge B_{1}\rightarrow A_{2}$ is provable, then the sequent $A_{1}\rightarrow A_{2}$ is provable.
3) If the sequent $A_{1}\rightarrow A_{2}\vee B_{2}$ is provable, then the sequent $A_{1}\rightarrow A_{2}$ is provable.

Proof. Suppose that the sequent $A_{1}\wedge B_{1}\rightarrow A_{2}\vee B_{2}$ is provable in $FL_{ec}$ . Clearly,
it is not an initial sequent. Then, it is easy to see that the lowest part of its cut-
free proof $P$ is of the following form, where $I$ is a rule of inference other than the
exchange and contraction rules.

$\overline{\frac{A_{1}\wedge B_{1},\ldots,A_{1}\wedge B_{1}\rightarrow A_{2}\vee B_{2}}{A_{1}\wedge B_{1}\rightarrow A_{2}\vee B_{2}}}:some(c(I)\rightarrow)(e\rightarrow)$

Then, $I$ must be one of the following rules of inference: $(\wedge 1\rightarrow),$ $(\wedge 2\rightarrow),$ $(\rightarrow\vee 1)$ ,
and $(\rightarrow\vee 2)$ . If it is $(\wedge 1\rightarrow)$ , then

$\ovalbox{\tt\small REJECT} A_{1}\wedge B_{1},$
$.,$

$A_{1}\wedge B_{1},$ .
$,A_{1}\wedge B_{1}\rightarrow A_{2}\vee B_{2}A_{1}\wedge B_{1}.’.\cdots,A_{1},$$\ldots.’.A_{1}\wedge B_{1}\rightarrow A_{2}VB_{2}(\wedge 1\rightarrow)$

Here, the antecedent of the upper sequent of $I$ contains only one $A_{1}$ and others are
$A_{1}\wedge B_{1}$ . Then by Corollary 49, the proof of the upper sequent and hence $P$ cannot
contain any application of rules of inference, mentioned in Corollary 49. It means
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that when an occurrence of the formulas $A_{1}\wedge B_{1}$ and $A_{2}\vee B_{2}$ is introduced in the
proof $P$ it must be introduced only by rules of the following form:

$\frac{\Gamma,A_{1},\Sigma\rightarrow\triangle}{\Gamma,A_{1}\wedge B_{1},\Sigma\rightarrow\Delta}(\wedge 1\rightarrow)$ $\frac{\Gamma\rightarrow A_{2}}{\Gamma\rightarrow A_{2}\vee B_{2}}(\rightarrow\vee 1)$

Now, we will replace all occurrences of $A_{1}\wedge B_{1}$ by $A_{1}$ and of $A_{2}VB_{2}$ by $A_{2}$ in $P$

and remove redundant applications which are caused by this replacement. (Note
here that these $A_{1}\wedge B_{1}$ and $A_{2}VB_{2}$ may be introduced in several places in P. )
This will give us a proof of $A_{1}\rightarrow A_{2}$ in $FL_{ec}$ . When $I$ is any one of other rules
mentioned in the above, we will be able to get the proof of either $A_{1}\rightarrow A_{2}$ or
$B_{1}\rightarrow B_{2}$ in the similar way.

We will omit the proof of Maksimova’s principle for logics with the weakening
rule, as more complicated arguments are necessary for this case.

7.3 Notes

The proof of Theorem 45 given in the above is based on the proof by H. Naruse
in his dissertation for a master’s degree in 1996.

Maksimova gave an example of a relevant logic for which Maksimova’s principle
doesn’t hold, in the paper [26]. Some relationships among Maksimova’s principle,
the disjunction property and Halld\’en-completeness for intermediate propositional
logics are studied in [7]. In [30], we proved that Maksimova’s principle holds for
many substructural logics. Theorem 47 shows one of the results in [30]. We ex-
tended our method also to relevant logics and showed Maksimova’s principle for
positive fragments of $R$ , RW and TW. In these proofs, one may see roles of the
weakening rule in Maksimova’s principle.

8 A Short Remark

In the present paper, we have introduced some basic results and techniques in
the proof theory of nonclassical logics. To show the usefulness of proof-theoretic
methods in the study of nonclassical logics, we presented here various interesting
consequences of the cut elimination theorem. Though proof-theoretic methods will
be quite powerful and promising, the proof-theoretic study of nonclassical logics
often tends to concentrate only in proving the cut elimination theorem and to
stop there. But, we believe that the fertility of proof-theoretic methods will be
probably attained by deeper investigations of structures of proofs, which are above
and beyond the cut elimination theorem.
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