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Abstract.

We will look at the Catalan numbers from the Rigged Configu-
rations point of view originated [10] from an combinatorial analysis of
the Bethe Ansatz Equations associated with the higher spin anisotropic
Heisenberg models. Our strategy is to take a combinatorial interpre-
tation of the Catalan number Cn as the number of standard Young
tableaux of rectangular shape (n2), or equivalently, as the Kostka num-
ber K(n2),12n , as the starting point of our research. We observe that
the rectangular (or multidimensional) Catalan numbers C(m,n), intro-
duced and studied by P. MacMahon [23], [34], see also [35], can be iden-
tified with the corresponding Kostka numbersK(nm),1mn , and therefore
can be treated by the Rigged Configurations technique. Based on this
technique we study the stretched Kostka numbers and polynomials,
and give a proof of a strong rationality of the stretched Kostka poly-
nomials. This result implies a polynomiality property of the stretched
Kostka and stretched Littlewood–Richardson coefficients [8], [28], [17].
Finally, we give a brief introduction to a rigged configuration version
of the Robinson–Schensted–Knuth correspondence.

Another application of the Rigged Configuration technique pre-
sented, is a new family of counterexamples to Okounkov’s log-concavity
conjecture [27].

Finally, we apply Rigged Configurations technique to give a com-
binatorial proof of the unimodality of the principal specialization of
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the internal product of Schur functions. In fact we prove a combinato-
rial (fermionic) formula for generalized q-Gaussian polynomials which
is a far generalization of the so-called KOH-identity [26], as well as it
manifests the unimodality property of the q-Gaussian polynomials.

§1. Introduction

The literature devoted to the study of Catalan 1 and Narayana num-
bers 2, their different combinatorial interpretations (more than 200 in
fact, [33]), numerous generalizations, applications to Combinatorics, Al-
gebraic Geometry, Probability Theory and so on and so forth, are enor-
mous, see [33] and the literature quoted therein. There exists a wide
variety of different generalizations of Catalan numbers, such as the Fuss–
Catalan numbers 3 and the Schröder numbers 4, higher genus multivari-
able Catalan numbers [24], higher dimensional Catalan 5 and Narayana
numbers [23], [34], and many and varied other generalizations. Each a
such generalization comes from a generalization of a certain combina-
torial interpretation of Catalan numbers, taken as a starting point for
investigation. One a such interpretation of Catalan numbers has been
taken as the starting point of the present paper, is the well-known fact
that the Catalan number Cn is equal to the number of standard Young
tableaux of the shape (n2).

Now let us look at the Catalan numbers from Rigged Configurations
side. Since Cn = K(n2),12n we can apply a fermionic formula for Kostka
polynomials [9], and come to the following combinatorial expressions for
Catalan and Narayana numbers

Cn =
∑
ν�n

∏
j≥1

(
2n− 2(

∑
a≤j νa) + νj − νj+1

νj − νj+1

)
,

1en.wikipedia.org/wiki/Catalan number
2en.wikipedia.org/wiki/Narayana number
3en.wikipedia.org/wiki/Fuss− Catalan number
4wolfram.com/SchröederNumber.html
5We denote the multidimensional Catalan numbers (as well as the set

thereof) by C(m,n). It might be well to point out that the set C(m,n) is
different from the set of Fuss-Catalan paths (or numbers) denoted commonly by

C
(m)
n .
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where the sum runs over all partitions ν of size n;

N(n, k) =
∑
ν�n
ν1=k

∏
j≥1

(
2n− 2(

∑
a≤j νa) + νj − νj+1

νj − νj+1

)
,

where the sum runs over all partitions ν of size n, ν1 = k.
A q-versions of these formulas one can find, for example, in [13].
Let us illustrate our combinatorial formulas for n = 6. There are 11 par-
titions of size 6. We display below the distribution of contributions to
the combinatorial formulae for the Catalan and Narayana numbers pre-
sented above, which come from partitions ν of size 6 and k = 1, 2, . . . , 6.
N(6, 1) = 1,

N(6, 2) =
(
9
1

)
+
(
5
4

)
+ 1 = 9 + 5 + 1 = 15,

N(6, 3) =
(
8
6

)
+
(
3
1

)(
7
1

)
+ 1 = 28 + 21 + 1 = 50,

N(6, 4) =
(
7
4

)
+
(
6
4

)
= 35 + 15 = 50,

N(6, 5) =
(
6
4

)
= 15, N(6, 6) = 1.

A few comments in order.
• In [11] we gave a combinatorial interpretation of the shape of first

(admissible) configuration ν(1) corresponding to a given semistandard
tableau T in terms of the set of secondary descent sets associated with
the Young tableau T in question. In the case of standard Young tableaux
of rectangular shape (n, n) there exist only one admissible configuration
ν, |ν| = n, and a combinatorial rule how to describe partition ν stated
in [11], can be restated as follows:
By the use of classical bijection between the set of standard Young
tableaux of shape (n, n) and that of rooted plane trees with n nodes, see
e.g. [33], one can associate to a given tableau T ∈ STY ((n, n)) a rooted
plane tree T on n nodes (out of the root). The number of external nodes
of a tree T is equal to p := p(T ) = #(DES(T )), where DES(T ) denotes
the descent set of the tableau in question. Now for any external node b
of the tree T mentioned, denote by πb a unique path in the tree T from
the node b to the root. Let κb(T ) stands for the number of edges in the
path πb.

Lemma 1.1. Let T ∈ STY ((n, n) be a standard Young tableau of
shape (n, n), and ν � n be a configuration corresponding to T under the
Rigged Configuration bijection. Then

ν1 = κ(1)(T ) := max(κ1(T ), . . . , κp(T )).

Now we proceed by induction. Namely, consider the most left node
b in the tree T such that κb = ν1. Let T1 denotes a forest of rooted trees
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associated with the complement T \ πb. Let T1 = T (1)
1

⋃ T (2)
1 . . .

⋃ T (s)
1

be the union of distinct rooted trees making up the forest T1. Let now

b be a node which belongs, say, to a (unique) subtree T (a)
1 of the forest

T , denote as before, by π
(1)
b and κ

(2)
b a unique path from the node b to

the root of the tree T (a)
1 , and its number of edges. Then

ν2 = κ(2)(T ) := max(κ
(2)
b ),

where maximum is taken over the all nodes of the forest T1. Now consider

forest T2 = T1 \ π
(1)
b and repeat the above procedure. As a result we

obtain a sequence of numbers κ = (κ(1), . . . , κ(p)) such that

ν(1) = κ.

It is easy to see that for a given partition λ � n, λ = (ma1
1 , . . . ,mak

k ),
m1 > m2 > . . . > mk > 0, ai ≥ 1,∀i, the rooted plane tree correspond-
ing to themaximal rigged configuration of type λ [12], looks as follows. It
is a rooted plane tree Tmax with a unique branching point at the root and
external nodes b1, . . . , bk such that κb1(Tmax) = · · · = κba1

(Tmax) = m1,
κba1+1(Tmax) = · · · = κba1+a2

(Tmax) = m2, and so on. The rooted plane
tree corresponding to the minimal rigged configuration, i.e. that with
all zero riggings, corresponds to the mirror image of the tree Tmax.

The Rigged Configuration Bijection allows to attach a non-negative
integer to each node of the corresponding rooted plane tree, It is an
interesting Problem to read off these numbers from the associated tree
directly.

• q-versions of formulas for Catalan and Narayana numbers dis-
played above coincide with the Carlitz–Riordan q-analog of Catalan
numbers [32] and q-analog of Narayana numbers correspondingly.

• It is well-known that partitions of n with respect to the dominance
ordering, form a lattice denoted by Ln. One (A.K) can define an ordering 6

on the set of admissible configurations of type (λ, μ) as well. In the
case λ = (n2), μ = (12n) the poset of admissible configurations of type
(λ, μ) is essentially the same as the lattice of partitions Ln. Therefore,
to each vertex ν of the lattice Ln one can attach the space of rigged
configurations RCλ,μ(ν) associated with partition ν. Under a certain
evolution a configuration (ν, J) evolves and touches the boundary of the
set RCλ,μ(ν). When such is the case, “state” (ν, J) suffers “a phase
transition”, executes the wall-crossing, and end up as a newborn state
of some space RCλ,ν(ν

′
). A precise description of this process is the

essence of the Rigged Configuration Bijection [15], [16]. It seems an
interesting task to write out in full the evolution process going on in



Rigged Configurations and unimodality 307

the space of triangulations of a convex (n + 2)-gon under the Rigged
Configuration Bijection (work in progress).

• It is an open Problems to count the number of admissible config-
urations associated with the multidimensional Catalan numbers C(m,n)
for general n and m ≥ 3, and describe a structure of the corresponding
poset on the set of admissible configurations, as well as to trace out a
dynamics of riggings in the poset associated, for example, with the set
SY T ((n, n)). If m = 3, the set of of admissible configurations consists of
pairs of partitions (ν(1), ν(2)) such that ν(2) � n and ν(1) ≥ ν(2) ∨ ν(2) 7.
One can check that the number of admissible configurations of type
(n3, 13n) is equal to 1, 3, 6, 16, 33, 78, for n = 1, 2, 3, 4, 5, 6.

• It is well-known that the q-Narayana numbers 8 obey the symme-
try property, namely, N(k, n) = N(n − k + 1, n). Therefore it implies
some non trivial relations among the products of q-binomial coefficients,
combinatorial proofs of whose are desirable.

• It is well-known that the Narayana number N(k, n) counts the
number of Dyck paths of the semilength n with exactly k peaks, see
e.g. [29], A001263. Therefore, the set of rigged configurations {ν} which
associated with the Catalan number Cn and have fixed ν1 = k, is in
one-to-one correspondence with the set of the semilength n Dyck paths
with exactly k peaks, as well as the number of rooted plane trees with
n edges and k ends.

Thus it looks natural to find and study combinatorial properties
of the number of standard Young tableaux of an arbitrary rectangular
shape (nm), that is the Kostka number K(nm),1mn , which are inherent
in the classical Catalan and Narayana numbers. For example, one can
expect that a multidimensional Catalan number is the sum of multidi-
mensional Narayana ones (this is so !), or expect that a multidimensional
Narayana polynomial is the δ-vector of a certain convex lattice polytope,
see e.g. [31] for the case of classical Catalan and Narayana numbers 9.

• Combinatorial analysis of the Bethe Ansatz Equations [10], gives
rise to a natural interpretation of the Catalan and rectangular Cata-
lan and Narayana numbers in terms of rigged configurations, and pose

7Recall that for any partitions λ and μ, λ∨μ denotes partition corresponding
to composition (λ1, μ1, λ2, μ2, . . .).

8Recall that the q- Narayana number N(k, n | q) = 1−q
1−qn

[
n
k

]
q

[
n

k+1

]
q
.

9The multidimensional Catalan and Narayana numbers, as well as the first
expectation, had been introduced and proved by P.MacMahon [23]. The second
expectation will be treated in the present paper, Section 3.
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Problem to elaborate combinatorial structures induced by rigged con-
figurations on any chosen combinatorial interpretation of Catalan num-
bers. For example, how to describe all triangulations of a convex (n+2)-
gon which are in a “natural” bijection with the set of all rigged configura-
tions (μ, J) corresponding to a given configuration ν of type ((n2), 12n)?
One can ask similar questions concerning Dyck paths and its multidi-
mensional generalizations [35], and so on.

In Section 5.1 we present an example to illustrate some basic prop-
erties of the Rigged Configuration Bijection.

In the present paper we are interested in to investigate combina-
torics related with the higher dimensional Catalan numbers, had been
introduced and studied in depth by P. MacMahon [23]. It is highly pos-
sible that the starting point to introduce the higher dimensional Catalan
numbers in [23] was an interpretation of classical Catalan numbers as the
number of rectangular shape (n2) standard Young tableaux mentioned
above.

Our main objective in the present paper is to look on the multidi-
mensional Catalan numbers C(m,n) := C(m,n|1), defined as the value
of the Kostka– Foulkes polynomials K(nm),(1mn)(q) at q = 1, from the
point of view of Rigged Configurations Theory. In other words, we want
to study the multidimensional Catalan and Narayana numbers intro-
duced in [23], [34], by means of a fermionic formula for parabolic Kostka
polynomials due to the author, e.g. [14], [17]. In particular, we apply
the fermionic formula for parabolic Kostka polynomials cited above, to
the study a stretched (parabolic) Kostka polynomials KNλ,N{R}(q). At
this way we obtain the following results.

Theorem 1.2. (Strong polynomiality)
Let λ be partition and {R} be a dominant sequence of rectangular

shape partitions. Then∑
N≥0

KNλ,NR(q) tN =
Pλ,R(q, t)

Qλ,R(q, t)
,

were a polynomial Pλ,R(q, t) is such that Pλ,R(0, 0) = 1;
a polynomial Qλ,R(q, t) =

∏
s∈S(1− qst) for a some set of non-negative

integers S := S(λ,R), depending on data λ and R.

Corollary 1.3. ([8], [28], [17])
Let λ be partition and {R} be a dominant sequence of rectangular

shape partitions. Then
• Kλ,R(N) := KNλ,NR(1) is a polynomial of N with rational coeffi-

cients.
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• (Littlewood–Richardson polynomials, [22], [28], [17])
Let λ, μ and ν be partitions such that |λ|+ |μ| = |ν|.

The Littlewood–Richardson number cνλ,μ(N) := cNν
Nλ,Nμ is a polynomial

of N with rational coefficients.

Problem 1.4. Compute 10 the degree of polynomial Kλ,,R(N).

Our next objective is to define a lattice convex polytope P(n,m)
which has the δ-vector 11 equals to the sequence of multidimensional
Narayana numbers {N(m,n; k|1), 1 ≤ k ≤ (m− 1)(n− 1)}, see [17], pp.
100–103.

As a preliminary step we recall the definition of a Gelfand -Tsetlin
polytope.
Let λ = (λ1, . . . , λn) be partition and μ = (μ1, . . . , μn) be composition,
|λ| = |μ|. The Gelfand– Tsetlin polytope of type (λ, μ), denoted by

GT (λ, μ), is the convex hull of all points (xij)1≤i≤j≤n ∈ R
(n+1

2 )
+ which

satisfy the following set of inequalities and equalities

xi,j+1 ≥ xij ≥ xi+1,j+1 ≥ 0, x1j = λj , 1 ≤ j ≤ n,

j∑
a=1

xaj =

j∑
a=1

μa.

It is well-known that the number of integer points in the Gelfand–
Tsetlin polytope GT (λ, μ), i.e. points (xij) ∈ GT (λ, μ) such that xij ∈
Z≥0, ∀1 ≤ i ≤ j ≤ n, is equal to the Kostka number Kλ,μ(1). Therefore
the stretched Kostka number KNλ,Nμ(1) counts the number of integer
points in the polytope GT (Nλ,Nμ) = N · GT (λ, μ). As far as is we
know, there is no general criterion to decide where or not the Gelfand–
Tsetlin polytope GT (λ, μ) has only integral vertices, but see [4], [8], [1]
for particular cases treated.

In the present paper we are interested in the h-vectors of Gelfand–
Tsetlin polytopes GT (n, 1d) and that GT ((nk, 1kd), (1k)n+d). We expect
(cf [1]) that the polytope GT (n, 1d) is an integral one, but we don’t know

10It seems that the formulas for the degree of the stretched Kostka polyno-
mials stated in [8], [28]. [17] are valid only for a special choice of λ, μ or R.

11By definition the δ-vector of an integral convex polytope P ⊂ RN of
dimension d is equal to

δ(P) =
d∑

J=0

δjt
j = (1− t)d+1

∞∑
m=0

ι(P ,m) tm,

where ι(P ,m) := #(mP ∩ ZN ) denotes the number of integer points in the
stretched polytope mP := {mx | x ∈ P}, m ≥ 1, and we set ι(P , 0) = 1.
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how to describe the set of parameters (n, k, d) such that the polytope
GT ((nk, (1k)n+d) is an integral one 12.

Theorem 1.5.
(1) Let λ := λn,d = (n, 1d) and μ = μn,d := (1n+d). Then

∑
N≥0

KNλ,Nμ(q) t
N =

Cd,n−1(q
(n2) t, q)

(q(
n
2) t; q))d(n−1)+1

,

where Cd,m(t, q) =
∑(d−1)(m−1)

k=1 N(d,m, k | q) tk−1 stands for a (q, t)–
analogue of the rectangular (d, n)-Catalan number.
In particular, the normalized volume of the Gelfand–Tsetlin polytope
GT ((n, 1d), 1n+d) is equal to the d–dimensional Catalan number

Cd,n(1, 1) := (dn)!
d−1∏
j=0

j!

(n+ j)!
= f (nd) = f (dn),

(2) Let λ := λn,1,2 = (n2, 12) and μ = ((1, 1)n+1), n ≥ 2. Then∑
N≥0

KN(n,n,1,1),N(1,1)n+1(1) tN =
P2,n(t)

(1− t)4n−6
,

and P2,n(1) = Cn−3 Cn−2, i.e. equal to the product of two Catalan
numbers.

(3) Let λ := λn,k,d = (nk, 1kd) and μ = ((1k)n+d), d ≥ 1. Then∑
N≥0

KN(nk,1kd).N(1k)n+d(1) tN =
Pk,d,n(t)

Qk,d,n(t)
.

Moreover, Pk,d,n(0) = 1,

Qk,d,n(t) = (1− t)k
2(d(n−1)−1)+2+(k−1)δn,2 δd,1),

and the polynomial Pk,d,n(t) is symmetric with respect to variable t ;

degt(Pk,k,n(t)) = (k − 1)(k(n− 2) + 2(δn,2 − 1)).

12Here we have used and will use throughout this paper, a standard notation

(1k)n = ((1k), . . . , (1k))︸ ︷︷ ︸
n

, (1k) = (1, . . . , 1)︸ ︷︷ ︸
k

.
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One can see from Theorem 1.5, (1), that 13 the degree 14 of the
stretched Kostka polynomial K(n,1),1n+1(N) := KN(n,1),N(1n+1)(1) is
equal to n− 1, whereas it follows from Theorem 1.5, (2) that

degN (K2(n,1),2(1)n+1(N)) = 4n− 7 > 3 degN (K(n,1),1n+1(N)), if N > 4.

Therefore one comes to an infinite family of counterexamples to Ok-
ounkov log-concavity conjecture for the Littlewood–Richardson coeffi-
cients [26].

Corollary 1.6.
• Let n ≥ 3. There exists an integer N0(n) such that

(1.1)

K2N(n,1),2N(1)n+1(1) >
(
KN(n,1),N(1)n+1(1)

)2
for all N ≥ N0(n);

• Let n ≥ 5 be an integer, choose ε, 0 ≤ ε < n−4
n−1 . There is an integer

N0(n; ε) such that

K2N(n,1),2N(1)n+1(1) >
(
KN(n,1),N(1)n+1(1)

)3+ε

for all N ≥ N0(n; ε).

(3) Let n > 1 + k2+2
k2d . There exist an integer N0(n, k, d) such that

K2N(nk,1kd),2N(1k)n+d(1) >
(
KN(nk,1kd),N(1k)n+d(1)

)3
for all N ≥ N0(n, k, d).

13Let us say a few words about the case d = 1 of Theorem 1.5. In this case,
as easily seen from definition, C1,n(q, t) = 1. Based on rigged configurations
theory, see e.g. [17] and the literature quoted therein, one can prove that

KN(n,1),(N)n+1(q) = qN(n2)
[
n+N − 1

n− 1

]
q

.

Therefore the the degree of the stretched Kostka polynomial KN(n,1),(N)n+1(1),
as a polynomial of N, is equal to n−1. Moreover, identity stated in Theorem 1.5,
(1) in the case d = 1 is a consequence of the well-known formula in the theory
of hypergeometric functions, namely

1

(t; q)n
=
∑
N≥0

[
n+N − 1

n− 1

]
q

tN .

14Clearly that the degree of stretched Kostka polynomial KNλ,Nμ(1) as a
polynomial of N , is equal to κ − 1, where κ := κ(λ, μ) is the order of the pole
at t = 1 of the series

∑
N≥0 KNλ,Nμ(1) t

N .
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This Corollary is an easy consequence of the results stated in The-
orem 1.5, namely that the degrees of stretched Kostka polynomials in-
volved, are 4n− 7 and n− 1 correspondingly.

For example,

• K2N(5,1),2N(1,1)6(1) > (KN(5,1),N(16)(1))
3

if and only if N ≥ 49916.
Let us recall the well-known fact that any parabolic Kostka number
Kλ,R(1) can be realized as the Littlewood–Richardson coefficient cΛλ,M
for uniquely defined partitions Λ and M , see Section 3.2 for details

It should be stressed that for n = 3 the example (1.1) has been
discovered in [3], and independently by the author (unpublished notes
[19]). In this case the minimal value of N0(3) is equal to 23; one can
show (A.K.) that N0(4) = 8.

Our next objective of the present paper is to prove the unimodality
of the principal specialization sα ∗ sβ(q, . . . , q

N−1) of Schur functions
[13], [14]. Proofs given in loc. cit. is based on an identification of the
principal specialization of internal product of Schur functions with a
certain parabolic Kostka polynomial.

Theorem 1.7. (Principal specialization of the internal prod-
uct of Schur functions and parabolic Kostka polynomials, [17],
Theorem 6.6 )

Let α, β be partitions such that |α| = |β|, α1 ≤ r and β1 ≤ k. For
given integer N such that α1 + β1 ≤ Nr, consider partition

λN := (rN − β
′
k, rN − β

′
k−1, . . . , rN − β

′
1, α

′
)

and a sequence of rectangular shape partitions

RN := ((rk), . . . , (rk)︸ ︷︷ ︸
N

).

Then 15

(1.2) KλN ,RN (q)
•
== sα ∗ sβ(q, . . . , qN−1).

15Hereinafter we shall use the notation A(q)
•
== B(q) to mean that the ratio

A(q)/B(q) is a certain power of q.
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Now we state a fermionic formula for polynomials

V N
α,β(q) := sα ∗ sβ(q, . . . , qN−1),

which is our main tool to give a combinatorial proof of the unimodality
of the principal specialization of the Schur functions, and that of the
generalized q-Gaussian polynomials

[
N
λ

]
q
associated with a partition λ,

as a special case.

Theorem 1.8. ([17], Corollary 6.7 )
Let α and β be two partitions of the same size, and r := �(α) be the

length of α. Then

sα ∗ sβ(q, . . . , qN−1) =∑
{ν}

qc({ν})
∏

k,j≥1

[
P

(k)
j (ν) +mj(ν

(k)) +N(k − 1)δj,β1θ(r − k)

P
(k)
j (ν)

]
q

,
(1.3)

where the sum runs over the set of admissible configurations {ν} of type
([α, β]N , (β1)

N ). Here for any partition λ, λj denotes its j-th component.

See Section 4, Theorem 4.2 for details concerning notation. An
important property which is specific to admissible configurations of type
[α, β]N , βn

1 ), is the following relations

2c(ν) +
∑
k,j≥1

P
(k)
j (ν)

[
mj(ν

(k)) +N(k − 1)δj,β1θ(r − k)

]
= N |α|,

which imply the unimodality of polynomials V N
α,β(q), and

[
N
α

]
q
=

V N
α,(|α|)(q). Let us stress that the sum in the RHS(1.3) runs over the set

of admissible configurations of type ([α, β]N , (β1)
N ). Remark, that the

RHS(1.3) has a natural generalization to the case |α| ≡ |β| (mod N),
but in this case a representation-theoretical meaning of the LHS(1.3) is
unclear to the author.
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§2. Higher dimensional Catalan and Narayana numbers, [23],
[17], [34]

2.1. Rectangular Catalan and Narayana polynomials, and
MacMahon polytope, [17]

2.1.1. Rectangular Catalan and Narayana numbers and polynomials
Define rectangular Catalan polynomial

(2.4) C(n,m|q) = (q; q)nm
n∏

i=1

m∏
j=1

(1− qi+j−1)

= [n m]q!
d−1∏
j=0

[j]q!

[n+ j]q!
,

where [n]q := 1−qn

1−q stands for the q-analogue of an integer n, and by

definition [n]q! :=
∏n

j=1 [j]q.
The next statement is apparent from the q-hook formula for the

Kostka polynomials of a form Kλ,(1|λ|), see e.g. [21], and (2.4).

Proposition 2.1. (Cf [17], (2.12))

(2.5) q
m

(
n
2

)
C(n,m|q) = K(nm),(1nm)(q).

Thus, C(n,m|q) is a polynomial of degree nm(n − 1)(m − 1)/2 in
the variable q with non–negative integer coefficients. Moreover,

C(n, 2|q) = C(2, n|q) = cn(q) =
1− q

1− qn+1

[
2n
n

]
q

coincides with ”the most obvious” q–analog of the Catalan numbers, see
e.g. [5], p.255, or [32], and [23],

C(n, 3|q) = [2]q [3 n]q !

[n]q ! [n+ 1]q ! [n+ 2]q !
.

It follows from (2.5) that the rectangular Catalan number C(n,m|1)
counts the number of lattice words

w = a1a2 · · · anm
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of weight (mn), i.e. lattice words in which each i between 1 and m
occurs exactly n times. Let us recall that a word a1 · · · ap in the symbols
1, . . . ,m is said to be a lattice word, if for 1 ≤ r ≤ p and 1 ≤ j ≤ m− 1,
the number of occurrences of the symbol j in a1 · · · ar is not less than
the number of occurrences of j + 1:

(2.6) #{i|1 ≤ i ≤ r and ai = j} ≥ #{i|1 ≤ i ≤ r and ai = j + 1}.

For any word w = a1 · · · ak, in which each ai is a positive integer,
define the major index

maj(w) =
k−1∑
i=1

iχ(ai > ai+1),

and the number of descents

des(w) =
k−1∑
i=1

χ(ai > ai+1).

Finally, for any integer k between 0 and (n − 1)(m − 1), define
rectangular q–Narayana number

N(n,m; k | q) =
∑
w

qmaj(w),

where w ranges over all lattice words of weight (mn) such that des(w) =
k.

Equivalently, N(n,m; k) is equal to the number of rectangular stan-
dard Young tableaux with n rows and m columns having k descents, i.e.
k occurrences of an integer j appearing in a lower row that that j + 1.

Example 2.2. Take n = 4, m = 3, then

6∑
k=0

N(3, 4; k | 1)tk = 1 + 22t+ 113t2 + 190t3 + 113t4 + 22t5 + t6.

We summarize the basic known properties of the rectangular Cata-
lan and Narayana numbers in Proposition 2.3 below.

Proposition 2.3. ([23], [34], [14])
(A) (Lattice words and rectangular Catalan numbers)

C(n,m|q) =
∑
w

qmaj(w), where w ranges over all lattice words of

weight (mn);



316 A. N. Kirillov

(B) (Bosonic formula for multidimensional Narayana num-
bers)
(2.7)

N(n,m; k | q) =
k∑

a=0

(−1)k−a q(
k−a
2 )
[

n m+ 1
k − a

]
q

n−1∏
b=0

[b]! [m+ a+ b]!

[m+ b]! [a+ b]!
,

(C) (Summation formula) Let r be a positive integer, then

r∑
k=0

[
n m+ r − k

r − k

]
q

N(n,m; k | q) =
m−1∏
a=0

[a]! [n+ r + a]!

[n+ a]! [r + a]!

=
n−1∏
a=0

[a]! [m+ r + a]!

[m+ a]! [r + a]!
=

r−1∏
a=0

[a]! [n+m+ a]!

[n+ a]! [m+ a]!
.

(D) (Symmetry)

N(n,m; k | q) = qnm((n−1)(m−1)/2−k)N(n,m; (n− 1)(m− 1)− k | q−1)

= N(m,n; k | q),
for any integer k, 0 ≤ k ≤ (n− 1)(m− 1)/2;

(E) (q-Narayana numbers)

N(2, n; k | q) = qk(k+1) 1− q

1− qn

[
n

k

]
q

[
n

k + 1

]
q

•
== dimqV

gl(n−k+1)
(k,k) ,

0 ≤ k ≤ n− 1,

where V
gl(n−k+1)
(k,k) stands for the irreducible representation of the Lie al-

gebra gl(n − k + 1) corresponding to the two row partition (k, k); recall
that for any finite dimensional gl(N)–module V the symbol dimqV de-
notes its q–dimension, i.e. the principal specialization of the character
of the module V :

dimqV = (chV )(1, q, . . . , qN−1);

(F) N(n,m; 1 | 1) =
∑
j≥2

(
n
j

)(
m
j

)
=

(
n+m

n

)
− nm− 1;

(G) (Fermionic formula for q–Narayana numbers, [17])

(2.8) q
m

(
n
2

)
N(n,m; l | q) =

∑
{ν}

qc(ν)
∏

k,j≥1

[
P

(k)
j (ν) +mj(ν

(k))

mj(ν
(k))

]
q

,
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summed over all sequences of partitions {ν} = {ν(1), ν(2), . . . , ν(m−1)}
such that

• |ν(k)| = (m− k)n, 1 ≤ k ≤ m− 1;
• (ν(1))′1 = (m − 1)n − l, i.e. the length of the first column of the

diagram ν(1) is equal to (m− 1)n− l, l = 0, . . . , (m− 1)(n− 1);

• P
(k)
j (ν) := Qj(ν

(k−1)) − 2Qj(ν
(k)) + Qj(ν

(k+1)) ≥ 0, for all
k, j ≥ 1,
where by definition we put ν(0) = (1nm); for any diagram λ the number
Qj(λ) = λ′

1 + · · ·λ′
j is equal to the number of cells in the first j columns

of the diagram λ, and mj(λ) is equal to the number of parts of λ of size
j;

• c(ν) =
∑
k,j≥1

(
(ν(k−1))′j − (ν(k))′j

2

)
.

Example 2.4. Consider the case m = 3, n = 4. In this case
C(3, 4 | 1) = 462, and the sequences of Narayana numbers is (1, 22, 113,
190, 113, 22, 1). Let us display below the distribution of Narayana num-
bers which is coming from the counting the number of admissible rigged
configurations of type ((43), (112)) according to the number (m − 1)n −
�(ν(1)), where �(ν(1)) denotes the length of the first configuration ν(1):
N(3, 4; 0 | 1) = 1, N(3, 4; 1 | 1) = 1 + 21, N(3, 4; 2 | 1) = 15 + 35 + 63,
N(3, 4; 3 | 1) = 140 + 15 + 35, N(3, 4; 4 | 1) = 21 + 28 + 63,
N(3, 4; 5 | 1) = 6 + 16, N(3, 4; 6 | 1) = 1.

Conjecture 2.5. If 1 ≤ k ≤ (n− 1)(m− 1)/2, then

N(n,m; k − 1 | 1) ≤ N(n,m; k | 1),

i.e. the sequence of rectangular Narayana numbers

{N(n,m; k | 1)}(n−1)(m−1)
k=0 is symmetric and unimodal.

For definition of unimodal polynomials/sequences see e.g. [31], where
one may find a big variety of examples of unimodal sequences which fre-
quently appear in Algebra, Combinatorics and Geometry.

2.1.2. Volume of the MacMahon polytope and rectangular Catalan
and Narayana numbers Let Mmn be the convex polytope in R

nm of
all points x = (xij)1≤i≤n,1≤j≤m satisfying the following conditions

(2.9) 0 ≤ xij ≤ 1, xij ≥ xi−1,j , xij ≥ xi,j−1,

for all pairs of integers (i, j) such that 1 ≤ i ≤ n, 1 ≤ j ≤ m, and where
by definition we set xi0 = 0 = x0j .
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We will call the polytopeMnm byMacMahon polytope. The MacMa-

hon polytope is an integral polytope of dimension nm with

(
m+ n

n

)
vertices which correspond to the set of (0,1)–matrices satisfying (2.9).

If k is a positive integer, define i(Mnm; k) to be the number of points
x ∈ Mnm such that kx ∈ Z

nm. Thus, i(Mnm; k) is equal to the number
of plane partitions of rectangular shape (nm) with all parts do not exceed
k. By a theorem of MacMahon (see e.g. [21], Chapter I, §5, Example 13)

(2.10) i(Mnm; k) =
n∏

i=1

m∏
j=1

k + i+ j − 1

i+ j − 1
.

It follows from (2.10) that the Ehrhart polynomial E(Mnm; t) of the
MacMahon polytope Mnm is completely resolved into linear factors:

E(Mnm; t) =
n∏

i=1

m∏
j=1

t+ i+ j − 1

i+ j − 1
.

Hence, the normalized volume

ṽol(Mnm) = (nm)!vol(Mnm)

of the MacMahon polytope Mnm is equal to the rectangular Catalan
number C(n,m|1), i.e. the number of standard Young tableaux of rect-
angular shape (nm). We refer the reader to [32], Section 4.6, and [7],
Chapter IX, for definition and basic properties of the Ehrhart polyno-
mial E(P; t) of a convex integral polytope P.

Proposition 2.6. (Cf [17], (2.17))

(2.11)
∑
k≥0

i(Mnm; k)zk =

⎛⎝(n−1)(m−1)∑
j=0

N(n,m; j)zj

⎞⎠ /(1− z)nm+1,

where
N(n,m; j) := N(n,m; j|1)

denotes the rectangular Narayana number.

Thus, the sequence of Narayana numbers

(1 = N(n,m; 0), N(n,m; 1), . . . , N(n,m; (n− 1)(m− 1)) = 1)

is the δ-vector (see e.g. [32], p. 235) of the MacMahon polytope. In the
case n = 2 (or m = 2) all these results may be found in [32], Chapter 6,
Exercise 6.31.
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Question. (Higher associahedron) Does there exist an (m− 1)(n− 1)-
dimensional integral convex (simplicial?) polytope Qn,m which has δ-
vector

δ = (δ0(Qn,m), δ1(Qn,m), . . . , δ(n−1)(m−1)(Qn,m))

given by the rectangular Narayana numbers N(n,m; k) :

(n−1)(m−1)∑
i=0

δi(Qn,m)ti = C(n,m|t) ?

We refer the reader to [7], Chapter I, §6 and Chapter III, for definitions
and basic properties of the h-vector and δ-vector of a simplicial polytope;
see also, R. Stanley (J. Pure and Appl. Algebra 71 (1991), 319-331).

An answer on this question is known if either n or m is equal to 2,
see e.g. R. Simion (Adv. in Appl. Math. 18 (1997), 149-180, Example 4
(the Associahedron)).

Definition 2.7. ([23], [34]) Define rectangular Schröder polyno-
mial

S(n,m|t) := C(n,m|1 + t),

and put

S(n,m|t) =
(n−1)(m−1)∑

k≥0

S(n,m||k)tk.

A combinatorial interpretations of the numbers S(n,m||k) and
S(n,m|1) have been done by R. Sulanke [34].

2.1.3. Rectangular Narayana and Catalan numbers, and d dimen-
sional lattice paths, [34] Let C(d, n) denote the set of d–dimensional
lattice paths using the steps

X1 = (1, 0, · · · , 0), X2 = (0, 1, · · · , 0), · · · ,Xd = (0, 0, · · · , 1),

running from (0, 0, · · · , 0) to (n, n, · · · , n), and lying in the region

{(x1, x2, · · · , xd) ∈ R
d
≥0 | x1 ≤ x2 ≤ · · · ≤ xd}.

For each path P := p1p2 · · · pnd ∈ C(d, n) define the statistics

asc(P ) := #{j | pjpj+1 = Xk Xl, k < l}.

Definition 2.8. The n–th d–dimensional MacMahon–Narayana num-
ber of level k, MN(d, n, k) counts the paths P ∈ C(d, n) with asc(P ) = k.



320 A. N. Kirillov

Proposition 2.9. (Cf [34]) For any d ≥ 2 and for 0 ≤ k ≤ (d −
1)(n− 1),

MN(d, n, k) =
k∑

j=0

(−1)k−j

(
dn+ 1

k − j

) j−1∏
a=0

a! (d+ n+ a)!

(d+ a)! (n+ a)!
.

Note that the product
∏j−1

a=0
a! (d+n+a)!
(d+a)! (n+a)! is equal to the number

of plane partitions of the rectangular shape (nd), all the parts do not
exceed j.

Definition 2.10. For d ≥ 3 and n ≥ 1 the n-th d-Narayana poly-
nomial defined to be

Nd,n(t) =

(d−1)(n−1)∑
k=0

MN(d, n, k) tk.

Corollary 2.11. (Recurrence relations, [34]) For any integer m ≥ 0
one has

m∑
k=0

(
dn+m− k

m− k

)
MN(d, n, k) =

d−1∏
a=0

a! (n+m+ a)!

(n+ a)! (m+ a)!
.

Corollary 2.12. The MacMahon–Narayana number MN(d, n, k)
is equal to the rectangular Narayana number N(d, n; k).

This Corollary follows from Proposition 2.3, (B) with q = 1, and
Proposition 2.9.

2.1.4. Gelfand–Tsetlin polytope GT ((n, 1d), (1)n+d) and rectangular
Narayana numbers

Theorem 2.13. Let λ := λn,d = (n, 1d) and μ = μn,d := (1n+d).
Then ∑

N≥0

KNλ,Nμ(q) t
N =

Cd,n−1(q
(n2) t, q)

(q(
n
2) t; q))d(n−1)+1

,

where Cd,m(t, q) =
∑(d−1)(m−1)

k=0 N(d,m, k | q) tk stands for a (q, t)–
analog of the rectangular (d, n)-Catalan number.
In particular, the normalized volume of the Gelfand–Tsetlin polytope
GT ((n, 1d), 1n+d) is equal to the d–dimensional Catalan number

Cd,n(1, 1) := (dn)!
d−1∏
j=0

j!

(n+ j)!
= f (nd) = f (dn),
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where for any partition λ, fλ denotes the number of standard Young
tableaux of shape λ.

The proof of Theorem 2.13 (as well as Theorem 3.1, (2)) is rather
long and technical, and is based essentially on the properties of Rigged
Configuration Bijection, cf [17], [18], and will appear in a separate
publication.

§3. Rigged configurations, stretched Kostka numbers, log-
concavity and unimodality

3.1. Stretched Kostka numbers KN(nk.1kd),N(1k)n+d(1)

Theorem 3.1. (1)∑
N≥0

KN(n,n,1,1)),N((1,1)n+1)(1) t
N =

P2,n(t)

(1− t)4n−6
,

and P2,n(1) = Cn−3 Cn−2.
(2) Let d ≥ 1, then∑

N≥0

KN(nk,1kd).N(1k)n+d(1) tN =
Pk,d,n(t)

Qk,d,n(t)
.

Moreover, Pk,d,n(0) = 1,

Qk,d,n(t) = (1− t)k
2(d(n−1)−1)+2+(k−1)δn,2 δd,1),

and the polynomial Pk,d,n(t) is symmetric with respect to variable t ;

degt(Pk,k,n(t)) = (k − 1)(k(n− 2) + 2(δn,2 − 1)).

For example, assume that d = 1 and set Pk,n(t) := Pk,1,n(t). Then
P2,3(t) = 1, P2,4(t) = (1, 0, 1), P2,5(t) = (1, 1, 6, 1, 1),
P2,6(t) = (1, 3, 21, 20, 21, 3, 1), P2,7(t) = (1, 6, 56, 126, 210, 126, 56, 6, 1),
P2,8(t) = (1, 10, 125, 500, 1310, 1652, 1310, 500, 125, 10, 1),
P3,3(t) = (1,−1, 1), P3,4(t) = (1, 0, 20, 20, 55, 20, 20, 0, 1),
P3,5(t) = (1, 6, 141, 931, 4816, 13916, 27531, 33391, 27531, 13916, 4816,
931, 141, 6, 1),
P4,1,3(t) = (1,−3, 9,−8, 9,−3, 1) = P4,2,2(t).

It follows from the duality theorem for parabolic Kostka polynomials
[17] that

K(Nn,Nd)′ ,((N)n+d)′ )(1) = K((d+1)N ,1N(n−1)),(1N )n+d)(1),
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and

K((2d+2)N ,2N(n−1)),((2)N )n+d)(1) = K(Nn,Nn,N2d),((N,N)n+d)(1).

Now consider the case d = 1, that is λ = (n, 1), μ = (1n+1). Then

KNλ,Nμ(1) = K(Nn,N),(Nn+1)(1) =

(
N + n− 1

n− 1

)
.

The second equality follows from a more general result [13], [17],

Proposition 3.2. Let λ be a partition and N be a positive integer.
Consider partitions λN := (N |λ|, λ) and μN := (|λ|N+1) =
(|λ|, . . . , |λ||︸ ︷︷ ︸

N+1

). Then

KλN ,μN (q)
•
==

[
N

λ

]
= dimqV

gl(N)
λ ,

where the symbol P (q)
•
== R(q) means that the ratio P (q)/R(q) is a

power of q ; the symbol
[
N
λ

]
stands for the generalized Gaussian coefficient

corresponding to a partition λ, see [21] for example.

3.2. Counterexamples to Okounkov’s log-concavity con-
jecture

On the other hand,

K2λN ,2μN (1) = KN(n,n,1,1),N(1,1)n+1(1) = CoefftN

(
P2,n(t)

(1− t)4n−6

)
.

Therefore the numberK2λN ,2μN (1) is a polynomial of the degree 4 n−7
with respect to parameter N . Recall that the number KNλ,Nμ(1) =(
N+n−1
n−1

)
is a polynomial of degree n − 1 with respect to parameter N .

Therefore we come to the following infinite set of examples which violate
the log-concavity Conjecture stated by A. Okounkov [27].

Corollary 3.3. For any integer n > 4, there exists a constant N0(n)
such that

K2λN ,2μN (1) >
(
KNλ,Nμ(1)

)3
,

for all N > N0(n).

Recall that λ = (n, 1), μ = (1n+1).
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Now take n = 3. One has [3]

KN(3,1),N(14)(1) =

(
N + 2

2

)
, KN(3,3,1,1),N(1,1)4(1) =

(
N + 5

5

)
.

One can check [3] that

KN(3,3,1,1),N(1,1)4(1) >
(
KN(3,1),N(13)(1)

)2
.

if (and only if) N ≥ 21.
Indeed,

KN(3,3,1,1),N(1,1)4(1)−
(
KN(3,1),N(13)(1)

)2
=

N2 − 18N − 43

20

(
n+ 2

3

)
.

Now take n = 4. One has

KN(4,1),N(15)(1) =

(
N + 3

3

)
,

KN(4,4,1,1),N(1,1)5(1) =

(
N + 9

9

)
+

(
N + 7

9

)
.

One can check that

KN(4,4,1,1),N(1,1)5(1) >
(
KN(4,1),N(15)(1)

)2
,

if (and only if) N ≥ 8.

Now take n = 5.

Proposition 3.4. Let νN := N(5, 1) and ηN := N(1)6. Then

• K2νN ,2ηN (1) > (KνN ,ηN (1))2

if and only if N ≥ 6,

• K2νN ,2ηN (1) > (KνN ,ηN (1))3

if and only if N ≥ 49916.

Indeed,

KN(5,1),N(16)(1) =

(
N + 4

4

)
,

KN(5,5,1,1),N(1,1)6(1) =(
N + 13

13

)
+

(
N + 12

13

)
+ 6

(
N + 11

13

)
+

(
N + 10

13

)
+

(
N + 9

13

)
,
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and 51891840×
[
KN(5,5,1,1),N(1,1)6(1)−

(
KN(5,1),N(16)(1)

)3]
=
(
N+4
5

)
×

(−78631416− 172503780 N − 174033932 N2 − 101206400 N3

− 35852065 N4 − 7638110 N5 − 899548 N6 − 44990 N7 +N8).

Note, see e.g. [21], that for any set of partitions λ, μ(1), . . . , μ(p) the
parabolic Kostka number Kλ,μ(1),...,μ(p)(1) is equal to the Littlewood–

Richardson number cΛλ,M , where partitions Λ ⊃ M are such that Λ\M =∐
i μ

(i) is a disjoint union of partitions μ(i), i = 1, . . . , p.

§4. Internal product of Schur functions

The irreducible characters χλ of the symmetric group Sn are indexed
in a natural way by partitions λ of n. If w ∈ Sn, then define ρ(w) to
be the partition of n whose parts are the cycle lengths of w. For any
partition λ of m of length l, define the power–sum symmetric function

pλ = pλ1 . . . pλl
,

where pn(x) =
∑

xn
i . For brevity write pw := pρ(w). The Schur func-

tions sλ and power–sums pμ are related by a famous result of Frobenius

(4.1) sλ =
1

n!

∑
w∈Sn

χλ(w)pw.

For a pair of partitions α and β, |α| = |β| = n, let us define the internal
product sα ∗ sβ of Schur functions sα and sβ :

(4.2) sα ∗ sβ =
1

n!

∑
w∈Sn

χα(w)χβ(w)pw.

It is well–known that

sα ∗ s(n) = sα, sα ∗ s(1n) = sα′ ,

where α′ denotes the conjugate partition to α.
Let α, β, γ be partitions of a natural number n ≥ 1, consider the

following numbers

(4.3) gαβγ =
1

n!

∑
w∈Sn

χα(w)χβ(w)χγ(w).

The numbers gαβγ coincide with the structural constants for multiplica-
tion of the characters χα of the symmetric group Sn:

(4.4) χαχβ =
∑
γ

gαβγχ
γ .
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Hence, gαβγ are non–negative integers. It is clear that

(4.5) sα ∗ sβ =
∑
γ

gαβγsγ .

4.1. Internal product of Schur functions, principal special-
ization, fermionic formulas and unimodality

Let N ≥ 2, consider the principal specialization xi = qi, 1 ≤ i ≤
N − 1, and xi = 0, if i ≥ N , of the internal product of Schur functions
sα and sβ :
(4.6)

sα ∗ sβ(q, q2, . . . , qN−1) =
1

n!

∑
w∈Sn

χα(w)χβ(w)
∏
k≥1

(
qk − qkN

1− qk

)ρk(w)

,

where ρk(w) denotes the number of the length k cycles of w.

By a result of R.-K. Brylinski [2], Corollary 5.3, the polynomials

sα ∗ sβ(q, . . . , qN−1)

admit the following interpretation. Let Pn,N denote the variety of n by
n complex matrices z such that zN = 0. Denote by

Rn,N := C[Pn,N ]

the coordinate ring of polynomial functions on Pn,N with values in the
field of complex numbers C. This is a graded ring:

Rn,N = ⊕k≥0R
(k)
n,N ,

where R
(k)
n,N is a finite dimensional gl(n)–module with respect to the

adjoint action. Let α and β be partitions of common size. Then [2]

sα ∗ sβ(q, . . . , qN−1) =
∑
k≥0

〈V[α,β]n , P
(k)
n,N 〉qk,

as long as n ≥ max(Nl(α), Nl(β), l(α) + l(β)). Here the symbol 〈• , • 〉
denotes the scalar product on the ring of symmetric functions such that
〈sλ , sμ 〉 = δλ,μ. In other words, if V and W be two GL(N)-modules,
then 〈V,W 〉 = dimHomGL(N)(V,W ).

Let us remind below one of the main result obtained in [17], namely,
Theorem 6.6, which connects the principal specialization of the internal
product of Schur functions with certain parabolic Kostka polynomials,
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and gives, via Corollary 6.7, [17], an effective method for computing the
polynomials sα∗sβ(q, . . . , qN−1) which, turns out to be for the first time,
does not use the character table of the symmetric group Sn, n = |α|.

Let α and β be partitions, �(α) = r, �(β) = s and |α| = |β|. Let N
be an integer such that r + s < N . Consider partition

[α, β]N := (α1+β1, α2+β1, . . . , αr +β1, β1, . . . , β1︸ ︷︷ ︸
N−r−s

, β1−βs, . . . , β1−β2].

Clearly, |[α, β]N | = β1N , �([α, β]N = N − 1.

Theorem 4.1. i) Let α, β be partitions, |α| = |β|, l(α) ≤ r, and
l(α) + l(β) ≤ Nr. Consider the sequence of rectangular shape partitions

RN = {(βr
1), . . . , (β

r
1)︸ ︷︷ ︸

N

}.

Then

(4.7) sα ∗ sβ(q, . . . , qN−1)
•
== K[α,β]Nr,RN

(q).

ii) (Dual form) Let α, β be partitions such that |α| = |β|, α1 ≤ r and
β1 ≤ k. For given integer N such that α1 + β1 ≤ Nr, consider partition

λN := (rN − β
′
k, rN − β

′
k−1, . . . , rN − β

′
1, α

′
)

and a sequence of rectangular shape partitions

RN := ((rk), . . . , (rk)︸ ︷︷ ︸
N

).

Then

(4.8) KλNRN (q)
•
== sα ∗ sβ(q, . . . , qN−1)

Theorem 4.2. (Fermionic formula for the principal special-
ization of the internal product of Schur functions).

Let α and β be two partitions of the same size, and r := �(α) be the
length of α. Then

sα ∗ sβ(q, . . . , qN−1) =∑
{ν}

qc({ν})
∏

k,j≥1

[
P

(k)
j (ν) +mj(ν

(k)) +N(k − 1)δj,β1θ(r − k)

P
(k)
j (ν)

]
q

,
(4.9)

where the sum runs over the set of admissible configurations {ν} of type
([α, β]N , (β1)

N ). Here for any partition λ, λj denotes its j-th component.
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Let us explain notations have used in Theorem 4.2.
• A configuration {ν} of type [α, β]N consists of a collection of parti-

tions {ν(1), . . . , ν(N−1)} such that |νk| =∑j>k

(
[α, β]N

)
j
; by definition

we set ν(0) := (β1)
N ;

• P
(k)
j (ν) := N min(j, β1) δk,1+Qj(ν

(k−1))− 2Qj(ν
(k))+Qj(ν

k+1);

here for any partition λ we set Qn(λ) :=
∑

j≤n min(n, λj);

• For any partition λ, mj(λ) denotes the number of parts of λ are
equal to j;

• A configuration {ν} of type [α, β]N is called admissible configura-

tion of type ([α, β]N , (β1)
N ), if P

(k)
j (ν) ≥ 0, ∀j, k ≥ 1;

• Here δn,m denotes Kronecker’s delta function, and we define θ(x) =
1, if x ≥ 0, and θ(x) = 0, if x < 0;

• c({ν}) =∑n,k≥1

(
λ(k−1)
n −λ(k)

n
2

)
denotes the charge of a configura-

tion {ν}; by definition,
(
x
2

)
:= x(x− 1)/2, ∀x ∈ R.

Let us draw attention to the fact that the summation in (4.9) runs
over the set of all admissible configurations of type ([α, β]N , (β1)

N ),
other than that of type ([α, β]Nr, (β

r
1)

N ).

Corollary 4.3. ([13], [18])
For any partitions of the same size α and β, the polynomial sα ∗

sβ(q, . . . , q
N−1) is symmetric and unimodal. In particular, the gener-

alized Gaussian polynomial
[
N
α

]
q
is symmetric and unimodal for any

partition α.

Indeed, in the case β = (n), n := |β|, one has sα ∗ s(n) = sα.
Our proof of Corollary 4.3 is proceeded by induction on size λ and

the following identity

2c(ν) +
∑
k,j≥1

P
(k)
j (ν)

[
mj(ν

(k)) +N(k − 1)δj,β1θ(r − k)

]
= N |α|,

which can be checked directly by the use of properties of admissible con-
figurations, see e.g., either [14] or [17] for details. This identity shows
that the all polynomials associated with a given admissible configuration
involved, are symmetric and have the same “symmetry center” N |α|/2,
and therefore the resulting polynomial sα ∗sβ(q, . . . , qN−1) is symmetric
and unimodal. The latter statement is a consequence of the induc-
tion assumption, since the all q-binomial coefficient which appear in the
RHS(4.9) correspond to partitions of the form (m), m < |λ|, and plus
the well-known fact, see e.g., [31], that the product of symmetric and
unimodal polynomials is also symmetric and unimodal.
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• (Combinatorial Hard Lefschetz Theorem for internal product of
Schur functions)

We want to stress that in fact the Rigged Configuration Bijection de-
fines an embedding of the sets PLk(α, β) ⊂ PLk+1k(α, β), if k < N |α|/2,
where the set PLk(α, β) denotes the set of all rigged configurations
({ν},J) with charge equal to k, see e.g.,[17] or Appendix to the preset
paper. Note that in the special case α = (Nm,m) and β = (N(m+ 1))
the Rigged Configuration Bijection (essentially) coincides with the bi-
jection constructed by K.O’Hara in [26], see [14] for details.

Corollary 4.4. Let α and β be partitions of the same size, and
Kβ,α(q, t) denotes the Kostka–Macdonald polynomial associated with par-
titions α and β, [21]. One has

Kβ,α(q, q) = Hα(q)

(∑
{ν}

qc({ν})
r∏

k=2

1[
mβ1(ν

(k))

]
q

!

∏
k≥1

j≥1, j �=β1

[
P

(k)
j (ν) +mj(ν

(k))

mj(ν(k))

]
q

)
,

where the sum runs over the same set of admissible configurations as in
Theorem 4.2, and [m]q! :=

∏m
j=1(1− qj) stands for the q-factorial of an

positive integer m, and by definition [0]q! = 1; Hα(q) :=
∏

x∈α(1−qh(x))
denotes the hook polynomial associated with partition α, see e.g. [21].

Indeed, one can show [30] that

sα ∗ sβ(1, q, q2, ...) =
Kβ,α(q, q)

Hα(q)
,

and therefore,

Kβ,α(q, q)

Hα(q)
= lim

N→∞
sα ∗ sβ(1, q, q2, . . . , qN ) = lim

N→∞
K[α,β]N ,(β1)N (q).

Now by using the fermionic formula from Theorem 4.2, one can prove,
see [14], [13], the formula stated in Corollary 4.4.

A fermionic formula for the principal specialization of the internal
product of Schur functions, and therefore that for the generalized Gauss-
ian polynomials, is a far generalization of the so-called KOH-identity
[26] which is equivalent to the fermionic formula for the Kostka num-
ber K(Nk,k),(k)N+1)(1). The rigged configuration bijection gives rise to
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a combinatorial proof of Theorem 4.2, and therefore to a combinatorial
proof of unimodality of the generalized Gaussian polynomials [13], as
well as to give an interpretation of the statistics introduced in [26] in
terms of rigged configurations data, see [14], Section 10.2.

Example 4.5. Let α = (4, 2), β = α
′
= (2, 2, 1, 1). We want to

compute the principal specialization of the internal product of Schur
functions sα ∗ sβ(q, . . . , q

N−1) by means of a fermionic formula (4.9).
First of all, there are 8 admissible configurations of type (λ = [α =
(4, 2), β = (2, 2, 1, 1)]N , μ = (6)N ). In fact, it is a general fact that
for given partitions λ and μ, the number of admissible configurations
of type (Nλ,Nμ) doesn’t depend on N , if N > N0 for a certain
number N0 := N0(λ, μ) depending on λ and μ only. This fact is a
direct consequence of constraints are imposed by the set of inequalities

{P (k)
j (ν) ≥ 0, ∀j, k ≥ 1}.

Now let us list the conjugate of the first configurations ν(1) ∈ {ν} for all
admissible configurations {ν} of type (λ = [(4, 2), (2, 2, 1, 1)N ], μ = 6N ),

together with all non-zero numbers P
(k)
j (ν), j, k ≥ 1.

(N − 3, N − 3), P
(1)
2 = 2, P

(2)
2 = 2, c = 9,

(N − 2, N − 4), P
(1)
2 = 2, P

(2)
1 = 1, P

(2)
2 = 2, 9,

(N − 3, N − 4, 1), P
(1)
1 = 2, P

(2)
1 = 4, P

(3)
1 = 2, P

(2)
2 = 1, c = 11,

(N − 2, N − 5, 1), P
(2)
1 = 1, P

(1)
2 = 4, P

(1)
3 = 2, P

(2)
2 = 1, c = 13,

(N − 3, N − 5, 1, 1), P
(1)
1 = 2, P

(1)
2 = 6, (P

(2)
2 = 0), P

(1)
3 = 2, c = 15,

(N − 3, N − 5, 2), P
(1)
1 = 2, P

(1)
2 = 6, (P

(2)
2 = 0), P

(1)
3 = 2, c = 17,

(N − 2, N − 6, 1, 1), P
(2)
1 = 1, P

(1)
2 = 6, (P

(2)
2 = 0), P

(1)
4 = 2, c = 19,

(N − 2, N − 6, 2), P
(2)
1 = 1, P

(1)
2 = 6, (P

(2)
2 = 0), P

(1)
3 = 2, c = 21.

These are data related with the first configurations ν(1) in the set of
all admissible configurations of type ([(42), (2211)]N , (6)N ), and the set

of all nonzero numbers P
(k)
j (ν). All other diagrams ν(k), k > 1 from

the set of admissible configurations in question, are the same, and are
displayed below

ν(k) = (N − 2− k,max(N − 4− k, 0)), 2 ≤ k ≤ N − 3,

so that m
(2)
1 = 2, m

(2)
2 = N − 6.
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Therefore,

(♣) K[(4,2),(2,2,1,1)]2N ,(2,2)N (q)
•
== q9

[
N − 1

2

][
2N − 4

2

]
+

q9
[
3

1

][
N − 2

2

][
2N − 4

2

]
+ q11

[
3

1

][
3

1

][
N − 1

4

][
2N − 5

1

]
+

q13
[
3

1

][
3

1

][
N − 2

4

][
2N − 5

1

]
+ q15

[
3

1

][
4

2

][
N

6

]
+

q17
[
4

2

][
4

2

][
N − 1

6

]
+ q19

[
3

1

][
3

1

][
N − 1

6

]
+ q21

[
3

1

][
4

2

][
N − 2

6

]
.

On the other hand,

s42 ∗ s2211 =

1

720

(
81p61 − 135p41p2 + 45p1p

2
2 − 90p21p4 + 144p1p5 − 135p32 + 90p2p4

)
.

Here pk :=
∑

i≥1 x
k
i stands for the power sum symmetric functions de-

gree of k. One can check that s42 ∗ s2211(q, . . . , q
N−1) = RHS(♣)

•
==

K[(4,2),(2,2,1,1)]2N ,(2,2)N (q), as expected.

Finally one can check that limN→∞ s42 ∗ s2211(q, . . . , qN−1) =
q9(2, 1, 2, 2, 1, 1) = K2211,42(q, q).

4.2. Polynomiality of stretched Kostka and Littlewood–
Richardson numbers

• As it was mentioned above, for a given partitions λ and μ (resp.
λ and a sequence of rectangular shape partitions {R}), the number of
admissible configurations of type (Nλ,Nμ) (resp. of type (Nλ, {R}))
doesn’t depend on N > N0, where the number N0 depends on λ and μ
(resp. λ and {R}) only.

• Each admissible configuration {ν} provides a contribution of a
form

a{ν}(q)
∏

j,k≥1

[
bj,k(ν)N + djk(ν)

djk(ν)

]
q

,

to the parabolic Kostka polynomial KNλ,N{R}(q), where a polynomial
aν(q) and a finite set of numbers {bjk(ν), djk(ν)}j,k≥1 both doesn’t
depend on N > N0 for some N0 := N0(λ, {R}).
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• It is clear that the sum
∑

N≥0

(
aN+b

b

)
tN is a rational function

of variable t. It is well-known (and easy to prove) that the Hadamard
product 16 of rational functions is again a rational function. Therefore,

Corollary 4.6. ([17], [8], [28])
For any partition λ and a sequence of rectangular shape partitions

{R}, the generating function∑
N≥0

KNλ,N{R}(1) tN

is a rational function of variable t with a unique pole at t = 1.

More generally using a q-version of Hadamard’s product Theorem,
we can show

Theorem 4.7. ([17])
For any partition λ and a dominant sequence of rectangular shape

partitions {R}, the generating function of stretched parabolic Kostka
polynomials ∑

N≥0

KNλ,N{R}(q) tN

is a rational function of variables q and t of a form
Pλ,{R}(q, t)/Qλ,{R}(q, t), where the dominator Qλ,{R}(q, t) has the fol-
lowing form

Qλ,{R}(q, t) =
∏
s∈S

(1− qs t)

for a certain finite set S := S(λ, {R}) depending on λ and {R}.
Clearly that Corollary 4.6 is a special case q = 1 of Theorem 4.7.
• (Littlewood–Richardson polynomials) Let λ be a partition and

{R} be a dominant sequence of rectangular shape partitions. Write

Kλ,{R}(q) = b(λ,R) qa(λ,R) + higher degree terms.

(1) (Generalized saturation theorem [18])

a(Nλ,N{R}) = N a(λ, {R}).

Therefore, ∑
N≥0

b(Nλ,N{R}) tN =
Pλ,R(q, q−a(λ,{R}) t)
Qλ,R(q, q−a(λ,{R}) t)

∣∣∣∣∣
q=0

16See e.g. wikipedia.org/wiki/Hadamard product (matrices) and the lit-
erature quoted therein.
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is a rational function of t which has a unique pole at t = 1 with multi-
plicity equals to #|s ∈ S(λ,R) | s = a(λ,R)|.

(2) Now let λ, μ and ν be partitions such that |λ|+ |μ| = |ν|. Con-
sider an integer N ≥ max(�(λ), μ1), and define partition Λ = Λ(N,λ, μ)
:= ((NN )⊕ λ, μ) and the dominant rearrangement of the set of rectan-
gular shape partitions {(NN ), ν1, . . . , ν�(ν)}, denoted by M := M(N, ν).
Here we have used standard notation: if λ and μ partitions, then λ⊕μ =
(λ1 + μ1, λ2 + μ2, . . .), and (λ, μ) = (λ1, λ2, . . . , λ�(λ), μ1, . . . , μ�(μ)).

Proposition 4.8. ([18])
One has

b(Λ,M) := cνλ,μ,

where cνλ,μ denotes the Littlewood–Richardson number corresponding to
partitions λ, μ and ν, that is, the multiplicity of Schur function sν in the
product of Schur functions sλ sμ.

Theorem 4.9. ([18], [28])
Given three partitions λ, μ and ν such that |λ| + |μ| = |ν|. The the

generating function ∑
N≥0

cNν
Nλ,Nμ tN

is a rational function of variable t with a unique pole at t = 1. There-
fore, cNν

Nλ,Nμ is a polynomial in N with rational coefficients.

It is well-known that there exists a rational convex polytope, called

the Gelfand–Tsetlin polytope GT (λ, μ, ν) ⊂ R(
n+1
2 ), where n = �(λ),

such that GT (Nλ,Nμ,Nν)
⋂

Z(
n+1
2 ) = cNν

Nλ,Nμ. We expect that for any

partition Λ and a dominant sequence of rectangular shape partitions {R}
there exists a rational convex polytope Γ(Λ, {R}) ⊂ R(

�+1
2 ), � = �(Λ),

such that Γ(NΛ, N{R})⋂Z(
�+1
2 ) = b(NΛ, N{R}).

Example 4.10. ([14], [17]) (MacMahon polytope and multidimen-
sional Narayana numbers again)

Take λ = (n + k, n, n − 1, . . . , 2) and μ = λ′ = (n, n, n − 1, n −
2, . . . , 2, 1k). One can show [17] that if n ≥ k ≥ 1, then for any positive
integer N

• a(Nλ,Nμ) = (2k − 1)N ;

• b(Nλ,Nμ) = dimV
gl(N+k−1)

((n−k+1)k−1)
=

k−1∏
i=1

n−k+1∏
j=1

N + i+ j − 1

i+ j − 1
.

In other words, the number b(Nλ,Nμ) is equal to the number of
(weak) plane partitions of rectangular shape ((n − k + 1)k−1) whose
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parts do not exceed N . According to Exercise 1, c, [17], pp. 102–103,
b(Nλ,Nμ) is equal also to the number i(Mk−1,n−k+1;N) of rational
points x in the MacMahon polytope Mk−1,n−k+1 such that the points
Nx have integer coordinates. It follows from Proposition 2.3 ,(G),(2.8),
that the generating function for numbers b(nλ, nμ) has the following
form ∑

n≥0

b(nλ, nμ)tn =

⎛⎝(k−2)(n−k)∑
j=0

N(k − 1, n− k + 1; j)tj

⎞⎠ /(1− t)(k−1)(n−k+1)+1,

where N(k, n; j), 0 ≤ j ≤ (k− 1)(n− 1), denote rectangular Narayana’s
numbers, see e.g. [23], [34].

One can show (A.K.) that
• if r := k −

(
n+2
2

)
≥ 0, then b(λ, μ) = 1, and

a(λ, μ) = 2

(
n+ 3

3

)
+ (n+ 1)(2r − 1) +

(
r

2

)
;

• if 1 ≤ k <
(
n+2
2

)
, then there exists a unique p, 1 ≤ p ≤ n, such

that
(p− 1)(2n− p+ 4)/2 < k ≤ p(2n− p+ 3)/2.

In this case

a(λ, μ) = p(2k − (p− 1)n− p) + 2

(
p

3

)
,

and one can take Γ(λ, μ) to be equal to the MacMahon polytopeMr(k),s(k)

with
r(k) := k − 1− (p− 1)(2n− p+ 4)/2, and s(k) := p(2n− p+ 3)/2− k.

This Example gives some flavor how intricate the piecewise linear
function a(λ, μ) may be.

Conjecture 4.11. Let λ and μ be partitions of the same size. Then
• ([21]) a(λ, μ) = a(μ

′
, λ

′
),

• ([14]) b(λ, μ) = b(μ
′
, λ

′
).

Definition 4.12. ([17]) Let α and β be partitions of the same size.
Define Liskova polynomials Lμ

α,β(q) through the decomposition of the in-
ternal product of Schur functions in terms of Hall-Littlewood polynomials

sα ∗ sβ(X) =
∑
μ

Lμ
α,β Pμ(X; q).
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Clearly, Lμ
α,β ∈ N[q], and Lμ

α,(|α|)(q) = Kα,μ(q), so that the Liskova

polynomials are natural generalization of Kostka–Foulkes polynomials.

Problem 4.13. Find for Liskova polynomials an analogue of a
fermionic formula for Kostka–Foulkes polynomials stated, for example,
in [10], [14].

4.3. Rigged Configurations and RSK

The classical Robinson-Schensted-Knuth correspondence (RSK for
short) associatesto a matrix with nonnegative integer coefficients a pair
of semistandard Young tableaux of the same shape. More precisely, let α
and β be two compositions of the same size N , the RSK correspondence
establishes a bijection

Mn×n(α, β) : ∼=
∐
λ�N

STY (λ, α)× STY (λ, β),

where Mn×n(α, β) = {(mij) ∈ Matn×n(Z≥0) |
∑

j mij = αi,
∑

i mij =

βj}, and for a partition λ, STY (λ, α) stands for the set of semistandard
Young tableaus of shape λ and content/weight α.

The literature concerning the RSK, its construction, the study of
algebraic, combinatorial, geometric, probabilistic, etc, properties of RSK
with a vide variety of applications in different areas of Mathematics, is
enormous and includes thousands of items. For our purposes we will use
the construction of RSK due to D. Knuth, [20]. Let us briefly recall this
bijection.

Let M := (mij) ∈ Matn×n(α, β) be a transportation matrix. One
can define a multipermutation π(M) as follows: π(M) =

( α1︷ ︸︸ ︷
1, . . . , 1,

α2︷ ︸︸ ︷
2, . . . , 2,

α3︷ ︸︸ ︷
3, . . . , 3, . . . ,

αn︷ ︸︸ ︷
n, . . . , n

1, . . . , 1︸ ︷︷ ︸
m1,1

, 2, . . . , 2︸ ︷︷ ︸
m1,2

, . . . , n, . . . , n︸ ︷︷ ︸
m1,n

, . . . . . . , 1, . . . , 1︸ ︷︷ ︸
m1,n

, . . . , n, . . . , n︸ ︷︷ ︸
mn,n

)
.

We will write

π(2)(M) :=

(1m1,12m1,2 . . . nm1,n1m2,12m2,2 · · ·nm2,n · · · 1mn,12m2,n · · ·nmn,n)

for the second row of a multipermutation π(M). We denote by I(M)
the length of any maximal increasing subsequence in π(2)(M).

Now one can apply the classical row insertion algorithm, see., e.g.
[20], to a multipermutation π(M). As output of this algorithm one
obtains a pair of semistandard Young tableaux (P ∈ STY (λ, α), Q ∈
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STY (λ, β)) for some shape/partition λ = (λ1, . . .). According to Schen-
sted’s theorem, see e.g., [6], λ1 = I(M). Our nearest goal is to replace
the pair of semistandard Young tableaux (P,Q) obtained by the use of
RSK algorithm, by a semistandard Young tableau of the rectangular
shape Λ := (I(M), . . . , I(M)︸ ︷︷ ︸

n

) and weight Ψ(M) := ((I(M)n) − α, β).

For this purpose we consider the Gelfand–Tsetlin patterns GT (P ) and
GT (Q) which correspond in a natural and unique way to the semistan-
dard Young tableaux P and Q correspondingly. Since the tableaux P
and Q have the same shape, it is clear that the Gelfand–Tsetlin patterns
GT (P ) and GT (Q) have the same first row. So one can “glue” together
the GT-pattern GT (P ) and that GT (Q) by identifying their first rows.
As a result one obtains a plane partition which is displayed as a diamond.
Clearly, there is a unique way to include this diamond to the Gelfand–
Tsetlin pattern GT (P,Q) of the highest weight Λ = (I(M), . . . , I(M)︸ ︷︷ ︸

n

)

and weight Ψ(M). Finally, we replace the Gelfand–Tsetlin pattern
GT (P,Q) by the corresponding semistandard Young tableau. Using the
fact that RSK is a bijection, we come to a bijection

{M ∈ Matn×n(α, β) | I(M) = L} ∼= STY ((Ln), ((Ln)− α, β)).

Corollary 4.14. (Algebraic version of the Robinson–Schensted–
Knuth correspondence)
Let λ and μ be partitions of the same size, n and N be integers such
that N ≥ max(λ1 + μ1, |λ|), n ≥ max(�(λ), �(μ)). Define partitions

Λ := (Nn) and ν := ((N)n −←−
λ , μ). Then,

KΛ,ν(q)
•
==
∑
η

Kη,λ(1) Kη,μ(q),

where
←−
λ := (λ�(λ), λ�(λ)−1, . . . , λ2, λ1).

In other words, under the above assumptions, RSK correspondence
gives rise to a bijection between the set of semistandard Young tableaux
of rectangular shape Λ and content ν defined above, and the set of

transportation matrices Mn×n(
←−
λ , μ), and such that it is compatible

with the Lascoux–Schützenberger statistics charge.

Finally we apply the Rigged Configuration Bijection to the set
STY ((Ln), ((Ln) − α, β)). As a result we associate with a multiper-
mutation π(M) a rigged configuration ({ν(k)}1≤k≤n−1,J). where ν(k)

is a partition of size (n − k)I(M), k = 1, . . . , n − 1. In particular,
|ν(n−1)| = I(M) that is |ν(n−1)| is equal to the length of the maximal
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increasing subsequence in the multipermutation π(2)(M). In a separate
publication we are planning to present a direct construction of a RC-type
bijection

{M ∈ Mn×n(α, β) | I(M) = L} ∼= RC((Ln), ((Ln)− α, β))

and describe some combinatorial properties of the latter.
In the present paper we illustrate our construction by the following

example. Let us take transportation matrix

M :=

( 1 3 2
3 2 2
3 3 2

)
∈ M3×3((678), (786)). The corresponding multi-

permutation is

π(M) :=

(
111111222222233333333
122233111223311122233

)
.

One can check that the output of the RSK algorithm is the following
pairs of the Gelfand–Tsetlin patterns

(GT (P ), GT (Q)) =

(( 12 7 2
10 5
7

)
,

( 12 7 2
8 5
6

))

and the corresponding semistandard Young tableau is

T =

[ 1 1 1 1 1 1 1 2 2 2 3 3
2 2 2 2 2 3 3 4 4 5 5 5
3 3 4 4 5 5 6 6 6 6 6 6

]
∈ STY ((12, 12, 12), (7, 8, 6, 4, 5, 6)).

Now we apply the Rigged Configuration Bijection to this tableau and
come to the following rigged configuration

ν(1) = (12, 7, 5), ν(2) = (12), J
(1)
5 = 3, J

(1)
7 = 2, J

(1)
12 = J

(2)
12 = 0.

One can check that
|M3×3((678), (786))| = |STY ((12, 12, 12), (7, 8, 6, 4, 5, 6))| = 180. More-
over, there are 24 admissible configurations of type ((123), (7, 8, 6, 4, 5, 6)),
namely, there are :
90 rigged configurations corresponding to seven admissible configura-
tions with ν(2) = (12);
52 rigged configurations associated with six admissible configurations
with ν(2) = (11, 1);
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26 rigged configurations associated with 5 admissible configurations with
ν(2) = (10, 2);
10 rigged configurations corresponding to 4 admissible configurations
with ν(2) = (9, 3);
two rigged configurations associated with two admissible configurations
with ν(2) = (8, 4), namely, ((8, 8, 4, 4), (8, 4);J = 0) and
((8, 7, 5, 4), (8, 4));J = 0).

Problem 4.15.
(1) Describe matrices in the set Mn×n(α, β) which corresponds to

rigged configurations
((I(M)n), ((I(M)n)−α, β);J = 0) that is transportation matrices which
have only zero riggings (= “quantum numbers”).

(2) Give a combinatorial interpretation of riggings {J := J(M)}
which correspond to a given transportation matrix via the RC-bijection.

(3) Give an interpretation of the C. Greene invariants of a multi-
permutation [6] in terms of the corresponding rigged configurations data,
cf [11].

(4) Study asymptotic and probabilistic properties of the RC bijection.

§5. Appendix. Rigged Configurations: a brief review

Let λ be a partition and R = ((μηa
a ))pa=1 be a sequence of rectangular

shape partitions such that

|λ| =
∑
a

|Ra| =
∑
a

μaηa.

Definition 5.1.
The configuration of type (λ,R) is a sequence of partitions {ν} =

(ν(1), ν(2), . . .) such that

|ν(k)| =
∑
j>k

λj −
∑
a≥1

μa max(ηa − k, 0) = −
∑
j≤k

λj +
∑
a≥1

μa min(k, ηa)

for each k ≥ 1.

Note that if k ≥ l(λ) and k ≥ ηa for all a, then ν(k) is empty.
In the sequel we make the convention that ν(0) is the empty parti-

tion17.

17However, in some cases it is more convenient to set ν(0) = (μi1 , . . . , μis),
where we assume that ηia = 1, a = 1, . . . , s. We will give an indication of such
choice if it is necessary.
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For a partition μ and an integer j ≥ 1 define the number

Qj(μ) = μ′
1 + · · ·+ μ′

j ,

which is equal to the number of cells in the first j columns of μ.

The vacancy numbers P
(k)
j (ν) := P

(k)
j (ν;R) of the configuration {ν}

of type (λ,R) are defined by

P
(k)
j (ν) = Qj(ν

(k−1))− 2Qj(ν
(k)) +Qj(ν

(k+1)) +
∑
a≥1

min(μa, j)δηa,k

for k, j ≥ 1, where δa,b is the Kronecker delta.

Definition 5.2. The configuration {ν} of type (λ,R) is called ad-
missible, if

P
(k)
j (ν;R) ≥ 0 for all k, j ≥ 1.

We denote by C(λ;R) the set of all admissible configurations of type

(λ,R), and call the vacancy number P
(k)
j (ν,R) essential, if mj(ν

(k)) > 0.

Finally, for configuration {ν} of type (λ,R) let us define its charge

c(ν) =
∑
k,j≥1

(
α
(k−1)
j − α

(k)
j +

∑
a θ(ηa − k)θ(μa − j)

2

)
,

and cocharge

c(ν) =
∑
k,j≥1

(
α
(k−1)
j − α

(k)
j

2

)
,

where α
(k)
j = (ν(k))′j denotes the size of the j–th column of the k–th

partition ν(k) of the configuration {ν}; for any real number x ∈ R we
put θ(x) = 1, if x ≥ 0, and θ(x) = 0, if x < 0.

Theorem 5.3. (Fermionic formula for parabolic Kostka poly-
nomials [14])

Let λ be a partition and R be a dominant sequence of rectangular
shape partitions. Then

(5.10) KλR(q) =
∑
ν

qc(ν)
∏

k,j≥1

[
P

(k)
j (ν;R) +mj(ν

(k))

mj(ν
(k))

]
q

,

summed over all admissible configurations ν of type (λ;R); mj(λ) de-
notes the number of parts of the partition λ of size j.
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Corollary 5.4. (Fermionic formula for Kostka–Foulkes poly-
nomials [10])

Let λ and μ be partitions of the same size. Then

(5.11) Kλμ(q) =
∑
ν

qc(ν)
∏

k,j≥1

[
P

(k)
j (ν, μ) +mj(ν

(k))

mj(ν
(k))

]
q

,

summed over all sequences of partitions ν = {ν(1), ν(2), . . .} such that
• |ν(k)| =∑j>k λj , k = 1, 2, . . . ;

• P
(k)
j (ν, μ) := Qj(ν

(k−1)) − 2Qj(ν
(k)) + Qj(ν

(k+1)) ≥ 0 for all

k, j ≥ 1, where by definition we put ν(0) = μ ;

(5.12) • c(ν) =
∑
k,j≥1

(
(ν(k−1))′j − (ν(k))′j

2

)
.

It is frequently convenient to represent an admissible configuration
{ν} by a matrix m(ν) = (mij), mij ∈ Z,∀i, j ≥ 1, which must meets
certain conditions. Namely, starting from the collection of partitions
{ν} = (ν(1), ν(2), . . . , ...) corresponding to configuration {ν}, define ma-
trix

m(ν) := (mij), mij = (ν(i−1))
′
j−(ν(i))

′
j+
∑
a≥1

θ(ηa−i)θ(μa−j), ν(0) := ∅,

where we set by definition θ(x) = 1, if x ∈ R≥0 and θ(x) = 0, x ∈ R<0.
One can check that a configuration {ν} of type (λ,R) is admissible if
and only if the matrix m(ν) meets the following conditions

(0) mij ∈ Z,
(1)
∑

i≥1 mij =
∑

a≥1 ηaθ(μa − j),

(2)
∑

j≥1 mij = λi,

(3)
∑

j≤k(mij −mi+1,j) ≥ 0, for all i, j, k

(4)
∑

a≥1 min(ηa, k)δμa,j ≥
∑

i≤k(mij −mi,j+1), for all i, j, k.

One can check that if matrix (mij) satisfies the conditions (0)− (4),

then the set of partitions {ν} = (ν(1), ν(2), . . . , ...)

(ν(k))
′
j :=

∑
i>k

mij −
∑
a

max(ηa − k, 0)θ(μa − j)

defines an admissible configuration of type (λ,R = {(μa)
ηa}).

Example 5.5. Take λ = (44332), R = {(23), (22), (22), (1), (1)}, so
that

{μa} = (2, 2, 2, 1, 1) and {ηa} = (3, 2, 2, 1, 1), a = 1, . . . , 5.
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Therefore |ν(1)| = 4, |ν(2)| = 6, |ν(3)| = 5, and |ν(4)| = 2. It is not hard
to check that there exist 6 admissible configurations. They are:
(1) {ν(1) = (3, 1), ν(2) = (3, 3), ν(3) = (3, 2), ν(4) = (2)},
(2) {ν(1) = (3, 1), ν(2) = (3, 2, 1), ν(3) = (3, 2), ν(4) = (2)},
(3) {ν(1) = (2, 2), ν(2) = (2, 2, 2), ν(3) = (3, 2), ν(4) = (2)},
(4) {ν(1) = (4), ν(2) = (3, 3), ν(3) = (3, 2), ν(4) = (2)},
(5) {ν(1) = (3, 1), ν(2) = (2, 2, 1, 1), ν(3) = (2, 2, 1), ν(4) = (2)},
(6) {ν(1) = (3, 1), ν(2) = (2, 2, 1, 1), ν(3) = (3, 1, 1), ν(4) = (2)},
Let us compute the matrix (mij) corresponding to the configuration (2).
Clearly,
(mij) = ((ν(i−1))

′
j − (ν(i))

′
j)+(

∑
a≥1 θ(ηa− i)θ(μa− j)) := U +W . One

can check that

U =

⎛⎜⎜⎜⎜⎝
−3 −1 0 0 0
0 −1 −1 0 0
0 0 1 0 0
2 1 0 0 0
1 1 0 0 0

⎞⎟⎟⎟⎟⎠ , W =

⎛⎝ 5 3 0
3 3 0
1 1 0

⎞⎠ .

Therefore,

m({ν}) =

⎛⎜⎜⎜⎜⎝
2 2 0 0 0
3 2 −1 0 0
1 1 1 0 0
2 1 0 0 0
1 1 0 0 0

⎞⎟⎟⎟⎟⎠ .

One can read off directly from the matrix mij the all additional quanti-
ties need to compute the parabolic Kostka polynomial corresponding to
λ and a (dominant) sequence of rectangular shape partitions R. Namely,

P
(k)
j =

∑
i≥j

(mki −mk+1,i), mj(ν
(k))

=
∑
a≥1

min(ηa, k)δμa,j −
∑
i≤k

(mij −mi,j+1), c(ν) =
∑
i,j≥1

(
mij

2

)
.

For example, in our example, we have c(ν) = 8, P
(1)
1 = 1, P

(2)
2 = 1,

P
(2)
3 = 1, P

(3)
2 = 1 are all non-zero vacancy numbers, and the contribu-

tion of the configuration in question to the parabolic Kostka polynomial

is equal to q8
[
2
1

]4
. Treating in a similar fashion other configurations, we
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come to a fermionic formula

K44332,{(23),(22),(22),(1),(1)}(q) =

q10
[
3

1

]
+ q8

[
2

1

]4
+ q8

[
3

2

]
+ q12 + q6

[
2

1

][
3

2

]
+ q8.

If ηa = 1, ∀a, then ∑a≥1 ηaθ(μa − j) = μ
′
j , and we set ν(0) = μ

′
.

In this case one can rewrite the conditions (1)− (4) as follows

(1
′
)
∑

i≥1 mij = μ
′
j ,

(2
′
)
∑

j≥1 mij = λi,

(3
′
)
∑

j≤k(mij −mi+1,j) ≥ 0, for all i, j, k

(4
′
)
∑

i>k(mij −mi,j+1) ≥ 0, for all i, j.k
Let us remark that if mij ∈ Z≥0 then the matrix (mij) defines a

lattice plane partition of shape λ. For example, take λ = (6, 4, 2, 2, 1, 1),
μ = (28) and admissible configuration {ν} = {(5, 5), (4, 2), (3, 1), (2), (1)}.
The corresponding matrix and lattice plane partition of shape λ are

(mij) =

⎛⎜⎜⎜⎜⎜⎜⎝
3 3 0 0 0 0
1 3 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , and plane partition

3 3
1 3
1 1
1 1
1
1

.

The corresponding lattice word is 111222.1222.12.12.1.1.

In the case ηa = 1, ∀a, there exists a unique admissible configura-
tion of type (λ, μ) denoted by Δ(λ, μ) such that max(c((Δ(λ, μ), J))) =
n(μ)− n(λ), where the maximum is taken over all rigged configurations
associated with configuration Δ(λ, μ). Recall that for any partition λ,

n(λ) =
∑
j≥1

(
λ

′
a

2

)
,

and if λ ≥ μ with respect to the dominance order, then the degree
of Kostka polynomial Kλ,μ(q) is equal to n(μ) − n(λ), see, e.g. [21],
Chapter 1, for details. Namely, the configuration Δ(λ, μ) corresponds
to the following matrix:

m1j = μ
′
j −max(λ

′
j − 1, 0), j ≥ 1,

mij = 1, if (i, j) ∈ λ, i ≥ 2,

mij = 0, if (i, j) /∈ λ.
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In other words, the configuration Δ(λ, μ) consists of the following par-
titions (λ[1], λ[2], . . .), where λ[k] = (λk+1, λk+2, . . .). It is not difficult
to see that the contribution to the Kostka polynomial Kλ,μ(q) coming
from the maximal configuration, is equal to

Kq(Δ(λ, μ)) := qc(Δ(λ,μ))
λ2∏
j=1

[
Qj(μ)−Qj(λ) + λ

′
j − λ

′
j+1

λ
′
j − λ

′
j+1

]
q

,

where c(Δ(λ, μ)) = n(λ) + n(μ)−∑j≥1 μ
′
J (λ

′
j − 1). Therefore,

(5.13) Kλ,μ(q) ≥ Kq(Δ(λ, μ)).

It is clearly seen that if λ ≥ μ, then Qj(μ) ≥ Qj(λ), ∀ j ≥ 1, and thus,
Kq=1(Δ(λ, μ)) ≥ 1, and the inequality (5.13) can be considered as a
“quantitative” generalization of the Gale– Ryser theorem, see, e.g. [21],
Chapter I, Section 7, or [12] for details.

Now let us stress that for a fixed k, the all partitions ν(k) which
contribute to the set of admissible configurations of type (λ, μ) have the
same size equals to

∑
j≥k+1 λj , and thus the size of each ν(k) doesn’t

depend on μ. However the Rigged Configuration bijection

RCλ,μ : STY (λ, μ) −→ RC(λ, μ)

happens to be essentially depends on μ. One can check that the map
RCλ,μ is compatible with the familiar Bender–Knuth transformations
on the set of semistandard Young tableaux of a fixed shape.

As it was mentioned above, for a fixed k the all (admissible) con-
figurations have the same size. Therefore, the set of admissible config-
urations admits a partial ordering denoted by “�”. Namely, if {ν} and
{ξ} are two admissible configurations of the same type (λ, μ), we will
write {ν} � {ξ}, if either {ν} = {ξ} or there exists an integer � such
that ν(a) = ξ(a) if 1 ≤ a ≤ �, and ν(�+1) > ξ(�+1) with respect of the
dominance order on the set of the same size partitions. It seems an
interesting Problem to study poset structures on the set of admissi-
ble configurations of type (λ, μ), especially to investigate the posets of
admissible configurations associated with the multidimensional Catalan
numbers, (work in progress).

Theorem 5.6. (Duality theorem for parabolic Kostka poly-
nomials [14])

Let λ be partition and R = {(μηa
a )} be a dominant sequence of rect-

angular shape partitions. Denote by λ
′
the conjugate of λ, and by R

′
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a dominant rearrangement of a sequence of rectangular shape partitions
{(ημa

a )}. Then

Kλ,R(q) = qn(R)Kλ′ ,R′ (q−1),

where
n(R) =

∑
a<b

min(μa, μb)min(ηa, ηb).

A technical proof is based on checking of the statement that the
map

ι : mij −→ m̂ij = −mji + θ(λj − i) +
∑
a≥1

θ(μa − j)θ(ηa − i)

establishes bijection between the sets of admissible configurations of
types (λ,R) and (λ

′
, R

′
), and ι(c(mij)) = c((m̂ij)).

5.1. Example

Let n = 6, consider for example, a standard Young tableau

T =
1 2 3 6 8 9
4 5 7 10 11 12

, c(T ) = 48.

The corresponding rigged configuration (ν, J) is

ν = (321), J = (J3 = 0, J2 = 2, J1 = 6),

(mij)(ν) =

(
9 −2 −1
3 2 1

)
, c(ν) = 44.

Recall that c(T ) and c(ν) denote the charge of tableau T and configu-
ration ν correspondingly.

• One can see that c(T ) = c(ν) + J3 + J2 + J1, as it should be in
general.

•Now, the descent set and descent number of tableau T areDes(T ) =

{3, 6, 9}, des(T ) = 3. One can see that des(T ) = 3 = ν
′
1, as it should be

in general 18.
• One can check that our tableau T is invariant under the action of

the Schützenberger involution 19 on the set of standard Young tableaux
of a shape λ. It is clearly seen from the set of riggings J 20 that the

18In fact the shape of the first configuration ν(1) of type (λ, μ) can be
read off from the set of “secondary” descent sets {Des(1)(T ) = Des(T ),
Des(2)(T ), . . . , ...), cf [11].

19http : //en.wikipedia.org/wiki/Jeu de taquin
20In our example J = (0, 1, 3).
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rigged configuration (ν, J) corresponding to tableau T , is invariant un-
der the Flip involution 21 on the set of rigged configurations of type
(λ, 1|λ|), as it should be in general, see [16] for a complete proof of the
statement that the action of the Schützenberger transformation on a
Littlewood– Richardson tableau T ∈ LR(λ,R), under the Rigged Con-
figuration Bijection transforms tableau T to a Littlewood–Richardson
tableau corresponding to the rigged configuration νκ(J)), where (νJ) is
the rigged configuration corresponding to tableau T we are started with.
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