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On the functor of Arakawa, Suzuki and Tsuchiya

Sergey Khoroshkin and Maxim Nazarov

Abstract.

Arakawa, Suzuki and Tsuchiya defined a correspondence between
certain modules of the trigonometric Cherednik algebra €y depending
on a parameter x € C, and certain modules of the affine Lie algebra
f?(m of level kK —m. We give a detailed proof of this correspondence
by working with the affine Lie algebra gA[m alongside of E:\[m . We also
relate this construction to a correspondence between certain modules
of the degenerate affine Hecke algebra )y and all modules of sl,, or

gl,, . The latter correspondence was constructed earlier by Cherednik.

Introduction

The principal purpose of this article is to give detailed proofs of the
basic properties of a certain functor introduced by Arakawa, Suzuki and
Tsuchiya in [1] and further studied by Suzuki in [12]. We will denote
this functor by Ay where N can be any positive integer. In our setting
the functor Ay gets applied to any module V' of the affine Lie algebra
;[m such that for any given vector in V', there exists a degree ¢ such
that the subspace tsl,,[t] C sl, annihilates this vector. Here m is
another positive integer and ¢ is a variable. In the present article the
Lie algebra fsA[m is regarded as a central extension of the current Lie
algebra sl,,, [t,£71] by a one-dimensional vector space with a fixed basis
element, which will be denoted by C'.

As a vector space, A (V) is the tensor product of V' with N copies
of the vector space C™[t,t~1]. The latter space can be regarded as a
module of sl,,, where the central element C acts as zero. Hence A N (V)
is also a module of sl,, . It has been proved in [1] that the vector space
An (V) comes with an action of the trigonometric Cherednik algebra
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[2, 3, 6]. We will denote this algebra by €y . The complex associative
algebra €y is generated by the symmetric group ring CSy , the ring of
Laurent polynomials in N variables x1,...,zx and by another family
of commuting elements uy, ...,uy . The subalgebra of €y generated by
the first two rings is the crossed product Gy x Clzy,z7",..., 25, 25" ]
where the group Gy permutes the N variables. The subalgebra of €y
generated by &y and uy,...,uy is the degenerate affine Hecke algebra
$Hn introduced by Drinfeld [4] and by Lusztig [8]. The other defining
relations in €y are (2.8),(2.9) and (2.10). In particular, the algebra €y
depends on a parameter k € C.

The action of the trigonometric Cherednik algebra €y and that of
the affine Lie algebra sl,, on the vector space A ~(V) do not commute
in general. However, let us suppose that the element C € ;[m acts on
V' as multiplication by the scalar k — m. In other words, suppose that
the ;[m—module V is of level kK —m. Then the action of €y on Ay (V)
preserves the image of the action of the subalgebra ¢~ sl,, [t7!] C E:A[m .
Hence the quotient vector space of Ayn(V) by the image inherits an
action of €y . This remarkable property of the functor Ay was also
proved in [1]. We give a more detailed proof of this property of Ay by
following an approach of [12]. At the same time we make Theorem 4.1
from [12] more precise.

We regard ;[m as a subalgebra of the affine Lie algebra gT[m. The
latter is a central extension of the current Lie algebra gl,, [t,¢7!] by the
one-dimensional vector space with the basis element C'. By definition,
this one-dimensional space is contained in the subalgebra sA[m C gA[m . We
start with any gA[m -module such that for any given vector of the module,
there is a degree i such that the subspace t%gl,, [t] C é\[m annihilates
the vector. Following [12], we define an action of the algebra €y on the
tensor product of this module with N copies of C™[¢t,t~1]. These N
tensor factors are regarded as é\[m—modules. We prove that if the central
element C acts on the initial gA[m—module as multiplication by Kk — m,
then the action of €y on the tensor product preserves the image of the
action of the subalgebra t~!sl,, [t~!] C gA[m . By modifying the action of
¢y, we get the above stated property of the functor Ay , see Section 3.

The functor A can be considered as the affine Lie algebra version
of another functor, introduced by Cherednik [3] and further studied in
[1]. We denote this functor by Fy, and apply it to any module U of
the finite-dimensional Lie algebra sl,, . As a vector space, Fy(U) is
just the tensor product of U with N copies of the vector space C™. By
regarding the latter vector space as an sl,,,-module, we obtain an action
of sl,,, on Fn(U). There is also an action of the degenerate affine Hecke
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algebra $) on the vector space F (U), which commutes with the action
of sl,, . In particular, this construction was used by Suzuki [10] to prove
a conjecture of Rogawski [9] on the Jantzen filtration on the standard
$Hn-modules.

In the present article we establish a connection between the functors
An and Fy . For any sl,,,-module U we consider the €y -module induced
from the $y-module Fn(U). Here Hy is regarded as a subalgebra of
¢y . We prove that for a certain ;[m -module V', the induced € -module
is equivalent to the quotient of A x (V) by the image of the action of the
subalgebra t~1sl,, [t71] C ;[m. Namely V' is the ;Im—module of level
k — m , parabolically induced from U as a module over the subalgebra
sl, C g[m ; see Section 2 for details.

We also consider the action of the algebra $) on the tensor product
of any gl,,,-module with N copies of C". By modifying this action and
regarding sl,, as a subalgebra of gl,,, , we get the above mentioned action
of H on the space Fn(U) for any sl,,-module U. Working here with
gl,,,-modules also allows us to give an analogue of Theorem 2.1 from [7],
where the role of i was played by the Yangian of the Lie algebra gl,,
with any n. Namely, we consider the tensor product of IV copies of C™
with a parabolically induced module of gl,, . Our Theorem 1.3 describes
the action of $ on the quotient of the tensor product, taken relative to
the image of the action the nilpotent subalgebra of gl,,, complementary
to the parabolic subalgebra which the given module of gl,, is induced
from. The above mentioned result of [7] can be derived from our present
Theorem 1.3 by using the Drinfeld functor [4].
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Academic Excellence Project ‘5-100°. He has been also supported by
the RFBR grant 17-01-00585, and by the University of York Research
Priming Fund. The second named author has been supported by the
EPSRC grant N023919.

We are grateful to Tomoyuki Arakawa and Takeshi Suzuki for very
helpful conversations. We dedicate this article to Masatoshi Noumi.
His works on the algebraic structures arising from the theory of special
functions have motivated our interest in the results presented here.

§1. Hecke algebras

1.1. We will begin with recalling a well known construction from
the representation theory of the degenerate affine Hecke algebra $Hn,
which corresponds to the general linear group GLy over a local non-
Archimedean field. This algebra has been introduced by Drinfeld [4],
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see also the work of Lusztig [8]. By definition, the complex associative
algebra $) is generated by the symmetric group algebra CSy and by
the pairwise commuting elements w1, ..., uy with the cross relations for
anyp=1,...,N—landg=1,...,N

(1.1) Opuq =ugop for q#p,p+1;
(1.2) OpUp = Upy10p — 1.

Here and in what follows 0, € G denotes the transposition of numbers
p and p+ 1. More generally, 0,, € G will denote the transposition of
the numbers p and ¢q. The group algebra CSy can be then regarded as
a subalgebra in $) . Furhtermore, it follows from the defining relations
of $H that a homomorphism $Hy — CSy, identical on the subalgebra
C6xN C Hn, can be defined by the assignments

(1.3) Up = O1p+...+0p_1, for p=1,....N.
We will also use the elements of the algebra )y
(1.4) Zp=Up—Olp—...—0p_1,p, Where p=1,...,N.

Notice that z, — 0 under the homomorphism iy — CSy defined by
(1.3). For every permutation o € Sy we have

(1.5) o2t =2, -

It suffices to verify (1.5) when ¢ =04 and ¢=1,..., N — 1. Then (1.5)
is equivalent to the relations (1.1),(1.2). The elements 21, ..., zx do not
commute, but satisfy the commutation relations

(1.6) [2p, 2] = 0pq (2p — 24) -

Let us verify the equality in (1.6). Both sides of (1.6) are antisymmetric
in p and ¢, so it suffices to consider only the case when p < q. Then

[2p,ug]l =[up—01p— ... —0p_1,p,uq) =0.
Hence
[2p,2¢) = [2ps2¢ —Uq] = —[2p, 014+ . +0g-1,4]
= —[2p,0pq] = 0pq (2p — 2¢)

where we used (1.5). Obviously, the algebra ) is generated by CSy
and by the elements z1,...,zy. Together with relations in C&y, (1.5)
and (1.6) are defining relations for )y .
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The construction that we are now going to recall is due to Cherednik
[3, Example 2.1]. It was further developed by Arakawa, Suzuki and
Tsuchiya [1, Subsection 5.3]. Let U be any module over the complex
general linear Lie algebra gl,,. Let E,, € gl,,, with a,0 =1,...,m be
the standard matrix units. We will also regard the matrix units E,; as
elements of the algebra End (C™), this should not cause any confusion.
Let us consider the tensor product (C™)®Y @ U of gl,,-modules. Here
each of the N tensor factors C™ is a copy of the natural gl,,,-module. We

shall use the indices 1,..., N to label these N tensor factors. For any

)

index p =1,..., N we will denote by Eéf the operator on the vector

space (C™)®N acting as
(1.7) id®P™) @ By ©id® NP

Proposition 1.1. (i) By using the gl,, -module structure of U, an
action of the algebra $Hx on the vector space (C™)*N @ U is defined as
follows: the symmetric group Sn C Hn acts by permutations of the N

tensor factors C™, and the element z, € Hy withp=1,...,N acts as
()
(1.8) > By @FE.
a,b=1

(i1) This action of Hy commutes with the (diagonal) action of gl,, on
(C™MeN @ U.

To prove this proposition we only need to verify that the relations
(1.6) are satisfied by the operators (1.8) with p = 1,..., N instead of
the elements z1,...,2xy € $Hy respectively. This verification is direct,
see [7, Section 1] for details. By using Proposition 1.1 we get a functor
En : U (C™®N @ U from the category of all gl,,-modules to the
category of bimodules over gl,, and Hy .

Now let sl,,, C gl,,, be the complex special linear Lie algebra. We will
also use a version of Proposition 1.1 for the vector space (C™)*N @ U
where U is a module not of gl,, but only of sl,, . Denote

I=E1+...+Enm

so that gl,, = sl,,, ® CI. Moreover

S 1
(1.9) Y B @Epa € — 1@ + sly @ sly,.
a,b=1
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Therefore an action of

(1.10) 3 E(f)@)Eba—Eld@ QI

a
a,b=1

can be defined on the vector space (C™)®N @ U by using only the
sl -module structure of U. Because the element I € gl,, is central,
the operators (1.10) with p = 1,..., N satisfy the same commutation
relations (1.6) as the operators (1.8) respectively instead of z1,..., 2y .

Corollary 1.2. (i) Using the sl,, -module structure of U, an action
of the algebra $Hx on the vector space (C™)*N @ U is defined as follows:
the group Sy C Hn acts by permutations of the N tensor factors C™,
and the element z, € Hy withp=1,...,N acts as (1.10).

(ii) This action of Hy commutes with the (diagonal) action of sl on
(C™eN @ U.

Hence we get a functor Fy : U +— (C™)®N @ U from the category
of all sl,,,-modules to the category of bimodules over sl,,, and $y. Our
main subject will be an analogue of this functor for the affine Lie algebra
EA[m instead of sl,,, . The role of the degenerate affine Hecke algebra $x
will be then played by the trigonometric Cherednik algebra €y .

1.2. For any f € C an automorphism of the degenerate affine Hecke
algebra $) identical on the subalgebra C&y C $H can be defined by
mapping u, +— u, + f for all indices p=1,..., N. Hence we can modify
the functor €y by pulling its defining action of $y back through this
automorphism. We will denote by £ ]5 the modified functor. Like the
En = &Y, this is a functor U +— (C™)®N @ U from the category of
all gl,,-modules to the category of bimodules over gl,, and Hx. The
modified functor will be needed to state Theorem 1.3 below. We will
also let the parameter m of the target category of &£ ]\J; vary. This should
cause no confusion.

Let n be any positive integer. The decomposition C™*" = C™pC"
determines an embedding of the direct sum gl,, @ gl,, of Lie algebras to
9l 4 - As a subalgebra of gl,, ., , the direct summand gl,, is spanned
by the matrix units Eq, € gl,,,,, where a,b = 1,...,m. The direct
summand gl,, is spanned by those F,; where a,b =m+1,...,m+n.
Let q be the Abelian subalgebra of gl ., spanned by the elements F,,
foralla =m+1,...,m+nandb=1,...,m. Let p be the subalgebra of
gl,,, 1, spanned by those matrix units which do not belong to q, so that
we have gl,,,, = p ® q. Then p is a maximal parabolic subalgebra of
the reductive Lie algebra gl,,,, . Note that gl,, © gl,, C p by definition.
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Now let V' be any gl,,-module. Denote by U X V' the gl ,,,-module
parabolically induced from the gl,,, ®gl,,-module U V. To define U X V,
one first extends the action of the Lie algebra gl,, ® gl, on U ® V to p
so that any matrix unit in p complementary to gl,, @ gl,, acts on U @ V'
as zero. By definition, U ® V is the gl ., -module induced from the
p-module U ® V. Theorem 1.3 will provide a description of the space
EN(UR V)4 of coinvariants of Ex(U K V') relative to the action of the
subalgebra q C gl,,,,, . This space is the quotient of the vector space
En(U R V) by the image of the action of q. Note that here the functor
En is applied to a module of gl rather than of gl . This is clear
by the notation. Hence we have an action of £y on the vector space
EN(UR V)q. The subalgebra gl,, ®gl,, C gl,,,; also acts on this vector
space, and the latter action commutes with that of the algebra $y .

For any K = 0,1,..., N denote by Gk ny_k the subgroup of the
symmetric group Gy preserving the subset {1,..., K} C {1,...,N}.
This subgroup is naturally isomorphic to the direct product Sx xS ny_k .
Further, the tensor product $x ® $Hx_x can be naturally identified with
the subalgebra of $x generated by the subgroup &g y_x C Sy and by

all uy,...,un. Denote by $x ny_x this subalgebra. We have the usual
induction functor Indgg [

Theorem 1.3. The bimodule Ey(U K V)4 of gl,, ®gl, and Hn is
equivalent to
N
(1.11) & mdQY - Ex(U)®@EY (V).
Proof. Forany K =0,..., N the vector space of the corresponding
direct summand in (1.11) is the same as that of the induced & y-module

mdSy (™K gUeCPN-Kgv,

Sk, N-K

By definition, the latter Gy -module is a quotient of the vector space
(1.12) C6y ® (C™M®K @U@ (CM)EWN-K) gV

such that the right multiplication in the first tensor factor of (1.12) by
any element of the subgroup g ny_x C Gy has the same effect on the
quotient, as the corresponding permutation of the K tensor factors C™
and of the N — K tensor factors C™. The action of Sy on the quotient
is then via the left multiplication in the first tensor factor of (1.12).

By letting the symmetric group Gy permute all N tensor factors
C™ and C™ of (1.12), the direct sum over K = 0,..., N of the above
described quotients can be identified with

(1.13) (C™MN QU V.
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Here we use the decomposition C™*" = C™ ¢ C™ and transpose the
tensor factor U of (1.12) with each of the next N — K tensor factors C™.
Under this identification, the action of G on the quotients becomes
the permutational action on the first N tensor factors of (1.13). To
avoid confusion, we will denote respectively by A and B the subspaces
of C™*" corresponding to the first and the second summands in the
decomposition C™t" = C™ ¢ C".

Let us describe the action of the elements uy,...,uny € $Hny on
(1.13) coming from the identification of this vector space with that of
the bimodule (1.11). Under this identification, for any K the subspace

(1.14) A®K @ BeWN-K) g gV

of (1.13) is preserved by the action of uy ..., uy . For p < K the element
u, acts on the subspace (1.14) as

p m
(1.15) Y oy @ideid + Y ED @ By, @id.

g=1 a,b=1
Here o, is the permutation of the pth and ¢th tensor factors C™*"

of (1.13) while Eéf) is the operator on (C™+")®N acting as (1.7). For
p > K the element u), acts on (1.14) as

p m—+n
1.16 0pe @id ®id + EP @id® Ey_m a—m — m.
pq ab s
qg=K+1 a,b=m+1

The union of the subspaces (1.14) for all K = 0,..., N is cyclic in (1.13)
under the action of the subalgebra C&xy C $H . Hence the action of
$Hn on (1.13) is now uniquely determined.

On the other hand, the vector space of the gl -module UK V
can be identified with U(q) ® U ® V' whereon the subalgebra q C gl,, .,
acts via left multiplication in the first tensor factor. Note that the Lie
algebra q is Abelian. Hence its universal enveloping algebra U(q) is a
free commutative algebra over C generated by the elements E,;, where
a=m+4+1,....m+nand b = 1,...,m. The vector space of the
gl,, ® gl,,-module U ® V can be then identified with the subspace

(1.17) 1eURV CU@eUeV.

By the definition of a parabolically induced module, the action of the
subalgebra p C gl,, ., preserves this subspace. The elements Eq, € p
with a,b=1,...,;mand a,b =m+1,...,m~+n act on this subspace as
the operators id ® E,, ® id and id ® id ® Eq—, p—m, respectively, while
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any element F,, € pwitha=1,...,mandb=m+1,...,m+ n acts
as zero. All this determines the action of gl,,,,, on U(q) @ U ® V.

Let us mow consider the bimodule Ex(U ® V') over gl,,,,,, and H .
Its vector space is

(1.18) W= (™o UqeUaV.

The corresponding space of the g-coinvariants is isomorphic to (1.13).
Indeed, we can define a bijective linear mapping ¢ from (1.13) to the
quotient W/qW as follows. First we map (1.13) to the subspace

(CMEN 91UV Cc W

in the natural way, and then regard the image of the latter mapping
modulo q W. To prove the bijectivity of resulting mapping ¢, consider
the ascending Z-filtration on the vector space

(Cm+n)®N _ (A@B)®N

defined by the tensor degree in A. Note that the action of the subalgebra
q C gl,,, ., preserves the filtration, and the corresponding graded action
of q is trivial. Hence this filtration on (C™*+")®V induces an ascending
filtration on W such that the corresponding graded action of q is via left
multiplication in the tensor factor U(q) of (1.18). The bijectivity of our
¢ now follows, because the algebra U(q) is free commutative.

The mapping ¢ defined above is gl,, ® gl,,-equivariant, see the above
description of the action of p on the subspace (1.17). This ¢ is also
equivariant relative to the action of Gy. But relative to the action
of Gy on (1.13), the union of the subspaces (1.14) for K =0,..., N is
cyclic. To complete the proof of Theorem 1.3 it now remains to check for
each p=1,..., N the u,-equivariance of the restriction of the mapping
¢ to each of these subspaces.

The image of the subspace (1.14) under ¢ is the subspace

(1.19) AR @ BW-K)gi1oUeV cW

regarded modulo qW. The Ey € gl,,,, and b =m+1,....m+n
annihilate the subspace X C C™*". The elements Ey, € gl,, ., with
b=1,...,mand a =m+1,...,m + n annihilate the subspace (1.17).
Hence for p < K the element u, € $ acts on the subspace (1.19) as

p m
Y o eideideid + Y BY @ide By, @id.

g=1 a,b=1



284 S. Khoroshkin and M. Nazarov

By comparing the last displayed sum with (1.15) we conclude that the
restriction of ¢ to the subspace (1.14) is u,-equivariant for any p < K .

Now suppose that p > K. The E, € gl,,,, with b = 1,...,m
annihilate the subspace B ¢ C™T™. Hence the element u, € Hy acts
on the subspace (1.19) as

m m—+n

(1.20) Zapq®1d®1d®1d +Z Z Eab R Fpe ®id ®id +

q=1 a=1b=m+1
m—4n
Y EP ®id®id® Eym,a-m-
a,b=m+1

The tensor factor Ejp, in the display (1.20) belongs to the subalgebra
q C gl,,4, - Hence modulo q W, the result of applying the first line of
the display (1.20) to elements of W is the same as the result of applying

m m—+n

(1.21) Zapq®1d®1d®1d—z S Y BYEY wideideid.

g=1 a=1b=m+1

Here the tensor factors Eb(g)Eéf) with ¢ > K but with ¢ # p vanish on
the subspace

(1.22) A®K @ pEWIN-K) o (cm+n)®N

Any tensor factor Eb(g)Eéf) in (1.21) with ¢ < K acts on this subspace
as permutation 0,4 . The sum of the tensor factors

BYEY = Bl
overa=1,...,mand b=m+1,...,m+n acts on the subspace (1.22)

as the scalar m. Therefore after cancellations, the sum (1.21) acts on
the subspace (1.19) as

p
(1.23) Y oy @ideideid — m.
qg=K+1

By comparing (1.16) with the sum of the second line in (1.20) and of
(1.23) we now conclude that the restriction of the mapping ¢ to the
subspace (1.14) is u,-equivariant for p > K. O
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§2. Cherednik algebras

2.1. Let us first define the rational Cherednik algebra ® . This is
a complex associative algebra depending on a parameter Kk € C. It is
generated by the symmetric group algebra C&y together with two sets
of commuting elements x1,...,xy and y1,...,yny where like in (1.5)

(2.1) oz, ol = Topy and oyp ol = Yo (p)

for every permutation 0 € &y . For any indices p and ¢, the elements
yp and x, do not commute with each other but satisfy the commutation
relations

(2'2) [ypa-rq]:_o'pq for q#p;
(2.3) [ypaxp]:“'i'ZUpT'
T#p

Multiplication in the algebra ® y provides a bijective linear map
(2.4) (C[.Z‘l,...,xN]®(CGN®(C[y1,...,yN]—>©N;

see for instance [6, Theorem 1.3]. The bijectivity here also follows from
the next proposition, which has been a motivation for introducing the
algebra ®n . For any p = 1,..., N consider the Dunkl operator acting
on the vector space C[z1,...,zxN] as

(2.5) KOp+ ! (1—0,).

rp P T
Here 0, denotes the derivation in the polynomial ring Clzq,...,2nN]
relative to the variable z,, and the symmetric group &y acts on this
ring by permutations of z1,...,xy as usual.

Proposition 2.1. An action of the algebra ® n on the vector space
Clz1,...,zN] can be defined as follows: the symmetric group Sy C Dy
acts by permutations of the N variables, the element x, € Dy acts via
mutiplication, and the element y, € DN acts as the operator (2.5).

In particular the operators (2.5) with p=1,..., N commute. This
fact is well known and goes back to the celebrated work of Dunkl [5].
Due to this fact the proof of Proposition 2.1 reduces to verifying the
second relation (2.1) and the relations (2.2),(2.3) for the operator (2.5)
instead of y, . That is straightforward and we omit the details.

Observe that the algebra ©y contains a copy of the degenerate
affine Hecke algebra ) as a subalgebra. An injective homomorphism
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Hn — Dy identical on the symmetric group Sy C Hy can be defined
by mapping 2, — z,v, for each index p = 1,...,N. To prove the
homomorphism property we need to verify the relations (1.5),(1.6) for
TpYp € Dy instead of z, € Hx. The first of the two relations to be
verified follows from (2.1). Further, for p # ¢

[2pYp g ¥l = 2p (g ¥Yp — (%4, Yp]) Yg — TqYq Tp Yp
= LqTpYqYp — LpTpq¥Yq — LqYqLpYp
=24 [%p,Yq | Yp — Tp Opq Yq
= TqOpq Yp — Tp OpgYqg = Opq (Tp Yp — Tq Yq)

as needed. Here we used only the relations (2.1),(2.2). The injectivity
of homomorphism $y — Dy thus defined follows from the bijectivity
of the multiplication map (2.4).

Next we consider the trigonometric Cherednik algebra €y . It can
be defined as the ring of fractions of the algebra ® y relative to the set
of denominators x1,...,zy. By [6, Theorem 1.3] multiplication in the
algebra €y provides a bijective linear map

C[xl,xfl,...,xN,xj\,l]®(C6N®(C[y1,...,yN] — Cx.

The algebra €y can also be defined as the complex associative algebra
generated by the ring (C[xl,:rfl,...,xN,x;,l] of Laurent polynomials
in z1,...,zy and by the degenerate affine Hecke algebra $)y subject to
the relations oz, 0~ ! = To(p) for all o0 € Gy and to the commutation
relations

(2.6) [2p,2q] = —xpopg for q#p;
(2.7) [zp,xp]:/mtp—i—prapr.
T#p

To prove the equivalence of two definitions of €y we can use the above
constructed embedding Hy — ©py. Then we only need to verify the
relations (2.6) and (2.7) for the element z, y, € Dy instead of z, € Hn .
This verification is direct by the defining relations (2.2),(2.3) in ® 5 . By
using both definitions of €y we obtain a corollary to Proposition 2.1.

Corollary 2.2. An action of the algebra €y on the vector space
(C[:cl,xl_l s ,.TN,ZE]_Vl] can be defined as follows: the elements x,,,x;l
of €N act via mutiplication, the group Sy C Hn acts by permutations
of the N wvariables, and the element z, € Hn acts as the operator
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Note that in the second definition of the algebra €y we can also
employ the pairwise commuting generators uq,...,uny € )y instead of
the non-commuting generators z1, ..., zx; see the definition (1.4). Then
instead of the defining relations (2.6),(2.7) in €y we get

(2.8) [up,2q] = —xqopg for q<p;

(2.9) [up,zq] = —xpop, for q>p;

(2.10) [up,xp]:/ixp—&-zxrapT—Fprapr.
r<p r>p

According to Corollary 2.2 the element u, € ) then acts on the vector
space C[x1, 27", ... ,zN,x]_Vl] as the operator

K Zp Op +Z

T#p

(1 -0y )+ o
pr) E, pr -
mp—xT

r<p

Corollary 2.2 is obtained by extending the action of ©y given by
Proposition 2.1 from the space Clzy,...,2y] to the space of Laurent
polynomials (C[xl,xfl yeen ,xN,xX,l] . On the latter space the element
yp € Dy still acts as the Dunkl operator (2.5). We will now describe a
generalization of Corollary 2.2, going back to the work of Cherednik [2].

2.2. Let us consider the affine Lie algebra gA[m . By definition, this
is a central extension of the current Lie algebra gl,,[t,t~'] by a one-
dimensional vector space with a fixed basis element which we denote by
C. Here t is a formal variable. Choose the basis of gl,, [,t~!] consisting
of the elements E.qt7 where ¢,d = 1,...,m while j ranges over Z. The
commutators in the Lie algebra gl,, [t,¢71] are taken pointwise so that

[Eab tia Ecd tj ] = (6bcEad - 6da Ecb) tH—j
for the basis elements. In the Lie algebra g[m by definition we have
(211)  [Bapt', Eeat?] = (8pe Bad — 0da Bep) t™7 408, _j 0pe 00 C.

Now let V' be any module of the Lie algebra gA[m where for any given
vector in V there is a degree i such that the subspace t’gl,,[t] C glm
annihilates the vector. Note that here the meaning of the symbol V is
different from that in Section 1, where it was used to denote a module
of the finite-dimensional Lie algebra gl,,, . Consider the vector space

(2.12) W =Cla1,z7", ... 25,25 | @ (C")EN @ V.
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Due to our condition on V for any p =1,..., N there is a well defined
linear operator on W
(2.13) SN 4 0EY @ Byt

=0 a,b=1

Here Eéf) is the operator (1.7) acting on (C™)®Y. The symmetric
group Gy acts on the tensor factor Clzy,x; ", ... ,xN,:E;,l] of W by
permutations of the N variables. There is another copy of &y acting on
the IV tensor factors C™ of W by their permutations. Using these two
actions of G for p =1,..., N introduce the Cherednik operator on W

(214)  kz,8,®id®N @id + Z (1= 0pr) ® 0y @id +

r#p

i i l'_l®E(p)®Ebati.

i=0 a,b=1

_x'r‘

The vector space
(2.15) Cloy, =7, .. oy, oy ] @ (C™)EN

can be naturally identified with the tensor product of N copies of the
space C™[t,t~1]. The latter space can be regarded as a gA[m—module
where the central element C acts as zero. By taking the tensor product
of N copies of this module with V' we turn the vector space W to a
g/;\[m—module. The element FE.qt7 of thm acts on W as

N
(2.16) Y 2l 0EY 0id+ideid®N @ Byt
qg=1

We will also employ the affine Lie algebra g[m . This is a subalgebra
of gl,, spanned by the subspace sl,, [t,t7'] C gl [t,t7'] and by the
central elements C. For any scalar £ € C, a module of the Lie algebra
g[m or sl,, is said to be of level £ if C acts on this module as that
scalar. In particular, the g[m—module C™[t,t71] used above was of
level zero. Note that by the defining relations (2.11), the subspaces
gl C gl [t t=1] and sl,, C sl [t,¢71] are Lie subalgebras of gl and

sl,,, respectively. Denote by q the subspace ¢~ Vsl [t71] C sl [t 671
This is a subalgebra of both 5[m and g[ . Note that here the meaning
of the symbol q is different from that in Section 1, where it denoted
a certain subalgebra of gl,,. We can now state the main properties of
Cherednik operators on W due to [1, 12].
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Proposition 2.3. (i) By using the gA[m -module structure on V', an
action of the algebra €y on the vector space (2.12) is defined as follows:
the elements x, ,x,;' € €y act via mutiplication in the tensor factor

p
Cloy, 2yt .., on, 25" of (2.12), the symmetric group Gy C Hn acts
by simultaneous permutations of the variables x1,...,xn and of the N

tensor factors C™, and the element z, € Hn acts as (2.14).

(ii) This action of €x commutes with that of the subalgebra gl,, C gl,, -

(iii) If V has level kK —m then the action of €y preserves the subspace
qgW Cc W.

In the next section we will give a detailed proof of this proposition.
By inspecting it we will also obtain a version of Proposition 2.3 for the
vector space (2.12) where the tensor factor V' is a module not of é\[m but
only of 5A[m . In the latter case, for any vector in V' we still assume the
existence of a degree i such that the subspace t % sl,,[t] C sl,, annihilates
the vector. Due to (1.9), an action of the sum

> ) m | )
(2.17) ) x,,”@( Y B @ Byt - — id®N®IH)
m
=0 a,b=1

can be then defined on the vector space (2.12) by using only the 5l,-
module structure of V. Then for any p=1,..., N we get a modification
of the Cherednik operator (2.14) on W,

(218) ka0, @idV @id + ) :?’x (1= 0p) @ 0pr ®id +
r#p TP T
—1i E(P) Eatz__ -d®N Itz)
S orte (30 B e Bt - LoV

i=0 a,b=1

Here we use the sum (2.17) instead of the sum (2.13) used in (2.14).
Further, we can turn the vector space (2.12) into another sl,,-module
by regarding (2.15) as sl,,,-module of level zero.

Corollary 2.4. (i) Using the sl -module structure on V', an action
of €y on (2.12) can be defined as follows: the elements z, ,x,* € €y

P
act via mutiplication in C[xl,:zrl_l,...,x]v,xgl], the group Sy C Hn
acts by simultaneous permutations of the variablesxy,...,xN and of the

N tensor factors C™, and the element z, € n acts as (2.18).
(ii) This action of €y commutes with that of the subalgebra sl,, C sl .

(iii) If V has level kK — m then the action of €y preserves the subspace
qgW Cc W.

~
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2.3. By using Corollary 2.4(i) and the definition (2.12) we obtain a
functor Ay : V +— W from the category of all ;[m—modules satisfying the
annihilation condition stated just before (2.17). Note that the resulting
actions of ,'g\[m and €y on W do not commute in general. However, this
will be our analogue for fsA[m of the functor Fy introduced in the end of
Subsection 1.1. Let us now relate the two functors to each other.

For any given sl,,-module U and ¢ € C let V be the sl,,-module
of level ¢ parabolically induced from U. Note that the subspace of sl
spanned by sl,,[t] and by the central element C' is a Lie subalgebra.
Denote this subalgebra by p. To define V' we first extend the action on
U from sl,, to p so that all the elements of ¢ sl,,[t] act as zero, while C
acts as the scalar ¢. By definition, V is the sA[m—module induced from
the p-module U. Since the element C is central in s?[m, the module V
indeed has level £. It also satisfies the annihilation condition mentioned
in the previous paragraph.

Let us apply the functor A  to this particular V. Using the notation
q =t 1sl,[t7!] from the previous subsection, we have a vector space
decomposition ;[m = p @ q. Note again that here the meaning of the
symbols p and q is different from that in Section 1 but similar. Consider
the space An(V)q of coinvariants of An (V') relative to the action of
the subalgebra q C ;[m . This space is the quotient of the vector space
An (V) by the image of the action of q. The subalgebra sl,,, C sl,, acts
on this quotient, because the adjoint action of this subalgebra on 5A[m
preserves q. If £ =k —m then due to Corollary 2.4(iii) the algebra €y
also acts on this quotient. Moreover, by Corollary 2.4(ii) the latter action
commutes with the action of sl,,. Thus the space of g-coinvariants
An(V)q becomes a bimodule over sl,,, and €y .

On the other hand, we can apply Fuy to the sl,,-module U as given
above. Hence we obtain a bimodule Fy (U) of sl,,, and of the degenerate
affine Hecke algebra $) v, see Corollary 1.2(i,ii). Since $)y is a subalgebra
of €y, we have the induction functor Imdg]fV . If we apply it to any
bimodule over sl,,, and $y , we will get a bimodule over sl,,, and €y .

Theorem 2.5. Let £ = k —m. Then the bimodule Ax(V)q of sl
and €y is equivalent to

(2.19) Ind ¥ Fn(U).

Proof. By using the second definition of the algebra €y and the
definition of the functor Fy, the vector space of the bimodule (2.19) can
be identified with the tensor product

(2.20) C[xl,xl_l,...,xN,m;,l]®((Cm)®N®U.
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The subalgebra (C[:cl,acfl,...,xN,x;,l] C C€x acts on (2.20) via left
multiplication in the first tensor factor. The subalgebra )y C €y acts
on (2.20) preserving the subspace 1® (C™)®N @U. The action of ) on
this subspace is determined by naturally identifying it with (C™)®N U,
see Corollary 1.2(i). All this defines the action of €y on (2.20). Note
that sl,, acts diagonally on the N tensor factors C™ and on the last
tensor factor U of (2.20).

On the other hand, the vector space of the ;Im—module V can be
identified with U(q) ® U whereon the Lie subalgebra q C sl,, acts via left
multiplication in the first tensor factor. The vector space of the given
sl,,-module U gets identified with the subspace

(2.21) 1U CU(q)@U.

Then by the definition of a parabolically induced module of level £, on
this subspace: any element of the subalgebra ¢ sl,,[t] C sA[m acts as zero,
the subalgebra sl,, C ;Im acts via its defining action on U, the element
C of g[m acts as the the scalar /. All this determines the action of the
Lie algebra sl,, on our V = U(q) ® U.

Now consider the module W = A (V) over sl,, and €y . Using the
above identification,

(2.22) W =Clzy,27", ..oy, 25 @ (CM*N @ U)o U

as a vector space. Its space of g-coinvariants is isomorphic to (2.20).
Indeed, we can define a bijective linear mapping ¢ from (2.20) to the
quotient space W /q W as follows. First we map (2.20) to the subspace

Clzy, =7, .oy, 2 @ (C™)* V@ 1eUcW

in the natural way, and then regard the image of the latter map modulo
qW. To prove the bijectivity of the resulting mapping ¢, consider the
ascending Z-filtration on the space (2.15) defined by the total degree in
the variables x1, ..., xn . The action of the subalgebra q C ;[m preserves
the filtration. Moreover, the corresponding graded action of q is trivial.
Hence this filtration on (2.15) induces an ascending filtration on W such
that the corresponding graded action of q is via left multiplication in
the tensor factor U(q) of (2.22). The bijectivity of the mapping ¢ now
follows from the Poincaré-Birkhoff-Witt theorem for the algebra U(q).
Since the subalgebra s, C ;[m acts on the subspace (2.21) through
its defining action on U, the mapping ¢ is sl,,-equivariant. Further, the
subalgebra C[zy,z7",...,zn,25"] C €x acts on both (2.20) and W
via left multiplication in itself as their tensor factor. Hence the mapping
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¢ is equivariant for this subalgebra. But relative to the action of this
subalgebra on the vector space (2.20), the subspace 1 ® (C™)®N @ U is
cyclic. To complete the proof of Theorem 2.5 it now remains to check
the $n-equivariance of the restriction of the mapping ¢ to this subspace
of (2.20). Here H is regarded as a subalgebra of €y .

The image of the subspace 1 ® (C™)®N @ U of (2.20) under ¢ is the
subspace

(2.23) 1@ (CM*Ne1eUcCW

regarded modulo q W. The action of the group &y C Hy on both the
subspace of (2.20) and its image under ¢ is via permutations of the N
tensor factors C™. This action of &y obviously commutes with ¢. Now
consider the elements 21, ..., zy € Hy which together with & generate
the algebra $n. According to Corollary 1.2(i) for any p=1,..., N the
generator z, acts on the subspace 1 ® (C™)®N @ U of (2.20) as

= 1

S d@EY © By~ — ideid®V o1,
m

a,b=1

On the other hand, according to Corollary 2.4(i) the generator z,
acts on W as (2.18). When applied to elements of the subspace (2.23),
all summands displayed in the first line of (2.18) vanish, because here
the derivation 0, and the difference 1 — 0, are applied to the constant
function 1 € Clay,2z7",...,2x,25"]. The summands in the second
line of (2.18) corresponding to the indices ¢ = 1,2,... also vanish on the
subspace (2.23), because the last tensor factor of any of these summands
belongs to the subalgebra tsl,,[t] C sl,, . The remaining summands of
(2.18) correspond to ¢ = 0. Their sum acts on the subspace (2.23) as

= 1
3 id®Eé§)®id®Eba—E ideid®Y @ideI.

a,b=1
Hence the restriction of ¢ to the subspace 1 ® (C™)®N ® U of (2.20) is

Zp-equivariant. U

83. Proof of Proposition 2.3

3.1. To prove the part (i) of Proposition 2.3, we use the definition
of the algebra €y as the ring of fractions of the algebra © y relative to
the set of denominators z;,...,zx. Let us denote by X,, the operator of
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multiplication by the variable =, in the first tensor factor of the vector
space (2.12). Further denote by Y), the operator acting on (2.12) as

1
kO, ®1d®N @id + ) (1= 0,) @ 0py @id +
Tp — Ty
T#p
S 3 e B 6 B

i=0 a,b=1

so that the Cherednik operator (2.14) equals the composition X, Y, . We
will show that a representation of the algebra ® y on the vector space
(2.12) can be defined by mapping

(3.1) = Xp, Yp—Y, and c—o®o®id

forallp =1,...,N and 0 € Gy. We will use the defining relations
(2.1),(2.2),(2.3) of Dy .

The definitions of the operators X,, and Y}, immediately show that
the relations (2.1) are satisfied under the mapping (3.1). Moreover, due
to the latter fact it suffices to consider the relations (2.2),(2.3) only for
p = 1. In this case the commutator [Y,,X,] for ¢ > 1 equals

1 1
Z [1—01,2¢] @01, ®id = [— 01,2 ® 014 @1d
T — T T — T
r>1 1 r 1 q

which in turn equals to — 014, ® 014 ®1id as required by the relation (2.2).
Further, in the case p = 1 the commutator [Y,, X, ] equals

1
K+ 1—01,21|®0,Qid = K+ o1 Q o1 ® id
2 m- o] 2
as required by the relation (2.3). To complete the proof of the part (i)
of Proposition 2.3, it now remains to check the pairwise commutativity
of the operators Y7,...,Yn.

Now extend the vector space (2.12) by replacing its first tensor factor
Clzy, 3:1_1 s ,xN,J:;,l] by the space of all the complex valued rational
functions in x1,...,xy with the permutational action of Sy. For any
p consider the following three operators on the extended vector space,

D, = 9,®id*N ®id,

1
R, = Z Opr @ Opr ®1id,

Ty — Ty
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T, =Y

Qo @id+ Y. Y 2y QB @ Byt

— X,

r#£p Tp =0 a,b=1
Note that Y}, is the restriction of the operator x D, — R, + T}, to the
space (2.12). The operators Dy, ..., Dy clearly pairwise commute. The
next two lemmas show that the operators Ry,...,Ry and T7,...,TxN
enjoy the same property.
Lemma 3.1. The operators R1,..., Ry pairwise commute.

Proof. It suffices to prove the commutativity of the operators R,
and R, only for p = 1 and ¢ = 2. By definition, the commutator

[R1,R2] is equal to the sum

1 1
Z{ o1 ® o1, @id 025®025®id}
21 1 — Ty To — Tg

s#£2
which is in turn equal to the sum over the indices r > 2 of

1 1
{ 012 ® 012 ®id U1r®alr®id}+

X1 — T2 X1 — Ty

1 . 1 .
{ 012 ® 012 ®1id 02T®02r®1d}+
X1 — T2 To — Ty

1 . 1 .

[ o1 @ 01, @id | 020 ® 02, ®1d |
T — Ty X9 — Ty

For any single index r > 2, the sum of the three commutators displayed

above is equal to zero. Indeed, because the action of the symmetric group

G on the space of complex valued rational functions in x1,...,xy by

permutations of the variables is faithful, it suffices to prove that the sum

1 1
012, O1r |+
Tr1 — T2 Tl — Ty

1 1

[ 012, Uzr}+
1 — T2 X9 — Ty

[ 1 1

O1r, 0'27“}
1 — Ty T2 — Ty

is equal to zero. This can be easily verified by direct calculation. O

Lemma 3.2. The operators Ty, ..., Tn pairwise commute.
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Proof. 1t suffices to prove the commutativity of the operators T,
and T, only for p =1 and ¢ = 2. The commutator [T} ,T%] is equal to

1 o0 m
L 2 i=0 a,b=1
1 ) oo m 4 ]
[ soneid, 3 Y o' 0B e But! |+
Tl — T2 — —
7=0 ¢,d=1
o0 m o0 m
(> Y e e B e But Y Y a T e BY 0 Buct? |
1=0 a,b=1 7=0 ¢,d=1

plus the sum over the indices r > 2 of

1 . 1 .
[ ® o012 ®id ®01T®1d}+

T1 — T2 1 — Ty
[ ® o012 ®id ®O’27~®id}+
T, — X2 Ty — Ty
|: ®017'®id7 ®0'27®1d:|
1 — Ty XTo — Ty

Here we have omitted the zero commutators, see the beginning of the
proof of Lemma 3.1.

For any r > 2, the sum of the last three displayed commutators
equals zero. The sum of the three commutators in the previous display
also equals zero. Both equalities follow from the classical Yang-Baxter
equation for the rational function of two complex variables u and v

1

u—v

Z Eab & Eba
a,b=1

(3.2)

with values in gl,,, ® gl,, , see for instance [1, Section 3.2]. To derive
the first stated equality, we observe that the sum over a,b=1,...,m in
(3.2) acts on C™ @ C™ as the permutation of the two tensor factors. To
derive the second stated equality, we use the expansion

oo
=2 u"
u—"v
=0

and also observe that for 7,5 > 0 the summand at the right hand side
of (2.11) involving the central element C' € gl vanishes. O

Part (i) of Proposition 2.3 follows from the two lemmas above, and
from the next three.
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Lemma 3.3. For any p # q we have [D,,R,]+[R,,D,] =0.

Proof. 1t suffices to prove the stated equality only for p = 1 and
q = 2. By definition,

1
(D1 R2] =) [ 0121 @id, —— 03, @0z 01 | =
42 T2 — Ty

0'12®O'12®id+

2 012 (01 — 02) ®o12®id.

(1 —x2) T — T2

The sum in the last displayed line is invariant under exchanging the
indices 1 and 2. Hence the commutator [Ds, R1] is equal to the same
sum. Therefore [Dl,R2]+[R17D2} =0. O

Lemma 3.4. For any p # q we have [D, ,T,|+ [T, ,D,] = 0.

Proof. It suffices to prove the stated equality only for p = 1 and
q = 2. By omitting the zero commutators, we get

1

T2 — T1

1 .
2 ®012®1d

Dy, Tx]= |0, o
[ 1 2] 1 (l’l—l'g)

i| ® g12 ® ld =
which is again invariant under exchanging the indices 1 and 2. Therefore
the commutator [Ds,T}] is the same as [Dy,72]. Thus we get the
equality[Dl,Tg]—i—[Tl,Dg}:O. O

Lemma 3.5. For any p # q we have [R,, Ty + [T, ,Rq] =0

Proof. It suffices to prove the stated equality only for p = 1 and
q = 2. By omitting the zero commutators like we did in our proof of
Lemma 3.2, the commutator [ Ry ,T5] is equal to

oo m

1 . —i—1 2)
xl_m2012®012®1d7 Z ®Eab ® Epa t }

(3.3) [

plus the sum over the indices r > 2 of
(3.4) - {

1 . 1 )
{ o1 o1, ®id ®0’2r®ldi|+
L1 — Ty To — Ty

Ulr®01r®ida
1 — Ty 1 —

®0‘12®id} +
2

o012 ® o2 ®id

|: ®O’2T®id:|.
xT1 — o T2 — Ty

In particular, here we used the vanishing of the commutator

1 . 1 )
[ 012 ® 012 ®id ®012®1d}.
€Tl — T2 Tl — T2
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The commutator (3.3) is equal to the sum over i = 0,1, ... of
(T 1) omy ! @) -
Z ( ! 012QE,) 010@Ep t' — 22— 015,QE,, 012®Ebatl)
G2\ w1 1 — Ty

which is invariant under exchanging the indices 1 and 2. For any r > 2,
the first commutator in the three lines (3.4) is equal to the negative of
1

(5171 - xr)($2 - x,«)
1

(z1 — z2)(T1 — T

o1 ® 01012 ®id +

o1 ® o201, ®id,

while the second commutator in (3.4) is equal to the negative of

1

(z1 — x2) (71 — 1)
1

(r1 — 2 ) (22 — 21)

O1r ®O'17“0'2r ®1d +

O1r Q020 O1p @ id .

Hence these two commutators cancel each other in (3.4) by the relations
O1p 012 = 09, 01, and 012 01, = 01, 02, . The third commutator in (3.4)
is equal to the difference of the operators

1

0'12®O'1202 ®ld
(w1 — 32) (21 — 27) '

and
1

(x1 — 22) (72 — 21

This difference is invariant under exchanging the indices 1 and 2 due
to the relations o159 01, = 09, 012 and o1, 012 = 012 02,. Therefore the
commutator [ Ry, Ty ] is the same as [ Ry, T2 ]. Thus we get the required
equality [Ry,T2] 4+ [T1,R2] = 0. O

O12 ® O9r 012 ®@id .

Thus we have now proved the part (i) of Proposition 2.3. Moreover,
the above five lemmas imply that for any given ¢ € C the operators
kDy+eR,+ T, with p =1,..., N pairwise commute. However, the
choice ¢ = —1 is necessary for these operators to preserve the vector
space W. The defining relations (2.2),(2.3) of the algebra ©y exhibit
this particular choice of .

By inspecting the arguments given in this subsection, we also get
the part (i) of Corollary 2.4. Indeed, if we replace the operator (2.14)
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by (2.18) then the definitions of Y, and T}, given in the beginning in this
subsection have to be modified by subtracting the sum

1 & . ,
(3.5) — >z, ' eid®N eIt
m <

p
=0

With these modifications, all other equalities stated in this subsection
remain valid. Note that in the modified arguments we still regard V as

a module over the Lie algebra gl,, .

3.2. Let us now prove the parts (ii) and (iii) of Proposition 2.3.
For all indices ¢,d = 1,...,m and each j € Z the operator (2.16) on the
vector space (2.12) commutes with any simultaneous permutation of the
variables x1,...,xn and of the N tensor factors C™. The action of the
element C € é\[m on W also commutes with any such permutation. So
the actions of the Lie algebra thm and of the symmetric group Sy on
W mutually commute.

Any operator (2.16) commutes with the multiplications by 1, ...,2x
in the tensor factor (C[Jcl,xfl e ,acN,xj\,l] of W. Further, in the case
j = 0 the operator (2.16) commutes separately with any permutation
of x1,...,zxy and with any permutation of the N tensor factors C™.
Hence for j = 0 it commutes with the Cherednik operator (2.14) on W.
Here we also use the basic fact that the adjoint action of E.q € gl,,
annihilates the element

Z Eab & Eba € g[m ®g[m .
a,b=1

Thus we have proved the part (ii) of Proposition 2.3. Moreover, we
have proved that for all ¢,d = 1,...,m and j € Z the operator (2.16) on
W commutes with the action of the subalgebra of €y generated by Sy

and C[xl,xfl,...w]v,mj\,l]. However, the operator (2.16) generally
does not commute with (2.14). In the notation of Subsection 3.1, the
latter operator for any p =1,..., N can be written as the composition

X, Y, . Since the operator (2.16) commutes with X, , we shall consider
the commutator with Y}, . Moreover, it suffices to consider the case p =1
only, see the very beginning of the present subsection.

Let us extend the vector space W by again replacing its first tensor
factor C[xl,:zrl_l,...,xN,xj_\,l] by the space of all the complex valued
rational functions in x1,...,xn as we did in Subsection 3.1. Then Y;
becomes the restriction of the operator k D1 — Ry + 1} to the space W.
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The commutator of the summand x Dy with the operator (2.16) equals
(3.6) kjei P o EY @id.

The R; commutes with (2.16). The commutator of 77 with (2.16) equals

N
1 j 1 r .
(3.7) Z[m_x ®Ulr®id,IE{@E(S)@id—‘réEﬂ@E(Ed)@ld}-l-

r=2

SN (a7 T @EY @Bt af @ B @id +id @id®Y @ Eegt ]
i=0 a,b=1

where we have just omitted the zero commutators. Because the operator
o1, on (C™)®N can be written as the sum

(1) ()
1 r
Z Eab Eba ’

a,b=1
the sum in the first of the two displayed lines (3.7) equals

N m i
(3.8) 3> ”;1 —L o (BYEY - BY EY) id,

r=2 a=1

By using the commutation relations (2.11) in gA[m and the assumption
that the gl,,,-module V has level x —m, the sum in the second of the
two displayed lines (3.7) equals

NS (af T QB @ Beat' — 27T 9 BY © Euat’
1=0 a=1
— 27T QB @ Bt 4 27T @ EW @ Byt

. (m-r)jzi e EY ®id if j<o0,
0 if j>0.

Now assume that j < 0, so that the element E.;t7 belongs to the
subalgebra q C gl,,. Then by adding the last displayed sum to the
operator (3.6) and making cancellations we get the sum

(3.9) mjzi ' @B} @id +
—Jj—1 m

ST N T @ (BY @ Bogt™ — By @ Bea 7).

i=0 a=1
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Hence for j < 0 the commutator of the operator Y7 with (2.16) equals
the sum of (3.8) and (3.9). Both the operators (3.8) and (3.9) preserve
the space W, so its extension is no longer needed.

To finish the proof of part (iii) of Proposition 2.3, let us identify the
vector space W with that of the tensor product

(3.10) Cmit,t N oV

of gA[m—rnodules as we already did in Subsection 2.2. Denote by 6 the
representation of the Lie algebra gT[m on the space of (3.10), so that
0(E.qt7) is the operator (2.16) under the identification of the latter
space with W. For each r = 1,..., N denote by 6, the representation
of gl,, on the r th tensor factor C™[¢,t7] of (3.10), so that under the
identification of (3.10) with W

0, (Eeqt?) = 2] © B\ ®id.

Further denote by 6y41 the representation of g[m on the tensor factor
V of (3.10). Then

(3.11) 0=0,+...+0n+0n11.

Let us now consider the following element of the tensor square of
the subalgebra t~tgl, [t7!] C gl,,,

—J m
/= Z Z<Eadti+j®Ecat_i_l _Ecati+j®Eadt_i_1).

j—1
i=0 a=1

Note that this element is antisymmetric: it belongs to the exterior square
of t=1gl,,[t~!]. By rewriting the definition of this element as

—j—1
=0
> Baat™ @ Beat ™7 =Y Beat ™ @ Boat 77 )
azc atd

we observe that J belongs to the tensor square of the subalgebra q C sA[m
and thus to q A q.

Forany r=1,...,N,N 4+ 1 let w, : q® q — End W be the linear
map defined by setting w, (P® Q) =0, (P) 6, (Q) for all P,Q € q. Let

Ww=wi+...+twWN +WNET-
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Then we have w(P ® Q) = 0(P)601(Q) due to (3.11). Let us apply the
maps wi,...,wn,wn+1 to the element J. In particular, we get

wi(J)=jai @ (mEY —5,41d®V)®@id.

For the indices 7 =2,..., N we get

—J—1 m

Z Z 551 z+j E(l) E(’”) E(icll) Ec(:l"))

i=0 a=1
which coincides with the sum (3.8). Further,

—j—1 m
wnir(J) = 3 D ar T @ (BY) © But™ — By @ Eqt™)
i=0 a=1

which coincides with the sum (3.9) less its first summand. Hence for
J < 0 the commutator of the operator Y; with (2.16) equals

e j i @id®N @id+ wi(J) + ... +wn(J) +wnii(J) =
beqjrit @id®N @id +w(J).

By the linearity of the map (3.11) it follows that for any given P € q, the
commutator [Y7,0(P)] belongs to the right ideal of the algebra End W
generated by the image 6(Q) of a certain element @) € q depending on
the element P . Hence the operator Y; preserves the subspace qW C W.
Thus we complete the proof of the part (iii) of Proposition 2.3.

By inspecting the arguments given in this subsection, we also get the
parts (ii) and (iii) of Corollary 2.4. Indeed, if we modify the definitions
of Y, and T}, given in the beginning of Subsection 3 by subtracting (3.5),
then for p = 1 we will have to subtract from (3.7)

—Z T eid®N eIt ideid®Y @ Bt ].

By using the commutation relations (2.11) in gA[m and the assumption
that the gl,,,-module V has level kK —m , in the case of j < 0 the above
displayed expression equals

1 i
— beq(m—k)jo! "t @id®*N ®id
m

which has to be then subtracted from (3.9). However, by linearity this
modification has no effect when considering the commutator [Y7 ,6(P)]
for any P € q. Hence for the modified operator Y; the [Y7,60(P)] still
belongs to the right ideal of End W generated by 6(Q) for some @ € q.
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