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Contractibility of Outer space: reprise

Karen Vogtmann

Abstract.

This note contains a newly streamlined version of the original proof
that Outer space is contractible.

§1. Introduction

In a series of lectures in August 2014 at the Seventh Seasonal Insti-
tute of the Mathematical Society of Japan I began by recalling the con-
struction of Outer space for a free group Fn. This is a finite-dimensional
contractible space with a proper action of the group Out(Fn) of outer
automorphisms of Fn [4]. I then discussed the idea of developing an
analogous outer space for the outer automorphism group of a general
right-angled Artin group (RAAG) AΓ. Such a space was introduced in
[2] for the case that AΓ has no twist automorphisms. We also under-
stand the case that AΓ is generated entirely by twist automorphisms and
signed permutations, where the relevant space is a contractible subspace
of the symmetric space for SL(n,R). Our candidate for an Outer space
for a general RAAG is a hybrid of these two spaces.

The key result of [2] is that the outer space constructed there is con-
tractible. Although there are now several proofs that the original Outer
space is contractible, the combinatorial techniques used in the original
proof [4] are ultimately what worked for us in the more general RAAG
setting. Thus the proof in [2] follows the original proof but also incor-
porates simplifications, including some which were already introduced
in [5]. Unfortunately, new complications also arise due to the fact that
the outer automorphism group of a general RAAG is more complicated
than the outer automorphism group of a free group. In this note I will
avoid these complications by just giving the complete simplified argu-
ment in the case of a free group. One motivation for doing this is to
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Fig. 1. A marked graph (G, g)

clarify the original proof, another is to make it easier for those who want
to understand the general RAAG case to follow the argument.

§2. Outer space and its spine

In this section we very briefly recall the definition of Outer space for
a free group Fn and its spine Kn. For a more detailed introduction to
these spaces, see [8].

A rose is a graph with one vertex and n edges (so the edges are loops
at the vertex). We begin by fixing a specific rose Rn whose fundamental
group we identify with Fn. A point in Outer space is then an equivalence
class of marked metric graphs (G, g) (see Figure 1), i.e.

(1) G is a finite metric graph with all vertices of valence at least
3.

(2) The volume of G (i.e. the sum of the lengths of its edges) is 1.
(3) g : Rn → G is a homotopy equivalence.
(4) (G, g) is equivalent to (G′, g′) if there is an isometry h : G → G′

with h ◦ g � g′.
In the rest of this note we will not be careful about distinguishing

between a marked graph and its equivalence class.

Remark 2.1. Requiring that the volume be equal to one is a means
of normalizing the projective class of a metric graph. It is also sometimes
convenient to consider other normalizations, or even to consider the
unprojectivized version of Outer space, where the edges of G are allowed
to have any positive lengths.

Outer space is a union of open simplices, where the simplex con-
taining (G, g) consists of all marked graphs one can obtain by varying
the (positive) edge-lengths of G while keeping the volume equal to one.
Passing to a face of the simplex corresponds to shrinking some edges to
points. Some faces of each simplex are missing, since if an entire loop is
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shrunk to a point the fundamental group is no longer Fn and the induced
marking is no longer a homotopy equivalence. Formally including these
missing faces gives a simplicial complex, called the simplicial closure of
Outer space; the simplices which are not in Outer space are said to be
at infinity.

Remark 2.2. The simplicial closure of Outer space is also called
the free splitting complex or the sphere complex; these terminologies arise
from different (equivalent) descriptions of Outer space, the first as a
space of actions of Fn on metric simplicial trees and the second as a
space of weighted sphere systems in a doubled handlebody.

The set of all open simplices of Outer space is partially ordered by
the face relation, and the geometric realization of this partially ordered
set (poset) is called the spine of Outer space. Thus a simplex in the spine
Kn is a chain of open simplices σ0 ⊂ . . . ⊂ σk with σi a proper face of
σi+1. In other words, Kn is a subcomplex of the barycentric subdivision
of the simplicial closure. There is a natural equivariant deformation
retract of all of Outer space onto Kn, performed by pushing linearly
from the (missing) simplices at infinity onto the spine.

Thus to prove that Outer space is contractible it suffices to show that
the spine Kn is contractible.

§3. Structure of the spine Kn and plan of attack

Since vertices of Kn sit at the barycenters of simplices of Outer
space all edges have the same length and we may think of these as purely
combinatorial (as opposed to metric) objects or, equivalently, assume all
edges have length one. We take this point of view for the rest of the
paper.

To describe the simplices of Kn, recall that a forest in a graph G is
a subgraph which contains no loops, i.e. a forest is a disjoint union of
trees. Collapsing each tree of a forest F to a point gives a new graph
G//F and the collapsing map cF : G → G//F is a homotopy equivalence,
so the composition cF ◦g is a marking of G//F . Forest collapse gives the
vertices of Kn the structure of a partially ordered set (poset). The entire
complexKn is the geometric realisation (also called the order complex) of
this poset. In other words, there is an edge in Kn from (G, g) to (G′, g′)
whenever (G′, g′) can be obtained from (G, g) by a forest collapse, and
there is a k-simplex for every chain of k forest collapses

(G0, g0) → (G1, g1) → · · · → (Gk, gk).
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Every vertex in Kn is connected by an edge to at least one marked
rose (R, r), obtained from (G, g) by collapsing a maximal tree. Thus Kn

is the union of the simplicial stars of its marked roses. In order to prove
that Kn is contractible the idea is to build Kn by starting with the star
of a single marked rose (which is contractible), then attach the rest of
the stars in some order and prove that at each stage we are attaching
along something contractible. In order to carry out this plan we need to

(1) Define a norm on marked roses and prove that this norm well-
orders the marked roses.

(2) Identify which marked graphs in the star of a marked rose are
reductive, i.e. are adjacent to marked roses of smaller norm.

(3) Prove that the subcomplex of reductive marked graphs in a
star is contractible.

We actually perform a bit of sleight-of-hand because it is easy to show
that Kn is connected. We then show that if the subcomplex of reductive
marked graphs is non-empty, then it is contractible. This shows that
Kn is a union of contractible components, but since it is connected it is
actually contractible.

§4. Connectivity of Kn via Stallings folds

If h : Rn → R is a homeomorphism then the marked rose ρ0 = (R, h)
is called the standard rose. Since every vertex of Kn is connected to a
marked rose, to prove that Kn is connected it suffices to connect any
marked rose to ρ0. The fact that you can do this follows easily from
Nielsen’s theorem that Out(Fn) is generated by signed permutations
and transvections (i.e. automorphisms which multiply one generator by
another). But there is also a very slick, completely elementary way to
see this, due to Stallings (which also reproves Nielsen’s theorem).

A map g : G → H between two graphs is called a graph morphism
if it is sends vertices to vertices and edges either to single edges or
to vertices. If we are allowed to add bivalent vertices to G then any
continuous map is homotopic to a graph morphism, so we will assume
all of our maps are graph morphisms.

If a graph morphism g : G → H is not locally injective then either
some edge of G must be mapped to a point in H or two edges of G
emanating from the same vertex must map to the same edge in H.
In either case, g factors through a morphism G → G1, which either
collapses an edge (in the first case) or folds two edges together (in the
second case). In the second case this morphism is called a Stallings fold.
An example is illustrated by the top arrow in Figure 2.
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Fig. 2. A fold is a blowup followed by a forest collapse

Proposition 4.1. Kn is connected.

Proof. As remarked above, it suffices to connect any marked rose
ρ = (R, r) to the standard rose ρ0. We begin by representing a homotopy
inverse to r by a graph morphism s : R → Rn To do this we need to
subdivide the edges of R suitably. Technically this is not allowed in Kn

since it introduces bivalent vertices, but we can recover the point of Kn

by simply ignoring the bivalent vertices. If s is not locally injective,
then either some edge collapses or you can fold two edges which start
at the same vertex. Note that these edges must have distinct terminal
vertices, since otherwise they would form a loop with null-homotopic
image, which can’t happen because s is a homotopy equivalence.

Recall that collapsing a forest in a marked graph gives an edge in
Kn (unless the forest contains only proper subsets of subdivided edges,
in which case collapsing does not change the point of Kn). The reverse
of a single edge collapse is called a blowup. A fold corresponds to a
blowup followed by a forest collapse when the folded edges have distinct
terminal vertices; thus a Stallings fold gives a path in the 1-skeleton of
Kn. See Figure 2 for the case that neither edge is a loop. There is a
similar picture if one edge is a loop.

If s is not locally injective, perform a fold. (If a univalent vertex
is produced, also collapse the adjacent edge; such a fold and collapse
does not change the point of Kn.) If the induced map is not locally
injective then fold or collapse again, thus producing a path in Kn. This
process has to stop because each time the total number of edges in the
graph decreases. When it stops, the induced map f : G → Rn is locally
injective.
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We now claim that a locally injective map f is actually a homeo-
morphism, so the path in Kn has arrived at (f−1, G) = ρ0. To see this,
let xi be the i-th petal of Rn. Since f is a homotopy equivalence, there
is some loop �i in G with f(�i) � xi. Since f is locally injective, �i is
a simple loop in G. If i �= j, then the loops �i and �j can intersect in
at most a point, since that is true of their images xi and xj , so any
overlap would have to collapse to a point. The union of the �i must be
all of G, since otherwise the complement would be a forest which must
collapse. Finally the �i must all intersect in the same point, forming a
rose. Q.E.D.

§5. The norm of a rose

The next task is to find a “Morse function” which totally orders the
roses. The idea is that more complicated markings should come later in
the ordering.

For any loop γ in a graph G, let �G(γ) denote the length of the
shortest loop in the (free) homotopy class of γ, where we think of each
edge of G as having length one. Note that γ is shortest in its homotopy
class if and only if it is locally injective, in which case we call it a tight
loop.

Fix a basis x1, . . . , xn for Fn and list the conjugacy classes in order
of increasing (cyclically reduced) word-length:

W = (w1, w2, . . .) = (x1, x2, . . . , xn, x
2
1, . . . , x1x2, . . . , x1x

−1
2 , . . . , x3

1, . . .).

Note that it is redundant to include both w and w−1 in W, so we won’t.
Let ZW be the associated ordered abelian group, with the lexicographical
order. For any rose ρ = (r,R) and any w ∈ W, define ‖ρ‖w to be equal
to �R(r(w)). The norm of ρ is then defined by

‖ρ‖ = ‖ρ‖W = (‖ρ‖w1 , ‖ρ‖w2 , . . .) ∈ Z
W .

This norm totally orders the roses, according to the following basic the-
orem, proved independently by Alperin and Bass and by Culler and
Morgan:

Theorem 5.1. [1, 3] A free action of Fn on a simplicial tree is
determined by its translation length function.

We will show that our norm has the following stronger property,
which we will need to do induction:

Proposition 5.2. The set of roses is well-ordered in this norm.
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Lemma 5.3. Any free minimal action of Fn on a simplicial tree is
determined by the translation lengths of finitely many conjugacy classes.

Proof. Assume first that the quotient by the action is a rose. We
claim that in this case the action is determined by the translation lengths
of the 2n2 + 2n classes which have length at most 2. These are repre-
sented by oriented loops of length at most 2 in the quotient rose. The
petals of the rose correspond to some basis w1, . . . , wn for Fn.

Suppose there was another free minimal action with quotient a rose
in which these classes have the same lengths. This action is the first ac-

tion twisted by an (outer) automorphism φ̂. Any automorphism φ rep-

resenting φ̂ must permute the conjugacy classes of w1, w
−1
1 , . . . , wn, w

−1
n

since these are all of the classes of length 1. In fact, we may assume
φ sends each wi to a conjugate of itself, since permuting and invert-
ing the wi can be realized by an isometry of the rose, which lifts to an
equivariant isometry of the tree.

Take a representative φ for φ̂ with φ(w1) = w1, and suppose φ(w2) =
uw2u

−1. Then φ(w1w2) = w1uw2u
−1. Since this is conjugate to an

element of length 2, umust be a power of w1. Therefore, after composing
φ with conjugation by u−1 we may assume φ(w1) = w1 and φ(w2) = w2.

Now consider φ(wi) = vwiv
−1 for i > 2. The argument above shows

that v must be a power of w1 and a power of w2, so in fact v = 1 and φ
is the identity.

If the quotient by the action is a marked graph which is not a rose,
choose a maximal tree and collapse it to get a rose. We can distinguish
this rose from any other rose by the lengths of finitely many conjugacy
classes. Our original marked graph is obtained from this rose by blowing
up the vertex into a tree. There are only finitely many ways to do this,
which by Theorem 5.1 can be distinguished by finitely many lengths.
Thus the entire action is determined by the lengths of finitely many
conjugacy classes. Q.E.D.

Remark 5.4. The finite set of conjugacy classes found in Lemma 5.3
depends on the action. It can be shown that for any fixed finite set of
conjugacy classes there are two roses in which those conjugacy classes
have the same translation length. (In fact, you can find an arbitrary
(finite) number of roses in which those conjugacy classes have the same
translation length, see [7]).

Proof of Proposition 5.2. We have to show that any subset U of
roses has a least element. Set U = U0 and define a decreasing chain

U = U0 ⊃ U1 ⊃ U2 . . . ,
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where Ui is the set of elements in Ui−1 for which ‖ρ‖wi is minimal
possible, say ‖ρ‖wi = �i. Note that each element of Ui is ≤ each element
of Ui−1 in the ordering.

The function f : Fn → Z defined by f(wi) = �i satisfies the axioms
for a translation length function, so corresponds to an action on a tree.
This action is free since f(wi) = �i �= 0 for all i. Therefore it corresponds
to a marked graph γ (with all edges of length 1). By Lemma 5.3 γ is
determined by the lengths of finitely many elements of Fn. So for N
sufficiently large UN has only one element, a rose which must be equal
to γ, which is smaller than any other element of U . Q.E.D.

§6. Separating edges

It is convenient to prove contractibility just for the subcomplex Ln

of Kn spanned by graphs with no separating edges. This is justified by
the following observation.

Proposition 6.1. Kn deformation retracts to the subcomplex Ln

spanned by graphs with no separating edges.

The deformation retraction is easy to see: one just uniformly shrinks
all separating edges to zero. Since Kn is the geometric realisation of a
poset, one can give a formal proof using Quillen’s Poset Lemma, which
will also come in handy later.

Lemma 6.2. [Quillen’s Poset Lemma [6]] Let P be a poset and
f : P → P a poset map (i.e. x ≤ y implies f(x) ≤ f(y)). If in addition
f(x) ≤ x for all x, then |P | deformation retracts to |f(P )|, where vertical
bars denote geometric realization.

Note that by using the opposite poset we can draw the same conclu-
sion if f(x) ≥ x for all x. The proof of the Poset Lemma is a straight-
forward application of the prism operator, and is left to the reader.

Proof of Proposition 6.1. The map f : Kn → Kn which contracts
each separating edge is a poset map with image Ln. Q.E.D.

We reiterate our plan of attack, as an excuse to introduce some
notation. All roses are in Ln, and we view Ln as the union of the
simplicial stars of its roses:

Ln =
⋃

roses ρ

st(ρ).

We construct Ln by starting with the star of the (unique) rose of minimal
norm and adding stars of roses in the order dictated by the norm, i.e.
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for each rose ρ, define

L<ρ =
⋃

‖ρ′‖<‖ρ‖
st(ρ′).

We will prove that if st(ρ) ∩ L<ρ is non-empty, then it is contractible.
This will show that Ln is a union of contractible components. But we
already know Ln is connected, so it is contractible.

§7. Reductive graphs and the Factorization lemma

We call a marked graph reductive if it is in st(ρ) ∩ L<ρ; thus (G, g)
is reductive if and only if G contains maximal trees Φ and F such that
collapsing Φ gives ρ and collapsing F gives a different rose ρ′ with ‖ρ′‖ <
‖ρ‖.

For each edge e ∈ G of a marked graph (G, g), let |e| ∈ Z
W be the

element whose coefficient |e|w is the number of times a tight representa-
tive of g(w) crosses e, in either direction. Since collapsing a forest sends
tight paths to tight paths, we get

‖ρ′‖ = ‖ρ‖+
∑
α∈Φ

|α| −
∑
e∈F

|e|.

Proposition 7.1. If Φ = {α1, . . . , αk} and F = {e1, . . . , ek} are
maximal trees in a graph G, then there is a permutation σ of {1, . . . , n}
such that eσ(i) connects the two components of Φ− αi for each i.

Proof. First of all we want σ to be the identity on common edges
of Φ and F . We can then contract these edges to reduce the problem to
the case that Φ and F have no edges in common.

It’s easy to move from Φ to F by replacing one edge at a time, but
we want to do something a little more subtle than that. Here’s one proof
you can do it:

Φ ∪ F is a graph of rank k, and the edges of Φ or of F each give a
basis for H1(Φ∪F ). The change of basis matrix B has entry bij = ±1 if
the unique path in F connecting the endpoints of αj crosses ei; otherwise
bij = 0. Since this matrix is non-singular, some term

sign(σ)
n∏

i=1

bi,σ(i)

in the expression for the determinant of B is non-zero. Then eσ(i) joins
the two components of Φ− αi. Q.E.D.
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Corollary 7.2 (Factorization lemma). In st(ρ), every reductive
(G, g) is adjacent to a 2-vertex reductive graph.

Proof. With Φ, F and σ as in Lemma 7.1, we have

‖ρ′‖ = ‖ρ‖+
∑
i

|αi| −
∑
i

|eσ(i)| = ‖ρ‖+
∑
i

(|αi| − |eσ(i)|).

Since ‖ρ′‖ < ‖ρ‖, we must have |αi| − |eσ(i)| < 0 for some i. Then the
two-vertex graph obtained by collapsing all edges of Φ− αi is reductive
(and is connected to (G, g)).

Q.E.D.

Thus we may view st(ρ)∩L<ρ as a union of stars of 2-vertex graphs.
If we are lucky there is only one reductive 2-vertex graph so st(ρ)∩L<ρ is
contractible. We are seldom so lucky, however, and need to work harder.
In order to do this we will reinterpret reductive graphs and the norm
using a neat combinatorial model originally introduced by Whitehead in
the context of sphere complexes in doubled handlebodies. This model
(translated into the language of partitions and graphs instead of sphere
complexes) is explained in the next section.

§8. Ideal edges

We now fix a rose ρ = (r,R) and re-interpret graphs in st(ρ) in
terms of partitions of the set H of half-edges of R. We denote the
natural involution on H by e �→ e. This section explains the translation
from graphs to partitions.

A marked graph (G, g) is in st(ρ) if and only if G has a maximal tree
Φ so that the composition of the collapsing map cΦ with g is homotopic
to r. In particular, the edges of G − Φ are mapped homeomorphically
onto the edges of R, so if you snip each edge of G − Φ you obtain a
tree whose leaves are labelled by the elements of H (see Figure 3). Each
edge α of Φ gives a partition of H into two subsets, called the sides of
α, and different edges α and β give compatible partitions, in the sense
that A ∩B = ∅ for some choice of sides A of α and B of β. Conversely,
given any set of compatible partitions of H we can reconstruct the tree Φ
with leaves labeled by H, and recover (G, g) by reconnecting the paired
elements of H.

Definition 8.1. A partition of the set H of half-edges of R is an
ideal edge if it separates some pair {e, e}. An ideal edge is trivial if one
side is a singleton. An ideal tree is a set of non-trivial ideal edges which
are pairwise compatible.
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Fig. 3. A graph in st(ρ) is equivalent to a partition of the
half-edges of ρ

Note that a trivial ideal edge corresponds to a graph with a bivalent
vertex, and a partition which is not an ideal edge corresponds to a
graph with a separating edge. Since none of our graphs have bivalent
vertices or separating edges, the vertices of st(ρ) correspond to ideal
trees. Collapsing an edge of a tree corresponds to removing a partition
from the associated ideal tree. Thus the simplicial complex st(ρ) is the
geometric realization of the poset of ideal trees, ordered by inclusion.

We say an ideal tree or edge is reductive if the corresponding graph
is reductive. The Factorization Lemma, reinterpreted in this language,
says that if Φ is a reductive ideal tree, then it contains a reductive ideal
edge.

If α is a reductive ideal edge, then there is some pair {e, ē} in H
separated by α with |α| − |e| < 0. If A is the side of α containing e, we
call (A, e) a reductive pair for α.

§9. The star graph and the norm

We have reinterpreted graphs in st(ρ) as partitions of the half-edges
of ρ. We now need to interpret the norm of a rose in this model. In
order to understand which partitions are in the reductive subcomplex of
st(ρ), we also need to interpret |e| and |α| in this model.

Fix a rose ρ = (r,R) and let H be the half-edges of R. For any
conjugacy class w we associate a graph Γw called the star graph of w.
The vertices of Γw are the elements of H. To define the edges take a
tight loop representing r(w) in R, then snip the edges of R to make a
tree with 2n leaves. This cuts r(w) into segments joining the cuts; these
are the edges of Γw (Figure 4). Since ‖ρ‖w is the length of r(w), the
sum of the valences of Γw is twice ‖ρ‖w.

Let (G, g) be the two-vertex graph represented by a single ideal edge
α. Recall that |e|w denotes the number of times a tight loop representing
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Fig. 4. Star graph of the loop w = e2e
−1
4 e23

g(w) passes over e. If e �= α, then we could also measure |e|w in ρ where
|e|w is equal to the valence of e (or of e) in the star graph Γw. If e = α,
then |α|w is equal to the number of edges of Γw with one vertex on each
side of α.

§10. Contractibility of st(ρ) ∩ L<ρ

Since we have reinterpreted st(ρ) as the geometric realization of the
poset of ideal trees, we will make free and frequent use of Quillen’s Poset
Lemma (Lemma 6.2).

The complex we are interested in, st(ρ)∩L<ρ, is the poset of reduc-
tive ideal trees; call it P . As we remarked in section 9, the Factorization
Lemma says that each Φ ∈ P contains at least one reductive ideal edge.
Therefore the map P → P which throws out all of the non-reductive
ideal edges is a well-defined map. It satisfies the hypotheses of the Poset
Lemma, so |P | deformation retracts to its image, which is the realization
of the subposet Q of strictly reductive ideal trees, i.e. ideal trees all of
whose edges are reductive.

Now choose a maximally reductive ideal edge μ, i.e. there is a re-
ductive pair (M,m) for μ with |m| − |μ| maximal among all reductive
pairs (A, a). If every other reductive ideal edge is compatible with μ,
then μ can be added to every strictly reductive ideal tree Φ, and the
poset maps Φ �→ Φ ∪ {μ} �→ {μ} retract |Q| to the single point μ.

If there are edges α which cross μ, we have to work harder. Here is
the Key Lemma (see Figure 5):

Lemma 10.1 (Key Lemma). Let μ be a maximally reductive ideal
edge, with maximal pair (M,m), let α be a reductive edge that crosses
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M Aμ m α

Fig. 5. Key Lemma: One of the dotted ideal edges is reduc-
tive

μ, and let A be the side of α that contains m. Then A∪M or A∩M is
one side of a reductive ideal edge γ.

Assuming the Key Lemma, we proceed as follows:
Choose α, with side A containing m, such that

• If β is compatible with α and the side B of β containing m
also contains A, then B ⊃ M .

By the Key Lemma, one of M ∩A or M ∪A determines a reductive
ideal edge γ. We now observe that γ is compatible with α, μ and with
every β compatible with α. Therefore

Φ �→
{
Φ ∪ γ if α ∈ Φ

Φ if α �∈ Φ

is a poset map. It satisfies the condition of the Poset Lemma, so retracts
|Q| to its image.

In the image, everything that contains α also contains γ. Then the
map throwing α out of every Φ that contains it is also a poset map. The
final effect is to replace the edge α which crosses μ by the edge γ which
is compatible with μ, i.e. the image is now all reductive ideal trees which
do not contain α.

We repeat this procedure until we have eliminated every ideal edge
which crosses μ. Then we can retract to μ as before.

§11. Proof of the Key Lemma

In this section we prove the Key Lemma needed in the proof of
contractibility. Recall we are working with a fixed rose ρ = (r,R) and
partitions of the set of half edges H of R. We first define the dot prod-
uct A.B of disjoint subsets A and B of H as the element of ZW with
coordinate (A.B)w equal to the number of edges in the star graph Γw

with one vertex in A and one vertex in B.
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A BX Z Y

W

Fig. 6. Diagram for Lemma 11.2

For A ⊆ H, set A = H \ A and |A| = A.A. As noted in section 9,
for e ∈ H |e|w is just the valence of e in the star graph Γ(w), and if A
is either side of an ideal edge α, then |A|w = |α|w.

We use “+” to denote disjoint union of sets, as well as addition in
Z
W , resulting in the following pleasing formulas.

Lemma 11.1. If A,B and C are disjoint subsets of H, then

(1) A.B = B.A
(2) A.(B + C) = A.B +A.C

Proof. Straghtforward. Q.E.D.

Lemma 11.2. Let A and B be subsets of H. Then |A∩B|+|A∪B| ≤
|A|+ |B|.

Proof. A and B together partition H into disjoint subsets Z =
A ∩ B, W = A ∩ B, X = A ∩ B and Y = B ∩ A (see Figure 6). We
compute

|A| = (X + Z).(Y +W ) = X.Y +X.W + Z.Y + Z.W

|B| = (Y + Z).(X +W ) = Y.X + Y.W + Z.X + Z.W

and
|A ∩B| = Z.(X + Y +W ) = Z.X + Z.Y + Z.W

|A ∪B| = (X + Z + Y ).W = X.W + Z.W + Y.W

So altogether we have |A|+|B| = |A∩B|+|A∪B|+2(X.Y ); in particular

|A ∩B|+ |A ∪B| ≤ |A|+ |B|.
Q.E.D.
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Lemma 11.3 (Key Lemma). Let μ be a maximally reductive ideal
edge, with maximal pair (M,m), let α be a reductive edge that crosses
μ, and let A be the side of α that contains m. Then A∪M or A∩M is
one side of a reductive ideal edge γ.

Proof of Key Lemma. Since α and μ cross, together they partition
H into four disjoint subsets, which we will call sectors. Since α is re-
ductive, there is a ∈ A with |a| − |α| > 0. The proof falls into cases
depending on the locations of a, a and m.

If each sector contains one of a, a,m,m, then the only possibility is
a ∈ A∩M,a ∈ M∩A andm ∈ A∩M (since we already havem ∈ A∩M).
In this case Lemma 11.2 gives us

|A ∩M |+ |A ∪M |+ |A ∩M |+ |A ∪M | ≤ 2|A|+ 2|M |
or

(|m| − |A ∩M |) + (|m| − |A ∪M |) + (|a| − |A ∩M |) + (|a| − |A ∪M |)
≥ 2(|a| − |A|) + 2(|m| − |M |)

so
(|m| − |A ∪M |) + (|a| − |A ∩M |) ≥

2(|a|−|A|)+[
(|m|−|M |)−(|m|−|A∩M |)]+[

(|m|−|M |)−(|a|−|A∪M |)]
Since (A, a) is a reductive pair and (M,m) is maximally reductive, each
of the three terms on the bottom line is positive, so the sum on the
next line up is positive, which implies that at least one of (A∪M,m) or
(A ∩M,a) is a reductive pair, as required.

We may now assume some sector contains none of a, a,m,m. Since
a and a (resp. m and m) can’t be in the same sector, some sector has
a or a and m or m. Replacing (M,m) by (M,m) if necessary, we may
assume a,m ∈ A∩M . The rest of the proof breaks into cases depending
on the positions of a and m.

If m ∈ A ∩M , then the inequality |A ∩M | + |A ∪M | ≤ |A| + |B|
from Lemma 11.2 gives

(|a| − |A ∩M |) + (|m| − |A ∪M |) ≥ (|a| − |A|) + (|m| − |M |)
so

|m| − |A ∪M | ≥ [|a| − |A|]+ [
(|m| − |M |)− (|a| − |A ∩M |)].

Since (M,m) is maximally reductive, both terms on the right hand
side are positive, showing that (A ∪M,m) is a reductive pair.
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If m ∈ A and a ∈ A ∩M , the same proof with the roles of a and m
switched shows (A ∪M,a) is a reductive pair. The only remaining case
is m ∈ A, a ∈ M ; in this case we use Lemma 11.2 with the sets A and
M to get

|A ∩M |+ |A ∪M | ≤ |A|+ |M | = |A|+ |M |
so

|m| − |A ∩M |+ |a| − |A ∪M | ≥ |a| − |A|+ |m| − |M |
|m| − |A ∩M | ≥ (|a| − |A|) + [

(|m| − |M |)− (|a| − |A ∪M |)],
and again both terms on the right are positive since (M,m) is maximally
reductive, showing (A ∩M,m) is a reductive pair.

Q.E.D.
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