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RAAGs in Diffeos

Sang-hyun Kim and Thomas Koberda

Abstract.

We survey embeddability results related to RAAGs (right-angled
Artin groups) and various automorphism groups of manifolds. We give
two different methods of embedding a RAAG to into another, and de-
duce that every RAAG embeds into some braid groups. This gives the
unsolvability of the isomorphism problem for finitely presented sub-
groups of braid groups. Also, we prove that every RAAG is a quasi-
isometrically embedded subgroup of the symplectomorphism groups of
the disk and the sphere, given with suitable Lp metrics. Finally, we
embed RAAGs in the smooth diffeomorphism group of the real line.
These results reveal many closed hyperbolic manifold subgroups of dif-
feomorphism groups of manifolds.

§1. Right-angled Artin groups

Let Γ be a finite graph. We define the RAAG (Right-Angled Artin
Group) on Γ as the group presentation

A(Γ) = 〈V (Γ) | [a, b] = 1 if {a, b} ∈ E(Γ)〉.
We will also adopt an opposite notation; that is, we define

G(Γ) = 〈V (Γ) | [a, b] = 1 if {a, b} �∈ E(Γ)〉.
For example, A(•) ∼= G(•) ∼= Z, A(Δ) ∼= G({three points}) ∼= Z3 and
A({three points}) ∼= G(Δ) ∼= F3. RAAGs are linear [27], residually
torsion-free nilpotent [21] (hence bi-orderable), and have solvable word,
conjugacy and isomorphism problems. We refer the readers to [15] and
bibliography therein for standard facts on RAAGs.
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Charney pointed out that RAAGs “interpolate” between free groups
and free abelian groups [15]. Note that subgroups of free and free abel-
ian groups are again free and free abelian, respectively. In general,
subgroups of RAAGs enjoy strong group theoretic restrictions.

Theorem 1. (1) [26] Every non-trivial subgroup of a RAAG
subjects onto Z.

(2) [1] If the fundamental group of a closed aspherical 3-manifold
M embeds into a RAAG, then M virtually fibers.

Despite the simplicity of presentations, RAAGs are known to have
strikingly rich isomorphism types of subgroups. Haglund and Wise
discovered an effective way of embedding groups into RAAGs, using
codimension-one subgroups [25]. A group G virtually embeds into an-
other group H, if a finite-index subgroup of G embeds into H. Many
word-hyperbolic groups are shown to virtually embed into RAAGs.

Theorem 2. (1) [20, 18] The fundamental group of every
closed hyperbolic surface with Euler characteristic not equal to
-1 embeds into a RAAG.

(2) [2] If a K(π, 1) of a word-hyperbolic group G is a locally
CAT(0) cube complex, then G virtually embeds into a RAAG.

(3) [2, 40] Every closed (Agol) or finite-volume (Wise) hyperbolic
3-manifold group virtually embeds into a RAAG.

(4) [8] For each n ≥ 2, there exists a closed hyperbolic n–manifold
M such that π1(M) embeds into a RAAG.

In particular, (3) in the above theorem relies on the Surface Sub-
group Theorem by Kahn and Markovic [28]. Combining Theorems 1
and 2, one obtains a resolution to the long-standing Virtual Haken con-
jecture by Waldhausen and Virtual Fiber Conjecture by Thurston [39].

Classifying isomorphism types of subgroups in RAAGs can be quite
a complicated task. For example, it is in general impossible to solve
the isomorphism problem for finitely presented subgroups of a given
RAAG [13]. So it is reasonable to consider a smaller class of subgroups.
A question we found interesting and useful for later uses is:

Question 1. For given finite graphs X and Y , when does A(X)
embed into A(Y )?

On the other hand, RAAGs arise quite ubiquitously as subgroups
of homeomorphism groups. This is due to the universal property of
RAAGs, defined as follows. Let M be a manifold. The support of
f ∈ Homeo(M) is

supp(f) = {x ∈ M : f(x) �= x}.
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Suppose f1, f2, . . . , fk ∈ Homeo(M). We let Γ be the intersection
graph of {supp(f1), . . . , supp(fk)}; this means, V (Γ) = {f1, . . . , fk} and
{fi, fj} ∈ E(Γ) if and only if supp(fi) ∩ supp(fj) �= ∅. Since the
disjointness of supports imply commutativity of homeomorphisms, we
have a natural group homomorphism φ : G(Γ) → Homeo(M) defined
as φ(fi) = fi for each i. In general, it is a highly non-trivial ques-
tion whether or not such φ is injective. One can also ask the same
question in different categories such as Diff(M) or Diffk(M) (meaning,
Ck-diffeomorphism group).

We let Mod(S) denote the mapping class group of a surface S;
see [23] for fundamental facts and notations regarding this group. We de-
note by Symp(S) the area-preserving diffeomorphism group of S, which
plays an important role in fluid mechanics [3].

Question 2. Given a surface S and a finite graph X, when does
A(X) embed into Mod(S) or into Symp(S)?

Finally, we address the question on 1-manifolds.

Question 3. Given a one-manifold M , a finite graph X and a
positive integer k, when does A(X) embed into Diffk(M)?

In this paper, we will survey our results on these three questions.

§2. RAAGs in RAAGs

A motivation for Question 1 comes from the question which RAAGs
contain closed hyperbolic surface subgroups [24]. It is not still known
whether or not a RAAG contains a closed hyperbolic surface subgroup
if and only if it contains a one-ended word-hyperbolic group; see [31, 30]
for related results.

Recall that an induced subgraph X of a graph Y is a subgraph X

of Y that satisfies E(X) = E(Y ) ∩ (
V (X)

2

)
; we denote X ≤ Y in this

case. It was originally suspected that A(Γ) contains a closed hyperbolic
surface subgroup if and only if Γ contains an induced 5-cycle. This
suspicion was determined in the negative by showing that the RAAG
on the complement graph of a cycles of length at least six contains a
hyperbolic surface subgroup [32, 17, 6].

In [32] and by a different method in [6], it was proved that G(X)
embeds into G(Y ) if Y topologically contracts ontoX. This can be much
further generalized using the concept of extension graph. Let X be a
finite graph. We define the extension graph Xe by the relations V (Xe) =
{vg : v ∈ V (Γ), g ∈ A(Γ)} and {ug, vh} ∈ E(Xe) iff [ug, vh] = 1 in A(Γ).
There is a natural right-action of A(Γ) on Xe defined by vg.h = vgh.
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The opposite graph Xopp of a graph X is defined by V (Xopp) = V (X)

and E(Xopp) =
(
V (X)

2

) \ E(X). A graph X is anti-connected if Xopp is
connected. Note that every graph is a join of anti-connected graphs.

Proposition 3. [36, 35] Let X be a finite, connected and anti-
connected graph, which is not a single vertex.

(1) Xe is a connected, locally infinite quasi-tree of infinite diamter.
(2) The action of A(Γ) on Xe is acylindrical.

For the definition of acylindricity and related results for mapping
class group actions curve complexes, see [10]. The above proposition
illustrates obvious similarity between extension graphs of RAAGs and
curve complexes of surfaces. Coming back to our original motivation
of Question 1, let us define another concept, clique graph. A clique
in a graph is a collection of vertices which are pairwise adjacent. For a
possibly infinite graph Y , we define the clique graph Yk of Y by declaring
that V (Yk) is the set of cliques in Y and we join K,L ∈ V (Yk) if and
only if K ∪ L ∈ V (Yk).

Theorem 4. [36] Let X and Y be finite graphs.

(1) If X is an induced subgraph of Y e, then A(X) embeds into
A(Y ).

(2) If A(X) embeds into A(Y ), then X is an induced subgraph of
(Y e)k.

(3) If Y is triangle-free, then X ≤ Y e and A(X) ↪→ A(Y ) are
equivalent.

For two groups G and H with given metrics, we say G is a q.i.
embedded subgroup of H if there exists a group embedding f : G → H
and constants C ≥ 1 such that every x, y ∈ G satisfies

1

C
d(x, y)− C ≤ d(f(x), f(y)) ≤ Cd(x, y) + C.

We will need another type of embeddings between RAAGs. Let X
be a finite graph. Consider its universal cover X̃ and an arbitrary finite
subtree T ≤ X̃. We can define a map φ(X,T ) : G(X) → G(T ) by

φ(v) =
∏

u∈p−1(v)∩T

u.

Note that φ(X,T ) is well-defined, but not necessarily injective. An
important observation is that it becomes injective for sufficiently large
T .

Theorem 5 ([33]). For each X, there exists a finite tree T such
that G(X) is a q.i. embedded subgroups of G(T ).
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§3. RAAGs in Mods

The embeddability of RAAGs in mapping class groups have surpris-
ing similarity with Theorem 4. For a surface S, we let C(S) be the curve
graph of S, namely the one-skeleton of the curve complex.

Theorem 6. Let X be a finite graph and S be a surface.
(1) [38] If X is an induced subgraph of C(S), then A(X) embeds

into Mod(S).
(2) [37] If A(X) embeds into Mod(S), then X is an induced sub-

graph of C(S)k.
(3) [34] If (and only if) C(S) is triangle-free, then X ≤ C(S) and

A(X) ↪→ Mod(S) are equivalent.

In particular, if A(X) embeds into Mod(S), then the chromatic num-
ber of X is at most 2N where N is the chromatic number of C(S). This
gives a new obstruction for a RAAG from embeding into a mapping class
group; compare this with the abelian rank obstruction given in [9].

Each RAAG embeds into some mapping class group. This was first
seen by Crisp and Farb (unpublished), and can be deduced again from
Theorem 6 (1). Regarding genus zero case, note first that we can em-
bed G(T ) for each finite tree T into some planar braid group Bn [19].
Combining with Theorem 5, we have the following.

Theorem 7. Each RAAG embeds into some braid group.

Bridson found a RAAG which does not have a solution to the iso-
morphism problem for finitely presented subgroups [13]. Using the above
mentioned result of Crisp and Farb, Bridson deduced that sufficiently
large genus mapping class group does not have a solution to that iso-
morphism problem. Theorem 7 immediately implies the same for braid
groups:

Corollary 8 ([33]). The isomorphism problem for f.p. subgroups is
not solvable for Bn if n >> 0.

§4. RAAGs in Diffeos

Let S be a surface with a fixed Riemannian metric. We denote by
Symp(S) the group of orientation- and area-preserving smooth diffeo-
morphisms on S. Suppose α : [0, 1] → Symp(S) be a smooth isotopy on
S. For p ≥ 1, we define the Lp-length of α as the integral

�p(α) =

∫ 1

0

(∫
x∈S

∥∥∥∥∂αt

∂t

∥∥∥∥p dx
)1/p

dt.
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This defines a right-invariant length metric dp and a norm ‖ · ‖p on
Symp(S).

In [19], it was shown that if X is a finite planar graph then G(X) is a
q.i. embedded subgroup of Symp(D2) equipped with L2 metric; see [11]
for a generalization for Lp metric for p ≥ 1. M. Kapovich proved that
every RAAG embeds into Symp(S2), asking whether or not it could be
q.i. embedded with respect to the L2 metric of the latter group [29].
A remarkable inequality relating word length of a spherical braid group
and the Lp metric on Symp(S2) for p > 2 is given in [12]. Built on these
ideas and using the embedding (which happens to be quasi-isometric)
found in Theorem 5 (1), we have the following results.

Theorem 9. (1) Every RAAG is a q.i. embedded subgroup of
Symp(D2) with the Lp metric for p ≥ 1.

(2) Every RAAG is a q.i. embedded subgroup of Symp(S2) with
the Lp metric for p > 2.

Let us describe an argument for (2) above. By Theorem 5, we have
only to consider G(T ) for a tree T . Let V (T ) = {v1, v2, . . . , vk}. There
exists a collection of simply connected subsurfaces S1, . . . , Sk in S2 whose
intersection graph is T . Let us consider a set P = {m1,m2, . . . ,mn} of
marked points in S2, which contain at least two points from each of the
regions in S2 \ ∪i∂Si.

Denote by Xn ⊆ S2 × · · · × S2 the configuration space of n dis-
tinct points. We let {D1, D2, . . . , Dn} be a fixed collection of disjoint
neighbourhoods of mi, and put D0 = D1 × · · · ×Dn ⊆ Xn. We define
Pn ≤ Symp(S2) as the subgroup of diffeomorphisms that restrict to the
identities on each Di. We can choose a pseudo-Anosov diffeomorphism
fi on Si\∪jDj and extend fi as the identity outside Si and within ∪jDj .
Recall we have a commutative diagram

G(T )

φ
����

���
���

��
ψ

�� Pn

f �→[f ]

��

Mod(S2 \ P )

where φ : vi �→ fN
i . By a theorem of Clay, Leininger and Mangahas

in [16], the map φ embeds G(T ) into Mod(S \ P ) as a q.i. embedded
subgroup for each sufficiently large N .

It is more convenient to lift the map Pn → Mod(S2\P ) with respect

to the two-sheeted universal covering map p : ˜Symp(S2) → Symp(S2).

Namely, let us consider the quotient map from P̃n = p−1(Pn) to the
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pure braid group PBn(S
2). For each isotopy α in Symp(S2) joining the

identity to an element in Pn and an n-tuple x ∈ D0, we denote by [α(x)]
the n-strand braid defined as the trace of x over the isotopy α. We let
‖[α(x)]‖ as the word-length in PBn(S

2). It now suffices to show the
following claim.

Claim. Let p > 2. There exists C such that for each isotopy α :
[0, 1] → Symp(S2) with α(0) = Id and α(1) ∈ Pn, we have

‖[α(P )]‖ ≤ C�p(α) + C.

The proof of the claim is essentially given in [12], and can be sum-
marised as follows. We may first assume that α(D0) ⊆ Cn ⊆ (S2)n

possibly after disregarding a measure zero set. So we can consider the
stereographic projection of α(x) onto C for x ∈ D0. Let 1 ≤ i �= j ≤ n.
For each x = (x1, x2, . . . , xn) ∈ D0, let us define the crossing number
cα(xi, xj , ω) of α(x) for ω ∈ S1 as the sum of the counts of t such that
α(t)(xi) − α(t)(xj) is parallel to ω. We let cα(xi, xj) as the average
of cα(xi, xj , ω) over ω ∈ S1. By the minimality of the word-length,∑

i,j cα(xi, xj) is asymptotically bounded below by ‖[α(P )]‖ = ‖[α(x)]‖
for x ∈ D0.

For each x ∈ D0 and i �= j, let us consider the closed curve
γα(xi, xj ; t) in S1 defined by the unit vector in the direction of α(t)(xi)−
α(t)(xj) at each time t. By the co-area formula, cα(xi, xj) is equal to
the length of the curve γα(xi, xj ; t).

The final step of the proof is a clever application of Cauchy–
Schwarz [7] or Hölder inequalities [12], to show that there is C ′ such
that for each p > 2∫ 1

0

∫
Di

∫
Dj

∣∣∣∣∂γα(xi, xj ; t)

∂t

∣∣∣∣ dxj dxi dt ≤ C ′�p(α) + C ′.

We finally remark that Theorem 5 is also used in the proof of the
following.

Theorem 10 ([14]). Every RAAG embeds into the area-preserving,
boundary-fixing piecewise linear homeomorphism group of the I2.

§5. One-dimensional manifold

The mapping class group of a puctured surface embeds into
Homeo(S1) but not in Diff2(S1) [22]. It is a famous open question
whether or not mapping class groups virtually embed into Diff1(S1) or
Homeo(R). Every RAAG A embeds into some mapping class group G,
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and once there is such an embedding, A embeds into every finite-index
subgroup of G. With Baik, the authors proved that RAAGs can be
given C∞ regularity in the following sense.

Theorem 11. [4] Every RAAG embeds into Diff∞(R).

Related to the aforementioned question on mapping class groups,
we have the following result:

Theorem 12. [5] For a closed hyperbolic surface S, the mapping
class group of S does not virtually embed into Diff2(S1).
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