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Splitting in orbit equivalence, treeable groups, and
the Haagerup property

Yoshikata Kida

Abstract.

Let G be a discrete countable group and C its central subgroup
with G/C treeable. We show that for any treeable action of G/C on a
standard probability space X, the groupoid G�X is isomorphic to the
direct product of C and (G/C)�X, through cohomology of groupoids.
We apply this to show that any group in the minimal class of groups
containing treeable groups and closed under taking direct products,
commensurable groups and central extensions has the Haagerup prop-
erty.

§1. Introduction

It is an elementary fact that any group extension of a free group
splits. In the framework of measured groupoids, Series [25] observed
that any extension of the equivalence relation associated with a free ac-
tion of a free group splits analogously. The same splitting therefore holds
for any extension of an ergodic treeable equivalence relation of type II1,
thanks to Gaboriau [14] and Hjorth [17]. A discrete measured equiva-
lence relation is called treeable, roughly speaking, if it has a measurable
bundle structure whose fiber is a simplicial tree. Treeability was intro-
duced by Adams [1], and is widely regarded as an analogue of freeness
of groups. In the first half of the paper, we show that the same splitting
holds for any central extension of a treeable equivalence relation of type
II1 which is not necessarily ergodic. In the second half of the paper, we
apply this to show the Haagerup property of certain central extensions
of discrete countable groups.

In this introduction, we avoid to precisely define a central extension
of an equivalence relation. We instead state the splitting theorem for the
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case where the central extension arises from a p.m.p. action of a discrete
countable group G such that a central subgroup of G acts trivially. We
mean by a p.m.p. action of a discrete countable group G a measurable
action of G on a standard probability space preserving the measure,
where “p.m.p.” stands for “probability-measure-preserving”.

Theorem 1.1. Let 1 → C → G → Γ → 1 be an exact sequence
of discrete countable groups such that C is central in G. We denote
by q : G → Γ the quotient map. Let Γ � (X,μ) be a free and p.m.p.
action such that the associated equivalence relation is treeable. Let G
act on (X,μ) through q. Then there exists an isomorphism of discrete
measured groupoids,

I : C × (Γ� (X,μ)) → G� (X,μ),

such that for any c ∈ C and a.e. x ∈ X, we have I(c, (e, x)) = (c, x),
where e is the neutral element of Γ; and for any g ∈ G and a.e. x ∈ X,
the coordinate of I−1(g, x) in Γ� (X,μ) is (q(g), x).

We refer to Theorem 3.2 for a general version of Theorem 1.1. Using
this splitting, we show that there exists an ergodic, free and p.m.p. action
of G which is orbit equivalent to the direct product of such actions of C
and of Γ (see Theorem 3.4).

Theorem 1.1 for the case where the action Γ � (X,μ) is orbit equiv-
alent to a free p.m.p. action of a free group F is derived from Series’ ob-
servation based on cohomology of discrete measured groupoids ([25, §4,
(C)]). The proof is outlined as follows: Let R be the discrete measured
equivalence relation associated with the action Γ � (X,μ). Analogously
to the theory of group extensions, there is one-to-one correspondence be-
tween a central extension ofR with a central subgroup C and an element
of the cohomology group H2(R, C), such that the splitting of the exten-
sion corresponds to 0. The group H2(R, C) is isomorphic to the second
cohomology group of F with coefficient in some module, thanks to West-
man [28]. The latter vanishes because F is a free group. The splitting
then follows.

Remark 1.2. For any p.m.p. treeable equivalence relation R and any
abelian Polish group C, regarding C as an R-module on which R acts
trivially, we indeed show that Hn(R, C) = 0 for any integer n with n ≥ 2
(Corollary 2.8).

Treeability was extended for discrete measured groupoids by
Anantharaman-Delaroche [3], [4] and Ueda [26], where several features of
treeable equivalence relations are extended. It is natural to ask whether
the above vanishing of cohomology also holds for any treeable groupoid.
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This question remains unsolved because we do not know whether any
ergodic treeable groupoid arises from an action of a free group, up to
stable isomorphism.

In [11, §7.3.3], the following question on the Haagerup property
(HAP) of groups ([16]) is asked: For a central extension 1 → C → G →
Γ → 1 of locally compact groups, is it true that G has the HAP if and
only if Γ has the HAP? We give new examples of a discrete countable
group G and its central subgroup C such that G and G/C have the
HAP. They are obtained as an application of the splitting theorem.

A discrete countable group is called treeable if it has an ergodic,
free and p.m.p. action such that the associated equivalence relation is
treeable. We refer to [2], [8] and [15] for examples of treeable groups.
If a discrete countable group G has a central subgroup C with G/C
treeable, then G has the HAP because G is measure equivalent to the
direct product C × (G/C) by Theorem 1.1 (or Theorem 3.4) and the
HAP is invariant under measure equivalence ([18, Proposition 1.3], [19,
Remark in p.172] and [23, Proposition 3.1]). Using Theorem 1.1 and
its general version, we further obtain a much broader class of central
extensions having the HAP.

Notation 1.3. Let C denote the smallest subclass of the class of
discrete countable groups that satisfies the following conditions (1)–(4):

(1) Any treeable group belongs to C.
(2) The direct product of two groups in C belongs to C.
(3) For a discrete countable group G and its finite index subgroup

H, we have G ∈ C if and only if H ∈ C.
(4) Any central extension of a group in C belongs to C.

Theorem 1.4. Any group in C has the HAP. More generally, for
any discrete countable group G and its central subgroup C with G/C ∈ C,
the pair (G,C) has the gHAP.

The generalized Haagerup property (gHAP) is defined for the pair
(G,C) of a locally compact group G and its closed central subgroup C
([11, Definition 4.2.1]). This is used to discuss the HAP of a connected
Lie group and its central extension. It is shown that for any two pairs
(A,C), (B,C) of discrete countable groups with the gHAP, the amal-
gamated free product A ∗C B has the gHAP with respect to C, and
thus has the HAP ([11, Proposition 6.2.3 (2)]). We should mention the
following fundamental facts on the gHAP: Let G be a locally compact
group and C its closed central subgroup.

• If (G,C) has the gHAP, then G/C has the HAP.
• The pair (G, {e}) has the gHAP if and only if G has the HAP.
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• If G is second countable and (G,C) has the gHAP, then G
has the HAP.

• If G is amenable, then (G,C) has the gHAP.

We refer to Lemma 4.2.8, Lemma 4.2.10, Lemma 4.2.11 and Proposition
4.2.12 in [11] for these assertions, respectively. It follows that if A and B
are discrete countable amenable groups with a common central subgroup
C, then A∗C B has the HAP ([11, Corollary 6.2.5]). Theorem 1.4 covers
this result.

Our initial motivation of this work is to find groups having an er-
godic, free, p.m.p. and stable action. We say that an ergodic p.m.p.
action is stable if the associated groupoid is isomorphic to its direct
product with the ergodic hyperfinite equivalence relation of type II1.
The author shows that for a discrete countable group G with a central
subgroup C, if (G,C) does not have property (T), then G has such a
stable action ([21, Theorem 1.1]). The following corollary follows from
Theorem 1.4 because any group with the HAP does not have property
(T) relative to any infinite subgroup.

Corollary 1.5. Any group in C with the infinite center has an er-
godic, free, p.m.p. and stable action, and is therefore measure equivalent
to its direct product with Z.

The paper is organized as follows: In Section 2, we prepare termi-
nology and notation on discrete measured groupoids. We review coho-
mology of discrete measured groupoids and its basic properties, due to
Westman [27], [28]. The relationship with cohomology of their ergodic
components are also discussed. In Section 3, we prove the splitting the-
orem 3.2 for a central extension of a treeable equivalence relation.

In Section 4, we discuss the HAP and gHAP of discrete measured
groupoids. The former was originally introduced by Anantharaman-
Delaroche [4]. For a technical requirement, changing her definition
slightly, we introduce another property and call it the HAP in this paper.
We review a Hilbert bundle and a representation of a discrete measured
groupoid on it, following [3], [24] and [29]. We discuss induced represen-
tations, the c0-property of a representation, and the weak containment
of the trivial representation. One of the aim of Section 4 is to show
that our HAP of a discrete measured groupoid is preserved under taking
an extension whose quotient is an abelian group (Proposition 4.18). In
Section 5, applying it, we prove Theorem 1.4.

In Appendix A, we compare the HAPs of Jolissaint, Anantharaman-
Delaroche, and ours. Jolissaint [19] introduced the HAP for p.m.p. dis-
crete measured equivalence relations. His definition can naturally be
extended for discrete measured groupoids. We show that this extension
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of the HAP of Jolissaint, the HAP of Anantharaman-Delaroche, and our
HAP are all equivalent.

Throughout the paper, for a set S, we denote by |S| its cardinality.
Let N denote the set of positive integers. Unless otherwise mentioned,
we mean by a discrete group a discrete and countable group.

Acknowledgements. We thank Yoshimichi Ueda for informing us of Se-
ries’ work [25]. We also thank the referee for valuable comments that
improved the presentation of the paper.

§2. Discrete measured groupoids and their cohomology

We mean by a standard probability space (X,μ) a standard Borel
space X endowed with a probability measure μ. We refer to [6] and
[20] for its fundamentals. Throughout this section, we fix a standard
probability space (X,μ).

2.1. Terminology

Recall that a subset A of X is called μ-measurable if there exist
Borel subsets B1, B2 of X such that B1 ⊂ A ⊂ B2 and μ(B2 \B1) = 0.
When μ is understood from the context, let us simply call it ameasurable
subset of X. We also call μ-measurable functions, maps, etc. measurable
ones. All relations among measurable sets and maps that appear in this
paper are understood to hold up to sets of measure zero, unless otherwise
mentioned.

We follow the terminology employed in [3] and [4] on discrete mea-
sured groupoids. Let G be a groupoid on X with r, s : G → X the range
and source maps, respectively. We set

G(2) = { (g, h) ∈ G × G | s(g) = r(h) }.
For x, y ∈ X, we set Gy = r−1(y) and Gx = s−1(x). We say that G
is Borel if it is endowed with a standard Borel structure such that the
range, source, inverse and product maps are Borel, where G(2) is endowed
with the standard Borel structure induced by G × G. We say that G is
discrete if for any y ∈ X, the set Gy is countable.

Suppose that G is Borel and discrete. Let μ̃ be the σ-finite measure
on G defined so that for any Borel subset E of G, we have

μ̃(E) =

∫
X

|E ∩ Gx| dμ(x).

Let μ̃−1 be the image of μ̃ under the inverse map of G. We say that μ
is quasi-invariant under G if μ̃ and μ̃−1 are equivalent. We say that μ is
invariant under G if μ̃ = μ̃−1.
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We say that G is a discrete measured groupoid on (X,μ) if G is
Borel and discrete and the measure μ is quasi-invariant under G. If μ is
invariant under G, then G is called p.m.p. Unless otherwise mentioned,
we mean by a subgroupoid of G a measurable subgroupoid of G whose
unit space is equal to X.

For a measurable subset A of X, we define the saturation of A by G
as

GA = { r(g) ∈ X | s(g) ∈ A },
which is a measurable subset of X. We say that G is ergodic if for any
measurable subset A of X, we have μ(GA) = 0 or 1. For a measurable
subset A of X with positive measure, we define the restriction of G to
A as

G|A = { g ∈ G | r(g), s(g) ∈ A },
which is a discrete measured groupoid on (A,μ|A).

Let H be a discrete measured groupoid on a standard probability
space (Y, ν). We mean by a homomorphism from G into H a measurable
map α : G → H such that the measure α∗μ̃ on H is absolutely continuous
with respect to ν̃, and for a.e. (g1, g2) ∈ G(2), we have (α(g1), α(g2)) ∈
H(2) and α(g1g2) = α(g1)α(g2). If there exists a homomorphism β : H →
G such that β ◦ α is the identity on G and α ◦ β is the identity on H,
then α is called an isomorphism. We say that G and H are isomorphic
if there exists an isomorphism between them. We say that G and H are
stably isomorphic if there exist measurable subsets A ⊂ X and B ⊂ Y
such that GA = X, HB = Y , and G|A and H|B are isomorphic.

Let G be a discrete group. Suppose that we have a non-singular
action G � (X,μ), i.e., a Borel action of G on X preserving the class
of μ. The product set G × X is then endowed with a structure of a
discrete measured groupoid on (X,μ) as follows: The range and source
maps are defined by r(γ, x) = γx and s(γ, x) = x for γ ∈ G and x ∈ X.
The product is defined by (γ, δx)(δ, x) = (γδ, x) for γ, δ ∈ G and x ∈ X.
The unit at x ∈ X is (e, x), where e is the neutral element of G. The
inverse of (γ, x) ∈ G×X is (γ−1, γx). The measure μ is quasi-invariant
because the action G � (X,μ) is non-singular. This discrete measured
groupoid is denoted by G� (X,μ), and is called the groupoid associated
with the action G � (X,μ). We note that the groupoid G � (X,μ) is
p.m.p. if and only if the action G � (X,μ) is p.m.p.

For a non-singular action G � (X,μ), we define the equivalence
relation associated with the action as the discrete measured groupoid on
(X,μ),

R = { (γx, x) ∈ X ×X | γ ∈ G, x ∈ X },
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where the range and source maps are defined by r(γx, x) = γx and
s(γx, x) = x for γ ∈ G and x ∈ X; the product is defined by
(x, y)(y, z) = (x, z) for (x, y), (y, z) ∈ R; the unit at x ∈ X is (x, x);
and the inverse of (x, y) ∈ R is (y, x). We have the quotient homomor-
phism q : G � (X,μ) → R defined by q(γ, x) = (γx, x) for γ ∈ G and
x ∈ X.

2.2. Cohomology

Throughout this subsection, we fix a discrete measured groupoid G
on (X,μ), and fix an abelian Polish group C. We review cohomology
of G with coefficient in the G-module C on which G acts trivially, due
to Westman [27], [28]. We refer to Feldman-Moore [12] and Series [25]
for cohomology of discrete measured equivalence relations with more
general coefficients.

Let r, s : G → X be the range and source maps of G, respectively.
We set G(0) = X, and for a positive integer n, we set

G(n) = { (g1, . . . , gn) ∈ Gn | s(gi) = r(gi+1) for i = 1, . . . , n− 1 }.
We define a map sn : G(n) → X by sn(g1, . . . , gn) = s(gn) for
(g1, . . . , gn) ∈ G(n). For any x ∈ X, the fiber s−1

n (x) at x is count-
able. We define a measure μn on G(n) by

μn(E) =

∫
X

|E ∩ s−1
n (x)| dμ(x)

for a measurable subset E of G(n). Note that we have μ(1) = μ̃ on
G(1) = G.

The product of two elements of the abelian group C are denoted
by addition. For any non-negative integer n, we define Cn(G, C) as the
module of measurable maps from G(n) into C, where two maps equal
almost everywhere are identified, and the module structure is endowed
by pointwise addition. We define a homomorphism

δn : Cn(G, C) → Cn+1(G, C)

as follows: For φ ∈ C0(G, C), we define δ0φ ∈ C1(G, C) by

(δ0φ)(g) = φ(s(g))− φ(r(g))
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for g ∈ G. If n ≥ 1, then for φ ∈ Cn(G, C), we define δnφ ∈ Cn+1(G, C)
by

(δnφ)(g0, g1, . . . , gn)

= φ(g1, . . . , gn)

+
n∑

k=1

(−1)kφ(g0, . . . , gk−2, gk−1gk, gk+1, . . . , gn)

+(−1)n+1φ(g0, . . . , gn−1)

for (g0, g1, . . . , gn) ∈ G(n+1). By direct computation, we have δn◦δn−1 =
0 for any positive integer n. It follows that (C•(G, C), δ•) is a cochain
complex.

Let n be a non-negative integer. We set Zn(G, C) = ker δn. We
set B0(G, C) = 0, and set Bn(G, C) = δn−1(Cn−1(G, C)) if n ≥ 1. We
define Hn(G, C) as the quotient module Zn(G, C)/Bn(G, C), and call it
the n-th cohomology group of G with coefficient in C.

Let H be a discrete measured groupoid on a standard probability
space (Y, ν). Let n be a non-negative integer. Any homomorphism
α : G → H induces a homomorphism from Cn(H, C) into Cn(G, C) com-
patible with the coboundary map δn. We therefore have the induced
homomorphism α∗ : Hn(H, C) → Hn(G, C).

Let α, β : G → H be homomorphisms. Let α0, β0 : X → Y denote
the maps induced by α and β, respectively. We say that α and β are
similar if there exists a measurable map ϕ : X → H such that for a.e.
x ∈ X, the range and source of ϕ(x) are β0(x) and α0(x), respectively,
and for a.e. g ∈ G, we have ϕ(r(g))α(g) = β(g)ϕ(s(g)). The following
lemma is proved by constructing a cochain homotopy (see the proof of
[27, Theorem 2.3]).

Lemma 2.1 ([27, Theorems 2.3 and 3.55]). Let α, β : G → H be sim-
ilar homomorphisms. Then for any non-negative integer n, the induced
homomorphisms α∗, β∗ : Hn(H, C) → Hn(G, C) are equal.

As an application of Lemma 2.1, we obtain the following:

Lemma 2.2. Let A be a measurable subset of X with GA = X. Let
i : G|A → G be the homomorphism defined as the inclusion. Then for
any non-negative integer n, the induced homomorphism i∗ : Hn(G, C) →
Hn(G|A, C) is an isomorphism.

Proof. By the assumption GA = X, there exists a measurable map
f : X → G such that for any x ∈ X, we have s(f(x)) = x and r(f(x)) ∈
A; and for any x ∈ A, the element f(x) is the unit of G at x. We define
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a homomorphism j : G → G|A by j(g) = f(r(g))gf(s(g))−1 for g ∈ G.
The composition j ◦ i is the identity on G|A, and the composition i ◦ j is
the homomorphism from G into itself similar to the identity on G. The
lemma follows from Lemma 2.1. Q.E.D.

Let G � (X,μ) be a non-singular action of a discrete group G.
Let F(X,C) denote the module of measurable maps from X into C,
where two maps equal almost everywhere are identified, and the module
structure is endowed by pointwise addition. We endow F(X,C) with a
G-module structure by (γf)(x) = f(γ−1x) for γ ∈ G, f ∈ F(X,C) and
x ∈ X. Let (C•(G,F(X,C)), δ•) denote the usual cochain complex of the
group G with coefficient in the G-module F(X,C). For any non-negative
integer n, the natural isomorphism

πn : C
n(G� (X,μ), C) → Cn(G,F(X,C))

is defined by

(πnφ)(γ1, . . . , γn)(x)

= φ((γ1, γ
−1
1 x), (γ2, γ

−1
2 γ−1

1 x), . . . , (γn, γ
−1
n γ−1

n−1 · · · γ−1
1 x))

for φ ∈ Cn(G � (X,μ), C), γ1, . . . , γn ∈ G and x ∈ X. The map πn is
compatible with the coboundary map. We therefore obtain the following
theorem that relates cohomology of G� (X,μ) to that of G.

Theorem 2.3 ([28, Theorem 1.0]). Let G � (X,μ) be a non-
singular action of a discrete group G. For any non-negative integer n,
the homomorphism πn induces the isomorphism from Hn(G�(X,μ), C)
onto Hn(G,F(X,C)).

The following is a generalization of [28, Corollary 1.1].

Corollary 2.4. Let R be a discrete measured equivalence rela-
tion which is ergodic, p.m.p. and treeable. Let C be an abelian Polish
group, and regard it as an R-module on which R acts trivially. Then
Hn(R, C) = 0 for any integer n with n ≥ 2.

Proof. Thanks to Gaboriau [14, Proposition II.6] and Hjorth [17,
Corollary 1.2], we have a free group F and its ergodic, free and p.m.p.
action F � (Y, ν) such that R is stably isomorphic to the groupoid
F � (Y, ν). For any non-negative integer n, the group Hn(R, C) is
isomorphic to Hn(F � (Y, ν), C) by Lemma 2.2, and to Hn(F,F(Y,C))
by Theorem 2.3. If n ≥ 2, then the last cohomology group is zero
because F is a free group. Q.E.D.
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2.3. Restrictions to ergodic components

Let R be a discrete measured equivalence relation on (X,μ). Let
C be an abelian Polish group, and regard it as an R-module on which
R acts trivially. In this subsection, we show that if two cocycles on R
into C are cohomologous on almost every ergodic component of R, then
they are indeed cohomologous as cocycles on R. The proof relies on
Fisher-Morris-Whyte [13]. We do not deal with the same problem for a
general groupoid here.

Let θ : (X,μ) → (Z, ξ) be the ergodic decomposition for R. Let
μ =

∫
Z
μz dξ(z) be the disintegration of μ with respect to θ. For z ∈ Z,

we define Rz as the discrete measured equivalence relation R on (X,μz),
which is ergodic and is also regarded as a groupoid on θ−1(z). It is known
that there exists a measurable action of a discrete group G on (X,μ)
whose orbit equivalence relation is R ([12, Theorem 1]). The ergodic
decomposition for R is identified with that for the action of G.

For a non-negative integer n, a measurable map φ : R(n) → C and
z ∈ Z, we denote by φz : (Rz)

(n) → C the restriction of φ.

Proposition 2.5. We keep the above notation. Fix a non-negative
integer n, and pick a measurable map φ : R(n) → C. If φz ∈ Bn(Rz, C)
for a.e. z ∈ Z, then φ ∈ Bn(R, C).

To prove this proposition, we prepare notation and a lemma. Let
(S, η) be a standard probability space and (M,d) a separable metric
space. As in Subsection 2.2, we define F(S,M) as the space of mea-
surable maps from S into M , where two maps are identified if they are
equal almost everywhere. If (M,d) is complete, then F(S,M) is a Pol-
ish space, under the topology of convergence in measure ([13, Notation
2.4]).

Lemma 2.6. Let (S, η) be a standard probability space, (M,d) a
separable metric space, and L a standard Borel space. Then the following
two assertions hold:

(i) For any Borel map ϕ : L× S → M , the induced map ϕ̃ : L →
F(S,M) is defined by (ϕ̃(x))(s) = ϕ(x, s) for x ∈ L and s ∈ S,
and is Borel.

(ii) Conversely, for any Borel map Φ: L → F(S,M), there exists
a Borel map ϕ : L×S → M such that for any x ∈ L, we have
ϕ(x, s) = (Φ(x))(s) for a.e. s ∈ S.

We refer to [13, Lemmas 2.6 and 2.7] for these assertions (i) and (ii),
respectively.
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Proof of Proposition 2.5. As already mentioned, by [12, Theorem
1], we have a Borel action of a discrete group G on X such that

R = { (gx, x) ∈ X ×X | g ∈ G, x ∈ X }.
Applying the Rohlin decomposition theorem ([13, Proposition 2.21]) and
reducing the proof of the proposition to the restriction of R to an R-
invariant measurable subset of X if necessary, we may assume that there
exist a standard probability space (S, η), a Borel action of G on Z × S
and a Borel isomorphism Θ: X → Z × S such that

• Θ∗μ and ξ × η are equivalent; and
• the actions of G on X and on Z ×S are equivariant under Θ;
and

• for any z ∈ Z, the measure on {z} × S induced by η is quasi-
invariant and ergodic under the action of G.

We identify X with Z × S under Θ. There exists a Borel map ρS : G×
Z × S → S such that for any g ∈ G and any z ∈ Z, we have g(z, s) =
(z, ρS(g, z, s)) for a.e. s ∈ S. For any z ∈ Z, there exists a Borel map
ρz : G × S → S such that ρz(g, s) = ρS(g, z, s) for any g ∈ G and any
s ∈ S.

For any z ∈ Z, we have the action ρz of G on a conull Borel subset
of S. The measure η is quasi-invariant under this action. We denote by
Gz the discrete measured groupoid associated with the action ρz.

Let m be a non-negative integer. We denote by Gm the direct prod-
uct of m copies of G if m ≥ 1, and the trivial group if m = 0. For any
z ∈ Z, the space Cm(Gz, C) is identified with F(Gm × S,C) under the

measurable isomorphism from Gm × S onto G(m)
z defined by

((g1, . . . , gm), s)

	→ ((g1, ρz(g2 · · · gm, s)), (g2, ρz(g3 · · · gm, s)), . . . , (gm, s))

for g1, . . . , gm ∈ G and s ∈ S. For any z ∈ Z, we have the map

Im,z : C
m(Rz, C) → F(Gm × S,C)

induced by the quotient map from Gz onto Rz. We set Ωm,z =
Im,z(C

m(Rz, C)). To prove Proposition 2.5, we need the following:

Lemma 2.7. Let m be a non-negative integer. Then the set

Ωm = { (z, f) ∈ Z × F(Gm × S,C) | f ∈ Ωm,z }
is Borel in Z × F(Gm × S,C).
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Proof. For any z ∈ Z, we have Ω0,z = F(S,C), and therefore have
Ω0 = Z × F(S,C). The lemma follows when m = 0.

We assume m ≥ 1. We claim that for any γ ∈ G and any i =
1, . . . ,m, there exists a Borel map

τ iγ : Z × F(Gm × S,C) → F(Gm × S,C)

such that for any z ∈ Z and any f ∈ F(Gm×S,C), the following equation
holds: For any g = (g1, . . . , gm) ∈ Gm and a.e. s ∈ S, we have

τ iγ(z, f)(g, s)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f((g1, . . . , gi−1, γgi, gi+1, . . . , gm), s)

if ρz(γ, ρz(gi · · · gm, s)) = ρz(gi · · · gm, s)

f(g, s) otherwise.

If the claim is shown, then the lemma follows because we have

Ωm =
⋂
γ∈G

m⋂
i=1

{ (z, f) ∈ Z × F(Gm × S,C) | τ iγ(z, f) = f }.

Fix γ ∈ G and i = 1, . . . ,m. Applying Lemma 2.6 (ii) to the identity
on F(Gm × S,C), we obtain a Borel map

u : F(Gm × S,C)×Gm × S → C

such that for any f ∈ F(Gm × S,C), we have u(f, t) = f(t) for a.e.
t ∈ Gm × S. Similarly, we obtain a Borel map

v : F(Gm × S,C)×Gm × S → C

such that for any f ∈ F(Gm × S,C), we have

v(f, (g, s)) = f((g1, . . . , gi−1, γgi, gi+1, . . . , gm), s)

for any g = (g1, . . . , gm) ∈ Gm and a.e. s ∈ S. We define a map

w : Z × F(Gm × S,C)×Gm × S → C

by

w(z, f, (g, s))

=

{
v(f, (g, s)) if ρz(γ, ρz(gi · · · gm, s)) = ρz(gi · · · gm, s)

u(f, (g, s)) otherwise.
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for z ∈ Z, f ∈ F(Gm × S,C), g = (g1, . . . , gm) ∈ Gm and s ∈ S. The
map w is Borel, and induces the Borel map w̃ by Lemma 2.6 (i). We set
τ iγ = w̃. The claim then follows. Q.E.D.

We return to the proof of Proposition 2.5. We set G = G � (X,μ).
For a non-negative integer m, the space Cm(G, C) is identified with
F(Gm × X,C) under the Borel isomorphism from Gm × X onto G(m)

defined by

((g1, . . . , gm), x) 	→ ((g1, g2 · · · gmx), (g2, g3 · · · gmx), . . . , (gm, x))

for g1, . . . , gm ∈ G and x ∈ X. We have the map

Im : Cm(R, C) → F(Gm ×X,C)

induced by the quotient map from G onto R. For each φ ∈ Cm(R, C),
we identify it with Im(φ) if there is no confusion. We then have the

induced map φ̃ : Z → F(Gm × S,C).
The rest of the proof relies on the proof of [13, Theorem 3.4 and

Corollary 3.6]. Fix a non-negative integer n, and pick a measurable map
φ : R(n) → C. Suppose that for a.e. z ∈ Z, the map φz belongs to
Bn(Rz, C). To prove the proposition, we may assume n ≥ 1 because
B0 = 0. We define a map

d : Z × F(Gn × S,C)× F(Gn−1 × S,C) → F(Gn × S,C)

by
d(z, ψ, f)(g, s) = ψ(g, s)− (δn−1

z f)(g, s)

for z ∈ Z, ψ ∈ F(Gn × S,C), f ∈ F(Gn−1 × S,C), g ∈ Gn and s ∈ S,
where

δn−1
z : Cn−1(Gz, C) → Cn(Gz, C)

is the coboundary map. Following the proof of [13, Theorem 3.4], we
see that the map d is Borel. We define a map

p : Z × F(Gn−1 × S,C) → Z × F(Gn × S,C)

by

p(z, f) = (z, d(z, φ̃(z), f))

for z ∈ Z and f ∈ F(Gn−1 × S,C). The map p is Borel.
We define Σ as the Borel subset Z × {0} of Z × F(Gn × S,C). The

assumption that φz belongs to Bn(Rz, C) for a.e. z ∈ Z implies that
the projection of p−1(Σ) ∩ Ωn−1 into Z contains a conull Borel subset
of Z. By the von Neumann selection theorem ([6, Theorem 3.4.3], [13,
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Theorem 2.3]), there exists a Borel map F : Z → F(Gn−1 × S,C) such
that

(z, F (z)) ∈ p−1(Σ) ∩ Ωn−1 for a.e. z ∈ Z.

By Lemma 2.6 (ii), there exists a Borel map f : Gn−1 × X → C such
that for any z ∈ Z and any g ∈ Gn−1, we have

F (z)(g, s) = f(g, (z, s)) for a.e. s ∈ S.

The map f belongs to In−1(C
n−1(R, C)) because (z, F (z)) belongs to

Ωn−1 for a.e. z ∈ Z. For a.e. z ∈ Z, we have d(z, φ̃(z), F (z)) = 0 because
(z, F (z)) belongs to p−1(Σ). For a.e. x = (z, s) ∈ Z×S and any g ∈ Gn,
we therefore have

φ(g, x) = φ̃(z)(g, s) = (δn−1
z F (z))(g, s) = (δn−1f)(g, x).

It follows that φ ∈ Bn(R, C). Q.E.D.

It follows from the definition of treeability that for any treeable
equivalence relation, its almost every ergodic component is also treeable.
Combining this with Corollary 2.4 and Proposition 2.5, we obtain the
following:

Corollary 2.8. Let R be a discrete measured equivalence relation
which is p.m.p. and treeable (but not necessarily ergodic). Let C be an
abelian Polish group, and regard it as an R-module on which R acts
trivially. Then Hn(R, C) = 0 for any integer n with n ≥ 2.

§3. Splitting of groupoids

Let G be a discrete group with a central subgroup C. Let G �

(X,μ) be a non-singular action such that C acts trivially. For any γ ∈ G,
c ∈ C and x ∈ X, we have the equation of elements of G� (X,μ):

(γ, x)(c, x) = (γc, x) = (cγ, x) = (c, x)(γ, x).

Motivated by this equation, we introduce a central subgroupoid of a
discrete measured groupoid in the following:

Definition 3.1. Let G be a discrete measured groupoid on a stan-
dard probability space (X,μ). We mean by a central subgroupoid of G
the pair (C, ι) of a discrete group C and an injective homomorphism
ι : C → G, where C is the discrete measured groupoid associated with
the trivial action of C on X, such that

• the map from the unit space of C into that of G induced by ι
is the identity on X; and
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• for any c ∈ C and a.e. g ∈ G, the equation gι(c, s(g)) =
ι(c, r(g))g holds.

For c ∈ C and x ∈ X, we write ι(c, x) as c simply if its range
or source is understood from the context. We then have the equation
gc = cg for any c ∈ C and a.e. g ∈ G. This notation satisfies the
following associative law: For any c ∈ C and a.e. (g, h) ∈ G(2), we have
c(gh) = (cg)h = g(hc) = (gh)c. This element can thus be denoted by
cgh = gch = ghc without ambiguity. Let G/C denote the quotient space
for right (or left) multiplication of C on G. The space G/C naturally
admits a structure of a discrete measured groupoid on (X,μ). We then
say that G is a central extension of G/C with a central subgroup C.

Let G be a discrete group with a central subgroup C. Let G �

(X,μ) be a non-singular action such that C acts trivially. We define ι as
the identity on C� (X,μ). The pair (C, ι) is then a central subgroupoid
of G� (X,μ). Theorem 1.1 is therefore a special case of the following:

Theorem 3.2. Let G be a p.m.p. discrete measured groupoid on a
standard probability space (X,μ) and (C, ι) a central subgroupoid of G.
Suppose that G/C is isomorphic to a treeable equivalence relation. Let
θ : G → G/C denote the quotient map. Then the following two assertions
hold:

(i) The homomorphism θ splits, that is, there exists a subgroupoid
G1 of G such that the restriction of θ to G1 is an isomorphism
onto G/C.

(ii) The product set C × G1 admits the structure of a discrete
measured groupoid on (X,μ) with respect to the coordinate-
wise product operation. The map I : C × G1 → G defined by
I(c, g) = cg for c ∈ C and g ∈ G1 is then an isomorphism of
discrete measured groupoids.

Proof. We set Q = G/C, and pick a measurable section u : Q → G
of θ. We define a map σ : Q(2) → C so that

σ(g, h)u(gh) = u(g)u(h) for a.e. (g, h) ∈ Q(2).

The map σ belongs to Z2(Q, C). By Corollary 2.8, there exists a mea-
surable map φ : Q → C such that

σ(g, h) = φ(h)φ(gh)−1φ(g) for a.e. (g, h) ∈ Q(2).

We set
G1 = {φ(g)−1u(g) ∈ G | g ∈ Q}.
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We show that G1 is a subgroupoid of G. For a.e. (g, h) ∈ Q(2), the
equation

(φ(g)−1u(g))(φ(h)−1u(h)) = φ(g)−1φ(h)−1u(g)u(h)(3.1)

= φ(g)−1φ(h)−1σ(g, h)u(gh)

= φ(gh)−1u(gh)

holds. The subset G1 is thus closed under multiplication. For x ∈ X,
let ex ∈ Q denote the unit at x. By equation (3.1), for a.e. x ∈ X, the
element φ(ex)

−1u(ex) is the unit of G at x. It also follows from equation
(3.1) that for a.e. g ∈ Q, the element φ(g−1)−1u(g−1) is the inverse of
φ(g)−1u(g). The subset G1 is therefore a subgroupoid of G.

By the definition of G1, the restriction of θ to G1 is an isomorphism
onto Q. Assertion (i) follows. We have cg = gc for any c ∈ C and g ∈ G.
The map I : C × G1 → G in assertion (ii) therefore preserves products,
and is an isomorphism. Assertion (ii) follows. Q.E.D.

Remark 3.3. Series [25] constructs cohomology theory of a discrete
measured equivalence relation R with coefficient in a measured field
A = {Ax}x∈X of abelian, locally compact and second countable groups.
She studies a groupoid extension of R by A and its connection with co-
homology, following the theory of group extensions. A central extension
in Definition 3.1 is an extension in [25] such that the field of groups is
constant and further admits centrality. Among other things, Series aims
to reconstruct a groupoid from given R and A. The reconstruction is
described through cohomology of R ([25, Theorem 3.5]). Using this, she
also discusses when an extension splits ([25, §4, (B)]).

Let G � (X,μ) and H � (Y, ν) be ergodic and p.m.p. actions of
discrete groups. These two actions are called orbit equivalent (OE) if the
equivalence relations associated to them are isomorphic. The following
is a consequence of Theorem 3.2, and asserts splitting of a free action of
a central extension of a treeable group.

Theorem 3.4. Let 1 → C → G → Γ → 1 be an exact sequence of
discrete groups such that C is central in G. Let C � (Y, ν) and Γ �

(Z, ξ) be ergodic, free and p.m.p. actions. Suppose that the equivalence
relation associated with the action Γ � (Z, ξ) is treeable. Let C × Γ act
on the product space (Y × Z, ν × ξ) coordinatewise.

Then there exist an ergodic, free and p.m.p. action G � (X,μ) and
an isomorphism of measure spaces, f : (X,μ) → (Y ×Z, ν×ξ), such that

• the two actions G � (X,μ) and C × Γ � (Y × Z, ν × ξ) are
OE through f ;
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• for any c ∈ C and a.e. x ∈ X, we have f(cx) = (c, e)f(x),
where e is the neutral element of Γ;

• for any g ∈ G and a.e. x ∈ X, we have f(gx) = (c, q(g))f(x)
for some c ∈ C, where q : G → Γ is the quotient map.

Proof. LetG act on (Z, ξ) through the map q. We set G = G�(Z, ξ)
and Q = Γ � (Z, ξ). By Theorem 3.2, we have a subgroupoid G1 of G
and an isomorphism I : C ×G1 → G such that I(c, g) = cg for any c ∈ C
and a.e. g ∈ G1. Let θ1 : G1 → Q be the restriction of the quotient map
from G onto Q. The map θ1 is an isomorphism.

We also define the p.m.p. action C × Γ � (Z, ξ) through the pro-
jection from C × Γ onto Γ, and set H = (C × Γ)� (Z, ξ). We then have
the isomorphism J : H → G defined by

J((c, γ), z) = I(c, θ−1
1 (γ, z)) for c ∈ C, γ ∈ Γ and z ∈ Z.

We construct a measure space (Σ,m) as follows: We set Σ = Y ×Z×
G, and definem as the product measure of ν, ξ and the counting measure
on G. Let α : H → G be the homomorphism defined as the composition
of J with the projection from G onto G. We define a measure-preserving
action (C × Γ)×G � (Σ,m) by

((c, γ), g)(y, z, h) = (cy, γz, α((c, γ), z)hg−1)

for c ∈ C, γ ∈ Γ, g, h ∈ G, y ∈ Y and z ∈ Z. We denote by 1C×Γ

and 1G the neutral elements of C × Γ and G, respectively. The subset
Y × Z × {1G} of Σ is a fundamental domain for both the actions of
(C × Γ) × {1G} and {1C×Γ} × G on (Σ,m). It follows that (Σ,m) is a
measure-equivalence coupling of C × Γ and G.

We set X = Y ×Z ×{1G}. We have the natural p.m.p. action of G
on X because X is identified with the quotient space Σ/((C×Γ)×{1G}).
We also have the p.m.p. action of C × Γ on X because X is identified
with the quotient space Σ/({1C×Γ} × G). This action is isomorphic to
the coordinatewise action C × Γ � Y × Z under the projection from X
onto Y ×Z. The two actions G � X and C ×Γ � X are OE under the
identity map on X. Since the latter action is ergodic and free, so is the
former action. For any c ∈ C, the automorphism of X induced by c as an
element of G and that induced by (c, e) are equal. The second condition
in Theorem 3.4 holds. The third condition holds because for any c ∈ C,
any γ ∈ Γ and a.e. z ∈ Z, we have q ◦ α((c, γ), z) = γ. Q.E.D.

§4. The Haagerup property of discrete measured groupoids

Throughout this section, we fix a standard probability space (X,μ).
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4.1. Hilbert bundles and representations

We review a Hilbert bundle over X and a representation of a
groupoid on it, following [3, Sections 2 and 3], [24, Section 2] and [29,
Appendix F].

Let H = {Hx}x∈X be a family of separable Hilbert spaces indexed
by elements of X. We define X ∗H as the set of pairs (x, v) of x ∈ X
and v ∈ Hx, and define p : X ∗H → X as the projection sending each
(x, v) ∈ X ∗H to x. We often identify the fiber p−1(x) = {x}×Hx with
Hx if there is no confusion. A map σ : X → X ∗H with p(σx) = x for
any x ∈ X is called a section of X ∗H. A section σ is called normalized
if ‖σx‖ = 1 for any x ∈ X.

Definition 4.1 ([3, Definition 2.2], [24, p.264], [29, Definition F.1]).
Let H = {Hx}x∈X be a family of separable Hilbert spaces with p : X ∗
H → X the projection defined above. We mean by a Hilbert bundle
over X is such a set X ∗ H equipped with a standard Borel structure
satisfying the following conditions (1) and (2):

(1) A subset E of X is Borel if and only if p−1(E) is Borel in
X ∗H.

(2) There exists a sequence (σn)n of Borel sections of X ∗H such
that
(a) for any n, the function σ̄n on X ∗H defined by σ̄n(x, v) =

〈σn
x , v〉 for (x, v) ∈ X ∗ H is Borel, where 〈·, ·〉 is inner

product of Hx;
(b) for any n and m, the function x 	→ 〈σn

x , σ
m
x 〉 on X is

Borel; and
(c) the family of the functions σ̄n for n and the map p sepa-

rates points of X ∗H.

The sequence (σn)n is called a fundamental sequence for X ∗H.

It is known that a section σ : X → X ∗H is Borel if and only if for
any n, the function x 	→ 〈σx, σ

n
x 〉 on X is Borel ([29, Remark F.3]). For

a Hilbert bundle, we use the symbol X ∗ H or simply H if there is no
confusion. Unless otherwise mentioned, a section of a Hilbert bundle is
assumed to be Borel. For a given family H = {Hx}x∈X , to equip the
set X ∗H with a standard Borel structure, we use the following:

Proposition 4.2 ([29, Proposition F.8]). Suppose that we have a
family H = {Hx}x∈X of separable Hilbert spaces indexed by elements of
X and have a sequence (σn)n of sections of X ∗H such that conditions
(b) and (c) in Definition 4.1 hold. Then there exists a unique standard
Borel structure on X ∗ H such that X ∗ H is a Hilbert bundle over X
and (σn)n is its fundamental sequence.
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Indeed, in view of the proof of loc. cit., the standard Borel structure
on X ∗H is defined as the weakest measurable structure such that the
functions σ̄n for n and the projection p : X ∗ H → X are measurable,
where σ̄n is defined similarly to that in condition (a) in Definition 4.1.

Remark 4.3. By Proposition 4.2, given a countable family (Hn)n of
Hilbert bundles overX, we naturally obtain their direct sum

⊕
n H

n, the
Hilbert bundle over X whose fiber at x ∈ X is the direct sum

⊕
n H

n
x .

For a Hilbert bundle H over X, we denote by Iso(H) the groupoid
on X whose elements are triples (x, V, y) with x, y ∈ X and V a
Hilbert space isomorphism from Hy onto Hx, and whose product is
defined by (x, V, y)(y,W, z) = (x, V ◦W, z). We equip Iso(H) with the
weakest measurable structure such that for any n and m, the function
(x, V, y) 	→ 〈V σn

y , σ
m
x 〉 on Iso(H) is measurable, where (σn)n is a funda-

mental sequence for H.
Let G be a discrete measured groupoid on (X,μ). We mean by a

representation of G on a Hilbert bundle H over X a measurable homo-
morphism π : G → Iso(H) inducing the identity on X. For an element
g ∈ G whose range and source are y and x, respectively, the element
π(g) ∈ Iso(H) is written as (y, π̄(g), x), where π̄(g) is a Hilbert space
isomorphism from Hx onto Hy. To lighten the symbols, we identify π(g)

with π̄(g). We then have π(gh) = π(g)π(h) for a.e. (g, h) ∈ G(2), and
have π(g−1) = π(g)−1 for a.e. g ∈ G.

In the rest of this subsection, we discuss the following two properties
of representations of G, the c0-property and the weak containment of the
trivial representation.

Definition 4.4. Let G be a discrete measured groupoid on (X,μ)
and π a representation of G on a Hilbert bundle H over X. We say that
π is c0 (or is a c0-representation) if for any normalized sections u, v of
H, any δ > 0 and any ε > 0, there exists a measurable subset Y of X
such that μ(X \ Y ) < δ and for a.e. x ∈ Y , we have

|{ g ∈ (G|Y )x | |〈π(g)ux, vr(g)〉| > ε }| < ∞.

Lemma 4.5. Let G be a discrete measured groupoid on (X,μ) and
π a representation of G on a Hilbert bundle H over X. Then π is c0
if there exists a countable family (en)n∈N of sections of H satisfying the
following conditions (1) and (2):

(1) For a.e. x ∈ X, the subset (enx)n∈N is total in Hx.
(2) For any n,m ∈ N, any δ > 0 and any ε > 0, there exists a

measurable subset Y of X such that μ(X \Y ) < δ and for a.e.
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x ∈ Y , we have

|{ g ∈ (G|Y )x | |〈π(g)enx , emr(g)〉| > ε }| < ∞.

Proof. We first prove that π is c0 if (en)n∈N further satisfies the
following conditions (a) and (b):

(a) For a.e. x ∈ X and any n ∈ N, we have either ‖enx‖ = 1 or
enx = 0.

(b) For a.e. x ∈ X, the unit vectors in the set (enx)n∈N form an
orthonormal basis of Hx.

Pick normalized sections u, v of H and numbers δ > 0 and ε > 0. By
conditions (a) and (b), there exist a measurable subset Y1 of X and
N ∈ N such that μ(X \ Y1) < δ/2 and for a.e. x ∈ Y1, we have∥∥∥∥∥ux −

N∑
n=1

〈ux, e
n
x〉enx

∥∥∥∥∥ <
ε

4
and

∥∥∥∥∥vx −
N∑

n=1

〈vx, enx〉enx
∥∥∥∥∥ <

ε

4
.

By condition (2), there exists a measurable subset Y2 of X such that
μ(X \Y2) < δ/2 and for any n,m = 1, 2, . . . , N and a.e. x ∈ Y2, we have

|{ g ∈ (G|Y2)x | |〈π(g)enx , emr(g)〉| > ε/(2N2) }| < ∞.

We set Y = Y1 ∩ Y2. We have μ(X \ Y ) < δ. For a.e. g ∈ G|Y , we have

|〈π(g)us(g), vr(g)〉| < ε

2
+

N∑
n,m=1

|〈π(g)ens(g), emr(g)〉|.

For a.e. x ∈ Y , we also have

{ g ∈ (G|Y )x | |〈π(g)ux, vr(g)〉| > ε }

⊂
N⋃

n,m=1

{ g ∈ (G|Y )x | |〈π(g)enx , emr(g)〉| > ε/(2N2) }.

It follows that the set in the left hand side is finite.
We proved that π is c0 if (en)n∈N satisfies conditions (a) and (b).

Suppose that (en)n∈N satisfies only conditions (1) and (2). Let (fn)n∈N

be the sequence of sections ofH obtained by applying the Gram-Schmidt
process to the sequence (en)n∈N. The sequence (fn)n∈N then satisfies
conditions (a) and (b).

We check that (fn)n∈N satisfies condition (2). Fix n,m ∈ N. Pick
δ > 0 and ε > 0. There exist measurable functions αk, βl : X → C

indexed by k = 1, . . . , n and l = 1, . . . ,m such that for a.e. x ∈ X,
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we have fn
x =

∑n
k=1 α

k
xe

k
x and fm

x =
∑m

l=1 β
l
xe

l
x. By condition (2) for

(en)n∈N, there exist a measurable subset Y of X and a number M > 0
such that μ(X \ Y ) < δ and for any k = 1, . . . , n, any l = 1, . . . ,m and
a.e. x ∈ Y , we have |αk

x| ≤ M , |βl
x| ≤ M and

|{ g ∈ (G|Y )x | |〈π(g)ekx, elr(g)〉| > ε/(nmM2) }| < ∞.

For a.e. x ∈ Y , we then have

{ g ∈ (G|Y )x | |〈π(g)fn
x , f

m
r(g)〉| > ε }

⊂
n⋃

k=1

m⋃
l=1

{ g ∈ (G|Y )x | |αk
xβ

l
r(g)〈π(g)ekx, elr(g)〉| > ε/(nm) }

⊂
n⋃

k=1

m⋃
l=1

{ g ∈ (G|Y )x | |〈π(g)ekx, elr(g)〉| > ε/(nmM2) }.

It follows that the set in the left hand side is finite. Condition (2) for
(fn)n∈N is proved.

The sequence (fn)n∈N satisfies conditions (a), (b) and (2). The
lemma is thus reduced to the case discussed in the first paragraph of the
proof. Q.E.D.

Lemma 4.6. Let G be a discrete measured groupoid on (X,μ) and
π a representation of G on a Hilbert bundle H over X. Then π is c0
if there exists a countable family (en)n∈N of sections of H satisfying the
following conditions (I) and (II):

(I) For a.e. x ∈ X, the subset {π(g)ens(g) ∈ Hx | g ∈ Gx, n ∈ N }
is total in Hx.

(II) For any n,m ∈ N, any δ > 0 and any ε > 0, there exists a
measurable subset Y of X such that μ(X \Y ) < δ and for a.e.
x ∈ Y , we have

|{ g ∈ (G|Y )x | |〈π(g)enx , emr(g)〉| > ε }| < ∞.

Proof. Pick a countable family (φk)k∈N of sections φk : X → G of
the range map r such that the equation G =

⋃
k∈N

φk(X) holds and
for any k ∈ N, the map s ◦ φk : X → X is an automorphism. For any
k, l ∈ N, we have the measurable isomorphism U l

k : G → G defined by

U l
k(g) = φl(r(g))

−1gφk(s(g)) for g ∈ G.
For n, k ∈ N, we define a section en,k : X → H of H by

en,kx = π(φk(x))e
n
s◦φk(x)

for x ∈ X.
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We show that the family (en,k)n,k satisfies conditions (1) and (2) in
Lemma 4.5. Condition (1) follows from condition (I).

To prove that condition (2) holds, we fix n,m, k, l ∈ N and pick
δ > 0 and ε > 0. By condition (II), there exists a measurable subset Z
of X such that μ(X \ Y ) < δ, where we set

Y = {x ∈ X | s ◦ φk(x) ∈ Z, s ◦ φl(x) ∈ Z };
and for a.e. x ∈ Z, we have

(4.1) |{ g ∈ (G|Z)x | |〈π(g)enx , emr(g)〉| > ε }| < ∞.

For a.e. g ∈ G, putting y = r(g) and x = s(g), we have

〈π(g)en,kx , em,l
y 〉 = 〈π(U l

k(g))e
n
s◦φk(x)

, ems◦φl(y)
〉.

It follows that for a.e. x ∈ Y , we have

{ g ∈ (G|Y )x | |〈π(g)en,kx , em,l
r(g)〉| > ε }

= { g ∈ (G|Y )x | |〈π(U l
k(g))e

n
s◦φk(x)

, ems◦φl(r(g))
〉| > ε }

For any element g in the right hand side, we have U l
k(g) ∈ G|Z . By

(4.1), the right hand side is therefore finite. Condition (2) for (en,k)n,k
follows. By Lemma 4.5, π is c0. Q.E.D.

We next recall the weak containment of the trivial representation.
This is used to define amenability and property (T) of a discrete mea-
sured groupoid ([3], [5]).

Definition 4.7. Let G be a discrete measured groupoid on (X,μ)
and π a representation of G on a Hilbert bundle H over X. A sequence
(vn)n of normalized sections of H is called almost invariant under π(G)
if for a.e. g ∈ G, we have

‖π(g)vns(g) − vnr(g)‖ → 0 as n → ∞.

We say that π contains the trivial representation weakly, denoted by
1 ≺ π, if there exists a sequence of normalized sections of H almost
invariant under π(G).

4.2. Induced representations

Let G be a discrete measured groupoid on (X,μ) with r, s : G → X
the range and source maps, respectively. Let S be a subgroupoid of G
and π a representation of S on a Hilbert bundle H = {Hx}x∈X over
X. In this subsection, we construct a representation π̃ of G on another
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Hilbert bundle H̃ = {H̃y}y∈X over X canonically, as a generalization of
usual induced representations of groups, and discuss its c0-property and
weak containment of the trivial representation.

For subsets D, E of G and an element y ∈ X, we set

DE = { gh ∈ G | g ∈ D, h ∈ E, s(g) = r(h) } and

Dy = D ∩ Gy.

For g ∈ G, we denote {g}S by gS simply.
We fix a measurable fundamental domain D for right multiplication

of S on G. That is, we fix a measurable subset D of G such that DS = G
and for any y ∈ X and any distinct g, h ∈ Dy, the sets gS and hS are
disjoint. For y ∈ X, we define H̃y as the set of maps ξ : Gy → H such
that

• for any g ∈ Gy, we have ξ(g) ∈ Hs(g);

• for any g ∈ Gy and any h ∈ Ss(g), we have ξ(gh) = π(h−1)ξ(g);
and

• we have
∑

g∈Dy ‖ξ(g)‖2 < ∞.

By the second condition, any map ξ ∈ H̃y is determined by its restriction

to Dy. The space H̃y is a vector space by pointwise addition and scalar
multiple, and is a separable Hilbert space by inner product 〈ξ, η〉 =∑

g∈Dy 〈ξ(g), η(g)〉 for ξ, η ∈ H̃y. We note that the space H̃y does not
depend on the choice of the fundamental domain D.

Lemma 4.8. The family H̃ = {H̃y}y∈X admits a structure of a
Hilbert bundle over X.

Proof. Let (σn)n∈N be a fundamental sequence for H. Pick a
countable family (φm)m∈M of measurable sections φm : Xm → G of
the range map r, defined on a measurable subset Xm of X, such that
D =

⊔
m∈M φm(Xm) and for any m ∈ M , the map s ◦ φm : Xm → X is

injective.
For n ∈ N and m ∈ M , we define a section τn,m of H̃. Pick y ∈ X.

We first define a map τn,my : Dy → H so that τn,my (g) ∈ Hs(g) for any
g ∈ Dy. The definition depends on whether y ∈ Xm or not. If y ∈ Xm,
then let τn,my send φm(y) to σn

s◦φm(y), and send any other point of Dy

to 0. If y �∈ Xm, then let τn,my send any point of Dy to 0. Extend τn,my

to the map from Gy to H equivariant under right multiplication of S.
We get the element of H̃y, denoted by the same symbol τn,my .

The family (τn,m)n,m satisfies conditions (b) and (c) in Definition
4.1. By Proposition 4.2, we have a unique standard Borel structure on
X ∗ H̃ such that X ∗ H̃ is a Hilbert bundle over X and (τn,m)n,m is its
fundamental sequence. Q.E.D.
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A section of H̃ is naturally regarded as a map from G to H. More
precisely, if ξ : X → H̃ is a section of H̃, then we have the map ξ̄ : G → H

defined by ξ̄(g) = ξr(g)(g) for g ∈ G. This map ξ̄ satisfies that

• for any g ∈ G, we have ξ̄(g) ∈ Hs(g);

• for any g ∈ G and any h ∈ Ss(g), we have ξ̄(gh) = π(h−1)ξ̄(g);
and

• for any y ∈ X, we have
∑

g∈Dy ‖ξ̄(g)‖2 < ∞.

Conversely, any map ξ̄ : G → H satisfying these three conditions arises
from a section of H̃. The section ξ is measurable if and only if ξ̄ is
measurable. This holds true because, with the notation in the proof of
Lemma 4.8, for any n, m and any y ∈ X, we have

〈ξy, τn,my 〉 =
∑
g∈Dy

〈ξy(g), τn,my (g)〉

=

{
〈ξ̄(φm(y)), σn

s◦φm(y)〉 if y ∈ Xm

0 otherwise.

We often identify ξ with this map ξ̄, denoting it by the same symbol ξ.
We define a homomorphism π̃ : G → Iso(H̃) so that for g ∈ G, the

Hilbert space isomorphism π̃(g) : H̃s(g) → H̃r(g) is given by

(π̃(g)ξ)(h) = ξ(g−1h) for ξ ∈ H̃s(g) and h ∈ Gr(g).

We got the representation π̃ of G on the Hilbert bundle H̃, and call it
the representation of G induced from π.

Proposition 4.9. Let G be a discrete measured groupoid on (X,μ)
and S a subgroupoid of G. Let π be a c0-representation of S on a Hilbert
bundle H over X. Then the representation π̃ of G induced from π is also
c0.

Proof. Let H̃ = {H̃y}y∈X be the Hilbert bundle on which π̃(G)
acts. Pick a fundamental sequence (σn)n∈N for H. For n ∈ N, we

define a section σ̃n of H̃ so that as a map from G into H, we have
σ̃n(g) = π(g−1)σn

r(g) for g ∈ S and σ̃n(g) = 0 otherwise.

We check that the family (σ̃n)n∈N satisfies conditions (I) and (II) in
Lemma 4.6. If it is shown, then π̃ is c0 by that lemma. Let D ⊂ G be a
measurable fundamental domain for right multiplication of S on G. For
any y ∈ X, the space H̃y is identified with the space of a map ξ : Dy → H

such that ξ(g) ∈ Hs(g) for any g ∈ Dy; and
∑

g∈Dy ‖ξ(g)‖2 < ∞. Fix

y ∈ X. For any g ∈ Dy, the element π̃(g)σ̃n
s(g) of H̃y is supported on
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the single point set {g} if it is regarded as a map from Dy. We have
(π̃(g)σ̃n

s(g))(g) = σ̃n
s(g)(es(g)) = σn

s(g), where for x ∈ X, we denote by ex
the unit of G at x. For any y ∈ X, the set { π̃(g)σ̃n

s(g) | g ∈ Dy, n ∈ N }
is thus total in H̃y. The family (σ̃n)n∈N satisfies condition (I) in Lemma
4.6.

To check condition (II), we fix n,m ∈ N. For any g ∈ G \S, we have
〈π̃(g)σ̃n

s(g), σ̃
m
r(g)〉 = 0 because σ̃n and σ̃m are supported on S. For any

g ∈ S, denoting by h the single element of Dr(g) ∩ S, we have

〈π̃(g)σ̃n
s(g), σ̃

m
r(g)〉 = 〈σ̃n(g−1h), σ̃m(h)〉 = 〈π(g)σn

s(g), σ
m
r(g)〉.

For any ε > 0, the equation

{g ∈ G | |〈π̃(g)σ̃n
s(g), σ̃

m
r(g)〉| > ε} = {g ∈ S | |〈π(g)σn

s(g), σ
m
r(g)〉| > ε}

therefore holds. Condition (II) for (σ̃n)n∈N follows from that π is c0.
Q.E.D.

Proposition 4.10. Let G be a discrete measured groupoid on (X,μ)
and S a subgroupoid of G. Suppose that there exist an amenable discrete
group A and a homomorphism α : G → A such that kerα = S and
either A is cyclic or α is class-surjective, i.e., for a.e. x ∈ X, we have
α(Gx) = A. Let π be a representation of S on a Hilbert bundle H over
X with 1 ≺ π. We denote by π̃ the representation of G induced from π.
Then 1 ≺ π̃.

To prove this proposition, we need an elementary fact on a Følner
sequence. Let G be a discrete group. Recall that a sequence (Fn)n of
non-empty finite subsets of G is called a Følner sequence of G if for any
g ∈ G, we have |gFn � Fn|/|Fn| → 0 as n → ∞.

Lemma 4.11. Let A be a cyclic group. Then there exists a Følner
sequence (Fn)n of A such that for any n, the set Fn contains the neutral
element of A; and for any non-empty subset S of A and for any g ∈ A,
we have

|(gFn � Fn) ∩ S|
|Fn ∩ S| → 0 and

|(gFn � Fn) ∩ S|
|gFn ∩ S| → 0 as n → ∞.

Proof. If A is finite, then it is enough to set Fn = A for any n.
We assume A = Z. For n ∈ N, let Fn be the set of integers whose
absolute values are at most n. Pick m ∈ Z. For any n ∈ N, we have
|(m+Fn)�Fn| = 2|m|. Let S be a non-empty subset of Z. If S is finite,
then the set ((m + Fn)� Fn) ∩ S is empty for any sufficiently large n.
If S is infinite, then |Fn ∩ S| → ∞ and |(m+ Fn) ∩ S| → ∞ as n → ∞.
The lemma follows. Q.E.D.
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Proof of Proposition 4.10. Let H̃ = {H̃y}y∈X denote the Hilbert
bundle on which π̃(G) acts. We first assume that A is cyclic. By Lemma
4.11, we have a Følner sequence (Fn)n∈N of A such that for any n ∈ N,
the set Fn contains the neutral element of A; and for any non-empty
subset S and any g ∈ A, we have

|(gFn � Fn) ∩ S|
|Fn ∩ S| → 0 and

|(gFn � Fn) ∩ S|
|gFn ∩ S| → 0 as n → ∞.

By the assumption 1 ≺ π, there exists a sequence (vm)m∈N of normalized
sections of H such that for a.e. h ∈ S, we have ‖π(h)vms(h) − vmr(h)‖ → 0
as m → ∞.

Let D ⊂ G be a measurable fundamental domain for right multipli-
cation of S on G. For n,m ∈ N, we define a map ξn,m : D → H so that
for g ∈ D, the element ξn,m(g) ∈ Hs(g) is given by

ξn,m(g) =

{
vms(g)/|α(Gr(g)) ∩ Fn|1/2 if α(g) ∈ Fn

0 otherwise.

We extend this map to the map ξn,m : G → H so that for any g ∈ D and
any h ∈ Ss(g), the equation ξn,m(gh) = π(h−1)ξn,m(g) holds. For a.e.
y ∈ X, we have

∑
g∈Dy ‖ξn,m(g)‖2 = 1. It follows that ξn,m is regarded

as a normalized section of H̃.
Pick an increasing sequence (El)l∈N of measurable subsets of G such

that μ̃(El) < ∞ for any l ∈ N and G =
⋃

l∈N
El.

Fix l ∈ N. By the Lebesgue convergence theorem, there exists n ∈ N

with ∫
El

|(α(g)Fn � Fn) ∩ α(Gr(g))|
|Fn ∩ α(Gr(g))| dμ̃(g) ≤ 1

l2
and(4.2) ∫

El

|(α(g)Fn � Fn) ∩ α(Gr(g))|
|α(g)Fn ∩ α(Gr(g))| dμ̃(g) ≤ 1

l2
.(4.3)

For any (g, g′) ∈ G(2), there exists a unique h ∈ Ss(g′) with gg′h ∈ D.
This element h is denoted by h(g, g′). By the Lebesgue convergence
theorem, there exists m ∈ N with∫

El

∑
g′∈Dr(g)∩α−1(Fn)

|〈π(h(g−1, g′))vms(h(g−1,g′)), v
m
s(g′)〉 − 1| dμ̃(g)(4.4)

≤ 1

2l2
.
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We denote by ηl the normalized section ξn,m of H̃ with n and m chosen
above.

Fix g ∈ El and put y = r(g) and x = s(g). For any g′ ∈ Dy, putting
h = h(g−1, g′), we have

(π̃(g)ηlx)(g
′) = ηlx(g

−1g′) = π(h)ηlx(g
−1g′h)

=

{
π(h)vms(h)/|α(Gx) ∩ Fn|1/2 if α(g−1g′) ∈ Fn

0 otherwise,

and have

ηly(g
′) =

{
vms(g′)/|α(Gy) ∩ Fn|1/2 if α(g′) ∈ Fn

0 otherwise.

We set A1 = α(Gy)∩ α(g)Fn = α(g)(α(Gx)∩Fn) and A2 = α(Gy)∩Fn.
We also set

D0 = { g′ ∈ Dy | α(g′) ∈ α(g)Fn ∩ Fn }.
Setting h(g′) = h(g−1, g′) for g′ ∈ Dy, we have

〈π̃(g)ηlx, ηly〉 =
∑

g′∈Dy

〈(π̃(g)ηlx)(g′), ηly(g′)〉

=
1

|A1|1/2|A2|1/2
∑

g′∈D0

〈π(h(g′))vms(h(g′)), v
m
s(g′)〉,

and also have

|〈π̃(g)ηlx,ηly〉 − 1|(4.5)

≤
∣∣∣∣1− |D0|

|A1|1/2|A2|1/2
∣∣∣∣

+
∑

g′∈D0

|〈π(h(g′))vms(h(g′)), v
m
s(g′)〉 − 1|

|A1|1/2|A2|1/2

≤ 1

4

( |A1 �A2|
|A1| +

|A1 �A2|
|A2|

)
+

∑
g′∈D0

|〈π(h(g′))vms(h(g′)), v
m
s(g′)〉 − 1|,
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where the last inequality holds because we have |D0| = |A1 ∩ A2| and
have

0 ≤ 1− |A1 ∩A2|
|A1|1/2|A2|1/2 = 1− |A1|+ |A2| − |A1 �A2|

2|A1|1/2|A2|1/2

≤ |A1 �A2|
2|A1|1/2|A2|1/2 ≤ 1

4

( |A1 �A2|
|A1| +

|A1 �A2|
|A2|

)
by the inequality of arithmetic and geometric means. Take integration
of inequality (4.5) with respect to g ∈ El. By inequalities (4.2), (4.3)
and (4.4), we obtain

(4.6)

∫
El

|〈π̃(g)ηls(g), ηlr(g)〉 − 1| dμ̃(g) ≤ 1

l2
.

We therefore obtained the sequence (ηl)l∈N of normalized sections

of H̃ such that for any k ∈ N, we have∫
Ek

|〈π̃(g)ηls(g), ηlr(g)〉 − 1| dμ̃(g) ≤ 1

l2

for any l ∈ N with l ≥ k. It follows that for a.e. g ∈ Ek, we have
〈π̃(g)ηls(g), ηlr(g)〉 → 1 as l → ∞ because the sum

∑∞
l=1 l

−2 is convergent.

This pointwise convergence thus holds for a.e. g ∈ G.
We proved the proposition when A is cyclic. The proof of the case

where A is amenable and α is class-surjective is almost the same. In fact,
although we cannot use Lemma 4.11, for any Følner sequence (Fn)n∈N

of A, we can find n ∈ N satisfying inequalities (4.2) and (4.3) because α
is class-surjective, i.e., we have α(Gr(g)) = A for a.e. g ∈ G. Q.E.D.

4.3. The Haagerup property and its generalization

The Haagerup property (HAP) of groups was initially discovered by
Haagerup [16]. On the basis of this work, the HAP was introduced for
p.m.p. discrete measured equivalence relations by Jolissaint [19], and was
introduced for discrete measured groupoids by Anantharaman-Delaroche
[4]. For our purpose, we introduce a property of discrete measured
groupoids similar to the HAPs in [19] and [4], and call it the HAP in the
present paper. Comparison among these HAPs is discussed in Appendix
A.

Let G be a discrete measured groupoid on (X,μ). A measurable
function φ : G → C is called positive definite if for a.e. x ∈ X, any
g1, . . . , gn ∈ Gx and any λ1, . . . , λn ∈ C, we have

∑n
i,j=1 λiλjφ(g

−1
i gj) ≥

0. A positive definite function φ on G is called normalized if φ(ex) = 1
for a.e. x ∈ X, where ex is the unit of G at x. A measurable function φ
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on G is called c0 (or a c0-function) if for any δ > 0 and any ε > 0, there
exists a measurable subset Y of X such that μ(X \ Y ) < δ and for a.e.
x ∈ Y , we have

|{ g ∈ (G|Y )x | |φ(g)| > ε }| < ∞.

Let π be a representation of G on a Hilbert bundle H over X and v
a section of H. The function g 	→ 〈π(g)vs(g), vr(g)〉 on G is then positive
definite. If v is normalized, then the function is normalized. If π is c0,
then the function is c0.

Remark 4.12. Let φ : G → C be a positive definite function. Then

(i) for a.e. x ∈ X, we have φ(ex) ≥ 0; and

(ii) for a.e. g ∈ G, we have φ(g−1) = φ(g) and |φ(g)|2 ≤
φ(er(g))φ(es(g)).

In fact, assertion (i) follows by definition. Assertion (ii) holds because
for a.e. g ∈ G, the matrix(

φ(er(g)) φ(g)
φ(g−1) φ(es(g))

)
is non-negative.

The following is a basic property of positive definite functions:

Lemma 4.13 ([4, Lemma 13]). Let G be a discrete measured
groupoid on (X,μ) and S a subgroupoid of G. Let φ be a positive definite
function on S. Then the function ψ : G → C defined by ψ = φ on S and
ψ = 0 on G \ S is positive definite on G.

Definition 4.14. We say that a discrete measured groupoid G on
(X,μ) has the Haagerup property (HAP) if there exists a sequence (φn)n
of normalized positive definite c0-functions on G such that for a.e. g ∈ G,
we have φn(g) → 1 as n → ∞.

Remark 4.15. The HAP in Definition 4.14 is apparently quite sim-
ilar, but different from the HAPs of Jolissaint [19] and Anantharaman-
Delaroche [4] (see Appendix A). The difference is the c0-property of
positive definite functions. Our definition motivates from Proposition
4.18, whose proof is based on Lemmas 4.5 and 4.6. These two lem-
mas provide a sufficient condition for a representation to be c0. It does
not seem obvious whether the same criterion is available for the c0-
property in the definitions of their HAPs (see Definitions A.1 and A.2).
Nevertheless, in Corollary A.6, we show that all of Jolissaint’s HAP,
Anantharaman-Delaroche’s HAP and our HAP are equivalent.
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Remark 4.16. A measurable function φ : G → C is c0 if and only
if for any δ > 0, there exists a measurable subset Y of X such that
μ(X \ Y ) < δ and for any ε > 0, we have

μ̃({ g ∈ G|Y | |φ(g)| > ε }) < ∞,

that is, the restriction of φ to G|Y satisfies the c0-property in Definitions
A.1 and A.2 of the HAPs of Jolissaint and Anantharaman-Delaroche.

To a normalized positive definite function φ on G, the GNS rep-
resentation πφ of G is associated as follows: For x ∈ X, we have in-
ner product 〈·, ·〉 on the vector space whose basis is Gx, defined by
〈g, h〉 = φ(h−1g) for g, h ∈ Gx. Its completion is denoted by Hφ

x . The
family Hφ = {Hφ

x}x∈X admits a structure of a Hilbert bundle over X.
In fact, if (σn)n is a sequence of measurable sections of the range map
of G with G =

⋃
n σn(X), then it is a fundamental sequence of Hφ. We

have the homomorphism πφ : G → Iso(Hφ) defined by πφ(g)h = gh for
g ∈ G and h ∈ Gs(g). The representation πφ is called the GNS repre-
sentation of G associated to φ. Let vφ be the section of Hφ defined so
that for x ∈ X, vφx is the unit of G at x. For any g ∈ G, we then have

φ(g) = 〈πφ(g)vφs(g), v
φ
r(g)〉. By Lemma 4.6, if φ is c0, then πφ is c0.

The following lemma is deduced from the relationship, observed
above, between positive definite functions on G and matrix coefficients
of a representation of G.

Lemma 4.17. Let G be a discrete measured groupoid on (X,μ).
Suppose that G has the HAP, that is, there exists a sequence (φn)n∈N of
normalized positive definite c0-functions on G such that for a.e. g ∈ G,
we have φn(g) → 1 as n → ∞. Let π denote the direct sum of the GNS
representations πφn with n ∈ N. Then π is c0 and 1 ≺ π.

Conversely, if there exists a c0-representation τ of G on a Hilbert
bundle over X with 1 ≺ τ , then G has the HAP.

Proposition 4.18. Let G be a discrete measured groupoid on (X,μ)
and S a subgroupoid of G. Suppose that there exist an amenable discrete
group A and a homomorphism α : G → A such that kerα = S and either
A is abelian or α is class-surjective. If S has the HAP, then so does G.

Proof. Since S has the HAP, by Lemma 4.17, there exists a c0-
representation π of S on a Hilbert bundle over X with 1 ≺ π. Let π̃
denote the representation of G induced from π. If either A is cyclic or
α is class-surjective, then by Propositions 4.9 and 4.10, π̃ is c0, and we
have 1 ≺ π̃. It follows from Lemma 4.17 that G has the HAP. If A is not
necessarily cyclic and is abelian, then by inductive argument, for any
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finitely generated subgroup B of A, the subgroupoid α−1(B) of G has
the HAP. By Lemma 4.13, this implies that G has the HAP. Q.E.D.

The following generalizes [19, Corollary 2.8]:

Proposition 4.19. Let G be a discrete measured groupoid on a
standard probability space (X,μ). Let A be a measurable subset of X
with GA = X. Then G|A has the HAP if and only if so does G.

Proof. The “if” part follows by definition. We prove the “only if”
part. Suppose that G|A has the HAP. There exists a sequence (φn)n∈N

of normalized positive definite c0-functions on G|A such that for a.e.
g ∈ G|A, we have φn(g) → 1 as n → ∞.

Put Y0 = A. We define a map f0 : Y0 → G by f0(x) = ex for x ∈ Y0.
By the assumption GA = X, there exists a family (fk)k∈N of countably
many measurable sections fk : Yk → G of the source map s, defined on
a measurable subset Yk of X \ Y0, such that

⊔
k∈N

Yk = X \ Y0 and
for any k ∈ N, the map r ◦ fk is an injection from Yk into Y0. For
n ∈ N, we define a function ψn : G → C so that for a.e. g ∈ G, choosing
k, l ∈ {0} ∪ N with r(g) ∈ Yk and s(g) ∈ Yl, we have

ψn(g) = φn(fk(r(g))gfl(s(g))
−1).

The function ψn is positive definite and normalized. For a.e. g ∈ G, we
have ψn(g) → 1 as n → ∞.

We fix n ∈ N and keep the notation in the last paragraph. We claim
that ψn is c0. To prove it, we pick δ > 0 and ε > 0. We have to find a
measurable subset Z of X such that μ(X \ Z) < δ and for a.e. x ∈ Z,
we have

|{ g ∈ (G|Z)x | |ψn(g)| > ε }| < ∞.

There exists K ∈ N with μ(X \ (
⋃K

k=0 Yk)) < δ/2. Since φn is a c0-
function on G|Y0 , there exists a measurable subset W of Y0 such that
for any integer k with 0 ≤ k ≤ K, putting Zk = (r ◦ fk)−1(W ), we have
μ(Yk \ Zk) < δ/(2(K + 1)); and for a.e. y ∈ W , we have

|{h ∈ (G|W )y | |φn(h)| > ε }| < ∞.

We set Z =
⋃K

k=0 Zk. We have μ(X \ Z) < δ.
Fix x ∈ Z. There exists a unique integer k with 0 ≤ k ≤ K and

x ∈ Zk. We have

{ g ∈ (G|Z)x | |ψn(g)| > ε } =
K⊔
l=0

Gl,
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where for an integer l with 0 ≤ l ≤ K, we set

Gl = { g ∈ (G|Z)x | r(g) ∈ Zl, |ψn(g)| > ε }.
The map sending an element g of Gl to the element fl(r(g))gfk(x)

−1 is
an injection from Gl into the set

{h ∈ (G|W )r◦fk(x) | |φn(h)| > ε }.
The last set is finite for a.e. x ∈ Zk. The claim follows.

We proved that the sequence (ψn)n satisfies the condition in Defi-
nition 4.14. It follows that G has the HAP. Q.E.D.

We now introduce the generalized Haagerup property for a discrete
measured groupoid, following [11, Definition 4.2.1]. For an abelian dis-

crete group C, we denote by Ĉ the group of characters on C. Let 1C
denote the trivial character on C. We mean by a compact neighborhood

of 1C in Ĉ the compact subset of Ĉ containing 1C in its interior.

Definition 4.20. Let G be a discrete measured groupoid on (X,μ)
and (C, ι) a central subgroupoid of G. We say that the pair (G, (C, ι))
has the generalized Haagerup property (gHAP) if there exist a sequence

(Vn)n∈N of compact neighborhoods of 1C in Ĉ and a family {φn
χ | n ∈

N, χ ∈ Vn } of normalized positive definite functions on G satisfying the
following conditions (1)–(4):

(1) For a.e. g ∈ G and any ε > 0, there exists N ∈ N such that
for any n ≥ N and any χ ∈ Vn, we have |φn

χ(g)− 1| < ε.
(2) For any n ∈ N, any χ ∈ Vn, a.e. g ∈ G and any c ∈ C, we have

φn
χ(gc) = φn

χ(g)χ(c).
(3) For any n ∈ N and a.e. g ∈ G, the function χ 	→ φn

χ(g) on Vn

is continuous.
(4) For any n ∈ N and any χ ∈ Vn, the function on G/C induced

by |φn
χ| is c0.

Let us refer to condition (1) as the condition that the family {φn
χ}n,χ

approaches 1 on G as n → ∞. For any n ∈ N, taking a countable dense
subset of Vn and using condition (3), we see that the function g 	→
supχ∈Vn

|φn
χ(g)−1| on G is measurable. Condition (1) is then equivalent

to that this function converges to 0 pointwise almost everywhere as
n → ∞.

If X consists of a single point and G is a discrete group, then the
gHAP in Definition 4.20 is equivalent to that in [11, Definition 4.2.1].

The following is similar to Proposition 4.18.
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Proposition 4.21. Let G be a discrete measured groupoid on (X,μ)
and S a subgroupoid of G. Let (C, ι) be a central subgroupoid of G
such that the image of ι is contained in S. Suppose that there exist
an amenable discrete group A and a homomorphism α : G → A such
that kerα = S and either A is abelian or α is class-surjective. If the
pair (S, (C, ι)) has the gHAP, then so does the pair (G, (C, ι)).

Proof. By assumption, there exist a sequence (Vn)n∈N and a family
{φn

χ | n ∈ N, χ ∈ Vn } satisfying conditions (1)–(4) in Definition 4.20 for
S in place of G. We first assume that A is abelian. We show the following
assertion: For any cyclic subgroup B of A, there exist a subsequence
(Vnl

)l of (Vn)n and a family {ψl
χ | l ∈ N, χ ∈ Vnl

} of normalized

positive definite functions on G such that the family {ψl
χ}l,χ approaches

1 on α−1(B) as l → ∞ and satisfies conditions (2)–(4) for G. If the
assertion is shown, then by inductive argument, the same assertion holds
true for any finitely generated subgroup of A in place of B. This implies
the proposition by the diagonal argument.

Let B be a cyclic subgroup of A. We put E = α−1(B). To lighten
symbols, for m ∈ N, we set Zm = {m} × Vm and set Z =

⋃
m∈N

Zm.
For each z = (m,χ) ∈ Z, let πz denote the GNS representation of S
associated to φm

χ and Hz denote the Hilbert bundle over X on which
πz(S) acts. We have the normalized section vz of Hz with φm

χ (g) =
〈πz(g)vzs(g), v

z
r(g)〉 for a.e. g ∈ S. Let π̃z denote the representation of G

induced from πz and H̃z denote the Hilbert bundle over X on which
π̃z(G) acts.

Recall the construction of an almost invariant sequence in the proof
of Proposition 4.10. Let D ⊂ G be a measurable fundamental domain
for right multiplication of S on G. By Lemma 4.11, there exists a Følner
sequence (Fn)n∈N of B such that for any n ∈ N, the set Fn contains the
neutral element of B; and for any non-empty subset S of B and any
g ∈ B, we have

|(gFn � Fn) ∩ S|
|Fn ∩ S| → 0 and

|(gFn � Fn) ∩ S|
|gFn ∩ S| → 0 as n → ∞.

For n ∈ N and z ∈ Z, we define a map ξn,z : D → Hz so that for g ∈ D,
the element ξn,z(g) of Hz

s(g) is given by

ξn,z(g) =

{
vzs(g)/|α(Gr(g)) ∩ Fn|1/2 if α(g) ∈ Fn

0 otherwise.



200 Y. Kida

We extend this map to the map ξn,z : G → Hz so that for any g ∈ D
and any h ∈ Ss(g), the equation ξn,z(gh) = πz(h−1)ξn,z(g) holds. The

map ξn,z is then regarded as a normalized section of H̃z.
Pick an increasing sequence (El)l∈N of measurable subsets of E such

that μ̃(El) < ∞ for any l ∈ N and E =
⋃

l∈N
El.

Fix l ∈ N. By the Lebesgue convergence theorem, there exists n ∈ N

with ∫
El

|(α(g)Fn � Fn) ∩ α(Gr(g))|
|Fn ∩ α(Gr(g))| dμ̃(g) ≤ 1

l2
and(4.7) ∫

El

|(α(g)Fn � Fn) ∩ α(Gr(g))|
|α(g)Fn ∩ α(Gr(g))| dμ̃(g) ≤ 1

l2
.(4.8)

For any (g, g′) ∈ G(2), there exists a unique h ∈ Ss(g′) with gg′h ∈ D.
This element h is denoted by h(g, g′). For any m ∈ N, the function
g 	→ supχ∈Vm

|φm
χ (g)−1| on S is measurable. This function converges to

0 pointwise almost everywhere as m → ∞ because the family {φm
χ }m,χ

approaches 1 on S as m → ∞. There thus exists m ∈ N such that∫
El

∑
g′∈Dr(g)∩α−1(Fn)

(
sup
χ∈Vm

|φm
χ (h(g−1, g′))− 1|

)
dμ̃(g) ≤ 1

2l2
.

We set Ul = Vm and Wl = {l} × Ul. For w = (l, χ) ∈ Wl, we set
z(w) = (m,χ) ∈ Zm and denote by ηw the normalized section ξn,z(w) of

H̃z(w). Following the computation in the proof of Proposition 4.10 to
deduce inequality (4.6), we have

(4.9)

∫
El

(
sup
w∈Wl

|〈π̃z(w)(g)ηws(g), η
w
r(g)〉 − 1|

)
dμ̃(g) ≤ 1

l2
.

We set W =
⋃

l∈N
Wl. For w = (l, χ) ∈ W , we define a function

ψl
χ : G → C by

ψl
χ(g) = 〈π̃z(w)(g)ηws(g), η

w
r(g)〉 for g ∈ G.

By inequality (4.9), the family {ψl
χ}l,χ approaches 1 on E as l → ∞.

We check conditions (2)–(4) in Definition 4.20 for this family and the
sequence (Ul)l.

Fix l ∈ N and g ∈ G. Put y = r(g) and x = s(g). For any χ ∈ Ul,
putting w = (l, χ), z = z(w) = (m,χ) and h(g′) = h(g−1, g′) for g′ ∈ Dy,
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we have

ψl
χ(g) = 〈π̃z(g)ηwx , η

w
y 〉 =

∑
g′∈Dy

〈ηwx (g−1g′), ηwy (g
′)〉(4.10)

=
∑

g′∈Dy

〈πz(h(g′))ηwx (g
−1g′h(g′)), ηwy (g

′)〉

= |α(Gx) ∩ Fn|−1/2|α(Gy) ∩ Fn|−1/2
∑

g′∈D0

φm
χ (h(g′))

where n is the number chosen in inequalities (4.7) and (4.8) for l and

D0 = { g′ ∈ Dy | α(g′) ∈ α(g)Fn ∩ Fn }.
For any c ∈ C and any g′ ∈ Dy, we have h((gc)−1, g′) = h(g−1, g′)c by
the definition of the symbol h(·, ·). Equation (4.10) implies that for a.e.
g ∈ G, we have ψl

χ(gc) = χ(c)ψl
χ(g). Equation (4.10) also implies that

for a.e. g ∈ G, the function χ 	→ ψl
χ(g) on Ul is continuous.

We have checked conditions (2) and (3) for the families (Ul)l and
{ψl

χ}l,χ. Condition (4) for them is checked by following the proof of
Proposition 4.9. Since φn

χ is not necessarily c0 as a function on S, we
have to modify the proof and have to show a lemma corresponding to
Lemma 4.6. This process is established almost verbatim. We thus omit
it.

As in the proof of Proposition 4.10, the proof of the case where α is
class-surjective is obtained similarly. Q.E.D.

Along the proof of Proposition 4.19, we can show the following:

Proposition 4.22. Let G be a discrete measured groupoid on a
standard probability space (X,μ), and (C, ι) a central subgroupoid of G.
Let A be a measurable subset of X with GA = X. We use the same
symbol ι to denote the restriction of ι to (C � (X,μ))|A Then the pair
(G|A, (C, ι)) has the gHAP if and only if so does the pair (G, (C, ι)).

4.4. Comparison with the gHAP of groups

When a discrete measured groupoid G is associated with a p.m.p.
action G � (X,μ), it is natural to ask the relationship between the
HAPs of G and G. Jolissaint [19, Remark in p.172] shows that under
the assumption that the action is free, G has his HAP if and only if G has
the HAP, through [23, Proposition 3.1]. We establish this equivalence
for our HAP and gHAP in the following:

Proposition 4.23. Let G be a discrete group having a central sub-
group C. Suppose that G/C has a p.m.p. action on (X,μ), and let



202 Y. Kida

G act on (X,μ) through the quotient map from G onto G/C. We set
G = G � (X,μ) and C = C � (X,μ), and define ι as the identity on C.
Then the pair (G, (C, ι)) has the gHAP if and only if the pair (G,C) has
the gHAP.

Assuming that C is trivial, we see that G has the HAP if and only
if G has the HAP.

Proof of Proposition 4.23. For a function ψ : G → C, we define a
function ψ̃ : G → C by ψ̃(γ, x) = ψ(γ) for γ ∈ G and x ∈ X. If ψ is

positive definite, then so is ψ̃. The “if” part of the proposition follows
from this construction.

We prove the “only if” part of the proposition. For a measurable
function φ : G → C with |φ(g)| ≤ 1 for a.e. g ∈ G, we define a function
φ̄ : G → C by φ̄(γ) =

∫
X
φ(γ, x) dμ(x). For any γ, δ ∈ G, we have

φ̄(γ−1δ) =

∫
X

φ(γ−1δ, δ−1x) dμ(x)

=

∫
X

φ((γ, γ−1x)−1(δ, δ−1x)) dμ(x),

where the first equation holds because the action G � (X,μ) is p.m.p.
It follows that if φ is positive definite and normalized, then so is φ̄.

Suppose that we have a sequence (Vn)n∈N of compact neighborhoods

of 1C in Ĉ and a family {φn
χ | n ∈ N, χ ∈ Vn } of normalized positive

definite functions on G satisfying conditions (1)–(4) in Definition 4.20.
We check those conditions (1)–(4) for the pair (G,C) and the families
(Vn)n and {φ̄n

χ}n,χ. Conditions (2) and (3) hold by the definition of φ̄n
χ.

As mentioned right after Definition 4.20, for any n ∈ N, the function
on G defined by g 	→ supχ∈Vn

|φn
χ(g) − 1| is measurable. Condition (1)

for {φn
χ}n,χ implies that this function converges to 0 pointwise almost

everywhere as n → ∞. The Lebesgue convergence theorem implies
condition (1) for {φ̄n

χ}n,χ.
To check condition (4), we fix n ∈ N and χ ∈ Vn, and put φ = φn

χ.

Pick ε > 0. We have to show that the set { γ ∈ G/C | |φ̄(γ)| > ε } is
finite. Since |φ| is c0 on G/C, there exist a measurable subset Y of X
and a finite subset F of G/C such that μ(X \ Y ) < ε/3; and for a.e.
x ∈ Y and any γ ∈ (G/C) \ F with γx ∈ Y , we have |φ(γ, x)| ≤ ε/3. It
follows that for any γ ∈ (G/C) \ F , we have

|φ̄(γ)| ≤
∫
Y ∩ γ−1Y

|φ(γ, x)| dμ(x) + μ(X \ Y ) + μ(X \ γ−1Y ) < ε,
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where in the last inequality, we use the assumption that the action
G/C � (X,μ) is p.m.p. Condition (4) follows. The pair (G,C) thus
has the gHAP. Q.E.D.

§5. The Haagerup property of groups in class C

Recall that C denotes the smallest subclass of the class of discrete
groups that satisfies the following conditions (1)–(4):

(1) Any treeable group belongs to C.
(2) The direct product of two groups in C belongs to C.
(3) For a discrete group G and its finite index subgroup H, we

have G ∈ C if and only if H ∈ C.
(4) Any central extension of a group in C belongs to C.

To show that any group in C has the HAP, we introduce subclasses of C.
We define D as the smallest subclass of C satisfying conditions (1), (2)
and (4). We inductively define subclasses of D, Dn and D′

n for n ∈ N, as
follows: Let D1 be the class of direct products of finitely many treeable
groups, and D′

1 the class of central extensions of a group in D1. Let Dn

be the class of direct products of finitely many groups in D′
n−1. Let D

′
n

be the class of central extensions of a group inDn. We have the inclusion
D1 ⊂ D′

1 ⊂ D2 ⊂ D′
2 ⊂ · · · . The union

⋃
n Dn satisfies conditions (1),

(2) and (4), and is therefore equal to D.

Lemma 5.1. Pick n ∈ N and a group G in D′
n. Let H be a finite

index subgroup of G. Then there exists a finite index subgroup H1 of H
with H1 ∈ D′

n.

Proof. We prove the lemma by induction on n. The case of n = 1
follows from that any finite index subgroup of a treeable group is treeable
([14, Théorème IV.4]). Suppose that G is in D′

n and H is a finite index
subgroup of G. There exists a central subgroup C of G with G/C ∈ Dn.
Set Γ = G/C. We have Γ1, . . . ,Γm ∈ D′

n−1 with Γ = Γ1 × · · · × Γm.
Let q : G → Γ be the quotient map. By the hypothesis of the induction,
for any i = 1, . . . ,m, there exists a finite index subgroup Λi of Γi such
that Λi ∈ D′

n−1, and setting Λ = Λ1 × · · · × Λm, we have Λ < q(H).
We set H1 = q−1(Λ)∩H. The group H1 is of finite index in H and is a
central extension of Λ. Since Λ ∈ Dn, we have H1 ∈ D′

n. The induction
is completed. Q.E.D.

Let E denote the class of discrete groups having a finite index sub-
group belonging to D. This class E satisfies conditions (1)–(4). In fact,
conditions (1), (2) and (4) are easily checked, and condition (3) follows
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from Lemma 5.1. The inclusion C ⊂ E therefore holds. We have shown
the following:

Lemma 5.2. Any group in C has a finite index subgroup belonging
to D.

By the inclusion D ⊂ C and condition (3), we have E ⊂ C and
therefore C = E. We do not however use this equality in the sequel.

For any group in C, we construct its certain p.m.p. action and show
that the associated groupoid has the HAP. We prepare the following
terminology:

Definition 5.3. Let G be a discrete measured groupoid on a stan-
dard probability space (X,μ) and S a subgroupoid of G.

(i) We say that S is co-abelian in G if there exist an abelian
discrete group A and a homomorphism α : G → A with kerα =
S.

(ii) We say that S is weakly co-abelian in G if there exists an
increasing sequence of subgroupoids of G of finite length, S =
S0 < S1 < · · · < SL = G, such that for any l = 0, 1, . . . , L− 1,
the subgroupoid Sl is co-abelian in Sl+1.

Theorem 5.4. Let G be a discrete group in C. Then there exists
an ergodic p.m.p. action G � (X,μ) satisfying the following: We set
G = G� (X,μ), and define ρ : G → G as the projection. There exist

• a measurable subset Y of X with GY = X;
• a weakly co-abelian subgroupoid R of G|Y ;
• a treeable equivalence relation Ri on (Xi, μi) indexed by i =

1, . . . , n;
• an isomorphism f : R1 × · · · × Rn → R; and
• a homomorphism ρi : Ri → G indexed by i = 1, . . . , n

such that for any i = 1, . . . , n, the following diagram commutes:

I1 × · · · × Ii−1 ×Ri × Ii+1 × · · · × In
pi

��

f �� R ρ �� G

Ri

ρi

�������������������������������

where Ij is the trivial subrelation of Rj for j = 1, . . . , n, and pi is the
projection.

Proof. Let B denote the class of discrete groups G having an er-
godic p.m.p. action G � (X,μ) satisfying the condition in the theorem.
To prove C ⊂ B, it is enough to show the following assertions (i)–(iv):



Splitting in orbit equivalence 205

(i) Any treeable group belongs to B.
(ii) The direct product of two groups in B belongs to B.
(iii) Any central extension of a group in B belongs to B.
(iv) Any group having a finite index subgroup in B belongs to B.

In fact, assertions (i)–(iii) imply D ⊂ B, and assertion (iv) and Lemma
5.2 imply C ⊂ B.

Assertions (i) and (ii) hold by the definition of B.
We prove assertion (iv). Let G be a discrete group and H a finite

index subgroup of G with H ∈ B. There exists an ergodic p.m.p. action
H � (X,μ) satisfying the condition in the theorem. We can check
that the action of G induced from the action H � (X,μ) satisfies the
condition in the theorem. Assertion (iv) follows.

We prove assertion (iii). Let 1 → C → G → Γ → 1 be an exact
sequence of discrete groups such that C is central in G and Γ ∈ B. We
have to show G ∈ B. Since Γ belongs to B, there exists an ergodic p.m.p.
action Γ � (X,μ) satisfying the following: We set Q = Γ� (X,μ), and
define ρ : Q → Γ as the projection. There exist

• a measurable subset Y of X with GY = X;
• a weakly co-abelian subgroupoid R of Q|Y ;
• a treeable equivalence relation Ri on (Xi, μi) indexed by i =
1, . . . , n;

• an isomorphism f : R1 × · · · × Rn → R; and
• a homomorphism ρi : Ri → Γ indexed by i = 1, . . . , n

such that for any i = 1, . . . , n, the following diagram commutes:

(5.1) I1 × · · · × Ii−1 ×Ri × Ii+1 × · · · × In
pi

��

f �� R ρ �� Γ

Ri

ρi

�������������������������������

where Ij is the trivial subrelation of Rj for j = 1, . . . , n, and pi is the
projection. Let G act on (X,μ) through the quotient map from G onto
Γ. We set G = G� (X,μ), and denote by θ : G → Q the quotient map.
We get the exact sequence of discrete measured groupoids,

1 → C → G θ→ Q → 1,

where C is the subgroupoid of G associated with the trivial action of C
on (X,μ). Let τ : G → G be the projection.
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An outline of the rest of the proof. We will show that G satisfies
the desired condition in the theorem. For i = 1, . . . , n, we set

Ri = I1 × · · · × Ii−1 ×Ri × Ii+1 × · · · × In.
The subgroupoid f(Ri) ofQ|Y is liftable to a subgroupoid of G|Y because
Ri is treeable. The subgroupoid R = f(R1 × · · · × Rn) is however
not necessarily liftable. We will show that there exists a co-abelian
subrelation Si of Ri for i = 1, . . . , n such that f(S1×· · ·×Sn) is liftable
to a subgroupoid of G|Y , denoted by H. Let K denote the subgroupoid
of G|Y generated by C|Y and H. It follows that H is co-abelian in K,
that K is co-abelian in θ−1(R), that θ−1(R) is weakly co-abelian in G|Y
by assumption, and therefore that H is weakly co-abelian in G|Y . We
also have that H is isomorphic to S1 × · · · × Sn. The relation Si is a
subrelation of the treeable relation Ri, and is thus treeable thanks to
Gaboriau [14, Théorème IV.4].

We now follow this outline. Pick a section u : Γ → G of the quotient
map from G onto Γ. Let σ : Γ×Γ → C be the 2-cocycle associated with
u. It is defined by

σ(γ, δ)u(γδ) = u(γ)u(δ) for γ, δ ∈ Γ.

For i = 1, . . . , n, we define the 2-cocycle σi : R(2)
i → C by

σi(g, h) = σ(ρi(g), ρi(h)) for (g, h) ∈ R(2)
i .

By Corollary 2.8, there exists a measurable map ϕi : Ri → C such that

σi(g, h) = ϕi(gh)ϕi(g)
−1ϕi(h)

−1 for a.e. (g, h) ∈ R(2)
i .

We then have the homomorphism τi : Ri → G defined by

τi(g) = ϕi(g)u(ρi(g)) for g ∈ Ri.

For j = 1, . . . , n and xj ∈ Xj , we set exj = (xj , xj) ∈ Ij . Let f0 : X1 ×
· · · × Xn → Y be the isomorphism induced by f . We define a map
Fi : Ri → G|Y by

Fi(ex1 , . . . , exi−1 , g, exi+1 , . . . , exn) = (τi(g), f0(x1, . . . , xn))(5.2)

for xj ∈ Xj for j = 1, . . . , n and g ∈ Ri with its source xi. By commuta-
tivity of diagram (5.1), the range of the right hand side in equation (5.2)
is f0(x1, . . . , xi−1, yi, xi+1, . . . , xn), where yi is the range of g. The map
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Fi is thus a homomorphism. Let Gi denote the image of Fi. We have
θ ◦ Fi = f on Ri, and also have the following commutative diagram:

(5.3) Ri

pi

��

Fi �� Gi
τ �� G

Ri

τi

�����������������

The groupoid Gi is a lift of f(Ri), i.e., the restriction of θ to Gi is an
isomorphism onto f(Ri). The map θ is however not necessarily injective
on the subgroupoid of G|Y generated by G1, . . . ,Gn. We will find a co-
abelian subgroupoid Hi of Gi for i = 1, . . . , n such that θ is injective on
the subgroupoid of G|Y generated by them.

Fix integers i, j with 1 ≤ i < j ≤ n. We define a homomorphism
ωij : Ri → H1(Rj , C) by

ωij
gi(gj) = τj(gj)

−1τi(gi)
−1τj(gj)τi(gi) for gi ∈ Ri and gj ∈ Rj .

The element ωij
gi(gj) in fact belongs to C because the product of elements

of G,
(τj(gj)

−1, ∗)(τi(gi)−1, ∗)(τj(gj), ∗)(τi(gi), x),(5.4)

belongs to C = ker θ, where x is any element of Y such that the coordi-
nates of f−1

0 (x) in Xi and Xj are the sources of gi and gj , respectively,
and the elements of Y put in “∗” is uniquely determined so that the
product is well defined.

For a.e. gi ∈ Ri, the map ωij
gi : Rj → C is a homomorphism. In fact,

for a.e. (gj , hj) ∈ R(2)
j , we have

ωij
gi(gjhj)

= τj(gjhj)
−1τi(gi)

−1τj(gjhj)τi(gi)

= τj(hj)
−1(τj(gj)

−1τi(gi)
−1τj(gj)τi(gi))τi(gi)

−1τj(hj)τi(gi)

= ωij
gi(gj)ω

ij
gi(hj).
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The map ωij : Ri → H1(Rj , C) is a homomorphism. In fact, for a.e.

(gi, hi) ∈ R(2)
i and a.e. gj ∈ Rj , we have

ωij
gihi

(gj)

= τj(gj)
−1τi(gihi)

−1τj(gj)τi(gihi)

= τj(gj)
−1τi(hi)

−1τj(gj)(τj(gj)
−1τi(gi)

−1τj(gj)τi(gi))τi(hi)

= ωij
gi(gj)ω

ij
hi
(gj).

We obtained a homomorphism ωij : Ri → H1(Rj , C). The image of
this homomorphism depends only on τi(gi) ∈ G. More precisely, for a.e.

gi, hi ∈ Ri with τi(gi) = τi(hi), we have ωij
gi = ωij

hi
. It follows that the

image ωij(Ri) is countable.
We are ready to show that the action G � (X,μ) is desirable, i.e.,

there exist a weakly co-abelian subgroupoid of G|Y , a treeable equiva-
lence relation, etc. in the theorem. We set Sn = Rn. For i = 1, . . . , n−1,
we set Si =

⋂n
j=i+1 kerω

ij . The subrelation Si is co-abelian in Ri be-

cause ωij(Ri) is countable and abelian. By [14, Théorème IV.4], the
relation Si is treeable. For i = 1, . . . , n, we set

Hi = Fi(I1 × · · · × Ii−1 × Si × Ii+1 × · · · × In).
Let H be the subgroupoid of G|Y generated by H1, . . . ,Hn. We have the
homomorphism F : S1 × · · · × Sn → H that extends the isomorphisms
F1, . . . , Fn because the product in (5.4) is the unit of G at x for a.e.
gi ∈ Si and gj ∈ Sj . The map F is surjective by the definition of H,
and is injective because θ ◦ F = f on S1 × · · · × Sn. It follows that F is
an isomorphism. For any i = 1, . . . , n, commutativity of diagram (5.3)
implies commutativity of the following diagram:

I1 × · · · × Ii−1 × Si × Ii+1 × · · · × In
pi

��

F �� H τ �� G

Si

τi

�������������������������������

The remaining task is to prove that H is weakly co-abelian in G|Y .
We denote by K the subgroupoid of G|Y generated by H and C|Y . We
have the isomorphism from C × H onto K sending (c, h) to ch for c ∈
C and h ∈ H. The subgroupoid H is therefore co-abelian in K with
C the quotient. The subgroupoid K is co-abelian in θ−1(R) because
S1 × · · · × Sn is co-abelian in R1 × · · · × Rn. The subgroupoid θ−1(R)
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is weakly co-abelian in G|Y because R is weakly co-abelian in Q|Y . It
follows that H is weakly co-abelian in G|Y .

We proved that G belongs to B. Assertion (iii) follows. Q.E.D.

Proof of Theorem 1.4. Let G be a group in C. We show that G
has the HAP. By Theorem 5.4, there exists an ergodic p.m.p. action
G � (X,μ) such that, setting G = G � (X,μ), we have a measurable
subset Y of X with GY = X and a weakly co-abelian subgroupoid
R of G|Y isomorphic to the direct product of finitely many treeable
equivalence relations. By [4, Theorem 3] or [26, Proposition 6], any
treeable equivalence relation has the HAP. It follows that R has the
HAP, and so do G|Y and G by Propositions 4.18 and 4.19. The group G
therefore has the HAP by Proposition 4.23.

We next suppose that G is a discrete group and C is a central
subgroup of G such that G/C belongs to C. We show that the pair
(G,C) has the gHAP. In the end of the proof of Theorem 5.4, letting Γ
be G/C, we obtained an ergodic p.m.p. action G � (X,μ) such that,
setting G = G� (X,μ) and C = C � (X,μ), we have the following three
conditions:

• The group C acts on (X,μ) trivially.
• There exist a measurable subset Y of X with GY = X, a
weakly co-abelian subgroupoid K of G|Y , and a subgroupoid
H of K such that K is generated by C|Y and H; and the map
from C ×H into K sending (c, h) to ch for c ∈ C and h ∈ H
is an isomorphism.

• The groupoid H is isomorphic to the direct product of finitely
many treeable equivalence relations, and therefore has the
HAP.

Let ι : C → G denote the inclusion. These three conditions imply that the
pair (K, (C, ι)) has the gHAP. Applying Propositions 4.21, 4.22 and 4.23
in this order, we see that the pairs (G|Y , (C, ι)), (G, (C, ι)) and (G,C)
have the gHAP. Q.E.D.

§Appendix A. Comparison with the HAPs of Jolissaint and
Anantharaman-Delaroche

The HAP of a p.m.p. discrete measured equivalence relation was
introduced by Jolissaint [19], who proved that it has his HAP if and
only if the associated von Neumann algebra has property H relative
to the Cartan subalgebra, in the sense of Popa [23]. The HAP of a
discrete measured groupoid was introduced by Anantharaman-Delaroche
[4], who proved that it has her HAP if and only if the associated von
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Neumann algebra has the Haagerup property relative to the Cartan
subalgebra, in the sense of Boca [7]. In this appendix, we compare their
HAPs and our HAP in Definition 4.14. We refer to [23, Proposition 2.2]
for comparison between the above properties of Popa and Boca. We
also refer to [9], [10], [18] and [22] and references therein for historical
background on the HAP of von Neumann algebras and recent approaches
to introduce the HAP for arbitrary von Neumann algebras.

Jolissaint’s HAP ([19, Definition 1.2]) can naturally be extended for
a discrete measured groupoid as follows:

Definition A.1. Let G be a discrete measured groupoid on a
standard probability space (X,μ). We say that G has the Jolissaint
Haagerup-property (JHAP) if there exists a sequence (φn)n of positive
definite functions on G such that

• for any n and a.e. x ∈ X, we have φn(ex) ≤ 1, where ex is the
unit of G at x;

• for any n and any ε > 0, we have μ̃({ g ∈ G | |φn(g)| > ε }) <
∞; and

• for a.e. g ∈ G, we have φn(g) → 1 as n → ∞.

The following is due to Anantharaman-Delaroche ([4, Definition 8]):

Definition A.2. Let G be a discrete measured groupoid on a stan-
dard probability space (X,μ). We say that G has the Anantharaman-
Delaroche Haagerup-property (ADHAP) if there exists a sequence (φn)n
of positive definite functions on G such that

• for any n and a.e. x ∈ X, we have φn(ex) = 1;
• for any n and any ε > 0, we have μ̃({ g ∈ G | |φn(g)| > ε }) <

∞; and
• for a.e. g ∈ G, we have φn(g) → 1 as n → ∞.

The difference between the JHAP and the ADHAP is only the nor-
malized condition for positive definite functions. The difference between
the ADHAP and our HAP in Definition 4.14 is only the c0-property of
positive definite functions. It is obvious from definition that the ADHAP
implies the JHAP, and that the ADHAP implies our HAP.

Remark A.3. It does not seem obvious from the above definitions
that the JHAP and the ADHAP depend only on the class of the measure
μ. Through his characterization of the JHAP in terms of von Neumann
algebras, Jolissaint observed that the JHAP for p.m.p. discrete mea-
sured equivalence relations depends only on the class of μ ([19, Corollary
2.7]). Similarly, through her characterization of the ADHAP in terms
of von Neumann algebras, Anantharaman-Delaroche observed that the
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ADHAP depends only on the class of μ (see the paragraph right after
[4, Definition 8]).

In contrast, it follows from definition that our HAP in Definition
4.14 depends only on the class of μ. Applying Corollary A.6 below, we
can also deduce that the JHAP and the ADHAP for discrete measured
groupoids depends only on the class of μ.

Lemma A.4. Let G be a discrete measured groupoid on a standard
probability space (X,μ). Then G has the ADHAP if and only if G has
the HAP in Definition 4.14.

Proof. We have already mentioned that the “only if” part follows
by definition. We prove the “if” part. Suppose that G has the HAP in
Definition 4.14. There exists a sequence (φn)n∈N of normalized positive
definite c0-functions on G such that for a.e. g ∈ G, we have φn(g) → 1
as n → ∞.

Fix n ∈ N. There exists a measurable subset Xn of X such that
μ(X \Xn) < 1/n2; and for any ε > 0, there exists a number Mn,ε ∈ N

such that

|{ g ∈ (G|Xn)x | |φn(g)| > ε }| ≤ Mn,ε for a.e. x ∈ Xn.

We define a function ψn : G → C by ψn(g) = φn(g) if g ∈ G|Xn ; ψn(g) =
1 if g = ex for some x ∈ X \Xn; and ψn(g) = 0 otherwise. The function
ψn is positive definite on G by Lemma 4.13, and is normalized. For a.e.
g ∈ G, we have ψn(g) → 1 as n → ∞ because ψn = φn on G|Xn and∑∞

n=1 μ(X \Xn) < ∞.
We fix n ∈ N again. Pick a number ε with 0 < ε < 1. We have

μ̃({ g ∈ G | |ψn(g)| > ε })
= μ(X \Xn) + μ̃({ g ∈ G|Xn | |ψn(g)| > ε })

and

μ̃({ g ∈ G|Xn | |ψn(g)| > ε })

=

∫
Xn

|{ g ∈ (G|Xn)x | |ψn(g)| > ε }| dμ(x) ≤ Mn,εμ(Xn).

We thus have μ̃({ g ∈ G | |ψn(g)| > ε }) < ∞.
We proved that the sequence (ψn)n satisfies the condition in Defi-

nition A.2. It follows that G has the ADHAP. Q.E.D.

Lemma A.5. Let G be a discrete measured groupoid on a standard
probability space (X,μ). Then G has the JHAP if and only if G has the
HAP in Definition 4.14.
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Proof. Suppose that G has the JHAP. There exists a sequence
(φn)n∈N of positive definite functions on G satisfying the condition in
Definition A.1. Fix n ∈ N. We set

Xn = {x ∈ X | φn(ex) > 0 }
and define a function ψn : G → C by

ψn(g) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn(g)

φn(er(g))1/2φn(es(g))1/2
if g ∈ G|Xn

1 if g = ex for some x ∈ X \Xn

0 otherwise.

The function ψn is positive definite by Lemma 4.13, and is normalized
by definition.

We claim that ψn is c0. To prove it, pick δ > 0 and ε > 0. There
exist a measurable subset Y of Xn and c > 0 such that μ(Xn \ Y ) < δ
and for a.e. x ∈ Y , we have φn(ex) > c. We set Z = Y ∪ (X \Xn). We
have μ(X \ Z) < δ. For a.e. g ∈ G|Z with |ψn(g)| > ε, we have either
g = ex for some x ∈ X \Xn or g ∈ G|Y and

|φn(g)| = φn(er(g))
1/2φn(es(g))

1/2|ψn(g)| > cε.

We thus have

μ̃({ g ∈ G|Z | |ψn(g)| > ε })
≤ μ(X \Xn) + μ̃({ g ∈ G|Y | |φn(g)| > cε })
< ∞.

The claim follows.
For a.e. g ∈ G, we have ψn(g) → 1 as n → ∞ by the definition of

ψn. It follows that G has the HAP in Definition 4.14.
We proved that the “only if” part of the lemma. The “if” part follows

because the HAP in Definition 4.14 implies the ADHAP by Lemma A.4,
and the ADHAP implies the JHAP by definition. Q.E.D.

Combining Lemmas A.4 and A.5, we obtain the following:

Corollary A.6. For any discrete measured groupoid, all of the
JHAP, the ADHAP and the HAP in Definition 4.14 are equivalent.
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