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Godbillon–Vey invariants for
maximal isotropic C2 foliations

Patrick Foulon and Boris Hasselblatt

Abstract.

For a contact manifold (M2m+1, A) and an m+1-dimensional dA-
isotropic C2 foliation, we define Godbillon–Vey invariants {GV i}m+1

i=0

inspired by the Godbillon–Vey invariant of a codimension-one foliation,
and we demonstrate the potential of this family as a tool in geometric
rigidity theory. One ingredient for the latter is the Mitsumatsu formula
for geodesic flows on (Finsler) surfaces.

§1. Introduction

The Godbillon–Vey invariant of a codimension-one foliation is a sub-
tle geometric invariant of a foliation that has been of enduring interest
since its inception in 1970 [9]. We show that the combination of a
contact structure and a transversely orientable maximal isotropic foli-
ation gives rise to a sequence of what we call Godbillon–Vey invariants
that are of interest with respect to geometric rigidity. We choose the
name because when the foliation is invariant under the geodesic flow of a
Finsler surface, the second of these invariants coincides with the classical
Godbillon–Vey invariant; we establish this by deriving a formula that re-
duces to the very Mitsumatsu formula for the classical Godbillon–Vey
invariant in the case of the weak-unstable foliation of the geodesic flow
of a negatively curved Riemannian metric [17].

Unlike in the classical case, we produce m + 2 invariants for an
m+ 1-dimensional maximal isotropic foliation, and our point is that as

Received January 29, 2014.
Revised March 31, 2015.
2010 Mathematics Subject Classification. Primary 57D30; Secondary

57R30, 53D10, 37D20.
Key words and phrases. Godbillon–Vey invariants, contact flow, Anosov

flow, Mitsumatsu formula, rigidity.
Boris Hasselblatt was partially supported by the Committee on Faculty

Research Awards of Tufts University.



350 P. Foulon and B. Hasselblatt

a sequence they are of interest for rigidity results. Additional evidence
of this interest is due to Gomes and Ruggiero, who proved a version
of the Hopf conjecture using the Godbillon–Vey invariant for Finsler
surfaces [10] (in a C2 context and assuming isotropic flag curvature).
Further, Paternain [19, Section 3] uses the Godbillon–Vey invariant for
the invariant foliations in Anosov thermostats.

This paper presents our construction under the assumption that the
foliations in question are C2. The regularity of the invariant foliations
of an Anosov flow is a subtle matter. On one hand, if the foliation is C3

and invariant under the geodesic flow of a (Riemannian) surface, then
the curvature of the metric is constant. On the other hand, for the geo-
desic flow of a surface with nonconstant negative Gauß curvature the
weak-stable subbundle is not C2, and in some interesting applications
the desired conclusions are known consequences of the foliation in ques-
tion being C2. Therefore we will elsewhere present this construction
for foliations that are C1+1/2+ε. We are nonetheless able to produce
applications that illustrate the interest of this construction.

Specifically, if (M,A) is a contact manifold of dimension 2m+1 and
F a C2 maximal isotropic foliation, we define Godbillon–Vey invariants
GV i for i = 0, . . . ,m + 1 in Definition 3.10. GV 0 is the volume of
the manifold, and for a contact Anosov flow and the associated weak-
stable foliation, GV 1 is the Liouville entropy (Proposition 4.2). We
also show that for geodesic flows of Finsler surfaces, GV 2 is the clas-
sical Godbillon–Vey invariant by establishing the Mitsumatsu formula
(Proposition 5.2).

We demonstrate the interest of these invariants for geometric rigid-
ity as follows. Theorem 6.1 establishes that if the Margulis measure of a
contact Anosov flow is absolutely continuous, then GV i = hi volA(M),
where h denotes the topological entropy. While this result is contingent
on the C2 assumption for the foliation in question, it applies without
restriction to geodesic flows of locally symmetric spaces of negative cur-
vature. For a negatively curved Riemannian metric on a surface we then
show, with no effort, that if GV 0 = c, GV 1 = hc, and GV 2 = h2c,
then the curvature is constant, c is the volume, and h is the topological
entropy of the geodesic flow (Theorem 6.3).

The main rigidity results for which we present new proofs here do not
mention these invariants in their statement and are of such a nature that
the invariants need only be known for C2 foliations. They are known
from the work of Ghys [7] and Hurder–Katok [12], but our approach
provides for an astonishingly simple main step—it consists of applying
the Cauchy–Schwarz inequality.
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Theorem 6.5. Two Riemannian surfaces with topologically conju-
gate geodesic flows are isometric if one of them has constant curvature.

While we invoke known results to establish that the conjugacy is
smooth, the nontrivial step from there is now a simple application of
Proposition 6.4, which also underlies Theorem 6.3.

Another application of this central result is:

Theorem 6.7. Negatively curved surfaces with C2 horospheric fo-
liations are constantly curved.1

We repeat that the common base of these applications is Propos-
ition 6.4, and we wish to point out that we see promise in our family of
invariants because this core result is so easy to prove—it only uses the
Cauchy–Schwarz inequality and the Riemannian Mitsumatsu formula.

§2. The classical Godbillon–Vey invariant

For context we briefly present the classical Godbillon–Vey class and
invariant following [21]; see also [8] for further context. If ω is a com-
pletely integrable nonsingular 1-form, then there is a 1-form η such that
dω = ω ∧ η (Frobenius theorem), and 0 = d dω = d(ω ∧ η) = ω ∧ dη,
so there is a 1-form ξ with dη = ω ∧ ξ, hence η ∧ dη is closed, and its
de Rham cohomology class is independent of such choice of η—another
choice must be of the form η′ = η + uω for a function u, and then
η′∧dη′ = η∧dη+d(u dω). Indeed, this depends only on the codimension-
one foliation F defined by complete integrability of ω, because any ω′

defining the same foliation is of the form euω. The cohomology class of
η ∧ dη is called the Godbillon–Vey class of F , and if dimM = 3, then∫
η ∧ dη is called the Godbillon–Vey invariant of F ; it is a character-

istic class, depends only on the foliated cobordism class of (M,F), is
nontrivial, and varies continuously and nontrivially with F .

§3. Definition of the Godbillon–Vey invariants

3.1. Contact forms

Definition 3.1. Let M be a manifold of dimension 2m + 1. A
contact form on M is a 1-form A such that A ∧ dA ∧ · · · ∧ dA (with m
factors of dA) is a volume. A subspace V ⊂ TxM is said to be isotropic
if dAx�V = 0 and maximal isotropic if it furthermore has dimension

1This result provides additional motivation for our forthcoming definition
of these invariants when the foliations are not C2.
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m+ 1. A subbundle is said to be (maximal) isotropic if it is so at each
point, and a foliation is (maximal) isotropic if its tangent bundle is so.

3.2. Normal bundle

If M is a smooth manifold and F a subbundle of TM , then we let

Nn(F ) :=

{
sections ω of

n∧
T ∗M with ιξω = 0 whenever ξ ∈ F

}
.

Lemma 3.2. If F is integrable, ω ∈ Nk(F ), and Z ∈ F , then
ιZ dω ∈ Nk(F ). In particular, if ω ∈ N1(F ), then dω�F = 0.

Proof. IfZ0 ∈ F and ω ∈ Nk(F ), then (with “ˇ” denoting omission)

dω(Z0, . . . , Zk) =
k∑

i=0

(−1)iLZiω(Z0, . . . , Ži, . . . , Zn)

+
∑
i<j

(−1)i+jω([Zi, Zj ], Z0, . . . , Ži, . . . , Žj , . . . , Zn)

= LZ0ω(Z1, . . . , Zn)

+
k∑

j=1

(−1)jω([Z0, Zj ], Z1, . . . , Žj , . . . , Zn),

where L is the Lie derivative. If Zl ∈ F for some l > 0, then [Z0, Zl] ∈ F
by integrablility, so each term vanishes. Q.E.D.

3.3. Transverse volume class

We define the Godbillon–Vey invariants in terms of a volume trans-
verse to the maximal isotropic foliation F (with tangent bundle F ) in
question. Specifically, since we assume F to be transversely orientable,
we henceforth fix an everywhere nonzero α ∈ Nm(F ).

Proposition 3.3. If α is C1, then dα = β ∧ α for some 1-form β.

Proof. Nm(F ) has rank 1 and contains both α and ιZdα for any
Z ∈ F (Lemma 3.2), so the fact that α vanishes nowhere yields a β(Z)
for which ιZ dα = β(Z)α, and β is a 1-form on F . Now consider an
extension of β to any 1-form. Then β ∧ α and dα can be evaluated by
decomposing each argument with respect to a local frame that contains
a frame of F . On (m+ 1)-tuples of members of this frame that contain
a section of F , we get dα = β ∧ α from above. On (m + 1)-tuples that
do not, we get dα = 0 = β ∧ α by dimension-counting. Q.E.D.

Remark 3.4. That β is uniquely defined on F means that it is
well-defined modulo N1(F ), i.e., we defined [β] := {β+ω | ω ∈ N1(F )}.
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Proposition 3.5. [[β]] := {β + df + ω | f : M → R, ω ∈ N1(F )} is
well-defined independently of the choice of α: α′ = efα with f : M → R

produces β′ = β + df .

Proof. β′ ∧ α′ = dα′ = d(efα) = def ∧ α + efdα = ef df ∧ α +
efβ ∧ α = (df + β) ∧ efα = (df + β) ∧ α′. Q.E.D.

Lemma 3.6. dβ ∧ α = 0 and dβ�F = 0.

Proof. As to the first claim,

(1) 0 = d dα = dβ ∧ α− β ∧ dα = dβ ∧ α− β ∧ β ∧ α = dβ ∧ α.

If Z1, Z2 ∈ F , then 0 = ιZ1ιZ20 = ιZ1ιZ2 dβ ∧ α = dβ(Z1, Z2)α because
α ∈ Nm(F ). Then dβ(Z1, Z2) = 0 because α is nowhere zero. Q.E.D.

Remark 3.7. That α ∈ C2 is used for “0 = d dα · · · ” in (1). Our
ongoing work replaces this with a weak counterpart (in the distribu-
tional sense) because there are interesting applications outside of the
C2 context.

Remark 3.8. The content of Proposition 3.5 and Lemma 3.6 is
that we have properly defined a leafwise cohomology class (represented
by β). This notion is defined as follows. Let Ω∗(M) be the set of C∞

differential forms on M and set

I(F ) := {ω ∈ Ω∗(M) | ω�F = 0}.
Then, (Ω∗(M)/I(F ), d) is a well-defined cochain complex of which the
cohomology is denoted by H∗(F ) (or H∗(F)). While I(F ) is different
from Nn(F ), we use here that I(F ) ∩ Ω1(M) = N1(F ), or, more specif-
ically, that dω ∈ I(F ) if ω ∈ N1(F ). Since dβ�F = 0 (Lemma 3.6), the
differential form β represents a class in H1(F ).

For extending this work to foliations of lower regularity than C2,
this leafwise cohomology will play an important role, and we will use
distributional (or “weak”) calculus, that is, currents (or measures).

Lemmas 3.2 and 3.6 give Proposition 3.11 via:

Lemma 3.9. ω ∧ (dβ)i ∧ dωp−i ∧ dAm−p = 0 for ω ∈ N1(F ).

Proof. Decomposing 2m + 1 linearly independent arguments with
respect to a local frame that contains a frame for F gives a linear combin-
ation of expressions each of which contains at least m+1 sections of F .
Evaluating ω ∈ N1(F ) on a section of F gives 0, so in each such expres-
sion m+ 1 sections of F must be inserted into (dβ)i ∧ dωp−i ∧ dAm−p,
and we get 0 because more than one section of F is inserted into dβ
(Lemma 3.6), dω (Lemma 3.2), or dA (isotropy). Q.E.D.
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3.4. Godbillon–Vey invariants

Since [[β]] is intrinsically defined, we can define:

Definition 3.10 (Godbillon–Vey invariants). If (M,A) is a closed
contact manifold of dimension 2m + 1 and F a C2 maximal isotropic
foliation, define the Godbillon–Vey invariants by

GV 0 =

∫
M

A ∧ dAm =: volA(M) (the contact volume),

GV 1 =

∫
M

β ∧ dAm,

GV 2 =

∫
M

β ∧ dβ ∧ dAm−1,

...

GVm+1 =

∫
M

β ∧ dβm.

Proposition 3.11. The Godbillon–Vey invariants are well-defined.

Proof. We check that GV p+1 =
∫
M

β ∧ dβp ∧ dAm−p is unchanged
when replacing β by β + df + ω and therefore dβ by dβ + dω for any
f : M → R and ω ∈ N1(F ). First, we replace β by β + df :∫

M

(β + df) ∧ d(β + df)p ∧ dAm−p −
∫
M

β ∧ dβp ∧ dAm−p

=

∫
M

df ∧ dβp ∧ dAm−p =

∫
M

d(f · dβp ∧ dAm−p) = 0.

Replacing β by β + ω does not change GV p+1 either:

(β + ω) ∧ d(β + ω)p ∧ dAm−p

= β ∧ d(β + ω)p ∧ dAm−p + ω ∧ d(β + ω)p ∧ dAm−p

[Lemma 3.9] = β ∧ d(β + ω)p ∧ dAm−p

= β ∧ dβp ∧ dAm−p +

p∑
i=1

ciβ ∧ dβp−i ∧ dωi ∧ dAm−p,



Godbillon–Vey invariants for maximal isotropic C2 foliations 355

for suitable constants ci, and the summands integrate to 0:

0 =

∫
M

d(ω ∧ β ∧ dβp−i ∧ dωi−1 ∧ dAm−p)

=

∫
M

β ∧ dβp−i ∧ dωi ∧ dAm−p −
∫
M

ω ∧ dβp−i+1 ∧ dωi−1 ∧ dAm−p

=

∫
M

β ∧ dβp−i ∧ dωi ∧ dAm−p

by Lemma 3.9. Q.E.D.

3.5. The Reeb field

Proposition 3.12. GV 1 =
∫
β(X)A ∧ dAm, where X is the Reeb

field of A defined uniquely by ιXA = 1 and ιX dA = 0.

Proof. ιX dA = 0 implies that

• X is tangent to F , and F is therefore invariant under the flow
generated by X,

• by duality there are a vector field η and a function λ with
β = λA+ ιη dA,

• inserting X gives λ = β(X), and
• ιX(ιη dA ∧ dAm) = 0.

Thus β∧dAm = β(X)A∧dAm+ ιη dA∧dAm = β(X)A∧dAm. Q.E.D.

§4. GV 1 for Anosov flows

Some of the interest of the Godbillon–Vey invariants lies in applica-
tions to dynamical systems, and the canonical dynamical system asso-
ciated with the present context is the Reeb flow of A, which is the flow
ϕ generated by the Reeb vector field X of A. It is said to be a contact
Anosov flow if the tangent bundle TM splits as TM = RX ⊕E+ ⊕E−

(the flow, strong-unstable and strong-stable directions, respectively) in
such a way that there are constants C > 0 and η > 1 > λ > 0 with

‖Dϕ−t�E+‖ ≤ Cη−t and ‖Dϕt�E−‖ ≤ Cλt

for all t > 0. The weak-unstable and weak-stable bundles are RX ⊕ E+

and F := RX⊕E−, respectively. F is integrable to a continuous foliation
F with smooth leaves, called the weak-stable foliation, and our main
results below assume that it is C2, by which we mean here that its
tangent bundle is C2; this implies the existence of C2 foliation charts.

In this case the weak-stable foliation is maximal isotropic:

Lemma 4.1. dA�F = 0, i.e., dA(Z1, Z2) = 0 if Z1, Z2 ∈ RX ⊕E−.
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Proof. ιX dA = 0 reduces this to the case Z1, Z2 ∈ E−, where

dA(Z1, Z2) = dA(dϕt(Z1), dϕ
t(Z2)) −−−−→

t→+∞ 0

since A, hence dA, is ϕt-invariant and ‖dϕt(Zi)‖ −−−−→
t→+∞ 0. Q.E.D.

Proposition 4.2. If the weak-stable foliation of a contact Anosov
flow is C2, then GV 1 = hvol volA(M), where hvol is Liouville entropy.

Proof. Choose β = 0 on E+. Then LXα = ιX dα = β(X)α,
i.e., β(X) is the infinitesimal relative change of the unstable volume
under the flow. Rescale A so volA(M) = 1. Then the time average
of β(X), hence by ergodicity of contact Anosov flows its space average
GV 1, equals the sum of the positive Lyapunov exponents. By the Pesin
entropy formula this is hvol. Q.E.D.

Remark 4.3. Proposition 4.2 uses “Anosov” in a substantial way.
While not necessary for the Pesin entropy formula, it is essential for
connecting F to the positive exponents.

§5. The top Godbillon–Vey invariant in dimension 3

GV 2 is the classical Godbillon–Vey invariant for geodesic flows of
Finsler surfaces Σ [1] whose weak-stable foliation is C2. As mentioned,
this is also in [10], and related work is in [19]. Here, dimM = dimSΣ =
3 gives rankE± = 1. The geodesic flow is the Reeb flow of a 1-form A
whose kernel is spanned by the standard vertical vector field V and by
H := [V,X]. Both H and X are horizontal, and

(2) 1 = A ∧ dA(X,V,H) = A(X) dA(V,H) = dA(V,H).

Then [H,V ] = X+aV +bH, [X,H] = KV (structural equations), where
K is the curvature, a the Landsberg scalar and b the Cartan scalar, and
a = ḃ := LXb and LXa =: ȧ = −LV K − bK (Bianchi identity) since

(LV K)V = −[H,H] + [V,KV ] = [[X,V ],H] + [V, [X,H]] = [X, [V,H]]

= −[X,X + aV + bH] = −ȧV − a[X,V ]− ḃH − b[X,H]

= (−ȧ− bK)V + (a− ḃ)H.

(3)

In the Riemannian case the “Finsler defect” Ξ := X − [H,V ] is 0. With
γ := ιΞ dA and ρ := −LV a− LHb = −2LV a+ LXLV b we get

Claim 5.1. dγ=ρ dA+(LV K)A∧ιV dA, so γ∧dγ=−bLV KA∧dA.
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Proof. By (2), γ(Ξ) = 0 = γ(X), γ(V ) = b, γ(H) = −a, so

dγ(X,V ) = LXγ(V )− LV γ(X)− γ([X,V ]) = ḃ− a = 0

dγ(X,H) = LXγ(H)− LHγ(X)− γ([X,H]) = −ȧ− bK = LV K

dγ(V,H) = LV γ(H)− LHγ(V )− γ([V,H]) = −LV a− LHb = ρ.

Q.E.D.

If the invariant line bundle F ∩ kerA is spanned by

(4) ξ = uV +H,

then u̇+u2+K = 0, the Riccati equation, because comparing coefficients
in (u̇ + K)V − uH = [X, ξ] = fξ = fuV + fH implies f = −u and
−u2 = fu = u̇+K.

Proposition 5.2 (Mitsumatsu formula). For maximal isotropic C2

foliations2 invariant under geodesic flows of Finsler surfaces

GV 2 =

∫
M

(u2 + 3(LV u)
2 + (4uLV a− 2uLXLV b− bLV K))A ∧ dA.

Remark 5.3. This reduces to GV 2 =
∫
M
(u2 +3(LV u)

2)A∧ dA in
the Riemannian case, and the relationship can be recast via Lemma 5.6
below, which gives β = LV uιV dA− uA︸ ︷︷ ︸

=:β0,“Riemannian”

+γ, so

∫
M

β ∧ dβ =

∫
M

(β0 + γ) ∧ d(β0 ∧ γ)

=

∫
M

β0 ∧ dβ0 + γ ∧ dβ0 + β0 ∧ dγ + γ ∧ dγ

=

∫
M

β0 ∧ dβ0 + (2β0 + γ) ∧ dγ.

The first part of the integrand corresponds to the classical Riemannian
Mitsumatsu formula, and (2β0 + γ) ∧ dγ is the Finsler defect.

Remark 5.4. We note that
∫
M

ρA∧dA =
∫
M

LXLV b+2abA∧dA
by (5) below with (p, q) = (1, a). Since LV (A∧ dA) = bA∧ dA (derived
just before (5)) gives LX(bLV (A∧dA)) = LX(b2A∧dA) = (LXb2)A∧

2see Remark 5.7
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dA = 2ḃbA ∧ dA = 2abA ∧ dA, we have

0 =

∫
M

LX(LV (bA ∧ dA)) =

∫
M

LX((LV b)A ∧ dA+ bLV (A ∧ dA))

=

∫
M

LXLV b+ 2abA ∧ dA =

∫
M

ρA ∧ dA.

If LV K ≡ 0, then [X,Ξ] = 0 by (3), and hence LXγ = LX(ιΞ dA) =
ιΞLX dA+ ι[X,Ξ] dA = 0, so

(LXρ) dA = (LXρ) dA+ ρLX dA = LX(ρ dA) = LXdγ = dLXγ = 0

by Claim 5.1, and ρ is flow-invariant. If the flow is ergodic, then ρ ≡∫
ρA∧dA = 0, so

∫
uρA∧dA = 0, and the Mitsumatsu formula reduces

to its Riemannian form. Ergodicity holds for any contact Anosov flow
on a connected manifold.

The condition LV K ≡ 0 means that the flag curvature is isotropic;
this is also referred to as the k-basic case and constitutes an intermediate
generalization of the Riemannian case. Thus we just observed that the
Mitsumatsu formula in the Riemannian case holds more generally in the
k-basic case if the flow is ergodic, e.g., Anosov.3

The deviation
∫
M
(3(LV u)

2 − (2uρ+ bLV K))A ∧ dA of GV 2 from
its value for constant curvature is called the Mitsumatsu defect.

Lemma 5.5. If we choose ξ as in (4), α = ιξ dA, then α(H) = u,
α(V ) = −1, α(X) = 0 = α(ξ), and α([H,V ]) = −a+ bu.

Proof. We have α(X) = 0 = α(ξ) = α(uV +H) = −u+α(H) since
α(V ) = dA(ξ, V ) = dA(uV +H,V ) = dA(H,V ) = −1. Q.E.D.

Lemma 5.6. If we choose to take β(V ) = b, then β(X) = −u and
β(H) = LV u− a, i.e., β = (LV u− a)ιV dA− uA− bιH dA.

Proof.

β(X)α(H) = dα(X,H) = LXα(H)− LHα(X) + α([H,X])

= LXu−Kα(V ) = u̇+K = −u2

= −uα(H) (Riccati equation)

3Therefore this is also true in the k-basic case whenever the curvature is
negative, but this is vacuous because it only happens in the Riemannian situation
[11].
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and

β(ξ)α(H) = β ∧ α(ξ,H) = dα(ξ,H)

= Lξα(H)− LHα(ξ) + α([H, ξ]︸ ︷︷ ︸
=u[H,V ]+(LHu)V

)

= Lξu︸︷︷︸
=uLV u+LHu

+u(−a+ bu)− LHu = α(H)(LV u− a+ bu).

Q.E.D.

Proof of Proposition 5.2. We use that β ∧ dβ = λA∧ dA for some
λ : M → R. Then∫

M

(u2 + 3(LV u)
2 + (4uLV a− 2uLXLV b− bLV K))A ∧ dA

=

∫
M

λA ∧ dA

by (2) and by computing the terms on the right-hand side of

λ(A∧dA)(X,V,H)=(β∧dβ)(X,V,H)

=β(X) dβ(V,H)+β(H) dβ(X,V )+β(V ) dβ(H,X).

Lemma 5.6 implies

dβ(V,H)=LV β(H)−LHβ(V )−β([V,H])

=L 2
V u−LV a−LHb+β(X+aV +bH)

=L 2
V u−LV a−LHb−u+bLV u,

dβ(X,V )=LXβ(V )−LV β(X)−β([X,V ])=LXb+LV u+LV u−a

=2LV u,

dβ(H,X)=LHβ(X)−LXβ(H)−β([H,X])

=−LHu−LX(LV u−a)+Kb=−LHu−LXLV u−LV K

=−LV LXu−LV K

by the Bianchi identity. This gives

λ = λ(A ∧ dA)(X,V,H)

= β(X) dβ(V,H) + β(H) dβ(X,V ) + β(V ) dβ(H,X)

= −u(L 2
V u− LV a− LHb− u+ bLV u) + 2(LV u− a)LV u

− b(LV LXu+ LV K)

= u2 + 2(LV u)
2 − uL 2

V u

+ (uLV a+ uLHb− ubLV u− 2aLV u)− b(LV LXu+ LV K).
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To get Proposition 5.2 remove derivatives of u via integration by parts:

LV (A ∧ dA) = dιV (A ∧ dA) = −d(A ∧ ιV dA) = A ∧ d(ιV dA)

and

(A ∧ d(ιV dA))(X,V,H) = d(ιV dA)(V,H) = −ιV dA([V,H])

= dA(−V, [V,H]) = dA(V,X + aV + bH) = b

imply LV (A ∧ dA) = bA ∧ dA and the integration-by-parts formula

(5)

0 =

∫
M

LV (pqA ∧ dA)

=

∫
M

(LV p)qA ∧ dA+

∫
M

p(LV q)A ∧ dA+

∫
M

pqbA ∧ dA.

With (p, q) = (u,LV u), this gives∫
M

λA ∧ dA =

∫
M

(u2 + 3(LV u)
2 + (uLV a+ uLHb− 2aLV u)

− b(LV LXu+ LV K))A ∧ dA.

The Finsler part can be further simplified. First of all,

uLHb = u(LV LXb− LXLV b) = uLV a− uLXLV b.

Next, (5) with (p, q) = (a, u) and LX(b2) = 2ḃb = 2ab give∫
M

−2aLV uA ∧ dA =

∫
M

2uLV aA ∧ dA+

∫
M

2abuA ∧ dA

=

∫
M

2uLV aA ∧ dA−
∫
M

b2LXuA ∧ dA.

Finally, (5) with (p, q) = (b,LXu) gives∫
M

−bLV LXuA ∧ dA =

∫
M

(LV b)LXuA ∧ dA+

∫
M

b2LXuA ∧ dA

=

∫
M

−uLXLV bA ∧ dA+

∫
M

b2LXuA ∧ dA,

so
∫
β ∧ dβ =

∫
λA ∧ dA =

∫
u2 + 3(LV u)

2 + (4uLV a − 2uLXLV b −
bLV K)A ∧ dA. Q.E.D.

Remark 5.7. The C2 assumption on the foliations was used here
implicitly in the definition of GV and in the integration by parts at the
very end. The latter is easy to address, i.e., it is really for defining GV
that this regularity is used.
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§6. Application to geometric rigidity

Theorem 6.1. GV i = hi volA(M) for contact Anosov flows with
absolutely continuous Margulis measure and C2 invariant foliations; here
h is topological entropy.

Remark 6.2. This applies to geodesic flows of negatively curved lo-
cally symmetric spaces, in particular, of surfaces with constant negative
curvature.

Proof. The (un)stable conditionals of the Margulis measure are
volumes and scale with h [2, Lemma 3 & §3; equation (11) concerns
the Jacobian]. Therefore hα = LXα = ιXdα + dιXα = β(X)α (since
ιXα ≡ 0), so β(X) ≡ h, hence β = hA + ιη dA (from the proof of
Proposition 3.12), and

hβ ∧ α = hdα = dhα = dLXα = LXdα

= LXβ ∧ α+ β ∧ LXα = LXβ ∧ α+ β ∧ hα.

Thus LXβ ∧ α = 0, hence LXβ(v) = 0 for any v ∈ RX ⊕ E−. Choose
β = 0 on E+, so β = fA for some f : M → R, hence β = hA. Q.E.D.

We now show applications of these invariants to geometric rigidity.

Theorem 6.3. If GV 0 = c, GV 1 = hc, and GV 2 = h2c for a
negatively curved Riemannian metric on a surface with C2 invariant
foliations, then the curvature is constant, c is the volume and h the
topological entropy.

This is an immediate consequence of

Proposition 6.4. For the geodesic flow of a negatively curved
Riemannian metric on a surface with C2 invariant foliations

(6)
GV 0GV 2

(GV 1)2
≥ 1

with equality if and only if the curvature is constant.

Proof. Since Lemma 5.6 and Proposition 5.2 give

GV 0 =

∫
M

A ∧ dA, GV 1 =

∫
M

−uA ∧ dA,

GV 2 =

∫
M

u2 + 3(LV u)
2A ∧ dA,
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the Cauchy–Schwarz inequality

GV 1 =

∫
M

−uA ∧ dA

≤
(∫

M

u2A ∧ dA

) 1
2
(∫

M

A ∧ dA

) 1
2

≤ (GV 2)
1
2 (GV 0)

1
2

allows equality only if u ≡ const (and, redundantly, LV u ≡ 0), hence
K = −(u̇+ u2) = −u2 ≡ const. Q.E.D.

We recall that we assume the invariant foliations to be C2, which by
itself is known to imply constant curvature [7, 12]. We present Propos-
ition 6.4 here to show the simplicity of the argument. The forthcoming
extension of our definitions to the case of C1+1/2+ε invariant foliations
will make it substantial. While this will also add interest to Theorem 6.1,
Theorem 6.7 below already does so in the present context.

It is also simple to prove that smooth conjugacy of geodesic flows
implies isometry; this was a nontrivial insight in the conclusions of [7, 12].

Theorem 6.5. If the geodesic flows ϕt and ψt of C5 Riemannian
surfaces M and S, respectively, are topologically conjugate and S has
constant curvature −1, then M and S are isometric.

Proof. The conjugacy h is C2 since ϕt ∈ C3 [20], [5, Corollary 4.8,
Theorem 5.2], [14, p. 371], [16, Theorem 1], [15, Theorem 1.1], and a
contact Anosov flow is the Reeb flow of a unique contact form. Thus
h sends the contact form A for ϕt to that for ψt, and likewise for
dA and the weak-unstable foliation—which is hence C2. Thus, the
Godbillon–Vey invariants match up, i.e., GVM

i = GV S
i for i = 0, 1, 2,

so
GVM

0 GVM
2

(GVM
1 )2

=
GV S

0 GV S
2

(GV S
1 )2

= 1 by Proposition 6.4, which implies, again

by Proposition 6.4, that M has constant curvature. Constantly curved
metrics are isometric if their geodesic flows are conjugate. (This follows
from the work of Otal [18] and Croke [4], which does not assume constant
curvature, and is proved directly and more easily by Foulon [6].) Q.E.D.

Remark 6.6. This theorem is not contingent on defining Godbillon–
Vey invariants for lower regularity because the conjugacy sends the
smooth maximally isotropic foliation to a C2 maximally isotropic fo-
liation. The same goes for the next result, which recovers a special case
of a rigidity result of Hurder and Katok via a remarkably simple proof.

Theorem 6.7. Negatively curved surfaces whose geodesic flow has
C2 horospheric foliations are constantly curved.

We use that as in [3], the C2 splitting yields a Bott–Kanai connection.
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Proposition 6.8 ([3, Proposition 2.3 & Section 3.2, Lemma 4.1]).
There is a unique ϕt-invariant connection ∇ that parallelizes the geo-
metric structure in that ∇A = 0, ∇ dA = 0, ∇E± ⊂ E±, and with
∇Z∓Z± = p±[Z∓, Z±] and ∇XZ± = [X,Z±]± hvolZ

± for any sections
Z± of E±, where p± is the projection to E± given by the decomposition.
The (rank-1) bundle of volume forms on a ∇-parallel subbundle of TM
has a natural flat connection induced by ∇.

Proof of Theorem 6.7. Proposition 6.8 gives a parallel unstable
volume [3, Section 4.2], which is then holonomy-invariant and hence
gives the conditionals of the Bowen–Margulis measure. Thus we can
apply Theorem 6.1 and then Theorem 6.3. Q.E.D.

To summarize, the novelty of our approach is to introduce a family of
invariants for a foliation, and to either draw conclusions about it, such
as in Theorem 6.1, or to use information about the family to learn about
the geometry, such as in Proposition 6.4 and its applications.
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Institut de Mathématiques de Marseille, UMR 7373
13453 Marseille, France
E-mail address : Boris.Hasselblatt@Tufts.edu


