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Harmonic measures
and unique ergodicity of foliations

Pawe�l G. Walczak

Abstract.

In this article, we provide a short review of general results on
harmonic measures on foliated manifolds and discuss briefly about
uniquely ergodic foliations.

§1. Introduction

Harmonic measures for foliations of Riemannian manifolds have
been introduced by Lucy Garnett [8], see also [6], [7] and [13]. If (M,F)
is a foliated Riemannian manifold, ΔF is the foliated Laplace operator
on M (that is, ΔF acts on the space of C2-functions on M and is defined
by the formula

(1) ΔFf(x) = ΔLx(f |Lx)(x), x ∈ M,

ΔLx being the Laplace operator on the leaf Lx of F through x equipped
with the Riemannian metric induced from M) and μ is a Borel prob-
ability measure on M , then μ is said to be harmonic whenever

(2)

∫
M

ΔFf dμ = 0

for all f ∈ C2(M).
Assume for all the article that M is compact. Then, harmonic meas-

ures exist, can be characterized as measures which are invariant under
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the operators DF
t of leaf-wise heat diffusion and locally (in a foliated

chart U) expressed as

(3) μ =

∫
T

ht · volPt dσ,

where T is a transversal, Pt (t ∈ T ) is a plaque of the chart under
consideration (see Figure 1) and ht is a harmonic function on Pt.

Fig. 1. A foliated chart.

All the harmonic measures on (M,F) form a convex subsetH(M,F)
of the set M(M) of all the Borel probability measures on M . All the
extreme points of H(M,F) form the set E(M,F) of ergodic measures.
A foliation F is said to be uniquely ergodic whenever the set H(M,F)
(equivalently, E(M,F)) consists of a single element. Both, simple and
interesting, examples of uniquely ergodic (in this sense) foliations do
exist (see, for instance, [2] and Section 4 below).

In this article, we provide a short review of general results on har-
monic measures on foliated manifolds and discuss briefly about uniquely
ergodic foliations. With regard to the last topic, we are grateful to the
referee for his critical remarks on the first version of the paper and bring-
ing to our attention results of [10] mentioned here in the last section
(Example 4.6).
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§2. Existence

The simplest example of a harmonic measure is provided by so called
transverse invariant measures, that is measures on transversals which
are invariant under holonomy maps. If σ is such a transverse invariant
measure on (M,F), then one can define a harmonic measure μ by (3)
takimg ht = 1 for all t ∈ T and normalizing the result to become a
probablility meaure. There exist foliations which admit no non-trivial
invariant measures: indeed, the existence of such measures has been
shown to have some influence on the topology of (M,F), see [11], [9]
and [13], pp. 101–105. Contrary to that, harmonic measures on compact
foliated manifolds do exist always.

The original Garnett’s proof of existence of harmonic measures on
compact foliated manifolds followed the lines of the classical proof of
existence of invariant measures for continuous transformations of com-
pact topological spaces (see [14], pp. 150–152). Roughly speaking, if
(DF

t ) is a family of leaf-wise diffusion operators on (M,F) and (σn)
is an arbitrary sequence of Borel probability measures on M , then the
accumulation points of the sequence (μn) given by

(4) μn =
1

n
·
n−1∑
n=0

DF
n σn,

where DF
t σ (σ ∈ M(M), t ≥ 0) denotes the measure given by

(5)

∫
M

f dDF
t σ =

∫
M

DF
t f dσ f ∈ C(M),

are DF
t -invariant, therefore harmonic.

Here, we shall present and apply another proof, the one which can
be found in [13].

First, let us consider a compact Hausdorff space X, the linear space
V = C(X) of all the continuous real functions onX and a linear subspace
W of V . Denote by M(X) the space of all Borel probability measures on
X and by MW (X) the subspace of M(X) consisting of all the measures
μ such that

(6)

∫
X

f dμ = 0

for all the elements f of W .
Then, the following holds.
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Proposition 2.1. The following conditions are equivalent :

(i) any function f ∈ W is non-positive at some points of X,
(ii) MW (X) �= ∅.
Proof. Implication (ii) =⇒ (i) is obvious: if W � f > 0 everywhere

on X, then
∫
X
fdμ > 0 for all the Borel probability measures μ on X.

Assume now that W satisfies (i) and let l(f) = 0 for all f ∈ W and
q(h) = max(−h) for all h ∈ V . The functional q : V → R is semi-linear
in the following sense:

q(h1 + h2) ≤ q(h1) + q(h2)
and

q(ah) = aq(h)

for all h, h1, h2 ∈ V and a ∈ R, a ≥ 0. Obviously, l(f) ≤ q(f) for all
f ∈ W . Therefore, by the classical Hahn–Banach theorem, there exists a
linear extension L : V → R of l such that L(h) ≤ q(h) for all h ∈ V . The
functional −L is positive (i.e. −L(h) > 0 whenever h > 0) and therefore,
by the Riesz representation theorem ([12], Theorem 2.14), corresponds
to a Borel measure ν on X. The normalized measure μ = −ν/L(1)
satisfies (6). Q.E.D.

Now, if (M,F) is a compact foliated Riemannian manifold and f
is a smooth function on M , then f attains its maximum at some point
x and ΔFf(x) ≤ 0. Therefore, the space W = {ΔFf, f ∈ C2(M)}
satisfies condition (i), therefore also (ii), of Proposition 2.1 which yields
the following.

Theorem 2.2. On an arbitrary compact foliated Riemannian mani-
fold (M,F) the spaces H(M,F) and E(M,F) are nonempty.

The same argument applies to minimal subsets of foliated manifolds.
Let us recall that a subset A of a foliated manifold (M,F) is (1)

saturated whenever A is a union of leaves, that is whenever any leaf of F
which intersects A is entirely contained in A, and (2) minimal whenever
it is nonempty, closed and saturated, and contains no proper subsets
enjoying all these properties. The Zorn Lemma implies immediately that
the closure of any leaf of any foliation of a closed manifold M contains
a minimal set. Closed leaves themselves always constitute minimal sets.

Let us recall also that the support of a measure μ on a topological
space X is the collection suppμ of all the points x ∈ X such that μ(U) >
0 for all open neighbourhoods U of x.

Since any leaf-wise smooth and continuous function f defined on
a minimal set A attains its maximum at some points of A and has
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non-positive leaf Laplacian there, our Proposition 2.1 implies also the
following.

Corollary 2.3. For any minimal subset set A of a closed foliated
manifold (M,F), there exists a harmonic measure on M supported in A.

Remark 2.4. (1) Proposition 2.1 implies also existence of invari-
ant measures for continuous transformations F of compact topological
spaces X. Indeed, the space W = {f − f ◦F ; f ∈ C(X)} satisfies condi-
tion (i) therein: f(x0) − f(F (x0)) ≤ 0 at points x0 where f attains its
minimum.

(2) Since finitely generated abelian groups of continuous trans-
formations of a compact space X admit invariant measures (see, for
instance, [13], p. 98), Proposition 2.1 implies also the following, surpris-
ing the author a bit, fact: if X is compact, Fi : X → X, i = 1, . . . , n,
are continuous and pairwise commuting, and fi : X → R, i = 1, . . . , n,
are continuous as well, then there exist points x and y of X such that

(7)
n∑

i=1

(fi − fi ◦ Fi)(x) ≤ 0 and
n∑

i=1

(fi − fi ◦ Fi)(y) ≥ 0.

Problem 2.5. In the situation described in Remark 2.4 (2), prove
the existence of points x and y satisfying (7) using just the methods of
set-theoretic topology.

Finally, let us recall that if μ is a probability measure on a group
G acting on a compact space X, then a probability measure ν on X is
said to be μ-stationary whenever ν =

∫
G
g∗ν dμ, that is whenever

∫
X

(
f −

∫
G

(f ◦ g) dμ
)
dν = 0

for all f ∈ C(X). Again, at a point x0 of X where f attains its minimum
one has

f(x0)−
∫
G

f(g(x0)) dμ ≤ 0,

that is the subspace W of C(X) generated by all the functions of the
form f − ∫

G
(f ◦ g) dμ satisfies condition (i) of Proposition 2.1. This

proves the following.

Corollary 2.6. For any G, μ andX as above, μ-stationary measures
on X do exist.
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§3. Selected properties

As mentioned in Introduction, harmonic measures μ are invariant
with respect to the operators DF

t of heat diffusion along the leaves. This
means that for any f : M → R one has

(8)

∫
M

DF
t f dμ =

∫
M

f dμ.

This implies the following.

Proposition 3.1. The support suppμ of any harmonic measure μ
on a closed foliated manifold (M,F) is saturated.

Proof. Let x be a point of suppμ and y another point of the leaf
Lx through x. Let U be an open neighbourhood of y and f a smooth
non-negative real function on M such that f(y) > 0 and supp f ⊂ U .
Then, for any t > 0,∫

U

fdμ =

∫
M

fdμ =

∫
M

DF
t fdμ > 0

since DF
t f ≥ 0 everywhere on M and DF

t f(x) > 0. This implies that
μ(U) > 0 and y ∈ suppμ. Q.E.D.

One has the following Lebesgue decomposition for harmonic
measures.

Theorem 3.2. If μ and ν are two harmonic probability measures
on (M,F), then ν can be decomposed as ν = ν1+ν2, where ν1 and ν2 are
harmonic, ν1 is absolutely continuous with respect to μ while μ and ν2
are mutually singular. Moreover, ν1 and ν2 are concentrated on disjoint
saturated sets.

Proof. Roughly speaking, ν2 = ν|Ã and ν1 = ν|M � Ã where Ã
is the essential saturation (that is, the union of all the leaves L such
that the leaf volume of L ∩ A is strictly positive) of a subset A of M
such that μ(A) = 0 and ν|M � A is absolutely continuous with respect
to μ. The existence of such an A follows from the standard Lebesgue
decomposition theorem ([12], Theorem 6.9) while more details of this
proof can be found in [13]. Q.E.D.

Moreover, if we call a leaf L of F eventually wandering if it is
non-compact and proper (that is, the manifold topology of L coincides
with that induced from M) and we denote by EW (F) the union of all
eventually wandering leaves of F . Certainly, the set EW (F) and its
complement are saturated. With this notation, we have the following.
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Theorem 3.3. For any harmonic measure μ on (M,F) one has

(9) μ(EW (F)) = 0.

In other words, this means that any harmonic measure is supported
in the union of all eventually non-wandering leaves.

The proof of Theorem 3.3 is rather technical and can be found, for
example, in [13].

§4. Unique ergodicity

First, let us observe that our Corollary 2.3 implies directly the
following.

Proposition 4.1. Any uniquely ergodic foliation F on a closed
manifold M contains exactly one minimal set, in particular, at most
one compact leaf.

Proof. Indeed, if not, M would contain two minimal sets Ai,
i = 1, 2, each of them supporting a harmonic measure μi. Certainly
μ1 �= μ2. Q.E.D.

Example 4.2. If a closed foliated manifold (M,F) admits a unique
minimal set, this set consists of a single closed leaf L and all the other
leaves are proper (and non-compact, therefore eventually wandering),
then F is uniquely ergodic (with respect to any Riemannian structure
on M). Indeed, by Theorem 3.3, any ergodic harmonic measure on
(M,F) has to be supported in L, by Theorem 3.2 it has to be absolutely
continuous with respect to the leaf volume on L and—since the only
harmonic functions on closed Riemannian manifolds are constant—any
harmonic measure on any closed Riemannian manifold coincides with
the normalized volume. In particular, the standard Reeb foliation of S3

is uniquely ergodic and its unique harmonic measure coincides with the
normalized volume of the toral leaf; indeed, the toral leaf is the only
eventually non-wandering leaf of the Reeb foliation.

Example 4.3. Assume that B is a closed Riemannian manifold of
negative curvature and ρ : Γ = π1(B) → PSL(d,C) is a group homo-
morphism. Assume also that ρ is (i) strongly irreducible, that is no
finite family of projective subspaces of CP d−1 is ρ-invariant, and (ii)
contracting, that is for any probability measure μ on CP d−1 there ex-
ists a sequence (gn) of elements of Γ for which the measures ρ(γn) ∗ μ
converge to a Dirac mass. Then the foliation F obtained by suspension
of ρ (that is, F is the foliation of M = (B̃ × CP d−1)/Γ—where Γ acts

on B̃ via covering transformation and on CP d−1 via ρ—obtained by the
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natural projection of the product foliation F̃ = {B̃ × {∗}} of the prod-

uct of the universal cover B̃ of B by CP d−1) is uniquely ergodic ([2],
Theorem 3.2).

Finally, we shall discuss briefly about a relation between the unique
ergodicity of a foliation F and the image of the Laplace operator ΔF .
To this end, let us consider first a compact space X and a subspace W
of C(X) which satisfies condition (i) of Proposition 2.1. Such a subspace
W will be called uniquely ergodic whenever the set MW (X) consists of
a unique element. With this terminology we shall prove the following.

Proposition 4.4. If C(X) = W ⊕ R, then the subspace W is
uniquely ergodic.

Proof. This is rather obvious: if C(X) = W ⊕ R, then (according
to the Riesz representation theorem again) the conditions

∫
f dμ = 0

for f ∈ W and
∫
c dμ = c for c ∈ R define a unique element μ of

MW (X). Q.E.D.

Applying Proposition 4.4 to the spaceW = imΔF we obtain directly
the following.

Corollary 4.5. If C(M) = imΔF ⊕ R, then a foliation F of a
compact Riemannian manifold M is uniquely ergodic.

One can ask how about the converse implications in Proposition 4.4
and Corollary 4.5.

First, observe that our Proposition 4.4 can be applied also to clas-
sical dynamical systems to show that a continuous transformation T of
a compact space X is uniquely ergodic if only C(X) = WT ⊕ R, where
WT is a linear subspace of C(X) generated by all the functions f −f ◦T
with f ∈ C(X).

Example 4.6. Given α ∈ R, denote by Rα : S
1 → S1 the rotation

by angle α · π. By Proposition 12.6.3 in [10], there exists an irrational
number α and a smooth (even, analytic) function φ : S1 → R such that
φ = Φ◦Rα−Φ for some “highly discontinuous” function Φ: S1 → R. By
“highly discontinuous” we mean here “Borel measurable and such that
λ(U ∩ Φ−1(V )) > 0 for all non-empty open sets U ⊂ S1 and V ⊂ R”, λ
being the Lebesgue measure on S1.

Now, if φ = Ψ◦Rα−Ψ+c for some c ∈ R and a continuous function
Ψ: S1 → R, then the difference F = Φ−Ψ would satisfy F ◦Rα−F = c
everywhere on S1. Since Rα is ergodic and Ψ is continuous, c �= 0,
say c > 0. Since F is bounded on a set A of positive measure and
F (Rn

α(x)) = F (x) + nc → ∞ as n → ∞ for all x ∈ S1, we arrive at a
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contradiction with the classical Poincaré Recurrence Theorem applied
to A and Rα.

Therefore, C(S1) �= WRα ⊕ R for this particular value of α and the
converse to Proposition 4.4 does not hold in full generality.

Let us also observe that any single closed Riemannian manifold
M (which can be considered as a foliated one in codimension zero) is
uniquely ergodic: the only harmonic probability measure is the normal-
ized volume. Also, since the equation ΔMu = f has a solution u if
and only if

∫
M

f = 0 (see, for instance, [3], Theorem 4.7), C(M) =
imΔM ⊕ R.

The above suggests that one can ask whether the converse to Corol-
lary 4.5 holds either in general or under some conditions (and try to find
them). One can also ask whether the converse to Proposition 4.4 holds
for all (or those satisfying suitable—which ones?—conditions) closed
subspaces W of C(X), X being, as before, compact. At the moment,
we do not know any reasonable answer to these questions. It seems that
working towards the affirmative answer one could follow the lines of the
classical proofs of the Hahn-Banach Theorem, see—for example—[1].

Finally, let us mention that recently an interesting definition of the
Laplace operator on Finsler manifolds appeared in [4] (see also [5]).
With this definition one should be able to develop a theory of harmonic
measures, diffusion operators and Brownian motion, and discuss the
problem of unique ergodicity for foliations of manifolds eqipped with
(leafwise) Finsler structures.
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[ 5 ] T. Barthelmé and B. Colbois: Eigenvalue control for a Finsler–Laplace
operator, Ann. Global Anal. Geom. 44 (2013), 43–72.

[ 6 ] A. Candel: The harmonic measures of Lucy Garnett, Adv. Math. 176
(2003), 187–247.

[ 7 ] A. Candel and L. Conlon, Foliations, II, Amer. Math. Soc., Providence, RI,
2003.



258 P. G. Walczak

[ 8 ] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct.
Anal. 51 (1983), 285–311.

[ 9 ] G. Hector and U. Hirsch, Introduction to the geometry of foliations, Part
B, second edition, Aspects of Mathematics, E3, Vieweg, Braunschweig,
1987.

[10] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynam-
ical systems, Cambridge Univ. Press, Cambridge, 1995.

[11] J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math.
(2) 102 (1975), 327–361.

[12] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
[13] P. Walczak, Dynamics of foliations, groups and pseudogroups, Instytut

Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New
Series) 64, Birkhäuser, Basel, 2004.
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