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Circle diffeomorphisms, rigidity of symmetric
conjugation and affine foliation of the universal

Teichmüller space

Katsuhiko Matsuzaki

Abstract.

The little Teichmüller space of symmetric homeomorphisms of the
circle defines a Banach foliated structure of the universal Teichmüller
space. First we consider rigidity of Möbius representations given by
symmetric conjugation and failure of the fixed point property for iso-
metric group action on the little Teichmüller space. This space includes
the Teichmüller space of circle diffeomorphisms with Hölder continuous
derivatives. Then we characterize these diffeomorphisms by Beltrami
coefficients of quasiconformal extensions and Schwarzian derivatives of
their Bers embeddings. This is used for proving certain rigidity of
representations by symmetric conjugation in the group of circle diffeo-
morphisms. We also consider Teichmüller spaces of integrable symmet-
ric homeomorphisms, which induce another Banach foliated structure
and the generalized Weil–Petersson metric on the universal Teichmüller
space. As an application, we investigate the fixed point property for
isometric group action on these spaces and give a condition for a group
of circle diffeomorphisms with Hölder continuous derivatives to be con-
jugate to a Möbius group in the same class.

§1. Introduction

In this article, we will explain Teichmüller spaces of circle diffeo-
morphisms with Hölder continuous derivatives and certain rigidity for the
representation of a Möbius group in the group of such diffeomorphisms.
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The Teichmüller space of a Riemann surface is the deformation space
of complex structures on it and it can be regarded as a subspace of
the universal Teichmüller space that is fixed pointwise by the Fuchsian
group Γ uniformizing the Riemann surface. The universal Teichmüller
space T = Möb(S)\QS is given by the group QS of quasisymmetric
self-homeomorphisms of the unit circle S modulo the group Möb(S)
of Möbius transformations. Quasisymmetric self-homeomorphisms are
the boundary extension of quasiconformal homeomorphisms of the unit
disk D and they equip necessary regularity for the deformation space
to be parametrized complex analytically. Also, T is provided with the
Teichmüller metric defined by dilatations of these mappings.

A family of circle homeomorphisms of higher regularity can be also
considered as a subspace of the universal Teichmüller space. In this
article, we deal with symmetric homeomorphisms Sym, circle diffeo-
morphisms Diff1+α(S) with α-Hölder continuous derivatives, and p-
integrable symmetric homeomorphisms Symp. A parameter space of
C∞ diffeomorphisms was already studied by Nag and Verjovsky [36]
among others in connection with the Teichmüller theory but the class
of diffeomorphisms with Hölder continuous derivatives fits well to the
framework of complex analytic theory of Teichmüller spaces. One of the
purposes of this article is to show the feature of the Teichmüller space
Tα
0 = Möb(S)\Diff1+α(S).

The group QS of quasisymmetric homeomorphisms of S is the auto-
morphism group of the universal Teichmüller space T . This space pos-
sesses a property that if a subgroup G < QS acts on T with a bounded
orbit then G has a fixed point in it (Markovic [29]). In general, we say
that a complete metric space X has the fixed point property if every
subgroup of its automorphism group with a bounded orbit always has
a fixed point in X. The fixed point property of T is the basis of con-
sidering the generalization of the Nielsen realization problem and the
conjugation problem to Möbius groups. The arguments in this article
are going along questions whether a subspace of T has the fixed point
property or whether we can endow another metric to the subspace so
that it has the fixed point property.

The universal Teichmüller space T is embedded into the Banach
space B(D∗) of hyperbolically bounded holomorphic functions on the

exterior D∗ of the unit disk in the Riemann sphere Ĉ. Through this
Bers embedding β : T → B(D∗), the action of Möb(S) ⊂ QS on T is
realized as the group of isometric linear transformations of B(D∗). This
linearization of Teichmüller space produces powerful methods in our
arguments.
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A basic subspace is the little Teichmüller space T0 = Möb(S)\Sym of
symmetric homeomorphisms. This was studied by Gardiner and Sullivan
[21] and now it is of importance in the theory of asymptotic Teichmüller
spaces of Riemann surfaces. In our arguments, T0 offers a fundamental
structure at the following points:

(1) The little subspace T0 is embedded into the little subspace
B0(D∗) of B(D∗) under the Bers embedding β. Moreover, the
affine foliation of β(T ) by B0(D∗) corresponds to the coset
decomposition of T by T0 under β. In particular, the quotient
space AT = T/T0 has a complex structure modeled on the
quotient Banach space B(D∗)/B0(D∗).

(2) The little subspace T0 does not have the fixed point prop-
erty. More strongly, quasisymmetric conjugations of a non-
rigid Fuchsian group Γ < Möb(S) into Sym defines an infinite
dimensional representation space in AT even if the Teichmüller
space T (Γ) for Γ is finite dimensional.

(3) There is certain rigidity for the conjugation of a Möbius group
Γ by a symmetric homeomorphism. More precisely, every sym-
metric conjugation of Γ both into Möb(S) and into Diff1+α(S)
is trivial, namely, it is actually an inner automorphism.

The Teichmüller space T p = Möb(S)\Symp of p-integrable symmet-
ric homeomorphisms is contained in T0. The corresponding subspace
Ap(D∗) ⊂ B0(D∗) under the Bers embedding is the Banach space of
hyperbolically p-integrable holomorphic functions on D∗. Similarly to
the case of T0 as in (1), the affine foliation of T ∼= β(T ) by Ap(D∗) is
compatible with the coset decomposition T/T p under the Bers embed-
ding β.

In the case where p = 2, Cui [11] introduced the Weil–Petersson
metric in T 2 by the inner product of the Hilbert space A2(D∗). Later,
Takhtajan and Teo [41] extended it to each leaf of the affine foliation of
T and investigated its curvature properties. In particular, we see that T 2

has the fixed point property with respect to the Weil–Petersson metric.
In the general case p ≥ 2, the generalized Weil–Petersson metric can
be similarly defined in each leaf of the affine foliation of T by Ap(D∗).
However, regarding its fixed point property, we only propose a problem
on uniform convexity of this metric on T p.

In the case where α > 1/2, we have Diff1+α(S) < Symp and hence
Tα
0 is contained in T 2, which has the fixed point property. Combin-

ing this with such a rigidity that any symmetric conjugation of a non-
elementary Möbius group Γ into Diff1+α(S) is trivial, we obtain a condi-
tion for a subgroup of Diff1+α(S) to be isomorphic to some Möbius group
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under an inner automorphism in terms of certain quantities related to
the metric on T 2.

This article is based on the author’s talks in the conference “Rigidity
School” held at the University of Tokyo on January 6–10, 2014.

Acknowledgements. The author would like to thank the referee
for his/her careful reading of the manuscript and valuable suggestions,
in particular, for Sections 3.2 and 3.4.

§2. The universal Teichmüller space

We begin with defining the universal Teichmüller space T , which
can be represented by using the following concepts:

• Quasisymmetric self-homeomorphisms of S;
• Quasiconformal self-homeomorphisms of D;
• Complex projective structures (Schwarzian derivatives) on D∗=
Ĉ− D.

These enable us to provide metric and complex structure for T . We
can consult the monographs by Lehto [27] and Nag [35] for necessary
arguments in this section. Then we consider the group of automorphisms
of T and the fixed point property for its subgroups.

2.1. Quasisymmetric homeomorphisms

There are several equivalent definitions for quasisymmetry of a self-
homeomorphism of S; one of them is the following.

Definition 2.1. An orientation-preserving homeomorphism g : S →
S is called quasisymmetric if there is a constant M ≥ 1 such that

[g(z1), g(z2), g(z3), g(z4)]∗ ≤ M

for every positively ordered quadruple (z1, z2, z3, z4) on S ⊂ C with
[z1, z2, z3, z4]∗ = 1. Here, for the usual cross ratio

[z1, z2, z3, z4] =
z1 − z3
z1 − z4

· z2 − z4
z2 − z3

,

the alternative cross ratio as above is defined by

[z1, z2, z3, z4]∗ =
[z2, z3, z4, z1]

[z1, z2, z3, z4]
.

This takes its value in (0,∞) for a positively ordered quadruple of distinct
points on S.
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Now we define the following subsets (actually subgroups) of the
group Homeo(S) of orientation-preserving self-homeomorphisms of S:

QS = {g ∈ Homeo(S) | g: quasisymmetric};
Möb(S) = {g ∈ Homeo(S) | g: Möbius transformation} ∼= PSL(2,R).

Clearly Möb(S) < QS because g ∈ Möb(S) implies M(g) = 1, where
M(g) is the optimal constant M ≥ 1 that satisfies the condition in the
above definition for g ∈ QS.

Definition 2.2. The universal Teichmüller space T is defined by
the set of cosets

T = Möb(S)\QS.

2.2. Quasiconformal homeomorphisms

A counterpart of quasisymmetry is quasiconformality. This also has
several equivalent definitions but for our purpose we adopt the following.

Definition 2.3. An orientation-preserving homeomorphism f : D→
Ĉ of a domain D⊂ Ĉ is called quasiconformal if it has partial derivative
in the distribution sense and if there is a constant k < 1 such that the
complex dilatation

μf (z) =
∂̄f(z)

∂f(z)

satisfies |μf (z)| ≤ k (a.e. z ∈ D). The maximal dilatation of f is
defined by

K(f) =
1 + ‖μf‖∞
1− ‖μf‖∞ .

The complex dilatation determines the quasiconformal map. This
fact can be stated as the existence and the uniqueness of a solution for
the Beltrami equation: given μ∈L∞(D) with ‖μ‖∞ < 1, which is called a

Beltrami coefficient on D⊂ Ĉ, find a quasiconformal homeomorphism f
of D such that ∂̄f(z)=μ(z)∂f(z) (a.e. z ∈D). The solution is described
as the following measurable Riemann mapping theorem due to Ahlfors
and Bers [2].

Theorem 2.4. The Beltrami equation ∂̄f(z) = μ(z)∂f(z) on D
can be solved. The solution is unique up to post-composition of a confor-
mal homeomorphism of the image. Under a certain normalization, the
solution f(z) depends holomorphically on μ for each fixed z ∈ D.
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As before, we define the following subsets (actually subgroups) of
the group Homeo(D) of orientation-preserving self-homeomorphisms of

D ⊂ Ĉ:

QC(D) = {f ∈ Homeo(D) | f : quasiconformal};
Conf(D) = {f ∈ Homeo(D) | f : conformal}.

Clearly Conf(D) < QC(D) because f ∈ Conf(D) implies μf (z) ≡ 0.
For D = D, we denote the space of Beltrami coefficients on D by

Bel(D) = {μ ∈ L∞(D) | ‖μ‖∞ < 1},
which is the open unit ball of the Banach space L∞(D). Then The-
orem 2.4 implies that

Bel(D) ∼= Conf(D)\QC(D) = Möb(D)\QC(D),

where Möb(D) is the group of Möbius transformations preserving D.

2.3. Quasiconformal extension

We investigate the relation between QS and QC(D). A basic fact is
that every f ∈ QC(D) extends continuously to a self-homeomorphism of
S = ∂D. This defines the boundary extension map (homomorphism)

q : QC(D) → Homeo(S).

Then the boundary extension is actually a quasisymmetric automorphism
of S. Conversely, every g ∈ QS extends continuously to a quasiconformal
automorphism of D. Namely, there is a section

e : QS → QC(D)

for q. In particular, Im q = QS. These results as well as the following
continuity were shown by Beurling and Ahlfors [7].

Proposition 2.5. In the above circumstances, M(q(f)) for f ∈
QC(D) is estimated in terms of K(f) and M(q(f)) → 1 as K(f) → 1;
K(e(g)) for g ∈QS is estimated in terms of M(g) and K(e(g))→ 1 as
M(g)→ 1.

The Beurling–Ahlfors extension e(g) ∈ QC(D) is given by an explicit
formula in the upper half-plane model H and its boundary R. There
is certain advantage of using this quasiconformal extension due to its
explicit representation. We will discuss this later in Section 4.
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2.4. Conformally natural extension

Douady and Earle [12] introduced later the conformally natural ex-
tension eDE : QS → QC(D) having similar properties to the Beurling–
Ahlfors extension. Moreover, this is compatible with the composition of
elements of Möb(S) and Möb(D).

The complex average of a probability measure m on S viewed at
0 ∈ D is defined by

ξm(0) =

∫
S

ζ dm(ζ).

By the homogeneity of D under Möb(D), the average of m viewed at an
arbitrary point w ∈ D is given by

ξm(w) = (1− |w|2)
∫
S

ζ − w

1− w̄ζ
dm(ζ).

If m has no point mass, it is known that there is a unique point w ∈ D
such that ξm(w) = 0, which is called the barycenter of m.

For a probability measure m on S, the family of conformal measures
{mz}z∈D is given by the relation

dmz

dm
(ζ) =

1− |z|2
|ζ − z|2 .

The correspondence of the barycenter w(z) ∈ D of mz to each z ∈ D
defines the barycentric map wm : D → D.

Consider the push-forward of the normalized Lebesgue measure on S
by g : S → S; dmg = g∗(dθ/2π). Then the conformally natural extension
eDE(g) is defined by wmg . The results by Douady and Earle [12] are
as follows.

Theorem 2.6. If g ∈ QS, then eDE(g) ∈ QC(D) with q(eDE(g)) =
g. This also satisfies K(eDE(g)) → 1 as M(g) → 1. Moreover, eDE(g)
is a bi-Lipschitz diffeomorphism with respect to the hyperbolic metric on
D. For any g ∈ QS and h1, h2 ∈ Möb(S) ∼= Möb(D), it satisfies the
conformal naturality

eDE(h1 ◦ g ◦ h2) = h1 ◦ eDE(g) ◦ h2.

2.5. The Teichmüller projection

The boundary extension q : QC(D) → QSmoduloMöb(D) ∼= Möb(S)
defines a map

π : Bel(D) = Möb(D)\QC(D) −→ T = Möb(S)\QS,
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which is called the Teichmüller projection. See the following diagram.

QC(D)
q−−−−→ QS

Möb(D)\
⏐⏐� Möb(S)\

⏐⏐�
Bel(D) −−−−→

π
T

We provide T = Möb(S)\QS with the topology induced by the quasi-
symmetry constant M(g) for g ∈ QS. The open ball Bel(D) ⊂ L∞(D)
is equipped with the norm topology. Then topological properties of the
Teichmüller projection can be described as follows. The continuity of π
is a consequence of Proposition 2.5.

Proposition 2.7. The Teichmüller projection π : Bel(D) → T is a
continuous open map. In particular, the topology on T coincides with
the quotient topology of Bel(D) by π.

The conformally natural extension eDE : QS → QC(D) descends to
a section sDE : T → Bel(D) for the Teichmüller projection π. Since eDE

is continuous, so is sDE. Then we see that T is contractible since so
is Bel(D).

2.6. The Teichmüller metric

The Teichmüller distance on T is the quotient distance of that on
Bel(D) defined as follows. The unit ball Bel(D) of L∞(D) has a hyper-
bolic distance: for any μ, ν ∈ Bel(D), it is defined by

dBel(μ, ν) = log
1 +

∥∥ μ−ν
1−ν̄μ

∥∥
∞

1− ∥∥ μ−ν
1−ν̄μ

∥∥
∞
.

Its infinitesimal form is a Finsler metric on Bel(D) with the density
2(1− ‖ν‖2∞)−1 at ν ∈ Bel(D).

To induce the infinitesimal metric on T , a differentiable structure
on T by which π is differentiable is required. In fact, a complex struc-
ture modeled on a certain Banach space is provided for T by using
the parametrization of complex projective structures on D∗ through
Schwarzian derivatives. This will be explained below.

Definition 2.8. The Teichmüller metric on T is the quotient met-
ric of the hyperbolic metric on Bel(D) by the Teichmüller projection
π : Bel(D) → T . The Teichmüller distance induced by this metric is
denoted by dT .

It is known that the metric space (T, dT ) is complete. We also see
later the Finsler structure of the Teichmüller metric.
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2.7. Bounded projective structures

A complex projective structure on a two dimensional manifold is a

(PSL(2,C), Ĉ)-structure in the language of (G,X)-structures. A pro-

jective structure on D∗ = Ĉ − D is realized by the developing map

f : D∗ → Ĉ, which is a holomorphic local homeomorphism.
The Schwarzian derivative of the developing map

Sf (z) =

(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

measures the difference from the standard projective structure on D∗ ⊂
Ĉ and actually it determines the projective structure uniquely.

In the representation of the Teichmüller space, only bounded pro-
jective structures are involved, for which the developing map f : D∗ →
Ĉ satisfies

‖Sf‖∞ = sup
z∈D∗

ρ−2
D∗ (z)|Sf (z)| < ∞,

where ρD∗(z) = 2/(|z|2 − 1) is the hyperbolic density on D∗. The space
of bounded projective structures on D∗ is identified with the Banach
space of holomorphic functions

B(D∗) =
{
ϕ ∈ Hol(D∗)

∣∣∣∣ ‖ϕ‖∞ = sup
z∈D∗

ρ−2
D∗ (z)|ϕ(z)| < ∞

}
.

2.8. The Bers embedding

For each μ ∈ Bel(D), a projective structure onD∗ is defined as follows:
Extendμ toBel(Ĉ) by settingμ(z) ≡ 0onD∗. As theunique solutionof the
Beltrami equation on Ĉ up to post-composition of Möb(Ĉ) ∼= PSL(2,C),
one has a quasiconformal automorphism fμ : Ĉ → Ĉ conformal on D∗.
Then fμ|D∗ gives the developing map of a projective structure.

The Bers projection Φ: Bel(D) → B(D∗) is defined by μ �→ Sfμ|D∗ ;
the Nehari–Kraus theorem implies that ‖Φ(μ)‖∞ = ‖Sfμ|D∗‖∞ ≤ 3/2 for
every μ ∈ Bel(D), which shows that this Schwarzian derivative corres-
ponds to a bounded projective structure. Bers showed that Φ ◦ π−1 is
well-defined and injective; this map β = Φ ◦ π−1 : T → B(D∗) is called
the Bers embedding. See the diagram below. Moreover, with the aid of
the holomorphic dependence of the solution of Beltrami equation (The-
orem 2.4) and the boundedness of the norm, we see that the Bers pro-
jection Φ is holomorphic.

For ϕ ∈ B(D∗) with ‖ϕ‖∞ < 1/2, the correspondence

μ(z) = −2ρ−2
D∗ (z

∗)(zz∗)2ϕ(z∗) ∈ Bel(D) (z∗ = 1/z̄)
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defines a holomorphic local section for the Bers projection Φ: Bel(D) →
β(T ). This is called the Ahlfors–Weill local section ([3]). Based on this,
Bers [6] gave a holomorphic local section at every point ϕ ∈ β(T ). In
particular, we see that Φ is a holomorphic split submersion and that β
is a homeomorphism onto the image. This provides a complex structure
for T modeled on the complex Banach space B(D∗).

Bel(D)

π
�����

���
���

��

Φ ����
���

���
���

T = Möb(S)\QS
β

�� β(T ) ⊂ B(D∗)

2.9. Metrics associated with the complex structure

It is known that the Kobayashi metric on the complex manifold
T coincides with the Teichmüller metric (Royden and Gardiner among
others). See the monograph by Gardiner and Lakic [20, Chapter 7] for
a modern proof of this fact. In particular, every biholomorphic auto-
morphism of T is also isometric.

The Teichmüller metric is also given by a certain norm of the tangent
space B(D∗) at every point of T ∼= β(T ) ⊂ B(D∗). It is enough to present
this at the base point because of the homogeneity of T . Each tangent
vector ϕ ∈ B(D∗) defines a bounded linear functional on the Banach
space A1(D∗) of integrable holomorphic functions on D∗:

�ϕ : A
1(D∗) → C; ψ �→

∫
D∗

ψ(z)ϕ(z)ρ−2
D∗ (z) dx dy.

Then the operator norm of �ϕ defines a Finsler metric on T , which
coincides with the Teichmüller metric up to a constant multiple.

§3. Isometric group action and the fixed point property

We consider a group G of isometric automorphisms of the universal
Teichmüller space T and find a condition under which G has a fixed
point in T . We first see that the group of automorphisms of T coincides
with QS and then formulate the above problem for a subgroup G < QS.

3.1. The automorphism group of the universal Teichmüller
space

The group QS of quasisymmetric automorphisms acts on the uni-
versal Teichmüller space T = Möb(S)\QS canonically:

QS×T → T , (g, [f ]) �→ [f ◦ g−1] =: g∗[f ].
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This action is biholomorphic and isometric with respect to dT . The
group QS plays the role of mapping class group for T .

Consider the representation of QS in the group Aut(T ) of biholo-
morphic automorphisms:

ι : QS → Aut(T ).

Note that a biholomorphic automorphism of T is isometric because the
Kobayashi metric coincides with the Teichmüller metric. The represen-
tation ι is known to be a bijective isomorphism. The injectivity is clear
and the surjectivity can be proved by results of Earle and Gardiner [13]
and Markovic [28].

The group QS of quasisymmetric automorphisms also acts on the
Bers embedding β(T ) ⊂ B(D∗) of T as biholomorphic automorphisms.
The isotropy subgroup Stab([id]) = Möb(S) acts on β(T ) as a linear
transformation of B(D∗) because it preserves the tangent space B(D∗).
Actually, it is of the following explicit form: for every ϕ ∈ β(T ) (ϕ =
β([f ]) with [f ] ∈ T ) and for every g ∈ Möb(S) ∼= Möb(D∗), the image
g∗ϕ = β([f ◦ g−1]) is given by

(g∗ϕ)(z) = ϕ(g−1(z))(g−1)′(z)2 (z ∈ D∗).

Then g∗ is a linear isometric automorphism of B(D∗).
If G ⊂ QS has a fixed point [f ] ∈ T , then G ⊂ Stab([f ]) is conjugate

to a subgroup of Stab([id]) = Möb(S). Hence G is conjugate to the linear
isometric action on β(T ).

3.2. Fixed point problem on Teichmüller space

We formulate the following problem for a general metric space (X, d)
and its isometric automorphism group Aut(X, d):

Problem 3.1. If a subgroup G<Aut(X, d) has a bounded orbit in
X, does G have a fixed point in X?

We consider this problem for (T, dT ) and G < QS = Aut(T ). As a
special case, we first review the Nielsen realization problem.

Let Σg be a closed surface of genus g≥ 2. We choose a Fuchsian rep-
resentation Γ<Möb(S) of the fundamental group π1(Σg). We introduce
the following subset (not a subgroup) of QS:

QS(Γ) = {f ∈ QS | fΓf−1 < Möb(S)}.
Then the Teichmüller space of Σg is given as the Möb(S)-representation
space of Γ:

T (Γ) = Möb(S)\QS(Γ).
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The mapping class group of Σg coincides with the quotient by Γ of the
normalizer

NQS(Γ) = {g ∈ QS | g−1Γg = Γ}.
The group NQS(Γ) acts on T (Γ) by g∗[f ] = [f ◦g−1] for g ∈ NQS(Γ) and
[f ] ∈ T (Γ), with Γ � NQS(Γ) acting trivially. Therefore the mapping
class group NQS(Γ)/Γ acts on the Teichmüller space T (Γ).

The fixed point problem in this case asks whether a finite subgroup
G/Γ of NQS(Γ)/Γ, where Γ � G < NQS(Γ), has a fixed point in T (Γ)
or not. The answer is yes by Kerckhoff [25]; there is [f ] ∈ T (Γ) such
that [g]∗[f ] = [f ◦ g−1] = [f ] for every [g] ∈ G/Γ. This is equivalent
to the condition that fGf−1 < Möb(S). Then the canonical extension

Möb(S) → Möb(D) gives the extension H̃ < Möb(D) of H = fGf−1.

Take the conformally natural extension f̃ = eDE(f) ∈ QC(D) and set

G̃ = f̃−1H̃f̃ < QC(D). Then an isomorphism G → G̃ is given by

f−1hf �→ f̃−1hf̃ for h ∈ H ∼= H̃. By the conformal naturality, the

restriction of the isomorphism G → G̃ to the subgroup Γ � G is the
identity under the identification Möb(S) ∼= Möb(D). Indeed, for every
γ ∈ Γ written as γ = f−1hf for some h ∈ H, the conformally natural
extension yields γ = f̃−1hf̃ . Since Γ < Möb(S) is normal in G, so is

Γ < Möb(D) in G̃. Hence the group G̃ descends to a group of self-
homeomorphisms of Σg, which means that the group G/Γ of mapping
classes is realized as a group of self-homeomorphisms of Σg.

3.3. Uniformly quasisymmetric group

The fixed point problem in the general case where G < QS acts on
T with a bounded orbit was solved affirmatively by Markovic [29]. We
say that a subgroup G < QS is uniformly quasisymmetric if M(g) are
uniformly bounded for all g ∈ G. This condition is equivalent to the
condition that the action of G on T has a bounded orbit.

Theorem 3.2. If G < QS is uniformly quasisymmetric, then G is
conjugate to a subgroup of Möb(S) by some f ∈ QS.

The conclusion of the theorem is equivalent to the existence of a fixed
point [f ] inT forG. The proof of [29] uses the fact that a convergence group
is Fuchsian due to Tukia [45], Gabai [19] and Casson and Jungreis [10].
Namely, ifG < QS is uniformly quasisymmetric thenG has a convergence
property, from which it is proved that G is homeomorphic conjugate to a
subgroup of Möb(S). Then complicated arguments using the conformally
natural extension make the homeomorphism to be quasisymmetric.
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The existence of a fixed point of G in T implies the realization of
G in QC(D) as before also in this general case. Conversely, a uniformly

quasiconformal realization of G as a subgroup G̃ < QC(D) ensures the
existence of a fixed point in T , which was shown by Sullivan [40] and

Tukia [44]. We will sketch this argument below. A subgroup G̃ < QC(D)
is called uniformly quasiconformal if K(g̃) are uniformly bounded for all

g̃ ∈ G̃. Note that eDE : QS → QC(D) is not a homomorphism; this does
not yield a realization of G < QS.

Proposition 3.3. A uniformly quasiconformal group G̃ < QC(D) is
quasiconformally conjugate to a subgroup of Möb(D), which is equivalent

to the existence of a fixed point in T for G = q(G̃) < QS.

Indeed, for almost every z ∈ D, consider the unique circumcenter
ν(z) of the bounded set {μg̃(z)}g̃∈G̃ with respect to the hyperbolic met-

ric on D. By the uniform boundedness of K(g̃) for all g̃ ∈ G̃, we see
that ‖ν‖∞ < 1. Then one can show that π(ν) ∈ T is a fixed point of

G = q(G̃).

3.4. The fixed point property of metric spaces

In this article, we say that a metric space (X, d) has the fixed point
property if every subgroup G < Aut(X, d) with a bounded orbit has a
fixed point in X. We will consider a sufficient condition for a complete
metric space to have the fixed point property.

Definition 3.4. A complete metric space (X, d) possesses uniformly
normal structure if there is a constant c ∈ (0, 1) such that every non-
empty subset A ⊂ X that is the intersection of closed metric balls
satisfies

rad(A) ≤ c diam(A).

Here, rad(A) denotes the infimum of radii of closed metric balls with
center in A that contain A.

It is known that L∞(Ω) for a measurable space Ω has uniformly
normal structure for c = 1/2. See Khamsi and Kirk [26, p. 204]. The
following claim can be also found in this book or in [32]. Here, we
introduce a direct proof pointed out by the referee. Actually, this is
essentially due to Khamsi [50].

Proposition 3.5. Uniformly normal structure implies the fixed point
property.

Proof. Assume that G < Aut(X, d) has a bounded orbit G(x).
Let A0 be the intersection of all closed metric balls that contain G(x).
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Clearly A0 is non-empty and invariant under G. Set c̃ = (1 + c)/2 < 1
for the constant c ∈ (0, 1) concerning the uniformly normal structure
of (X, d). Then rad(A0) < c̃ diam(A0). For r0 = c̃ diam(A0), consider
a subset

A1 = {x ∈ A0 | B(x, r0) ⊃ A0} =
⋂

y∈A0

B(y, r0) ∩ A0,

where B(x, r) denotes the closed metric ball of center x and radius r.
This is non-empty by the first equality with rad(A0) < r0 and is given
as the intersection of closed metric balls by the second equality. We also
have diam(A1)≤ r0 because any two points x, y ∈A1 satisfy y ∈A0 and
x ∈B(y, r0). Moreover, G-invariance of A1 follows from that of A0.

Similarly, we define A2 from A1 by using r1 = c̃ diam(A1), and so
forth. Now A0, A1, A2, . . . form a decreasing sequence of G-invariant
closed subsets such that

diam(An) ≤ c̃n diam(A0) → 0 (n → ∞).

By the completeness of X, the intersection is a singleton, which is in-
variant by G. Q.E.D.

It is natural to ask the following question whose affirmative solu-
tion implies the fixed point theorem for the universal Teichmüller space
(Theorem 3.2).

Problem 3.6. Does the universal Teichmüller space (T, dT ) with
the Teichmüller distance have uniformly normal structure?

§4. The little Teichmüller space and the symmetric represen-
tation space

In this section, we consider the little subspace T0 of the universal
Teichmüller space T . This is analogous to the relationship between
�∞ and its subspace �∞0 = c0, where {ξ(n)}n∈N ∈ �∞ belongs to �∞0 if
ξ(n)→ 0 (n→∞). The representation of the little subspace T0 is given
by the following concepts:

• Symmetric self-homeomorphisms of S;
• Asymptotically conformal self-homeomorphisms of D (Beltrami
coefficients on D vanishing at the boundary S);

• Complex projective structures (Schwarzian derivatives) on D∗

vanishing at the boundary S.
We start with defining the spaces of these elements.
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4.1. The spaces for the little Teichmüller space

We have the triangle diagram among Bel(D) = Möb(D)\QC(D),
T =Möb(S)\QS and B(D∗) in Section 2. We consider the corresponding
diagram for the following subspaces.

(1) We say that a measurable function μ ∈ L∞(D) vanishes at the
boundary if ess.sup|z|≥1−t|μ(z)| → 0 as t → 0. The closed subspace of

L∞(D) consisting of these elements is denoted by L∞
0 (D). Then we set

Bel0(D) = Bel(D) ∩ L∞
0 (D),

which is the space of all Beltrami coefficients on D vanishing at the
boundary. Moreover, if a quasiconformal homeomorphism f of D has
complex dilatation μf vanishing at the boundary, then we say that f is
asymptotically conformal.

(2) A quasisymmetric homeomorphism g ∈ QS is called symmet-
ric if ∣∣∣∣g(ei(x+t))− g(eix)

g(eix)− g(ei(x−t))

∣∣∣∣ → 1

as t → 0 uniformly for all x ∈ R. For example, an orientation-preserving
diffeomorphism of S satisfies this condition. The subset of QS consisting
of these elements is denoted by Sym. The little subspace of the universal
Teichmüller space T = Möb(S)\QS is defined by

T0 = Möb(S)\Sym.

It can be shown that Sym is a subgroup of QS containing Möb(S). Actu-
ally Sym is a topological subgroup whereas QS is not a topological group.
In fact, the left translation and the inverse operation are not continuous
with respect to the M -topology defined by the quasisymmetry constant
M on QS. Gardiner and Sullivan [21] introduced Sym as the character-
istic topological subgroup of QS consisting of all elements g ∈ QS such
that the adjoint map QS → QS given by conjugation of g is continuous
at the identity.

(3) We can also define vanishing at the boundary for functions on
D∗. We define B0(D∗) to be the set of all elements ϕ ∈ B(D∗) such that
the function ρ−2

D∗ (z)|ϕ(z)| on D∗ vanishes at S. Then B0(D∗) is a closed
(Banach) subspace of B(D∗).

Noticing the earlier works by Becker and Pommerenke [5] and by
Fehlmann [18], Gardiner and Sullivan [21] proved that the same triangle
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diagram holds true by restricting the maps π, Φ and β to the above
subspaces.

Bel0(D)

π
�����

���
���

���

Φ ����
���

���
���

T0 = Möb(S)\Sym
β

�� β(T ) ∩B0(D∗)

This implies that T0 has a complex structure modeled on the Banach
space B0(D∗). Moreover, g∗ ∈ Aut(T ) preserves T0 for every g ∈ Sym
and hence it is a biholomorphic automorphism of T0.

4.2. Foliation of the universal Teichmüller space

Obviously, the action of QS on T is compatible with the coset de-
composition T/T0 = Sym\QS. Moreover, we see that the image of each
coset in T/T0 under the Bers embedding β is precisely the intersection
of β(T ) with the corresponding coset in B(D∗)/B0(D∗). A proof using
the conformally natural extension can be found in Earle, Markovic and
Saric [17].

Proposition 4.1. For every g ∈ QS and for any ν ∈ Bel(D) with
π(ν) = [g−1], the Bers embedding of the image of T0 under g∗ ∈Aut(T ) is

β(g∗(T0)) = β(T ) ∩ {β([g−1]) +B0(D∗)}= β(T ) ∩ {Φ(ν) +B0(D∗)}.
We call such a foliation of β(T ) ⊂ B(D∗) induced by B0(D∗) the

affine foliation. Proposition 4.1 implies that this corresponds to the
coset decomposition T/T0 under β. Hence the action of QS on β(T )
preserves the affine foliation by B0(D∗).

4.3. The asymptotic Teichmüller space

Take the quotient of the Bers embedding β : T → β(T ) ⊂ B(D∗)
by T0 and B0(D∗) respectively. Then Proposition 4.1 implies that the
following map is well-defined and injective:

β̂ : T/T0 → β(T )/B0(D∗) ⊂ B(D∗)/B0(D∗).

Under the quotient topology, it can be shown that β̂ is a homeomorphism
onto the image.

Gardiner and Sullivan [21] defined AT = T/T0 as the space of sym-
metric structures on S. Nowadays it is called the asymptotic Teichmüller
space. The asymptotic Teichmüller space AT has the complex struc-
ture modeled on the quotient Banach space B(D∗)/B0(D∗). Also it is
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equipped with the quotient Teichmüller metric. These results were gen-
eralized to asymptotic Teichmüller spaces of Riemann surfaces by Earle,
Gardiner and Lakic [15], [16].

Since QS acts on T preserving the affine foliation of its Bers em-
bedding by B0(D∗), it also acts on AT as biholomorphic and isometric
automorphisms; this gives a homomorphism

ιAT : QS → Aut(AT ).

Moreover, it was proved that ιAT is injective by Earle, Gardiner and
Lakic [14].

Problem 4.2. We state problems concerning the asymptotic
Teichmüller space AT . Note that the corresponding statements are all
valid for the universal Teichmüller space T .

(1) The Kobayashi metric on AT coincides with the quotient
Teichmüller metric?

(2) ιAT : QS → Aut(AT ) is surjective?
(3) If G ⊂ QS has a bounded orbit then G has a fixed point in

AT?

4.4. Failure of the fixed point property

We are interested in the little subspace T0 regarding its failure of
the fixed point property. First we show this fact for a prototype in a
discrete model and then apply it to T0.

We consider the Banach space �∞(Z) of all bounded bilateral se-
quences and the shift operator

σ : �∞(Z) → �∞(Z); {ξ(n)}n∈Z �→ {ξ(n+ 1)}n∈Z.

Then σ is a linear isometric automorphism of �∞(Z) and its fixed point
set Fix(σ) consists of all constant sequences {ξ(n) ≡ c}c∈R. Set the
closed subspace consisting of the elements that vanish at the infinity;

�∞0 (Z) = c0(Z) = {ξ ∈ �∞(Z) | ξ(n) → 0 (n → ±∞)}.
Take ξ0 = (. . . , 0, 0, 1, 1, . . .) and the affine subspace ξ0 + �∞0 (Z) iso-
morphic to �∞0 (Z). This is invariant under σ and σ acts on it with a
bounded orbit. However, there is no fixed point on it.

This construction can be generalized to any countable discrete group
Γ. Namely, we consider the Banach space �∞(Γ) of all bounded functions
ξ : Γ → R and define the action of Γ on �∞(Γ) by

(γ∗ξ)(g) = ξ(γ−1g)
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for every γ ∈ Γ and for every ξ ∈ �∞(Γ). This gives the left regular
representation of Γ. The closed subspace of the elements vanishing at
the infinity is

�∞0 (Γ) = {ξ ∈ �∞(Γ) | ξ(g) → 0 (g → ∞)},
where g → ∞ means that the sequence exits from every finite subset
of Γ. We can find some ξ0 ∈ �∞(Γ) such that the affine subspace ξ0 +
�∞0 (Γ) ∼= �∞0 (Γ) is invariant under Γ, with a bounded orbit, but without
a fixed point.

Now using the discrete model as above, we exhibit an example of a
subgroup of QS that acts isometrically on T0 with a bounded orbit but
without a fixed point. Take a Fuchsian group Γ < Möb(S) = Möb(D)
such that T (Γ) �= {[id]} (non-rigid), where T (Γ) = Möb(S)\QS(Γ) is the
Teichmüller space for Γ.

Choose a small neighborhood W of some z0 ∈ D such that {Wγ}γ∈Γ

are mutually disjoint for Wγ = γ(W ) (γ ∈ Γ). Then there is some
μ0 ∈ Bel(D) with support on

⊔
γ∈Γ Wγ such that π(μ0) ∈ T (Γ)− {[id]}.

For ξ0 ∈ �∞(Γ) as above and assuming ξ0(γ) ∈ [0, 1], we consider a
Beltrami coefficient

μ(z) =
∑
γ∈Γ

ξ0(γ)1Wγ (z)μ0(z),

where 1W is the characteristic function ofW . Then we have the following
result, which was given in [30].

Proposition 4.3. Under the circumstances as above, suppose that
ξ0 ∈ �∞(Γ) satisfies

• (ξ0 + �∞0 (Γ) is invariant) γ∗ξ0 − ξ0 ∈ �∞0 (Γ) for every γ ∈ Γ;
• (stronger than fixed point free) ((γi)∗ξ0)(g) → 1 (i → ∞) for

some sequence {γi} ⊂ Γ and ((γj)∗ξ0)(g) → 0 (j → ∞) for
some sequence {γj} ⊂ Γ, pointwise for all g ∈ Γ.

Then there exists some μ ∈ Bel(D) such that the subspace

β(T ) ∩ {Φ(μ) +B0(D∗)}
isomorphic to T0 is invariant under Γ, with a bounded orbit, but without
a fixed point.

We represent the point π(μ) for μ as in this proposition by [f ] for
f ∈ QS. Then fΓf−1 < Sym and it acts isometrically on T0 with a
bounded orbit but without a fixed point. This implies that T0 does not
hold the fixed point property.
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Remark 4.4. For each γ ∈ Γ, the decay order of γ∗ξ0− ξ0 ∈ �∞0 (Γ)
at infinity affects the regularity of the conjugate fγf−1 ∈ Sym for f ∈
QS with [f ] = π(μ). For example, when Γ is cocompact, we can make
each element of fΓf−1 absolutely continuous with Lp (0 < p < ∞)
derivative.

4.5. Symmetric representation space

For a Fuchsian group Γ < Möb(S), we define the following subspace
of QS:

QSSym(Γ) = {f ∈ QS | fΓf−1 < Sym}
⊃ {f ∈ QS | fΓf−1 < Möb(S)} = QS(Γ).

Then Möb(S)\QSSym(Γ) contains T (Γ) = Möb(S)\QS(Γ) in T .
Let a : T → AT = T/T0 denote the canonical projection. The sym-

metric representation space of Γ < Möb(S) is defined by

AT (Γ) = Sym\QSSym(Γ),

which contains aT (Γ) = Sym\QS(Γ). Under the quotient Bers em-

bedding β̂ : AT → B(D∗)/B0(D∗), the symmetric representation space
AT (Γ) is mapped onto a bounded domain in the Banach subspace of
B(D∗)/B0(D∗) that is the fixed point locus of Γ. In this manner, AT (Γ)
is provided with the complex structure.

In [51], we see the following results concerning these spaces.

Theorem 4.5. For any non-rigid infinite Fuchsian group Γ, the
symmetric representation spaceAT (Γ) is an infinite-dimensional complex
Banach manifold. The Teichmüller space T (Γ) is biholomorphically
embedded into AT (Γ) by the projection a, and aT (Γ) is strictly contained
in AT (Γ).

Proof. We only show the injectivity of a|T (Γ). The rest of the proof
appears in [51]. We have only to consider the projection a in the fiber
T0 over the origin by replacing the base point. We utilize the Bers
embedding β(T0) ⊂ B0(D∗). Suppose that ϕ ∈ β(T0) is fixed by Γ, that
is, ϕ ∈ β(T (Γ)). Then, for every γ ∈ Γ, we have

ρ−2
D∗ (z)|ϕ(z)| = ρ−2

D∗ (z)|(γ∗ϕ)(z)| = ρ−2
D∗ (γ

−1(z))|ϕ(γ−1(z))|
for z ∈ D∗. The last term tends to 0 if we choose a sequence in Γ such
that |γ−1(z)| → 1. This is because ϕ ∈ B0(D∗) (that is, ρ−2

D∗ (z)|ϕ(z)|
vanishes at the boundary). Hence ϕ = 0. Q.E.D.
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Expressing the last statement (aT (Γ) � AT (Γ)) of the above the-
orem, we say that the symmetric representation of Γ is not rigid if Γ is
not rigid. This raises the following question naturally.

Problem 4.6. Is the symmetric representation of a rigid Fuchsian
group rigid?

§5. Teichmüller spaces of circle diffeomorphisms

We have investigated the little Teichmüller space T0, which is the
space of symmetric homeomorphisms of S. In this section, we consider
a smaller subspace than T0, which is the space of self-homeomorphisms
of S with higher regularity, i.e. diffeomorphisms with Hölder continuous
derivatives. The contents of this section is as follows:

(1) Characterization of a circle diffeomorphism with Hölder con-
tinuous derivative of exponent α in terms of quasiconformal
Teichmüller theory;

(2) Teichmüller spaces Tα
0 defined by the group of such circle diffeo-

morphisms Diff1+α(S) and their structure;
(3) The affine foliation of T associated with Tα

0 ;
(4) Diff1+α(S)-representation space and its rigidity.

5.1. The spaces related to Diff1+α(S)
We deal with an orientation-preserving diffeomorphism g : S → S

having Hölder continuous derivative of exponent α ∈ (0, 1), that is, the
lift g̃ : R → R of g under the universal cover R → S (x �→ eix) satisfies

|g̃′(x)− g̃′(y)| ≤ c|x− y|α

for some constant c > 0 uniformly for any x, y ∈ R. Let Diff1+α(S) de-
note the group of all these diffeomorphisms. Then we have the following
inclusion relation:

Diff1+α(S) < Sym < QS .

We can provide a stronger topology for Diff1+α(S) than the M -
topology on QS, which is the right uniform C1+α-topology. We see that
Diff1+α(S) is a topological group with respect to this topology ([33]).

The decay order of Beltrami coefficients defines a subspace of Bel(D).
We have seen that a symmetric homeomorphism in Sym corresponds
to a Beltrami coefficient μ with |μ(z)| = o(1) a.e. (|z| → 1). For a
diffeomorphism in Diff1+α(S), we consider a Beltrami coefficient μ with
|μ(z)| = O((1− |z|)α) a.e. (|z| → 1). More precisely, setting a norm

‖μ‖∞,α = ess.supz∈D ραD(z)|μ(z)|
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for μ ∈ Bel(D) where ρD(z) = 2/(1− |z|2) is the hyperbolic density, we
deal with

Belα0 (D) = {μ ∈ Bel(D) | ‖μ‖∞,α < ∞}.
Note that this is not closed in Bel(D) but the inclusion map Belα0 (D) →
Bel(D) is continuous.

The decay order of Schwarzian derivatives defines a subspace of
B(D∗). We have seen that a symmetric homeomorphism in Sym corres-
ponds to a Schwarzian derivative ϕ = Sfμ|D∗ with ρ−2

D∗ (z)|ϕ(z)| = o(1)

(|z| → 1). For a diffeomorphism in Diff1+α(S), we consider a Schwarzian
derivative ϕ with ρ−2

D∗ (z)|ϕ(z)| = O((|z|−1)α) (|z| → 1). More precisely,
setting a norm

‖ϕ‖∞,α = sup
z∈D∗

ρ−2+α
D∗ (z)|ϕ(z)|

for ϕ ∈ B(D∗), we deal with a Banach space

Bα
0 (D

∗) = {ϕ ∈ B(D∗) | ‖ϕ‖∞,α < ∞}.
Note that this is not closed in B(D∗) but the inclusion map Bα

0 (D
∗) →

B(D∗) is continuous.

5.2. Characterization of Diff1+α(S)
We summarize the relationship between the spaces defined above,

which is presented and proved in [31] and [33].

Theorem 5.1. The following conditions are equivalent for g ∈ QS:

(1) g ∈ Diff1+α(S);
(2′) sDE([g]) ∈ Belα0 (D) (the complex dilatation of eDE(g) ∈ QC(D)

belongs to Belα0 (D));
(2) there is some μ ∈ Belα0 (D) such that π(μ) = [g];
(3) β([g]) ∈ Bα

0 (D
∗).

Here we give some commentaries on previously known results. Im-
plications which are not previously known are only concerning (2′).

(1) ⇒ (2) is essentially due to Carleson [9]. We easily see that if
g ∈ Diff1+α(S) then the lift g̃ : R → R satisfies

g̃(x+ t)− g̃(x)

g̃(x)− g̃(x− t)
= 1 +O(tα) (t → 0).

Set

α(x, y) =

∫ 1

0

g̃(x+ ty) dt; β(x, y) =

∫ 1

0

g̃(x− ty) dt

and define the Beurling–Ahlfors extension of g̃ by

F (z) =
1

2
{α(x, y) + β(x, y)}+ i{α(x, y)− β(x, y)}
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for z = x+ iy ∈ H. This is a quasiconformal self-homeomorphism of H
and the decay order of its complex dilatation μF (z) as y → 0 was esti-
mated in [9]. By projecting down this quasiconformal homeomorphism
to D − {0} by the holomorphic universal cover H → D − {0} and ex-
tending to 0, we have a quasiconformal extension of g whose complex
dilatation μ satisfies |μ(z)| = O((1− |z|)α) (|z| → 1).

(1) ⇒ (3) is due to Tam and Wan [42]. They used the harmonic
quasiconformal extension D → D of g. Here “harmonic” means a har-
monic map with respect to the hyperbolic metric on D. (3) ⇒ (2) is
the “boundary version” of the Ahlfors–Weill local section due to Becker
and Pommerenke [5]. The proof used a Löwner chains in which the
associated conformal homeomorphism of D∗ is contained. The converse
implication (2) ⇒ (1) had been a problem, which was settled by Dyn’kin
[49] and Anderson, Cantón and Fernández [48].

5.3. The Teichmüller space of Diff1+α(S)

Based on the characterization of Diff1+α(S), we define its Teichmüller
space by

Tα
0 = Möb(S)\Diff1+α(S).

Theorem 5.1 implies that the triangle diagram is also valid for Belα0 (D),
Tα
0 and Bα

0 (D
∗) with the involved maps restricted to these spaces.

Belα0 (D)

π������
���

���
���

Φ ����
���

���
���

Tα
0 = Möb(S)\Diff1+α(S)

β
�� β(T ) ∩Bα

0 (D
∗)

Moreover, if we equip these spaces with the canonical topology, we
see that the involved maps are all continuous. Holomorphy also follows
from the continuity in this situation. The precise statements are as
follows, which are obtained in [33].

Theorem 5.2. Providing the norm topology ‖ · ‖∞,α for Belα0 (D)
and β(T ) ∩ Bα

0 (D
∗), and the induced topology for Tα

0 from Diff1+α(S),
one has the following :

(1) the Teichmüller projection π : Belα0 (D) → Tα
0 is continuous and

open;
(2) the Bers embedding β : Tα

0 → β(T ) ∩ Bα
0 (D

∗) is a homeo-
morphism;

(3) the Bers projection Φ: Belα0 (D) → β(T ) ∩ Bα
0 (D

∗) is holo-
morphic with holomorphic local section at every point.



Circle diffeomorphism, symmetric conjugation and Teichmüller space 167

This shows that the Teichmüller space Tα
0 has a complex structure

modeled on the Banach space Bα
0 (D

∗). In addition, g∗ ∈ Aut(T ) is
a biholomorphic automorphism of Tα

0 for every g ∈ Diff1+α(S). Note
that the continuity of the conformally natural section sDE can be also
proved ([52]).

5.4. Affine foliation of T and T0 by B>α
0 (D∗)

We have seen in Section 4 that the Bers embedding β : T →
β(T ) ⊂ B(D∗) is compatible with the coset decomposition T/T0 and
B(D∗)/B0(D∗):

β(g∗(T0)) = β(T ) ∩ {β([g−1]) +B0(D∗)} (∀g ∈ QS).

We called {β(T )∩(ψ+B0(D∗))}ψ the affine foliation of β(T ) by B0(D∗).
We want to obtain a similar fact for Bα

0 (D
∗) but certain modification

is necessary. Fix α ∈ [0, 1). Set the following spaces by taking the union
of increasing subspaces:

Diff>1+α(S) =
⋃
ε>0

Diff1+α+ε(S);

T>α
0 =

⋃
ε>0

Tα+ε
0 ; B>α

0 (D∗) =
⋃
ε>0

Bα+ε
0 (D∗).

Then the corresponding results are as follows ([34]). The first one is
concerning the affine foliation of β(T0).

Proposition 5.3. The Bers embedding β : T0 → β(T0) ⊂ B0(D∗) is
compatible with the coset decomposition T0/T

>α
0 and B0(D∗)/B>α

0 (D∗):

β(g∗(T>α
0 )) = β(T0) ∩ {β([g−1]) +B>α

0 (D∗)}
for every α ∈ [0, 1) and for every g ∈ Sym.

Proposition 5.4. The Bers embedding β : T → β(T ) ⊂ B(D∗) is
compatible with the coset decomposition T/T>0

0 and B(D∗)/B>0
0 (D∗):

β(g∗(T>0
0 )) ⊂ β(T ) ∩ {β([g−1]) +B>0

0 (D∗)}
for every g ∈ QS.

Remark 5.5. In the previous case (Proposition 4.1), the inclusion
relation in Proposition 5.4 was equality. Also, β(T ) ∩ {ψ + B0(D∗)} is
connected for every ψ ∈ B(D∗). However, in the present case, we have

just proved these results. Accordingly, as β̂ : T/T0 → B(D∗)/B0(D∗) was
injective, we also know that this is true for the quotient Bers embedding

β̂>0
0 : T/T>0

0 → B(D∗)/B>0
0 (D∗)



168 K. Matsuzaki

in the present case.

5.5. Diff1+α(S)-representation space

For a subgroup Γ < Möb(S), we define the following subspaces as
before:

QSDiff1+α(Γ) = {f ∈ QS | fΓf−1 < Diff1+α(S)}
⊂ {f ∈ QS | fΓf−1 < Sym} = QSSym(Γ).

Then by taking the quotient of Sym, we have

Sym\QSDiff1+α(Γ) ⊂ Sym\QSSym(Γ) = AT (Γ)

in the asymptotic Teichmüller space AT .
However, the Diff1+α(S)-representation space of Γ should be de-

fined as
DTα(Γ) = Diff1+α(S)\QSDiff1+α(Γ).

The next theorem says that, concerning the equivalence class of id, they
are identical. It implies a rigidity of Diff1+α(S)-representation obtained
by the conjugation of Sym. A complete proof appears in [34].

Theorem 5.6. Let Γ < Möb(S) be an infinite non-abelian group.
Then

Sym∩QSDiff1+α(Γ) = Diff1+α(S) ∩QSDiff1+α(Γ).

In other words, if f ∈ Sym satisfies the condition fΓf−1 < Diff1+α(S),
then f ∈ Diff1+α(S).

Proof. We only sketch an outline of the proof here. Choose a
hyperbolic element h ∈ Γ, which exists by the assumption on Γ. Set
ϕ = β([f ]) ∈ B0(D∗) for f ∈ Sym. By Propositions 5.3 or 5.4, the

condition fΓf−1 < Diff1+α(S) implies that h∗ϕ−ϕ ∈ Bα′
0 (D∗) for some

α′ > 0. We denote this element by ψ and apply the action of hn to ψ:

ψ = h∗ϕ− ϕ, h∗ψ = h2
∗ϕ− h∗ϕ, . . . , hn

∗ψ = hn+1
∗ ϕ− hn

∗ϕ.

By summing up all these equations, we have

n∑
i=0

hi
∗ψ = hn+1

∗ ϕ− ϕ.

Since ϕ ∈ B0(D∗), a similar equation as in the proof of Theorem 4.5 can
be used to show that limn→∞(hn+1

∗ ϕ)(z) = 0 pointwise. These are also
true for negative power n. Hence

ϕ = −
∞∑
i=0

hi
∗ψ =

∞∑
i=1

h−i
∗ ψ,
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and ϕ is represented by the infinite sum in terms of ψ ∈ Bα′
0 (D∗). Using

the assumption that h is hyperbolic, we can prove that ϕ ∈ Bα′
0 (D∗).

Having this conclusion, we repeat again the same argument from the
beginning. Now ϕ has been promoted from B0(D∗) to Bα′

0 (D∗). Once
we have a definite decay order for ϕ, we can show that the condition
fΓf−1 < Diff1+α(S) exactly implies that

ψ = h∗ϕ− ϕ ∈ Bα
0 (D

∗).

Then the same argument concludes that ϕ ∈ Bα
0 (D

∗). This implies that
f ∈ Diff1+α(S) by Theorem 5.1. Q.E.D.

5.6. A problem on rigidity

A generalization of Theorem 5.6 gives us a question on certain rigid-
ity of the diffeomorphic representation of a Fuchsian group. We first set
up our representation spaces and then formulate the rigidity. For sim-
plicity, we deal with the case of Diff>1(S). To embed the representation
space of Γ into AT (Γ), we consider

DT>0(Γ) = Diff>1(S)\QSDiff>1(Γ).

By Proposition 5.4 and Remark 5.5, we have the quotient Bers em-
bedding

β̂>0
0 : T/T>0

0 → B(D∗)/B>0
0 (D∗)

though the injectivity is going to be proved. If β̂>0
0 is injective, we

can embed DT>0(Γ) into AT (Γ) in a similar argument to the proof of
Theorem 5.6. Here, we just identify DT>0(Γ) with its image under the
projection. Then

aT (Γ) ⊂ DT>0(Γ) ⊂ AT (Γ)

and the inclusion of the first term in the third term is strict (The-
orem 4.5). We regard the Diff>1(S)-representation of a Fuchsian group
Γ rigid if aT (Γ) = DT>0(Γ).

Problem 5.7. Determine whether aT (Γ) = DT>0(Γ) or not for an
infinite non-abelian Fuchsian group Γ.

Assume that Γ is a cocompact Fuchsian group. The Ghys rigid-
ity theorem [22] implies that the diffeomorphic representation of Γ with
higher regularity is rigid. So the class Diff1+α(S) is suitable for asking
the problem on rigidity. On the other hand, the argument for Propos-
ition 4.3 shows that there is a non-trivial conjugation of Γ by f ∈ QS
such that each element of fΓf−1 is symmetric and absolutely continuous
with Lp (0 < p < ∞) derivative, which was mentioned in Remark 4.4.
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A theorem due to Ghys and Tsuboi [23] combined with Theorem 5.6
implies the following:

Corollary 5.8. If G < Diffr(S) (r ≥ 2) is conjugate to an infinite
non-abelian subgroup of Möb(S) having a dense orbit in S by a symmetric
homeomorphism of S, then it is actually conjugate in Diffr(S).

By Theorem 3.2, the quasisymmetric conjugate to a Möbius group
is equivalent to being a uniformly quasisymmetric group. Hence the
assumption in the above corollary implies that G is uniformly quasisym-
metric and actually our arguments on rigidity are only applicable to
subgroups of QS that are uniformly quasisymmetric.

§6. Integrable Teichmüller spaces and the Weil–Petersson
metric

In this section, we introduce the integrable Teichmüller space defined
by integrable Beltrami coefficients with respect to the hyperbolic metric.
This Teichmüller space has a complex structure modeled on the Banach
space Ap(D∗) consisting of hyperbolically integrable elements of B(D∗).
Also, another affine foliation on the universal Teichmüller space T ∼=
β(T ) is induced by Ap(D∗). This gives a (leaf-wise) Banach manifold
structure on T and the generalized Weil–Petersson metric associated
with this Banach structure. As an application, we consider a conjugation
problem for a group of circle diffeomorphisms with Hölder continuous
derivatives.

6.1. The integrable subspaces

We define p-integrable norms for Bel(D) and B(D∗) respectively and
subspaces consisting of p-integrable elements for p ≥ 1:

Aelp(D) =
{
μ ∈ Bel(D)

∣∣∣∣ ‖μ‖pp =

∫
D

|μ(z)|pρ2D(z) dx dy < ∞
}
;

Ap(D∗) =
{
ϕ ∈ B(D∗)

∣∣∣∣ ‖ϕ‖pp =

∫
D∗
|ϕ(z)|pρ2−2p

D∗ (z) dx dy < ∞
}
.

Here Ap(D∗) is a Banach space with norm ‖ · ‖p and the inclusion map
Ap(D∗) → B(D∗) is continuous but it is not closed in B(D∗).

We mention the inclusion relations of these spaces with the previous
ones. There are no inclusion relations in the level of Beltrami coefficients,
that is, between Aelp(D) and Bel0(D) ⊃ Belα0 (D). There are inclusion
relations in the level of Schwarzian derivatives as follows:

(1) Ap(D∗) ⊂ Ap′
(D∗) ⊂ B0(D∗) for 1 ≤ p < p′ < ∞;

(2) Bα
0 (D

∗) ⊂ Ap(D∗) for αp > 1.
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6.2. Integrable symmetric homeomorphisms

Using p-integrable Beltrami coefficients, we will define conversely p-
integrable symmetric homeomorphisms as follows: g ∈ QS is p-integrable
symmetric if there exists μ ∈ Aelp(D) such that π(μ) = [g]. The set of
all p-integrable symmetric homeomorphisms is denoted by Symp. We
will see later that this is contained in Sym.

Assume that p ≥ 2. It was essentially proved by Cui [11] (see also
Tang [43]) that g ∈ Symp if and only if the complex dilatation of the con-
formally natural extension eDE(g) belongs to Aelp(D). Moreover Symp

is a subgroup of QS.

Remark 6.1. In the above definition of Symp, we rely on the quasi-
conformal extension of g ∈ QS. However, there are several studies about
conditions on the mapping of S itself which is related to Symp. Among
them, Shen [39] recently proves the following characterization of Sym2:
a quasisymmetric homeomorphism g belongs to Sym2 if and only if g is
absolutely continuous and log g′ is in the Sobolev class H1/2. Here, an
integrable function h on S belongs to H1/2 if and only if∫

S×S

|h(x)− h(y)|2
sin2((x− y)/2)

dx dy < ∞.

6.3. The p-integrable Teichmüller space

We define the p-integrable Teichmüller space by

T p = Möb(S)\Symp

for p ≥ 2. Cui [11] proved in the case p = 2 and later extended by Guo
[24] that the triangle diagram also holds true for Aelp(D), Ap(D∗) and
T p with the involved maps restricted to these spaces.

Aelp(D)

π
�����

���
���

���

Φ ����
���

���
���

T p = Möb(S)\Symp

β
�� β(T ) ∩Ap(D∗)

Since there are inclusions for the spaces of Schwarzian derivatives
and since the Bers embedding β is injective, this diagram also implies
the following:

(1) Symp < Symp′
< Sym and T p ⊂ T p′ ⊂ T0 for 2≤ p < p′ <∞;

(2) Diff1+α(S) < Symp and Tα
0 ⊂ T p for αp > 1.
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We provide Aelp(D) with the stronger topology induced by both
norms ‖ · ‖p and ‖ · ‖∞. The topology of T p is the quotient topology
by the Teichmüller projection π. Then the continuity of the mappings
in the diagram also follows, which was first given by Cui [11] for p = 2
and generalized later by Tang [43]. See Takhtajan and Teo [41] and
Yanagishita [47] for additional proofs.

Theorem 6.2. The Bers embedding β : T p → β(T ) ∩ Ap(D∗) is a
homeomorphism and the Bers projection Φ: Aelp(D) → β(T ) ∩ Ap(D∗)
is holomorphic with holomorphic local section at every point. Moreover,
the conformally natural section sDE : T

p → Aelp(D) is continuous.

In particular, we see that T p has a complex structure modeled on
the Banach space Ap(D∗), and g∗ ∈ Aut(T ) is a biholomorphic auto-
morphism of T p for every g ∈ Symp. The continuity of the section sDE

implies that T p is contractible.

6.4. Affine foliation of T by Ap(D∗)
As before, we will show that the Bers embedding

β : T → β(T ) ⊂ B(D∗)

is compatible with the coset decomposition T/T p = Symp\QS and
B(D∗)/Ap(D∗). Then this gives the affine foliation of T ∼= β(T ) by
Ap(D∗). The compatibility in the case of p = 2 was proved by Takhtajan
and Teo [41]. The general case is remarked in [34].

Theorem 6.3. The Bers embedding β is compatible with the coset
decompositions T/T p and B(D∗)/Ap(D∗). More precisely,

β(g∗(T p)) ⊂ β(T ) ∩ {β([g−1]) +Ap(D∗)}
for every g ∈ QS.

Remark 6.4. In the same situation as T>0
0 , the above inclusion is

recently proved to be equality.

6.5. The p-Weil–Petersson metric

The integrable Teichmüller space T 2 is equipped with the Weil–
Petersson metric. This was first introduced by Cui [11]. Then the uni-
versal Teichmüller space T has the leaf-wise Weil–Petersson metric under
the affine foliation, which was investigated by Takhtajan and Teo [41].
The generalization for p > 2 can be done similarly ([34]).
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Definition 6.5. The p-Weil–Petersson metric on T p ∼= β(T ) ∩
Ap(D∗) at the origin is defined by 2‖ϕ‖p∗ for a tangent vector ϕ ∈
Ap(D∗), where ‖ϕ‖p∗ is the operator norm of a bounded linear functional

�ϕ : A
q(D∗) → C; ψ �→

∫
D∗

ψ(z)ϕ(z)ρ−2
D∗ (z) dx dy

for 1/p+1/q = 1. At an arbitrary point of T p, it is defined after sending
the point to the origin by a biholomorphic automorphism g∗ : T p → T p

induced by g ∈ Symp.

The p-Weil–Petersson metric is a Finsler metric on T p invariant
under the action of Symp. The p-Weil–Petersson distance induced by
this metric is denoted by dpWP.

6.6. Properties of the Weil–Petersson metric

A remarkable property of the Weil–Petersson metric on T p is that
it is also complete as the Teichmüller metric is.

Proposition 6.6. (T p, dpWP) is a complete metric space.

Remark 6.7. For the Teichmüller space T (Γ) of a cocompact Fuchs-
ian group Γ, the Weil–Petersson metric was originally defined. This is
not a complete metric as proved by Wolpert [46]; the Weil–Petersson
length of a path in T (Γ) along pinching deformation of a non-trivial
simple closed curve is finite.

The completeness follows from the next lemma (Cui [11] for p = 2
and [34] for the general case).

Lemma 6.8. The distance dpWP is comparable to the norm ‖·‖p on a
small neighborhood U of the origin in β(T )∩Ap(D∗), which is contained
in the domain of the Ahlfors–Weill local section. Namely, there is a
constant c ≥ 1 such that

1

c
‖ϕ1 − ϕ2‖p ≤ dpWP(β

−1(ϕ1), β
−1(ϕ2)) ≤ c‖ϕ1 − ϕ2‖p

for any ϕ1, ϕ2 ∈ U .

On the other hand, the Weil–Petersson distance can be estimated
by the norm of Beltrami coefficients ([34]).

Lemma 6.9. For every μ ∈ Aelp(D), one has

dpWP(π(0), π(μ)) ≤ C‖μ‖p,
where C > 0 is a constant depending only on ‖μ‖∞.
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6.7. Comparison with the Teichmüller metric

The universal Teichmüller space T is equipped with the Teichmüller
metric. This induces a path metric on T p ⊂ T by giving the length of
each tangent vector on T p. We denote this distance on T p also by dT . It
has been proved by Yanagishita [47] that the Kobayashi distance on the
complex manifold T p coincides with the restriction of the Teichmüller
distance on T to T p. Then we see that they are equal to dT .

In a usual way, the Weil–Petersson distance can be compared with
the Teichmüller distance as follows.

Proposition 6.10. The Teichmüller distance (metric) and the
Weil–Petersson distance (metric) on T p satisfy

dT ≤ cq1d
p
WP.

Here p and q are related by 1/p+ 1/q = 1 and cq1 is the operator norm
of the inclusion map A1(D∗) → Aq(D∗):

cq1 = sup
ψ∈A1(D∗)−{0}

‖ψ‖q
‖ψ‖1 < ∞.

Proof. Take ϕ ∈ Ap(D∗) ⊂ B(D∗) as a tangent vector at the ori-
gin of T p. The p-Weil–Petersson metric is given by the double of the
operator norm

‖ϕ‖p∗ = sup
ψ∈Aq(D∗)−{0}

∫
D∗ ψ(z)ϕ(z)ρ

−2
D∗ (z) dx dy

‖ψ‖q .

On the other hand, the Teichmüller metric is given by the double of the
operator norm

‖ϕ‖∞∗ = sup
ψ∈A1(D∗)−{0}

∫
D∗ ψ(z)ϕ(z)ρ

−2
D∗ (z) dx dy

‖ψ‖1 .

Hence we have ‖ϕ‖∗ ≤ cq1‖ϕ‖p. Integration over a path yields the
required inequality for the distances. Q.E.D.

6.8. Curvature of the Weil–Petersson metric

In the case of p = 2, the Weil–Petersson metric on T 2 is the Hermit-
ian metric induced by the inner product of the Hilbert space A2(D∗).
As in the case of finite dimensional Teichmüller spaces due to Ahlfors
[1], the Weil–Petersson metric satisfies the following, which was proved
by Takhtajan and Teo [41].
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Theorem 6.11. The Weil–Petersson metric on T 2 is Kähler and
its Ricci, sectional, and holomorphic sectional curvatures are all negative.

Combined with Proposition 6.6, this implies that T 2 has a negatively
curved property authorized for a general metric space.

Corollary 6.12. (T 2, d2WP) is a complete CAT(0) space.

It is well known that a complete CAT(0) space has the fixed point
property. See Bridson and Haefliger [8, p. 179].

6.9. Conjugation of a group of circle diffeomorphisms

As an application of the Weil–Petersson metric on T 2, we consider
the conjugation problem for a subgroup G of Diff1+α(S). It asks a
condition on G under which G is conjugate to a subgroup of Möb(S) by
an element of Diff1+α(S). In other words, G is the image of a trivial
Diff1+α(S)-representation of some Möbius group.

Our strategy is as follows. Finding a conjugating element of G in
Diff1+α(S) is equivalent to finding a fixed point of G in Tα

0 . When
Tα
0 is contained in T 2, we can utilize the fixed point property of the

complete CAT(0) space (T 2, d2WP). If we formulate a condition for G to
act isometrically on (T 2, d2WP) with a bounded orbit, then it guarantees
that G has a fixed point in T 2. Then our rigidity theorem (Theorem 5.6)
can be applied to see that the fixed point is actually in Tα

0 . The following
result is proved in [34].

Theorem 6.13. Assume α> 1/2. For an infinite non-abelian group
G<Diff1+α(S), there exists f ∈Diff1+α(S) such that f−1Gf <Möb(S)
if and only if ‖sDE([g])‖2 are uniformly bounded and ‖sDE([g])‖∞ are
uniformly less than 1 for all g ∈G.

Remark 6.14. The second condition (on ‖sDE([g])‖∞) is equivalent
for G to be uniformly quasisymmetric. Solely by this condition, The-
orem 3.2 asserts that there is some f ∈ QS such that f−1Gf < Möb(S).

Proof. “Only if” part is easy. Note that Diff1+α(S) < Sym2 for
α > 1/2. If there is f ∈ Diff1+α(S) such that γ = f−1gf belongs
to Möb(S) for every g ∈ G, then g = fγf−1 ∈ Sym2. From this,
‖sDE([g])‖2 and ‖sDE([g])‖∞ are estimated uniformly.

“If” part is essential. Since G < Diff1+α(S) < Sym2, G acts on T 2

isometrically with respect to d2WP. By Lemma 6.9, we see that G has
a bounded orbit in (T 2, d2WP) from the uniform boundedness of both
‖sDE([g])‖2 and ‖sDE([g])‖∞. Corollary 6.12 says that (T 2, d2WP) is a
complete CAT(0) space, which ensures the fixed point property. Hence
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G has a fixed point [f ] ∈ T 2 for f ∈ Sym2 < Sym. Then Γ = f−1Gf is
a subgroup of Möb(S).

The last condition is conversely expressed as fΓf−1 < Diff1+α(S).
Then the rigidity theorem for Diff1+α(S)-representation (Theorem 5.6)
implies that f ∈ Diff1+α(S). Q.E.D.

A related result has been obtained by Navas [38] by using a unitary
representation of Diff1+α(S) in L2(S × S,m) for the Liouville measure
m.

6.10. An extension of the conjugation problem to the gen-
eral case

We will try to generalize the statement of Theorem 6.13 to an ar-
bitrary α ∈ (0, 1). However, we need an extra assumption as in the
following theorem. We will discuss an idea for removing it later.

Theorem 6.15. For each α ∈ (0, 1), there is a constant c > 0
depending only on p with p > 1/α such that if an infinite non-abelian
group G < Diff1+α(S) satisfies

inf
π(μ)=[g]

(∫
D

( |μ(z)|2
1− |μ(z)|2

)p/2

ρ2D(z) dx dy

)1/p

≤ c

for every g ∈ G then there is f ∈ Diff1+α(S) such that f−1Gf < Möb(S).

Remark 6.16. The condition that G is uniformly quasisymmetric
follows from the above assumption. Indeed, the assumption implies that
‖β([g])‖p are sufficiently small for all g ∈ G. Then, in a small neigh-
borhood of the origin, the Teichmüller distance can be estimated by the
p-norm.

Proof. An outline is as follows. We rely on Theorem 3.2 to see that
G is quasisymmetric conjugate to a Möbius group. Then the assumption
implies that G acts on Ap(D∗) for some p isometrically with a bounded
orbit. In this case, we use the fixed point property of Ap(D∗) to have a
fixed point of G in it. To guarantee that the fixed point is actually in
the image β(T ) of the Bers embedding, we need the assumption that the
norms ‖β([g])‖p are sufficiently small. Theorem 5.6 can conclude that
the fixed point is in Bα

0 (D
∗). Q.E.D.

We mention an application of the above theorem. For [g] ∈ Tα
0 =

Möb(S)\Diff1+α(S), define the infimum of the α-Hölder constant in the
Teichmüller class by

cα([g]) = inf
g∈[g]

sup
x,y∈R

|g̃′(x)− g̃′(y)|
|x− y|α .
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The following result is obtained in [31].

Corollary 6.17. For each α ∈ (0, 1), there is a constant c0 > 0
depending only on α such that if an infinite non-abelian group G <
Diff1+α(S) satisfies cα([g])≤ c0 for every g ∈G then G<Möb(S).

6.11. Uniform convexity

For the proof of Theorem 6.15, we have used the fixed point prop-
erty of Ap(D∗). This comes from uniform convexity of the Banach space
Ap(D∗). To extend Theorem 6.15 to the statement similar to The-
orem 6.13, we have only to show that (T p, dpWP) possesses the fixed
point property for any p ≥ 2.

Definition 6.18. A complete metric space (X, d) is p-uniformly
convex (p ≥ 1) with constant c > 0 if for any x, y ∈ X there is m ∈ X
such that every z ∈ X satisfies

d(z,m)p ≤ 1

2
{d(z, x)p + d(z, y)p} − c d(x, y)p.

Remark 6.19. For p = 2 and c = 1/4, the above condition is
equivalent to that (X, d) is a CAT(0) space. See Ballmann [4, Propos-
ition I.5.1].

Uniform convexity implies the fixed point property. See Naor and
Silberman [37]. Also we see that uniform convexity implies uniformly
normal structure ([32]). For the generalization of Theorem 6.13, the
following question might be interesting.

Problem 6.20. Is (T p, dpWP) p-uniformly convex?
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