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Quantum representations of braid groups and
holonomy Lie algebras

Toshitake Kohno

Abstract.

We review various aspects of representations of the holonomy Lie
algebras and the associated monodromy representations of the funda-
mental groups for the complement of hyperplane arrangements. In
particular, we describe the relation between monodromy representa-
tions of the KZ equation and homological representations of the braid
groups by means of hypergeometric integrals.

§1. Introduction

The purpose of this article is to provide a review on developments
concerning representations of the fundamental group of the complement
of hyperplane arrangements obtained as iterated integrals of logarithmic
1-forms. In particular, we focus on the linear representations of the braid
groups of appearing as the monodromy of the KZ equation.

In the 1970’s K.-T. Chen developed the theory of iterated integrals of
differential forms and gave a description of the de Rham cohomology of
the loop spaces of simply connected manifolds. In the case the manifolds
are non-simply connected the iterated integrals of 1-forms provide non-
commutative information of the fundamental groups. More precisely, the
iterated integrals of 1-forms determine the nilpotent completion of the
fundamental group over R.

We apply the theory of iterated integrals in the case of the comple-
ment of complex hyperplane arrangements. We introduce the notion of
the holonomy Lie algebra, which is determined by the codimension two
intersections of the hyperplane arrangements. It turns out that the holo-
nomy Lie algebra is isomorphic to the dual of Sullivan’s 1-minimal model
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and describes the above nilpotent completion of the fundamental group
of the complement of complex hyperplane arrangements. There is a uni-
versal holonomymap from the fundamental group to the completion of the
universal enveloping algebra of the holonomy Lie algebra. Given a repre-
sentation of the holonomy Lie algebra we obtain a linear representation of
the fundamental group induced from the above universal holonomy map.

We deal with the case of the braid arrangements. In this case the
universal holonomy map is a prototype of the Kontsevich integrals for
knots (see [20]). There is a representation of the holonomy Lie algebra
associatedwith a complex semi-simple Lie algebra and its representations.
The corresponding connection is called the KZ connection. It was shown
by Schechtman and Varchenko [28] that horizontal sections of the KZ
connection are expressed by means of hypergeometric integrals. Based
on this method we describe a relationship between linear representations
of the braid groups obtained as the action on the homology of local sys-
tems and the monodromy representations of the KZ equation. This pro-
vides a relationship between quantum representations of the braid groups
and homological representations, which were extensively investigated by
Bigelow [1] and Krammer [21].

The paper is organized in the following way. In Section 2 we recall
basic notions of the iterated integrals due to K.-T. Chen. We describe the
bar complex of the Orlik–Solomon algebra and the holonomy Lie algebra
for hyperplane arrangements. By means of the iterated integrals of loga-
rithmic 1-formswe introduce the universal holonomymap. In Section 3we
deal with the homology of local systems on the complement of hyperplane
arrangements. In Section 4we focus on the case of the braid arrangements.
We give a basis of the space of solutions of the KZ equation by means of
hypergeometric integrals over the bounded chambers in the complement
of discriminantal arrangements. Based on this expression we clarify the
relation between the monodromy representations of the KZ equation and
the action of the braid groups on the homology of local systems.

Acknowledgements. The author is partially supported by Grant-
in-Aid for Scientific Research, Japan Society of Promotion of Science and
by World Premier Research Center Initiative, MEXT, Japan.

§2. Iterated integrals and holonomy Lie algebras

2.1. Chen’s iterated integrals

The theory of iterated integrals was developed by K.-T. Chen [5].
One of the main objects of the theory of iterated integrals was to describe
the de Rham cohomology of loop spaces. First, we briefly recall basic
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definitions for iterated integrals. Let M be a smooth manifold and
ω1, . . . , ωk be differential forms on M of positive degrees. We fix a base
point x0 ∈ M and denote by ΩM the loop space of M based at x0.
Namely, ΩM is the space of piecewise smooth maps γ : I → M such
that γ(0) = γ(1) = x0. Let Δk denote the Euclidean simplex defined by

Δk = {(t1, . . . , tk) ∈ Rk; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}.
There is an evaluation map

ϕ : Δk × ΩM −→ M × · · · ×M︸ ︷︷ ︸
k

defined by ϕ(t1, . . . , tk; γ) = (γ(t1), . . . , γ(tk)). Let πi : M × · · · ×M︸ ︷︷ ︸
k

→

M be the projection on the i-th factor. We put

ω1 × · · · × ωk = π∗
1ω1 ∧ · · · ∧ π∗

kωk.

We define the iterated integral
∫
ω1 · · ·ωk by∫

Δk

ϕ∗(ω1 × · · · × ωk)

which is the integration along the fiber with respect to the projection
p : Δk × ΩM → ΩM .

The iterated integral
∫
ω1 · · ·ωk is considered to be a differential

form on the loop space ΩM with degree p1 + · · · + pk − k, where pj is
the degree of the differential form ωj .

In particular, in the case ω1, . . . , ωk are 1-forms onM , the expression∫
ω1 · · ·ωk is considered to be a function on the loop space ΩM . For a

loop γ : I → M we write

γ∗(ωi) = fi(t) dt, 1 ≤ i ≤ n
and denote by ∫

γ

ω1 · · ·ωk

the iterated line integral∫
0≤t1≤···≤tk≤1

f1(t1) · · · fk(tk) dt1 · · · dtk.

The above integral is the value of
∫
ω1 · · ·ωk at the loop γ.
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As a differential form on the loop space d
∫
ω1 · · ·ωk is expressed as

k∑
j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+

k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where νj = p1 + · · ·+ pj − j.
We denote by Bq(M) the space of iterated integrals of degree q on

the loop space ΩM obtained as the iterated integrals of differential forms
of positive degrees on M in the above way. We have a complex

0 −→ B0(M) −→ · · · −→ Bq(M) −→ Bq+1(M) −→ · · ·
which is a subcomplex of the de Rham complex of the loop space ΩM .
We call the above complex B∗(M) the bar complex of the de Rham
complex of M . A fundamental result due to Chen is stated in the fol-
lowing way.

Theorem 2.1 ([4]). Let M be a simply connected manifold. Then
the cohomology of the bar complex B∗(M) is isomorphic to the cohomology
of the loop space H∗(ΩM ;R).

2.2. Bar complex of Orlik–Solomon algebras

We apply Chen’s theory of iterated integrals to the case of the com-
plement of hyperplane arrangements. We refer the reader to [16] for a
more detailed account of this subject.

Let A = {H1, . . . ,H�} be a set of complex codimension one hyper-
planes in Cn. We call A an arrangement of hyperplanes. In this article
we do not assume that A is central. Namely, we suppose that the hyper-
planes H1, . . . ,H� may not pass through the origin.

We consider the complement

M(A) = Cn \
⋃

H∈A
H.

Let fj be a linear form defining Hj and we set

ωj = d log fj , 1 ≤ j ≤ �.

We denote by A =
⊕

q≥0 A
q the graded algebra generated by the loga-

rithmic forms ωj , 1 ≤ j ≤ �. Here we consider A as a subalgebra of the
algebra of differential forms on M(A). We call A the the Orlik–Solomon
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algebra of the hyperplane arrangement A. It is known by Brieskorn [3]
that there is an isomorphism

(1) A ∼= H∗(M(A);C).

For more details about the Orlik–Solomon algebra we refer the reader
to Orlik–Terao [26].

We define the reduced complex A by shifting the degrees by one as

A
q
=

{
0, q < 0,

Aq+1, q ≥ 0.

The reduced bar complex B
∗
(A) is the tensor algebra

B
∗
(A) =

⊕
k≥0

(
k⊗

A

)

generated by A. Then B
∗
(A) has a natural structure of a graded algebra

and we introduce the coboundary operator by

d(ϕ1 ⊗ · · · ⊗ ϕk)

=
k−1∑
j=1

(−1)νj+1ϕ1 ⊗ · · · ⊗ (ϕj ∧ ϕj+1)⊗ · · · ⊗ ϕk

where ϕj ∈ A
qj

and we set νj = q1 + · · · + qj . We define the iterated
integral map I from the reduced bar complex to the space of differential
forms on the loop space by

I(ϕ1 ⊗ · · · ⊗ ϕk) =

∫
ϕ1 · · ·ϕk.

In particular, the iterated integrals of 1-forms give functions on the loop
space of M(A). We define the filtration on the reduced bar complex by

F−k(B
∗
(A)) =

⊕
�≤k

(
�⊗

A

)

For a group G we denote by ZG its group algebra. There is an
augmentation map

ε : ZG −→ Z
defined by

ε

(∑
i

aigi

)
=

∑
i

ai, ai ∈ Z, gi ∈ G
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and we define the augmentation ideal J as Ker ε.
We consider the case G is the fundamental group of M(A). We

obtain a pairing map

H0(B
∗
(A))× Zπ1(M(A),x0) −→ C

given by the iterated integrals of logarithmic 1-forms. There is an in-

duced filtration F−k on H0(B
∗
(A)). We have a cochain map

i : B
∗
(A) −→ B∗(M(A))

preserving the filtration, where B∗(M(A)) denotes the bar complex of
the de Rham complex of M(A). By applying a fundamental result due
to Chen [5] relating the 0-dimensional cohomology of the bar complex
and fundamental groups together with the isomorphism (1), we obtain
the following theorem by an argument based on the spectral sequence.

Theorem 2.2 ([16]). Let M(A) be the complement of a hyperplane

arrangement A and B
∗
(A) the reduced bar complex of the Orlik–Solomon

algebra. Then the iterated integral map gives an isomorphism

F−kH0(B
∗
(A)) ∼= Hom(Zπ1(M(A),x0)/J

k+1,C).

We denote by Zπ̂1(M,x0) the completed group ring defined by

lim← Zπ1(M(A),x0)/J
k+1.

By taking the limit k → ∞ we observe that the above theorem implies
the isomorphism

H0(B
∗
(A)) ∼= Hom(Zπ̂1(M,x0),C).

2.3. Holonomy Lie algebras for hyperplane arrangements

In general for a space M we define the holonomy Lie algebra h(M)
over a field k in the following way. Let

η : H2(M ; k) −→ H1(M ; k) ∧H1(M ; k)

be the dual of the cup product homomorphism

∪ : H1(M ; k) ∧H1(M ; k) −→ H2(M ; k).

We denote by L(H1(M ; k)) the free Lie algebra over k generated by
H1(M ; k). We define the holonomy Lie algebra h(M) as the quotient
Lie algebra

L(H1(M ; k))/〈Im η〉
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where 〈Im η〉 denotes the ideal generated by the image of η.
Let A = {H1, . . . ,H�} be an arrangement of hyperplanes in the

sense of the previous section and we consider the complement M(A) =
Cn \⋃H∈A H. In the case M = M(A) the holonomy Lie algebra h(M)
has the following description. We set k = C. Let L(X1, . . . ,X�) be the
free Lie algebra whose generators are in one to one correspondence with
the hyperplanes in A. The holonomy Lie algebra is expressed as

h(M) = L(X1, . . . ,X�)/a

where a is the ideal generate by

(2) [Xjp ,Xj1 + · · ·+Xjk ], 1 ≤ p < k

for the maximal family of hyperplanes {Hj1 , . . . ,Hjk} such that

codimC(Hj1 ∩ · · · ∩Hjk) = 2.

Let π1(M) = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γk ⊃ · · · be the lower central series
defined by

Γk+1 = [Γ1,Γk], k ≥ 1.

Then the direct sum ⊕
k≥1

[Γk/Γk+1]⊗C

has a structure of a graded Lie algebra by defining the Lie bracket by
the commutator. On the other hand, the holonomy Lie algebra has a
natural filtration

h(M) = h(M)1 ⊃ h(M)2 ⊃ · · · ⊃ h(M)k ⊃ · · ·
by defining

h(M)k+1 = [h(M)1, h(M)k], k ≥ 1.

We consider the completion

ĥ(M) = lim← h(M)/h(M)k.

There is an extension of nilpotent groups

1 −→ Γk/Γk+1 −→ π1(M)/Γk+1 −→ π1(M)/Γk −→ 1.

We write π1(M) for π1(M,x0). By means of these extensions one can
construct the nilpotent Lie algebra

[π1(M)/Γk]⊗C, k ≥ 1
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and the nilpotent completion

π̂1(M)⊗C = lim← [π1(M)/Γk]⊗C

which is called the Malcev Lie algebra. It was shown in [12] that there
is an isomorphism of Lie algebras

π̂1(M)⊗C ∼= ĥ(M).

In particular, there is an isomorphism of graded Lie algebras⊕
k≥1

[Γk/Γk+1]⊗C ∼=
⊕
k≥1

h(M)k/h(M)k+1.

2.4. Universal holonomy map

We deal with the case M = M(A) for a complex hyperplane ar-
rangement A. We consider the expression

ω =
m∑
j=1

ωj ⊗Xj

which is considered to be an element of A1⊗H1(M ;C). Here A1 stands
for the degree 1 part of the Orlik–Solomon algebra A.

We denote by C〈〈X1, . . . ,X�〉〉 the algebra of non-commutative for-
mal power series with indeterminates X1, . . . ,X� and â its ideal gener-
ated by the elements in the equation (2).

Then there is a universal holonomy map

(3) Θ: π1(M,x0) −→ C〈〈X1, . . . ,X�〉〉/â
defined by

Θ(γ) = 1 +
∞∑
k=1

∫
γ

ω · · ·ω︸ ︷︷ ︸
k

.

Here the RHS of the above expression is explicitly given by∫
γ

ω · · ·ω︸ ︷︷ ︸
k

=
∑

i1,...,ik

(∫
γ

ωi1 · · ·ωik

)
Xi1 · · ·Xik .

We denote by Cπ̂1(M,x0) the completed group ring of π1(M,x0) over
C. The above universal holonomy map Θ induces an isomorphism

Cπ̂1(M,x0) ∼= C〈〈X1, . . . ,X�〉〉/â
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of complete Hopf algebras. Here the coproduct structure of the RHS is
induced from

Δ(Xj) = Xj ⊗ 1 + 1⊗Xj , 1 ≤ j ≤ �.

By taking the primitive part with respect to the complete Hopf algebra
structure, we obtain the nilpotent completion of the fundamental group
over C.

Proposition 2.3. Let V be a complex vector space. For any rep-
resentation of the holonomy Lie algebra r : h(M) → End(V ) there is a
linear representation of the fundamental group

ρ : π1(M,x0) −→ GL(V )

obtained by substituting the representation r to the universal holo-
nomy map.

Proof. We set r(Xj) = Aj , 1 ≤ j ≤ �. Since r is a homomorphism
of Lie algebras we obtain that

ω =
∑
j

Ajωj

satisfies the relation
ω ∧ ω = 0

This implies the above ω defines a flat connection for a trivial vector
bundle over M with fiber V . It is not difficult show that the expres-
sion (3) with the substitution Xj = Aj is convergent by using the fact
that the volume of the simplex Δk is 1/k!. This gives the holonomy of
the connection ω, which gives a linear representation ρ : π1(M,x0) →
GL(V ). Q.E.D.

§3. Homology of local systems

3.1. Local systems for hyperplane arrangements

First, we recall some basic definition for local systems. Let M be a
smooth manifold and V a complex vector space. Given a linear repre-
sentation of the fundamental group

r : π1(M,x0) −→ GL(V )

there is an associated flat vector bundle E over M . The local system
L associated to the representation r is the sheaf of horizontal sections
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of the flat bundle E. Let π : M̃ → M be the universal covering. We
consider the chain complex

C∗(M̃)⊗Zπ1 V

with the boundary map defined by ∂(c⊗ v) = ∂c⊗ v. Here Zπ1 acts on

C∗(M̃) via the deck transformations and on V via the representation r.
The homology of this chain complex is called the homology of M with
coefficients in the local system L and is denoted by H∗(M,L).

Let L be a complex rank one local system over M(A) associated
with a representation of the fundamental group

r : π1(M(A), x0) −→ C∗.

For an arrangement of complex hyperplanes A = {H1, . . . ,H�} we de-
note by fj be a linear form defining the hyperplane Hj , 1 ≤ j ≤ �. We
associate a complex number aj called an exponent to each hyperplane
and consider a multivalued function

Φ = fa1
1 · · · fa�

� .

The homology H1(M(A);Z) is isomorphic to Z⊕�, where each gener-
ator corresponds to a hyperplane. By associating to the generator of
H1(M(A);Z) corresponding to the hyperplane Hj the complex number

e2π
√−1aj , we obtain a homomorphism H1(M(A);Z) → C∗. Combining

with the abelianization map π1(M(A), x0) → H1(M(A);Z) we obtain a
homomorphism

ρ : π1(M(A), x0) −→ C∗.

The associated local system is denoted by LΦ.
We shall investigate H∗(M(A),L), the homology of M(A) with co-

efficients in the local system L. For our purpose the homology of locally

finite and possibly infinite chains denoted by H lf
∗ (M(A),L) also plays

an important role.

3.2. Vanishing theorem

In this section we prove a vanishing theorem for the homology of the
complement of a complex hypersurface. Let M denote the complement
of a complex hypersurface in Cn. We choose a smooth compactification
i : M → X. Namely, M is written as X \ D, where X is a smooth
projective variety and D is a divisor with normal crossings. For a rank
one local system L on M we consider the Leray spectral sequence.

Ep,q
2 = Hp(X,Rqi∗L) =⇒ Hp+q(M,L).
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We consider the condition

(4) i∗L ∼= i!L
for the local system L. Here i∗ is the direct image and i! is the extension
by 0. The condition (4) means that the eigenvalue of monodromy of L
along any divisor at infinity is not equal to 1. The following theorem
was shown in the case of the complement of a hyperplane arrangement
in [14].

Theorem 3.1. If the local system L satisfies the condition (4), then
there is an isomorphism

H∗(M,L) ∼= H lf
∗ (M,L).

We have Hk(M,L) = 0 for any k �= n.

Proof. By the hypothesis we have

(5) Rqi∗L = 0

for q > 0. In fact, sinceD is a divisor with normal crossings the vanishing
of the higher direct images in (5) follows from

Hq(C \ {0},L) = 0, q > 0

for a local system L over C \ {0} whose monodromy is non-trivial to-
gether with the Künneth formula. Hence the Leray spectral sequence
degenerates at E2-term and we have

Ep,0
2

∼= Ep,0
∞ = Hp(M,L),

where Ep,0
2 = Hp(X, i∗L). Thus we obtain an isomorphism

H∗(X, i∗L) ∼= H∗(M,L).
On the other hand, there is an isomorphism

H∗(X, i!L) ∼= H∗
c (M,L)

where H∗
c denotes cohomology with compact supports.

There are Poincaré duality isomorphisms:

H lf
k (M,L) ∼= H2n−k(M,L),

Hk(M,L) ∼= H2n−k
c (M,L).
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Since i∗L ∼= i!L we obtain an isomorphism

H lf
k (M,L) ∼= Hk(M,L).

It follows from the above Poincaré duality isomorphisms and the
Lefschetz theorem saying that that M has a homotopy type of a CW
complex of dimension n (see [24]) we have

H lf
k (M,L) ∼= 0, k < n,

Hk(M,L) ∼= 0, k > n.

Therefore we obtain Hk(M,L) = 0 for any k �= n. Q.E.D.

3.3. Bounded chambers

Let A be an essential hyperplane arrangement. Namely, we suppose
that maximal codimension of a non-empty intersection of some subfamily
of A is equal to n.

Let us suppose that each hyperplane in A is defined over R. We
set M(A)R = M(A) ∩Rn and denote by Δν , 1 ≤ ν ≤ s, the bounded
chambers in M(A)R. We denote by Δν the closure of Δν in X \D. Let

j : M(A) \
⋃
ν

Δν −→ X

be the inclusion map. We denote by L0 the restriction of the local system
L on M(A) \⋃j Δj . In this situation we have the following theorem.

Theorem 3.2. In addition to the condition (4) we suppose that
there is an isomorphism

j∗L0
∼= j!L0.

Then the homology with locally finite chains H lf
n (M(A),L) is spanned

by the homology class of bounded chambers Δν , 1 ≤ ν ≤ s.

Proof. We put Δ =
⋃

ν Δν . Let us consider the homology exact

sequence of the triple (X,D ∪Δ, D) with the local system coefficient L:
−→ Hp(D ∪Δ, D) −→ Hp(X,D) −→ Hp(X,D ∪Δ)

−→ Hp−1(D ∪Δ, D) −→ · · ·

where L is extended by 0 on D ∪Δ. Since we have

Hp(X,D) ∼= H lf
p (M(A))
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there is a long exact sequence

−→ H lf
p

(⋃
ν

Δν

)
−→ H lf

p (M(A)) −→ H lf
p

(
M(A) \

⋃
j

Δj

)

−→ H lf
p−1

(⋃
ν

Δν

)
−→ · · ·

with the local system coefficient L. By the same argument as in the
proof of Theorem 2.1 we have an isomorphism

Hk

(
M(A) \

⋃
ν

Δν ,L0

)
∼= H lf

k

(
M(A) \

⋃
ν

Δν ,L0

)

for any k and the vanishing

Hk

(
M(A) \

⋃
ν

Δν ,L0

)
∼= 0

for k with k �= n. Here we use the theorem of Zaslawsky saying that the
number of bounded chambers is equal to the absolute value of the Euler–
Poincaré characteristic |χ(M(A))| to conclude that the above vanishing
holds for any k. Combining with the above exact sequence, we obtain
an isomorphism

H lf
n

(⋃
ν

Δν ,L
)

∼= H lf
n (M(A),L).

This leads to the statement of the theorem. Q.E.D.

§4. Holonomy Lie algebras and representations of the braid
groups

4.1. Representations of holonomy Lie algebras

Let g be a complex semi-simple Lie algebra and {Iμ} be an ortho-
normal basis of g with respect to the Cartan-Killing form. We set
Ω =

∑
μ Iμ ⊗ Iμ. Let ri : g → End(Vi), 1 ≤ i ≤ n, be representa-

tions of the Lie algebra g. We denote by Ωij the action of Ω on the
i-th and j-th components of the tensor product V1 ⊗ · · · ⊗ Vn. It is
known that the Casimir element c =

∑
μ Iμ · Iμ lies in the center of the

universal enveloping algebra Ug. Let us denote by Δ: Ug → Ug ⊗ Ug
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the coproduct, which is defined to be the algebra homomorphism de-
termined by Δ(x) = x ⊗ 1 + 1 ⊗ x for x ∈ g. Since Ω is expressed as
Ω = 1

2 (Δ(c)− c⊗ 1− 1⊗ c) we have the relation

(6) [Ω, x⊗ 1 + 1⊗ x] = 0

for any x ∈ g in the tensor product Ug ⊗ Ug. By means of the above
relation we obtain the infinitesimal pure braid relations:

[Ωik,Ωij +Ωjk] = 0, (i, j, k distinct),(7)

[Ωij ,Ωk�] = 0, (i, j, k, � distinct).(8)

Let us briefly explain the reason why we have the above infinitesimal
pure braid relations. For the first relation it is enough to show the case
i = 1, j = 3 and k = 2. Since we have

[Ω⊗ 1, (Iμ ⊗ 1 + 1⊗ Iμ)⊗ Iμ] = 0

by the equation (6) we obtained the desired relation. The equation (4.3)
in the infinitesimal pure braid relations is clear from the definition of Ω
on the tensor product.

Let us denote by

Xn = {(z1, . . . , zn) ∈ Cn; zi �= zj if i �= j}
the configuration space of ordered distinct n points on the complex plane
C. The configuration space Xn is the complement of the hyperplane
arrangement given by

Xn = Cn \
⋃

1≤i<j≤n

Hij

where Hij is the big diagonal hyperplane defined by zi = zj . The holo-
nomy Lie algebra h(Xn) is isomorphic to the quotient of the free Lie
algebra generated by indeterminates Xij , 1 ≤ i �= j ≤ n with relations
Xij = Xji together with the infinitesimal pure braid relations

[Xik,Xij +Xjk] = 0, (i, j, k distinct),(9)

[Xij ,Xk�] = 0, (i, j, k, � distinct).(10)

The structure of the above holonomy Lie algebra h(Xn) was studied in
[13]. We obtain a linear representation of the holonomy Lie algebra

rκ : h(Xn) −→ End(V1 ⊗ · · · ⊗ Vn)
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by defining

(11) rκ(Xij) =
1

κ
Ωij

for any non-zero complex parameter κ.
In this article we deal with the case g = sl2(C). Let us recall basic

facts about the Lie algebra sl2(C) and its Verma modules. As a complex
vector space the Lie algebra sl2(C) has a basis H, E and F satisfying
the relations:

(12) [H,E] = 2E, [H,F ] = −2F , [E,F ] = H.

For a complex number λ we denote by Mλ the Verma module of sl2(C)
with highest weight λ. Namely, there is a non-zero vector vλ ∈ Mλ

called the highest weight vector satisfying

(13) Hvλ = λvλ, Evλ = 0

and Mλ is spanned by F jvλ, j ≥ 0. The elements H, E and F act on
this basis as

(14)

⎧⎪⎨⎪⎩
H · F jvλ = (λ− 2j)F jvλ,

E · F jvλ = j(λ− j + 1)F j−1vλ,

F · F jvλ = F j+1vλ.

It is known that if λ ∈ C is not a non-negative integer, then the Verma
module Mλ is irreducible.

For Λ = (λ1, . . . , λn) ∈ Cn we put |Λ| = λ1 + · · ·+ λn and consider
the tensor product Mλ1 ⊗ · · · ⊗Mλn . For a non-negative integer m we
define the space of weight vectors with weight |Λ| − 2m by

(15) W [|Λ| − 2m] = {x ∈ Mλ1 ⊗ · · · ⊗Mλn ;Hx = (|Λ| − 2m)x}
and consider the space of null vectors defined by

(16) N [|Λ| − 2m] = {x ∈ W [|Λ| − 2m];Ex = 0}.
Since the representation

rκ : h(Xn) −→ End(Mλ1 ⊗ · · · ⊗Mλn)

defined as in (11) commutes with the diagonal action of g it induces the
representation

(17) rκ,m : h(Xn) −→ End(N [|Λ| − 2m]).
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4.2. Quantum representations of the braid groups

The fundamental group of the configuration space Xn is the pure
braid group on n strings denoted by Pn. In view of Proposition 2.3 we
obtain the linear representation

(18) θκ,m : Pn −→ GL(N [|Λ| − 2m])

associated with the representation of the holonomy Lie algebra rκ,m
defined in (11). This is the monodromy of the Knizhnik–Zamolodchikov
(KZ) connection defined by

ω =
1

κ

∑
1≤i<j≤n

Ωijd log(zi − zj)

with values in End(N [|Λ| − 2m]) for a non-zero complex parameter κ.
We set ωij = d log(zi−zj), 1 ≤ i, j ≤ n. It follows from the infinitesimal
pure braid relations among Ωij together with Arnold’s relation

ωij ∧ ωjk + ωjk ∧ ωk� + ωk� ∧ ωij = 0

that ω ∧ ω = 0 holds. This implies that ω defines a flat connection
for a trivial vector bundle over the configuration space Xn with fiber
N [|Λ| − 2m].

A horizontal section of the above flat bundle is a solution of the
total differential equation

(19) dϕ = ωϕ

for a function ϕ(z1, . . . , zn) with values in N [|Λ| − 2m]. This total dif-
ferential equation can be expressed as a system of partial differential
equations

(20)
∂ϕ

∂zi
=

1

κ

∑
j,j 
=i

Ωij

zi − zj
ϕ, 1 ≤ i ≤ n,

which is called the KZ equation. The KZ equation was first introduced
in [11] as the differential equation satisfied by n-point functions in Wess–
Zumino–Witten conformal field theory.

The symmetric group Sn acts on Xn by permutations of coordin-
ates. We denote the quotient space Xn/Sn by Yn. The fundamental
group of Yn is the braid group on n strings denoted by Bn. In the case
λ1 = · · · = λn = λ, the symmetric group Sn acts diagonally on the
trivial vector bundle over Xn with fiber N [nλ− 2m] and the connection
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ω is invariant by this action. Thus we obtain a one-parameter family of
linear representations of the braid group

(21) θκ,m : Bn −→ GL(N [nλ− 2m]).

As is shown in [15] and in a more general situation by Drinfel’d
[9] the above representations of the braid groups have symmetry of
the quantum group Uhg. We call θκ,m quantum representations of the
braid groups.

§5. Hypergeometric integrals and quantum representations of
the braid groups

5.1. Discriminantal arrangements and hypergeometric
integrals

Following Schechtman and Varchenko [28], we shall express the hori-
zontal sections of the KZ connection ω in terms of hypergeometric inte-
grals. Let

πn,m : Xm+n −→ Xn

be the projection map defined by

(z1, . . . , zn, w1, . . . , wm) �−→ (z1, . . . , zn).

For p ∈ Xn the fiber π−1
n,m(p) is denoted by Xn,m. Let (z1, . . . , zn) be

the coordinates for p. Then, Xn,m is the complement of hyperplanes
defined by

(22) wi = z�, 1 ≤ i ≤ m, 1 ≤ � ≤ n, wi = wj , 1 ≤ i < j ≤ m.

We denote these hyperplanes by Hi�, 1 ≤ i ≤ m, 1 ≤ � ≤ n, and
Dij , 1 ≤ i < j ≤ m. Such arrangement of hyperplanes is called a
discriminantal arrangement.

Let us suppose that m ≥ 2. For parameters κ and λ1, . . . , λn we
consider the multi-valued function

Φn,m =
∏

1≤i<j≤n

(zi−zj)
λiλj
2κ

∏
1≤i≤m,1≤�≤n

(wi−z�)
−λ�

κ

∏
1≤i<j≤m

(wi−wj)
2
κ

defined over Xn+m. Let L denote the local system over Xn,m associated
to the multi-valued function Φn,m.

The symmetric group Sm acts on Xn,m by the permutations of the
coordinate functions w1, . . . , wm. The function Φn,m is invariant by the
action of Sm. The local system L over Xn,m defines a local system on
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Yn,m, which we denote by L. We denote by L∗ the local system dual
to L.

We put v = vλ1 ⊗ · · · ⊗ vλn and for J = (j1, . . . , jn) set F Jv =
F j1vλ1 ⊗ · · · ⊗ F jnvλn , where j1, . . . , jn are non-negative integers. The
weight space W [|Λ| − 2m] has a basis F Jv for each J with |J | = j1 +
· · ·+ jn = m. For the sequence of integers

(i1, . . . , im) = (1, . . . , 1︸ ︷︷ ︸
j1

, . . . , n, . . . , n︸ ︷︷ ︸
jn

)

we set

(23) SJ(z, w) =
1

(w1 − zi1) · · · (wm − zim)

and define the rational function RJ (z, w) by

(24) RJ (z, w) =
1

j1! · · · jn!
∑

σ∈Sm

SJ(z1, . . . , zn, wσ(1), . . . , wσ(m)).

For example, we have

R(1,0,...,0)(z, w) =
1

w1 − z1
, R(2,0,...,0)(z, w) =

1

(w1 − z1)(w2 − z1)
,

R(1,1,0,...,0)(z, w) =
1

(w1 − z1)(w2 − z2)
+

1

(w2 − z1)(w1 − z2)

and so on.
Since πn,m : Xm+n → Xn is a fiber bundle with fiber Xn,m the

fundamental group of the base space Xn acts naturally on the hom-
ology group Hm(Xn,m,L∗). Thus we obtain a representation of the
pure braid group

(25) ρn,m : Pn −→ AutHm(Xn,m,L∗)

which defines a local system on Xn denoted by Hn,m. In the case λ1 =
· · · = λn there is a representation of the braid group

(26) ρn,m : Bn −→ AutHm(Yn,m,L∗
)

which defines a local system Hn,m on Yn. For any horizontal section c(z)
of the local system Hn,m we consider the hypergeometric type integral

(27)

∫
c(z)

Φn,mRJ (z, w) dw1 ∧ · · · ∧ dwm

for the above rational function RJ (z, w).
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The twisted de Rham complex (Ω∗(Xn,m),∇) is a complex with
differential ∇ : Ωj(Xn,m) → Ωj+1(Xn,m) defined by

∇ω = dω + d log Φn,m ∧ ω.

for ω ∈ Ωj(Xn,m). There is a pairing between the homology of the local
system L∗ and the cohomology of the twisted de Rham complex

Hm(Xn,m,L∗)×Hm(Ω∗(Xn,m),∇) −→ C
defined by

(c, ω) �−→
∫
c

Φn,mω.

Such integrals are called hypergeometric integrals. We refer the reader
to [27] for a detailed treatment of hypergeometric integrals in a more
general situation of hyperplane arrangements.

Many works have been done on the solutions of the KZ equation by
means of hypergeometric type integrals (see [7] and [28]). We have the
following theorem.

Theorem 5.1 (Schechtman and Varchenko [28]). The integral∑
|J|=m

(∫
c(z)

Φn,mRJ (z, w) dw1 ∧ · · · ∧ dwm

)
F Jv

lies in the space of null vectors N [|Λ| − 2m] and is a solution of the
KZ equation.

The above theorem gives a period map

φ : Hm(Xn,m,L∗) −→ N [|Λ| − 2m]
defined by

(28) φ(c) =
∑

|J|=m

(∫
c

Φn,mRJ(z, w) dw1 ∧ · · · ∧ dwm

)
F Jv.

5.2. Burau and Gassner representations

In this section we describe the solutions of the KZ equation in the
casem = 1 and compare the monodromy representations with the Burau
and Gassner representations. We refer the reader to [2] for the original
definition of the Burau and Gassner representations.

We start with the case m = 0. The space N [|Λ|] is equal to W [|Λ|]
and is a one-dimensional vector space spanned by the tensor product of
the highest weight vectors v = vλ1 ⊗ · · · ⊗ vλn . We have

Ωijv =
λiλj

2
v
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and the solution of the KZ equation is spanned by

Φn,0 =
∏

1≤i<j≤n

(zi − zj)
λiλj
2κ .

As the monodromy we obtain a one-dimensional representation of the
pure braid group

θ0 : Pn −→ GL(1,C).

Let us describe the case m = 1. We express the solutions of
the KZ equation with values in N [|Λ| − 2]. We consider the fibration
πn,1 : Xn+1 → Xn defined by

πn,1(z1, . . . , zn, w) = (z1, . . . , zn).

The fiber Xn,1 over p = (z1, . . . , zn) is C \ {z1, . . . , zn}. Let Φn,1 be the
multi-valued function on Xn+1 defined by

Φn,1 =
∏

1≤i<j≤n

(zi − zj)
λiλj
2κ

∏
1≤�≤n

(w − z�)
−λ�

κ .

We denote by L the associated local system on Xn,1. We define the
1-forms ηj by

ηj = Φn,1
dw

w − zj
, j = 1, . . . , n.

For a loop γ in Xn,1 such that [γ] defines an element of H1(Xn,1,L∗) we
consider the integrals

Ij =

∫
γ

ηj , j = 1, . . . , n.

Since we have
λ1η1 + · · ·+ λnηn = −κ dΦn,1

there is a linear relation

(29) λ1I1 + · · ·+ λnIn = 0

by the Stokes theorem.
The weight spaceW [|Λ|−2] is a vector space of dimension n spanned

by F (j)v, 1 ≤ j ≤ n, where v = vλ1 ⊗ · · · ⊗ vλn as in the case of m = 0
and F (j) stands for the action of F on the j-th component of the tensor
product. The space of null vectors N [|Λ| − 2] is given by

N [|Λ| − 2] =

{
n∑

j=1

αjF
(j)v;

n∑
j=1

λjαj = 0

}
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and we have dimN [|Λ| − 2] = n− 1. The period map

φ : H1(Xn,1,L∗) −→ N [|Λ| − 2]
is defined by

φ([γ]) =
n∑

j=1

IjF
(j)v.

Here we notice that

Eφ([γ]) =

(
n∑

j=1

λjIj

)
v = 0

holds since we have the relation (29). We have a local system Hn,1 on
Xn whose fiber over p is H1(Xn,1,L∗). Let c(z) be a horizontal section
of the local system Hn,1. We can verify that

n∑
j=1

∫
c(z)

ηjF
(j)v

is a solution of the KZ equation with values in N [|Λ| − 2]. This is
classically known as the Jordan-Pochhammer system. As the holonomy
of the KZ connection we obtain the linear representation

θκ : Pn −→ GL(N [|Λ| − 2]).

The above representation can be written as θκ = θ0⊗θκ. In the following
we focus on the representation θκ.

We set p = (1, 2, . . . , n) and describe the homology H1(Xn,1,L∗) for
the fiber Xn,1 over p. Let γj be the open interval (j, j + 1), 1 ≤ j ≤
n− 1, and we consider the homology class [γj ] ∈ H lf

1 (Xn,1,L∗). In the
following we suppose

(30)
λj

κ
/∈ Z, 1 ≤ j ≤ n,

1

κ

n∑
j=1

λj /∈ Z.

Proposition 5.2. Under the condition (30) there is an isomorphism

H1(Xn,1,L∗) ∼= H lf
1 (Xn,1,L∗)

and the above homology group is spanned by [γj ], 1 ≤ j ≤ n− 1.

Proof. By the hypothesis we can apply Theorem 3.1 for Xn,1 and
obtain the isomorphism

H1(Xn,1,L∗) ∼= H lf
1 (Xn,1,L∗).
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Moreover, we can also apply Theorem 3.2 and conclude that the hom-

ology group H lf
1 (Xn,1,L∗) is spanned by the bounded chambers [γj ],

1 ≤ j ≤ n− 1. Q.E.D.

In the following we consider [γj ] as an element of H1(Xn,1,L∗) by
means of the above isomorphism and the integrals∫

γi

ηj , 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n

are convergent. We assume the condition (30). Then, we have the
following theorem.

Theorem 5.3. The period map φ induces an isomorphism

H1(Xn,1,L∗) ∼= N [|Λ| − 2].

The above isomorphism is equivariant with respect to the action of the
pure braid group Pn.

Proof. First, we show that φ([γi]), 1 ≤ i ≤ n − 1, are linearly
independent. As is shown in [31] the determinant

det

(∫
γi

ηj

)
1≤i≤n−1,1≤j≤n−1

is given by gamma functions as

Γ
(−λ1

κ + 1
) · · ·Γ(−λn

κ + 1
)

Γ
(−λ1

κ − · · · − λn

κ + 1
)

up to a multiplication of a non-zero constant. The above determinant
does not vanish under the condition (30) and we obtain that φ is inject-
ive. Since

dimH1(Xn,1,L∗) = dimN [|Λ| − 2] = n− 1

we obtain the isomorphism. The action of the pure braid group Pn on
the homology group H1(Xn,1,L∗) is given by the horizontal sections of
the local system Hn,1 on Xn. On the other hand, we have shown that
φ([γi]), 1 ≤ i ≤ n − 1, form a basis of the space of solutions of the
KZ equation with values in N [|Λ| − 2]. Since the solutions are given by
hypergeometric integrals with respect to the cycles [γi], 1 ≤ i ≤ n − 1,
the monodromy representation of the KZ equation is identified with the
above action of Pn on H1(Xn,1,L∗). Q.E.D.



Quantum representations 139

Now we describe a relation between the monodromy representation

θκ : Pn −→ GL(N [|Λ| − 2])

and the Gassner representation. First, we recall the Gassner represen-
tation. The fundamental group of Xn,1 is isomorphic to the free group

with n generators. Let π : X̃n,1 → Xn,1 be the covering corresponding
to the kernel of the abelianization map

α : π1(Xn,1, x0) −→ Z⊕n.

The covering transformation group Z⊕n acts on the homology group

H1(X̃n,1;Z) and it turns out that H1(X̃n,1;Z) is a free module of rank
n − 1 over the group ring Z[Z⊕n], which is isomorphic to the ring of
Laurent polynomials

Λn = Z[q±1
1 , . . . , q±1

n ]

with indeterminates q1, . . . , qn. The pure braid group Pn acts as diffeo-

morphisms of Xn,1, which induces an action of Pn on H1(X̃n,1;Z) com-
muting with the action of Λn. Thus we obtain a linear representation

ρn : Pn −→ GL(n− 1,Λn)

which is called the Gassner representation. By comparing the action of
Pn on the homology of local systems we have the following proposition.

Proposition 5.4. The representation

θκ : Pn −→ GL(N [|Λ| − 2])

is equivalent to the Gassner representation specialized at

qj = e−2π
√−1λj/κ, 1 ≤ j ≤ n.

The Burau representation of the braid group Bn corresponds to the
case q1 = · · · = qn = q. We consider the homomorphism β : Z⊕n → Z

defined by β(x1, . . . , xn) = x1+ · · ·+xn and denote by X̃ ′
n,1 the abelian

covering of Xn,1 corresponding the the kernel of β ◦ α. The homology

group H1(X̃
′
n,1;Z) is a free module over Λ = Z[q, q−1] by means of deck

transformations and the braid group Bn acts on H1(X̃
′
n,1;Z) commuting

with the action of Λ. Thus we have a linear representation

ρn : Bn −→ GL(n− 1,Λ),

which is called the Burau representation. Considering the case λ1 =
· · · = λn = λ, we obtain the monodromy representation

θκ : Bn −→ GL(N [nλ− 2])
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as the Burau representation specialized at q = e−2π
√−1λ/κ.

5.3. Homological representations

In this section we describe a relation between the monodromy rep-
resentations of the KZ equations and homological representations of the
braid groups in the case m ≥ 2.

As in the previous sections we consider the projection πn,m : Xm+n →
Xn, the fiber Xn,m over p ∈ Xn and the local system L associated with
the multi-valued function Φn,m. Let us recall that Yn,m = Xn,m/Sm

and that L is the induced local system on Yn,m. We see that Yn,m is
expressed as the complement of a complex hypersurface in Cm. We
take the base point p = (1,...,n). In the following we suppose that the
highest weights λ1,...,λn and the parameter κ satisfy the condition in
Theorem 3.2 for Yn,m.

For the purpose of describing the homology group H lf
m (Xn,m,L∗)

andH lf
m (Yn,m,L∗

) we introduce the following notation. For non-negative
integers m1, . . . ,mn−1 satisfying

m1 + · · ·+mn−1 = m

we define a bounded chamber Δm1,...,mn−1 in Rm by

1 < t1 < · · · < tm1 < 2,

2 < tm1+1 < · · · < tm1+m2 < 3,

· · ·
n− 1 < tm1+···+mn−2+1 + · · ·+ tm < n.

We put M = (m1, . . . ,mn−1) and we write ΔM for Δm1,...,mn−1 . We

denote by ΔM the image of ΔM by the projection map from Xn,m to
Yn,m. The bounded chamber ΔM defines a homology class [ΔM ] ∈
H lf

m (Xn,m,L∗) and its image ΔM defines a homology class

[ΔM ] ∈ H lf
m (Yn,m,L∗

).

Under the condition in Theorem 3.2 we have the following proposition.

Proposition 5.5. The above bounded chambers [ΔM ] for non-
negative integers m1,...,mn−1 with m1 + ···+mn−1 = m form a basis of
H lf

m (Yn,m,L).
In particular, we have

(31) dimHm(Yn,m,L∗
) = dimH lf

m (Yn,m,L∗
) =

(
m+ n− 2

m

)
.
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We denote the above dimension by dn,m.
The period map φ in (28) induces

φ : Hm(Yn,m,L∗
) −→ N [|Λ| − 2m].

Let us notice that we have dimN [|Λ| − 2m] = dn,m. We have the
following theorem for m ≥ 2.

Theorem 5.6. For generic λ1, . . . , λn and κ the period map φ gives
an isomorphism

Hm(Yn,m,L∗
) ∼= N [|Λ| − 2m]

which is equivariant with respect to the action of the pure braid group
Pn. In particular, the linear representation

ρn,m : Pn −→ AutHm(Xn,m,L∗)

and the monodromy representation of the KZ equation

θκ,m : Pn −→ GL(N [|Λ| − 2m])
are equivalent.

Proof. We denote by Im the set of (n − 1)-tuple of non-negative
integers (m1, . . . ,mn−1) with m1 + · · · + mn−1 = m. We suppose the
condition in Theorem 3.2 for λ1, . . . , λn and κ. By Proposition 5.5 we

have a basis {cM} for Hm(Yn,m,L∗
) which is in one-to-one correspond-

ence with the set Im. Since N [|Λ| − 2m] has also a basis which is in
one-to-one correspondence with the set Im the solutions of the KZ equa-
tion by hypergeometric integrals in Theorem 5.1 can be written in the
matrix form (∫

cM

ωM ′

)
M,M ′∈Im

where ωM ′ is a multi-valued m form on Xn,m. As is shown in [31]
the determinant of the above matrix is expressed by gamma functions
in λ1, . . . , λn and κ (see [18]) and it turns out that the determinant
does not vanish for generic λ1, . . . , λn, κ. This show that φ(cM ), M ∈
Im, are linearly independent and that φ is an isomorphism. By means
of the above expression of the basis of solutions of the KZ equation
by hypergeometric integrals the monodromy representations of the KZ
equation can be described by the action of Pn on the homology group
Hm(Yn,m,L∗). This shows that the isomorphism φ is equivariant with
respect to the action of Pn. Q.E.D.
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Let us describe a relation to the homological representations of the
braid groups. We have

(32) H1(Yn,m;Z) ∼= Z⊕n ⊕ Z

where the first n components correspond to normal loops of the images of
hyperplanes wi = z�, � = 1, . . . , n, and the last component corresponds
to the normal loop of the image of the diagonal hyperplanes wi = wj ,

1 ≤ i < j ≤ m, namely, the discriminant set. Let π : Ỹn,m → Yn,m

be the covering corresponding to the kernel of the abelianization map
α : π1(Yn,m, x0) → H1(Yn,m;Z). The homology group Hm(Ỹn,m;Z) has
a structure of the module over

Λn,1 = Z[q±1
1 , . . . q±1

n , t±1]

and the pure braid group Pn acts on Hm(Ỹn,m;Z) commuting with the
action of Λn,1. This is called the homological representation of Pn. The
representation ρn,m in Theorem 5.6 is obtained by the specialization

qj = e−2π
√−1λj/κ, 1 ≤ j ≤ n, t = e2π

√−1/κ.

If we set q1 = · · · = qn = q, then we obtain linear representations of
the braid group Bn with two parameters q and t. This is geometrically
described in the following way. We consider the homomorphism

(33) β : H1(Yn,m;Z) −→ Z⊕ Z

defined by β(x1, . . . , xn, y) = (x1 + · · ·+ xn, y). Let us denote by Ỹ ′
n,m

the covering over Yn,m corresponding to the kernel of β ◦ α. Then the

homology group Hm(Ỹ ′
n,m;Z) is a free module of rank dn,m over Λ1,1 =

Z[q±1, t±1]. The braid group Bn acts on Hm(Ỹ ′
n,m;Z) commuting with

the action of Λ1,1. This homological representation of the braid group
Bn was extensively studied by Bigelow [1] and Krammer [21] in the case
m = 2 and they showed that the representation is faithful. In terms of
local systems these representations appear as

θκ,m : Bn −→ GL(N [nλ− 2m])

in the case λ1 = · · · = λn = λ by means of the specialization

q = e−2π
√−1λ/κ, t = e2π

√−1/κ.

Remark. (1) It turns out that the representation rκ,m defined in
(11) is irreducible. It follows from the fact the the corresponding hom-
ological representation ρn,m is irreducible as is shown in [6]. There is
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a general treatment of correspondence with the irreducibility of a rep-
resentation of the holonomy Lie algebra and the associated monodromy
representation (see [22], [23]).

(2) In the present article we treated the case where the parameters
λ1, . . . , λn and κ are generic. In the case of conformal field theory this
hypothesis of genericity is not always satisfied. The period map φ might
not be an isomorphism because of the resonance at infinity. It turns out
that the space of conformal blocks is isomorphic to a quotient of the

homology group Hm(Yn,m,L∗
). We refer the reader to [29], [10], [19] for

this subject.
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