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Brownian motion on foliated complex surfaces,
Lyapunov exponents and applications

Bertrand Deroin

§ Introduction

These lectures are motivated by the dynamical study of differential
equations in the complex domain. Most of the topic will concern holo-
morphic foliations on complex surfaces, and their connections with the
theory of complex projective structures on curves. In foliation theory,
the interplay between geometry and dynamics is what makes the beauty
of the subject. In these lectures, we will try to develop this relationship
even more.

On the geometrical side, we have generalizations of the foliation
cycles introduced by Sullivan, see [68]: namely the foliated harmonic
currents, see e.g. [36, 4]. Those currents permit to think of the foliation
as if it were a genuine algebraic curve. For instance, one can associate
a homology class, compute intersections with divisors on the surface
etc. These currents can often be viewed as limits of the (conveniently
normalized) currents of integration on large leafwise domains defined
via the uniformization of the leaves. This point of view, closely related
to Nevanlinna theory, is very fruitful in the applications as we will see.
See [5, 28].

On the dynamical side, the leafwise Brownian motions (w.r.t. to
some hermitian metric on the tangent bundle to the foliation, e.g. com-
ing from uniformization of leaves) generate a Markov process on the
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complex surface, whose study was begun by Garnett, see [34]. This
Markov process seems to play a determinant role in the dynamics of
foliated complex surfaces. One reason is that the Brownian motion in
two dimensions is conformally invariant. Another reason is that leafwise
Brownian trajectories equidistribute w.r.t. the product of a certain foli-
ated harmonic current times the leafwise volume element. This makes
the connection with the geometrical side mentioned above.

One of the main theme that will be developed in these lectures is the
construction of numerical invariants that embrace these two aspects (dy-
namical and geometrical) of foliated complex surfaces. The discussion
will emphasize on the definition and properties of the foliated Lyapunov
exponent of a harmonic current, which heuristically measures the expo-
nential rate of convergence of leaves toward each other along leafwise
Brownian trajectories. A fruitful formula expresses this dynamical in-
variant in terms of the intersection of some foliated harmonic currents
and the normal/canonical bundles of the foliation, see [16]. This formula
is a good illustration of the interplay between geometry and dynamics
in foliation theory. This will be developed in the first lecture.

In the second and third lectures, we will collect some applications
of this formula in different contexts.

The first application concerns Levi-flats in complex algebraic sur-
faces. Those are (real) hypersurfaces that are foliated by holomorphic
curves. Most examples occur as three (real) dimensional analytic invari-
ant subsets of singular algebraic foliations. Foliations containing such
subsets are analogous to Fuchsian groups (those having an invariant ana-
lytic circle in the Riemann sphere) in the context of Kleinian groups or
to Blashke products/Tchebychef polynomials (having an invariant ana-
lytic circle/interval) in the context of iteration of rational functions.
Very little is known about Levi-flats in algebraic surfaces. For instance,
it is still unknown weather every algebraic surface contains a Levi-flat.
A folklore conjecture predicts that the complex projective plane should
not have any. Still, there exists a multitude of examples, e.g. in flat
ruled bundles over curves, in singular holomorphic fibrations, in rami-
fied covers of these etc. As we will see, some new restrictions concerning
the topology of Levi-flats can be deduced from a detailed analysis of the
foliated Lyapunov exponent and its relation to the geometry of the am-
biant surface. For instance, we will prove that a Levi-flat hypersurface
in a surface of general type is not diffeomorphic to the unitary tangent
bundle of a two dimensional compact orbifold of negative curvature, nor
to a hyperbolic torus bundle, and that its fundamental group has expo-
nential growth. This will be explained in the second lecture, where we’ll
also construct many examples of Levi-flats, most notably we will realize
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all the models of Thurston’s geometries as Levi-flats in algebraic surfaces
apart the elliptic one. All this is based on a work in collaboration with
Christophe Dupont, see [20].

The second application concerns complex projective structures on
curves. These structures are of interest in various problems of uni-
formization in two or three dimensions. We will define some new invari-
ants associated to complex projective structures: a Lyapunov exponent,
a degree, and a family of harmonic measures (analogous to harmonic
measure of a compact set in the complex line), and we will see how
to relate these invariants. The connexion with foliation theory will be
of utmost importance. It comes from the study of the particular class
of transversally holomorphic foliations : any algebraic curve transverse
to such a foliation inherits a complex projective structure by restrict-
ing the transverse projective structure of the foliation to the curve. As
an illustration of this point of view, an algebraic curve in a Hilbert
modular surface of the form Γ\H×H, where Γ is a cocompact lattice in
PSL(2,R)×PSL(2,R) inherits two (branched) complex projective struc-
tures from the two (horizontal and vertical) foliations. We will derive
applications of these new invariants, most notably some estimates for
the dimension of harmonic measures of complex projective structures.
In particular, we will recover the Jones–Wolff and Makarov estimates for
classical harmonic measures of limit sets of Kleinian groups. Another
application will be to reinforce the analogy between complex project-
ive structures and polynomial dynamics, that was brought to light by
McMullen, see [58]. All these developments have been obtained in col-
laboration with Romain Dujardin, see [19].

Acknowledgements. I warmly thank the organizers of the con-
ference Geometry and Foliations 2013 who gave me the opportunity to
deliver these lectures, and the referee for his very careful reading.

§1. Lecture 1—Lyapunov exponents associated to foliated
complex surfaces

1.1. Basic definitions and examples

In this lecture, S will denote a complex surface. Recall that a holo-
morphic foliation on S is a maximal atlas F of holomorphic charts
(x, z) : U → D × D (D ⊂ C is the unit disc) defined on open subsets
U covering S, and overlapping as

(x′, z′) = (x′(x, z), z′(z)).
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Hence the local fibrations z = cst are preserved by the change of coord-
inates. The fibers of these local fibrations, called the plaques, are glued
together and define Riemann surfaces, called the leaves of the foliation.
The sets {x}×D are called transversal sets, and will be denoted D�. We
refer to the book [10] for the basics on foliation theory: most notably,
the definition of holonomy maps, transverse invariant measures etc. The
data of S and F will be referred to as a foliated complex surface. Given
a foliated complex surface, a compact saturated subset is a compact set
which is a union of leaves of F . We have in mind various sources of
examples.

Example 1.1 (Riemann–Hilbert correspondance). Let C be an al-
gebraic curve, and π1(C) → PSL(2,C) � Aut(P1(C)) be a representa-
tion. We define Sρ = C �ρ P

1(C) as the flat P1(C) bundle over C with

monodromy ρ. Recall that Sρ is defined as the quotient of C̃ × P1(C)
by the action of π1(C) given by

γ · (x, z) = (γ · x, ρ(γ) · z),
for every γ ∈ π1(C) and (x, z) ∈ C̃ ×P1(C). Here C̃ denotes a universal
cover of C, and π1(C) the covering group of this covering. The horizontal

fibration on C̃×P1(C) whose fibers are the subsets C̃× z for z ∈ P1(C),
defines on Sρ a non singular holomorphic foliation Fρ.

Other examples occurs as

Example 1.2 (Foliated 3-manifolds). A 2-dimensional analytic fo-
liation of a compact 3-manifold equipped with an analytic complex
structure on its leaves can be embedded in a germ of foliated complex
surface. Such a complex structure is built using a leafwise orientation plus
an analytic metric on TF , since Riemannian surfaces are conformally flat.
In analytic regularity, this is a theorem of Gauss, see [15, Théorème I.2.1].

More generally, we will consider in a complex surface S smooth real
hypersurfaces that are Levi-flat but not necessarily tangent to a (germ
of) holomorphic foliation.

Definition 1.3 (Levi-flat). A hypersurface M of class C2 in a
complex surface S inherits a unique distribution by complex lines
called the Cauchy–Riemann distribution. It is defined by the formula
TM ∩ iTM where i =

√−1. The hypersurface M is called Levi-flat
iff the Cauchy–Riemann distribution integrates in a foliation, called the
Cauchy–Riemann foliation and denoted by F . If the hypersurface M is
Levi-flat and analytic, then F can be extended in the neighborhood of M
as a non singular holomorphic foliation.
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1.2. Foliated harmonic currents

Let M be a closed saturated subset of a foliated complex surface,
or a Levi-flat hypersurface in a complex surface. We denote by F the
holomorphic foliation to which M is tangent in the first case, and the
Cauchy–Riemann foliation in the second one. Let OF the sheaf of con-
tinuous functions onM which are holomorphic along the leaves of F , and
by C∞

F the sheaf of functions f with compact support, that are smooth

along the leaves and all whose leafwise derivatives ∂α+βf
∂xα∂xβ in holomorphic

foliated coordinates are continuous in (x, z). This definition is independ-
ent of the chosen foliated coordinate system. We also denote by Ap

F (M)

(resp. A
(p,q)
F (M)) the set of C∞

F forms with compact support of degree
p (resp. bidegree (p, q)) on TF , namely the set of smooth sections with
compact support of the bundle Λp(T ∗F) (resp. Λp,q(T ∗F)).

Definition-Proposition 1.4. A foliated harmonic current is a
(non vanishing) linear form T : A1,1

F → C which verifies ∂∂FT = 0 in the

weak sense (namely T (∂∂Ff) = 0 for any smooth function f : S → R,
where ∂∂F denotes the derivative along the leaves) and which is non
negative on F (namely T (η) ≥ 0 if η|F ≥ 0). In foliated coordinates, a
foliated harmonic current takes the form

(1) T (η) =

∫
D�

[∫
D×z

ϕ(x, z)η

]
ν(dz dz), if Supp(η) ⊂ D× D,

where ν is a Radon measure on the transversal D� and ϕ ∈ L1(dx dx⊗ν)
is positive and harmonic on ν-a.e. plaque D× z.

The support of a harmonic current T is defined as usual: this is the
set of points of M having a basis of neighborhoods Vi and forms ηi ∈
A

(1,1)
F (M) whose supports are contained in Vi and such that T (ηi) 
= 0.

Proposition 1.5. A compact saturated subset M supports a foliated
harmonic current.

Proof. The following proof is due to Ghys, see [36], following ideas
of Sullivan, see [68]. Let A1,1

c (M,F) be the Banach space of continuous
(1, 1)-forms on TF|M , P ⊂ A1,1

c (M,F) denotes the open convex cone of
positive ones, and E be the set of uniform limits of forms of the type
∂∂Ff with f ∈ C∞(F). By the maximal principle, P ∩ E = ∅, hence
the Hahn–Banach separation theorem concludes. Q.E.D.

Remark 1.6. The existence of foliated harmonic current has been
generalized to singular holomorphic foliations by Berndtsson and Sibony.
We refer to [4, Theorem 1.4].
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Definition-Proposition 1.7 (Foliation cycles). A foliation cycle
is a foliated harmonic current which is dF -closed, namely it satisfies
T (dFη) = 0 for every η ∈ A1

F where dF is the derivative along the
leaves. A foliation cycle is expressed locally as

(2) T (η) =

∫
D�

[∫
D×z

η

]
ν(dz dz)

where ν is a Radon measure. The family of measures ν defines a trans-
verse invariant measure for the foliation (M,F).

Example 1.8 (Leaf closed at infinity). The basic example of foli-
ation cycle is the integration current on a leaf. A generalization of this
is due to Plante, see [62, Theorem 3.1]. Assume that M is compact and
that An ⊂ Ln is a sequence of compact domains contained in leaves Ln

of M , and that we have

(3)
length(∂An)

area(An)
→n→∞ 0

where the length and area are measured w.r.t. to a hermitian met-
ric along the leaves. Then the family of currents Tn := 1

area(An)
[An]

is relatively compact in the weak∗ topology, and moreover any limit
limnk→∞ Tnk

is a foliation cycle. Sullivan generalized this construction,
see [68, Theorem II.8].

1.3. Uniformization

Other examples of foliation cycles or foliated harmonic currents
come from the uniformization of Riemann surfaces, which is stated
as follows.

Theorem 1.9 (Poincaré–Koebe). Every Riemann surface is covered
resp. by P1(C), C or D. This trichotomy is exclusive. The Riemann
surface is resp. called elliptic, parabolic or hyperbolic.

We refer to the book [15] for the history and the various proofs of
this theorem.

Example 1.10 (Ahlfors). If M is compact and L is a parabolic leaf
contained in M , and f : C → L a uniformization of L, and g a hermitian
metric along the leaves, one can extract from the family of currents

(4) ∀η ∈ A1,1
F (M), Tr(η) :=

1

areaf∗g(Dr)

∫
Dr

f∗η

a subsequence converging in the weak∗-topology towards a foliation
cycle. Here Dr := {x ∈ C | |x| < r}. We refer to [1] and [7, Lemme 0]
for a proof of this fact.
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Let us now review what happens if the leaves are hyperbolic. We
begin by the following theorem of Verjovsky, generalized by Candel in
the context of general Riemann surface laminations. Recall that the unit
disc has a unique complete conformal metric of curvature −1, given by

(5) gP = 4
|dx|2

(1− |x|2)2 .

This metric is invariant under the group Aut(D) of automorphisms of
the unit disc, hence it defines a conformal metric on any hyperbolic
Riemann surface. We have

Theorem 1.11 (Verjovsky–Candel). Assume that M is compact
and that all the leaves of M are hyperbolic. Then the Poincaré metric
on each of these leaves defines a continuous metric on TF|M .

Example 1.12 (Fornaess–Sibony). Assume that all the leaves of M
are hyperbolic Riemann surfaces. Let f : D → L be the uniformization
of one leaf of M . Then the family of currents

(6) ∀η ∈ A1,1
F (M), Tr(η) =

∫
Dr

log
(

r
|x|

)
f∗η∫

Dr
log

(
r
|x|

)
vP

is relatively compact in the weak∗-topology and the limit of any conver-
gent subsequence Trn with rn → 1 is foliated harmonic. Here vP refers
to the volume element of the Poincaré metric.

1.4. Homology, intersection, and Chern–Candel classes

Recall that there is a restriction map r : A2(S) → A1,1
F (M) which

satisfies dFr = rd. Thus, a foliation cycle can be viewed as a current
T : A2(S) → C which is d-closed. Therefore, it naturally defines a hom-
ology class [T ] ∈ H2(S,C) (by duality) by the formula

[T ] · [η] = T (η),

for every closed 2-form η. Notice that the positivity of T implies that
[T ] ∈ H2(S,R). In particular, one can consider the intersection product
[T ]·c1(E) if E → S is any complex line bundle over S, and c1(E) denotes
the first Chern class of E. We will denote it succinctly by T · E. One
can compute this intersection by using differential geometry, namely

(7) T · E =
1

2π
T (ω)

where ω is the curvature form of any connexion ∇ on E. In fact, it is
sufficient to have a smooth connexion which is only defined along every
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leaf of F , but we will not verify this here. All this makes sense since
the curvature forms of two different connexions on E differ by an exact
2-form.

This does not work this way if T is only assumed to be harmonic,
since in this case we only get a homology class in the dual of the Bott–
Chern cohomology group

(8) H1,1

∂∂
(S,C) = {closed (1, 1)-forms}/∂∂C∞(S).

Nevertheless, following an observation of Candel, one can define the
intersection product of T with E when E is any holomorphic line bundle
along the leaves of M (namely every element of H1(M,O∗

F )). This can
be achieved by the use of the Chern connexion of a hermitian metric on
E, whose expression is given locally by

(9) ω‖·‖ =
1

i
∂∂ log‖s‖2,

where s is any non vanishing local holomorphic section of E. Notice
that ω‖·‖ does not depend on the choice of s, and therefore it is defined

globally: ω‖·‖ ∈ A1,1
F . One then defines

(10) T · E :=
1

2π
T (ω‖·‖),

where ‖ · ‖ is any hermitian metric on E. Since T is harmonic, the
definition does not depend on the chosen hermitian metric ‖ · ‖.

This formula permits to define an important invariant of a harmonic
current: its Euler characteristic. This is the intersection of the harmonic
current with the tangent bundle of the foliation F . In what follows, we
will be more interested in the opposite of this number, namely the inter-
section of T with the canonical bundle of F being defined byKF := T ∗F .

An interesting case is where S is a compact Kähler surface, since
under this assumption one knows that the group (8) is isomorphic to the

Dolbeaut cohomology group H1,1

∂
(S,C) ⊂ H2(S,C), by the ∂∂-lemma.

Thus we can define a homology class [T ] of T belonging to H2(S,C)
(by duality) in that case. Observe that if E → S is a holomorphic line
bundle, the number T · E defined by (10) computes the cohomological
intersection [T ] · c1(E), where c1(E) is the Chern class of E.

1.5. Garnett’s theory

Here is the basic ingredient that will be needed in this lecture. Let
(L, g) be a complete Riemannian manifold with bounded curvature, and
x ∈ L be a point. Then there exists a unique measure W x, called
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the Wiener measure, on the set Ωx of continuous paths ω : [0,∞) → L
starting at ω(0) = x, satisfying the following

(11)

W x({ω | ω(ti) ∈ Bi})

=

∫
B1×···×Bk

k∏
j=1

p(xj−1, xj , tj − tj−1)vg(dx1) · · · vg(dxk)

for every k ∈ N∗, every non decreasing sequence t0 = 0 ≤ t1 ≤ t2 ≤ · · · ≤
tk−1 ≤ tk, every family {Bj}j of Borel subsets of L, and the convention
x0 = x. Here, vg denotes the volume element, and p(x, y, t) is the heat

kernel on L (namely p(x, · , · ) satisfies the heat equation ∂u
∂t = Δu and

p(x, y, t) dy weakly tends to the Dirac mass δx at x). We refer to [13,
Chapter VI].

Let now M be a compact saturated subset of a foliated complex
surface (S,F), or a Levi-flat of a complex surface S whose CR foliation is
F . Let g be a smooth hermitian metric on TF , defined in a neighborhood
ofM , and ΔF the leafwise Laplacian associated to this metric. A foliated
harmonic measure on M is a probability measure which satisfies in the
weak sense the equation ΔFμ = 0. Those are the measures

(12) μ := T ∧ vg

where T is a (conveniently normalized) foliated harmonic current and
vg is the leafwise volume element of the Riemannian tensor g. Precisely,

μ(f) = T (fvg) for every f ∈ C∞
F (M). Notice that (ΔFf)vg = 2i∂∂Ff

implies ΔFμ = 0. In particular, a foliated harmonic measure always
exists, by Proposition 1.5.

Let Ω be the set of continuous paths ω : [0,∞) → M which are con-
tained in a leaf of M , and Ωw those conditioned to begin at ω(0) = w.
Shifting the time defines a semi-group σ = {σt}t≥0 of transformations
acting on Ω by the formula σt(ω)(·) := ω(t+·). Given a probability meas-
ure μ on M , let μ be the measure on Ω defined by μ :=

∫
M

Wwμ(dw).
An easy observation shows that μ is harmonic iff μ is σ-invariant. We
can then apply ergodic theory to the system (Ω, σ, μ). Garnett proved
the following version of the random ergodic theorem in this context:

Theorem 1.13 (Random ergodic theorem). The foliated harmonic
measure μ is extremal in the compact convex set of harmonic measures
iff the system (Ω, σ, μ) is ergodic.

We refer to [34] and to the survey paper by Candel [12]. A foli-
ated harmonic measure satisfying the assumptions of the theorem will
be called ergodic. Observe that in particular, for a.e. point w w.r.t. a
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foliated ergodic harmonic measure, Ww-a.e. Brownian path ω starting

at x equidistributes w.r.t. μ, namely 1
t

∫ t

0
δω(s) ds tends to μ as t tends

to +∞.

1.6. The foliated Lyapunov exponent

In this section, we endow the tangent bundle TF , resp. the normal
bundle NF , with smooth hermitian metrics. Recall that if ω : [0, t] → L
is a continuous path in a leaf of L, there is a holonomy map hω : τω(0) →
τω(t) from a transversal τω(0) at ω(0) to a transversal τω(t) at ω(t). See
the book [10] for the definition of holonomy map. The derivative of hω

at ω(0) ∈ τω(0) will be denoted Dhω(ω(0)).

Denote by vg ∈ A1,1
F (M) the volume form along the leaves defined

by the hermitian metric g on TF . Let T be a harmonic current on M ,
and choose a such that μ = avg ∧ T is a probability measure. We call T
ergodic if μ is ergodic. For any t ≥ 0, define Ht : Ω → R by

Ht(ω) := log‖Dhω|[0,t](ω(0))‖.
It satisfies Ht+s = Ht +Hs ◦ σt for every s, t ≥ 0.

Definition-Proposition 1.14. There exists a number λ = λ(T )
such that ∫

Ω

Ht dμ = λt for every t ≥ 0.

Then the ergodicity of T implies that for μ-a.e. point w ∈ M , and Ww-
almost every path ω : [0,∞) → Lw starting at ω(0) = w, we have

(13)
1

t
log‖Dhω|[0,t](ω(0))‖ →t→+∞ λ.

To get the result we apply the ergodic theorem to the cocycle

(14) Ht(ω) := log‖Dhω|[0,t](ω(0))‖,
which satisfies the relationHt+s(ω) = Ht(ω)+Hs(σt(ω)) for every ω ∈ Ω
and every s, t ≥ 0. To get the result one needs to verify that Ht is
μ-integrable. This relies on Cheng–Li–Yau estimates for the heat kernel:

p(x, y, t) ≤ C exp(−αd(x, y)2),

where C,α > 0 are constant depending only on t and the local geometry
of the manifold. See [14].

In the case all the leaves of F are hyperbolic Riemann surfaces, one
can parametrize Brownian motions using the Poincaré metric. In this
case, the Lyapunov exponent depends on cohomological quantities.
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Proposition 1.15 (Cohomological formula for the Lyapunov ex-
ponent). Let (S,F) be a foliated complex surface and M be a minimal
set. Assume that the leaves of M are hyperbolic Riemann surfaces. We
endow its tangent bundle with the Poincaré metric. Then for every foli-
ated harmonic current T on M , we have

λ(T ) = −T ·NF
T ·KF

.

In this formula, NF = TS/TF and KF = T ∗F stand for the normal
bundle and the canonical bundle of F .

Proof. We reproduce here the proof given in [16, Appendice A].
Observe that the formula depends only on T modulo multiplication by
a positive constant, so we can assume that the measure μ := T ∧ vg has
mass one, namely T (vg) = 1. Introduce some coordinates (x, z) where
the foliation is defined by dz = 0, and consider the infinitesimal distance
between leaves, namely the function

∥∥ ∂
∂z

∥∥, where ‖ · ‖ is a hermitian
metric on NF . This function depends on the foliated coordinates, but
when changing coordinates, it is multiplied by a positive function which
is constant on the leaves. In particular, the function ΔF log

∥∥ ∂
∂z

∥∥ is well-

defined on M . Similarly dF log
∥∥ ∂
∂z

∥∥ is a well-defined 1-form along the
leaves of F .

Lemma 1.16. λ =
∫
M

ΔF log
∥∥ ∂
∂z

∥∥ dμ.
Proof. The starting point of the proof relies on the fact that∫

Ht dμ = λt, hence

λ =
d

dt

∣∣∣∣
t=0

∫
Ht dμ.

Now, we have ∫
Htdμ =

∫
X

[∫
Ωw

Ht dW
w

]
μ(dw).

So we deduce

λ =

∫
X

[
d

dt

∣∣∣∣
t=0

∫
Ωw

Ht dW
w

]
μ(dw).

Fix w and introduce the universal covering L̃w of Lw, viewed as the
set of homotopy classes of paths ω : [0, 1] → Lw starting at w with
fixed extremities. Let ϕ be a primitive of the form dF log

∥∥ ∂
∂z

∥∥ which
vanishes at w. The Laplacian of ϕ is invariant by the covering group
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and gives the function ΔF log
∥∥ ∂
∂z

∥∥ on the quotient. Moreover, we have
Ht(ω) = ϕ(ω(t)). Hence we get

d

dt

∣∣∣∣
t=0

∫
Ωw

Ht dW
w =

d

dt

∣∣∣∣
t=0

Ew(ϕ(ω(t)))

= ΔFϕ(w) = ΔF log

∥∥∥∥ ∂

∂z

∥∥∥∥(w).
This proves the formula. Q.E.D.

Proposition 1.15 follows from Lemma 1.16, since the following elem-
entary identity 2i∂∂ = Δg · vg implies

T ·NF = − 1

2π

∫
M

Δg log

∥∥∥∥ ∂

∂z

∥∥∥∥ dμ = − 1

2π
λ(T ) = −(T ·KF )λ(T ).

Q.E.D.

Remark 1.17. The existence of an analogous Lyapunov exponent
for singular holomorphic foliations (say on algebraic surfaces) is not ob-
vious at all. Assume for instance we are in the following situation. Let
(S,F) be a singular holomorphic foliation of a compact complex surface,
whose leaves are hyperbolic Riemann surfaces, and whose singularities
are linearizable. Then the product T∧vP is finite, see [22], and Garnett’s
theory can be extended almost line by line, by using the fact that the
Poincaré metric is continuous in that case. The only problem to de-
fine the Lyapunov exponent in this context is the integrability of the
cocycle (14). The integrability can be proved when the singularities are
in the Siegel domain, namely conjugate to ones of the form x dy−αy dx
where α ∈ R. Then formula Proposition 1.15 holds with a correction
term involving some indices defined at each singularity. However, in the
hyperbolic case �α 
= 0, the integrability remains an open problem.

1.7. Unique ergodicity

A general principle is that foliated harmonic currents associated to
minimal sets are unique. This fact was already observed in the work of
Garnett (unique ergodicity of the weak stable foliation of the geodesic
flow of a compact surface of constant curvature −1, see [34, Propos-
ition 5]). Here is a result in that direction that we obtained in collabo-
ration with Victor Kleptsyn:

Theorem 1.18 (Unique ergodicity). Let M be a compact minimal
set of either

• a complex foliated surface or
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• a Levi-flat of class C2.

We denote F the holomorphic foliation in the first case and the Cauchy–
Riemann foliation in the second case. Assume that F does not support
any foliation cycle on M . Then there exists a unique harmonic current
on M up to multiplication by a constant. Moreover, given a hermitian
metric on NF , there exists a number λ < 0 such that for every point
w ∈ M , and Ww-a.e. leafwise Brownian path ω starting at w, the limit
(13) exists and equal λ.

We refer to [21] for the proof of this result, the main step being the
existence of at least one harmonic current whose associated Lyapunov
exponent is negative. This being done, a second step (the similarities
between Brownian motions on different leaves) permits to infer unique
ergodicity. A weak version of the contraction statement was used by
Thurston for the construction of his universal circle theorem, see [70].

Observe that under the assumption of Theorem 1.18, the leaves of
M are hyperbolic Riemann surfaces since otherwise there would exist a
foliation cycle. In particular, for every uniformization f : D → L of a
leaf, the family of currents Tr defined by (6) converge to a certain har-
monic current T . In the context of flat P1-bundles over a curve of finite
type C, Bonatti and Gomez-Mont have obtained a much more precise
equidistribution statement, namely that of large leafwise discs. See [5].
Recall that a representation from an abstract group to PSL(2,C) is non
elementary iff it does not preserve any probability measure on P1(C).

Theorem 1.19 (Equidistribution of large leafwise discs). Let C be
a Riemann surface of finite type and ρ : π1(C) → PSL(2,C) be a rep-
resentation sending the peripheral curves to parabolic transformations.
Assume that ρ is non elementary. Then for every sequence of points
wn ∈ Sρ = C �ρ P1 whose projections to C stay in a compact set,
and every sequence of positive numbers Rn tending to infinity, we have
the following

(15)
1

V (Rn)
[BF (wn, Rn)] →n→∞ T ,

where V (R) is the volume of a ball of radius R in hyperbolic plane, and
T is the unique harmonic current normalized so that

∫
T ∧ vP = 1.

We end this lecture by insisting on the fact that the dynamical
method based on the Lyapunov exponent does not work to prove unique
ergodicity in the context of singular holomorphic foliations on compact
complex surfaces since, as was already mentioned, the definition of the
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Lyapunov exponent is unclear in this case. Fornaess and Sibony suc-
ceeded proving a similar unique ergodicity statement for generic singu-
lar holomorphic foliations of the complex projective plane, see [27, 28].
Their proof is based on a completely different approach (a computa-
tion of the self-intersection of a foliated harmonic current together with
Hodge index theorem), which nevertheless does not extend to all com-
pact complex surfaces: it necessitates a non trivial automorphism group
of the ambiant surface.

§2. Lecture 2—Topology of Levi-flats in algebraic surfaces

2.1. A rough guide to complex algebraic surfaces

A smooth complex algebraic manifold is a compact complex mani-
fold which embeds holomorphically in a complex projective space PN (C)
for some N ≥ 1. By the GAGA principle, such a compact complex sub-
manifold is defined by algebraic homogeneous equations.

An important character in the understanding of an algebraic mani-

fold X is its canonical bundle, namely the bundle KX :=
∧d

T ∗X, where
d is the dimension of X. The plurigenera of X are defined by the dimen-
sions Pn(X) = h0(X,nKX) of the spaces of holomorphic sections of the
powers nKX of the canonical bundle (the tensor product of line bundles
is denoted additively in the sequel). Their asymptotics when n tends
to +∞ is governed by the Kodaira dimension k(X), which is defined by

k(X) := limn→∞ logPn

log n . The Kodaira dimension can assume any value

k ∈ {−∞, 0, 1, . . . , d}, where by convention k(X) = −∞ means that the
plurigenera vanishes for every n.

As we have seen, algebraic curves can be classified into three classes,
depending upon the type of their universal covering: P1, C or D. This
trichotomy can be detected by the Kodaira dimension, being respectively
equal to −∞, 0 or 1.

Algebraic surfaces are more difficult to classify. The surfaces with
Kodaira dimension being −∞, 0, 1 are relatively well understood, thanks
to the classification of Enriques–Kodaira, and fall into eight classes:
rational, ruled, K3, Enriques, Kodaira, toric, hyperelliptic, and properly
quasi-elliptic. We refer to [3] for a complete treatment of this topic.
Concerning the class of surfaces with Kodaira dimension 2, not much
is known about their classification, though many examples have been
found. These surfaces are called surfaces of general type, and in a sense,
are the most common surfaces.

Examples of general type surfaces are smooth hypersurfaces of de-
gree d ≥ 5 in P3(C), quotients of bounded domains in C2, double covers
of P2(C) ramified along a non singular curve of even degree ≥ 8 etc.
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Surfaces with a hermitian metric of negative holomorphic curvature are
of general type. There is a weak converse to this statement: a theorem
of Mumford states that the canonical bundle of a (minimal) surface of
general type admits a metric whose curvature is positive on all complex
directions apart from a finite union of (−2)-rational curves.

2.2. Thurston’s eight geometries as Levi-flats in algebraic
surfaces

We will say that a 3-manifold possesses a geometry if it admits
a complete locally homogeneous metric (locally homogeneous meaning
that two different points admit isometric neighborhoods). Thurston clas-
sified in eight classes the compact 3-manifolds possessing a geometry,
depending on the isometric class of their universal cover among:

(16) S3, R3, H3, S2 × R, H2 × R, Nil, ˜SL(2,R), Sol.

The spaces Sp, Rp and Hp for p ∈ {2, 3} stand for the complete simply
connected Riemannian manifolds of dimension p of constant sectional
curvature, resp. 1, 0, −1. The last three models are Lie groups equipped
with left invariant metrics. We refer to the article of Scott [65] for a
more complete treatment. Let M be one of the eight simply connected
manifolds in the list (16). We say that a compact 3-manifold M carries
the geometry of M if M is the quotient of M by a discrete group of
isometries of M.

All the geometries (16) are carried by Levi-flats in algebraic complex
surfaces, apart S3. The fact that S3 does not appear is an observation by
Inaba and Michshenko, see [46, Theorem 1], which relies on the Kähler
property for algebraic surfaces, together with the famous theorem of
Novikov on existence of Reeb components, see Theorem 2.4.

Proposition 2.1 (Inaba–Michshenko). A Levi-flat in a Kähler sur-
face has an infinite fundamental group. In particular, such a Levi-flat
does not carry the geometry S3.

Let us review the argument. We adopt the following definition:

Definition 2.2 (Reeb component). A Reeb component is a satur-
ated set homeomorphic to the solid torus which admits no compact leaf
in the interior.

Recall that a Kähler form on a surface S is a closed (1, 1)-form
ω which is positive on complex lines of the tangent bundle, namely
ω(u, iu) > 0 for every u 
= 0 ∈ TS. A complex surface is called Kähler
iff it admits a Kähler form.
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Lemma 2.3. The Cauchy–Riemann foliation of a Levi-flat in a
Kähler surface does not have any Reeb component.

Proof. By contradiction, the integral of ω on the boundary would
both be positive (by Kähler property) and zero (by Stokes formula).

Q.E.D.

Hence, Proposition 2.1 is a consequence of Lemma 2.3 and of the
following result:

Theorem 2.4 (Novikov). Let M be a compact orientable 3-manifold
endowed with a transversally orientable 2-dimensional foliation F of
class C2. The following assertions are equivalent

(1) The foliation F contains a Reeb component.
(2) There exists a leaf L ∈ F such that the inclusion map π1(L) →

π1(M) between the fundamental groups has a non-trivial kernel.

Moreover, if there exists a closed and homotopically trivial loop trans-
verse to F , then the foliation F contains a Reeb component. This occurs
in particular when the fundamental group of M is finite.

We now review examples showing that all of the geometries (16)
except S3 are carried by Levi-flats in algebraic surfaces. First we recall
that the geometries Nil, Sol and H3 are supported by non trivial surface
bundles. A surface bundle is the quotient of [0, 1] × Σ by the relation
(0, x) ∼ (1,Φ(x)), where Σ is a compact oriented surface and Φ is a
diffeomorphism of Σ preserving the orientation.

We shortly denote a surface bundle S1 �Φ Σ. Its monodromy is the
projection [Φ] of Φ in the mapping class group MCG(Σ). An element
[Φ] ∈ MCG(Σ) is called elliptic if its order is finite, reducible if there is
a finite collection of pairwise disjoint simple closed curves in Σ whose
union is invariant by a diffeomorphism in [Φ], and pseudo-Anosov in the
other cases, see [69, Section 2].

If Σ has genus 1, the surface bundle is called a torus bundle. The
group SL(2,Z) acts on Σ � R2/Z2 by linear transformations and cap-
tures all the classes of MCG(Σ). A unipotent torus bundle is a torus bun-
dle whose monodromy comes from a unipotent matrix in SL(2,Z) (re-
ducible monodromy), it carries the Nil geometry. A hyperbolic torus bun-
dle is a torus bundle whose monodromy comes from a hyperbolic matrix
in SL(2,Z) (pseudo-Anosov monodromy), it carries the Sol geometry.

We shall realize such surface bundles in singular holomorphic fi-
brations. Such a fibration stands for a holomorphic map f : S → B
where S is a complex surface and B is a compact Riemann surface, see
[3, Chapter V]. Let p1, . . . , pn be the singular values of f (it may be
empty). A fibered Levi-flat hypersurface is a Levi-flat hypersurface of
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the form f−1(γ), where f : S → B is a singular holomorphic fibration
and γ ⊂ B \ {p1, . . . , pn} is a simple closed path. Such hypersurfaces
were already considered by Poincaré in his study of cycles on algebraic
surfaces, see [63].

Proposition 2.5. Every geometry R3, H3, S2×R, H2×R, Nil or Sol
is carried by a fibered Levi-flat hypersurface. Moreover, H3 and H2 × R

are carried by fibered Levi-flat hypersurfaces in surfaces of general type.

We give the sketch of proof of this fact. It is easy to realize R3, S2×R

and H2×R by using products of compact Riemann surfaces S = Σ×B.
To exhibit fibered Levi-flat hypersurfaces with the geometries Nil and
Sol, we use the following classical proposition, see [31, Chapter II, Sec-
tion 2.3]. Here the complex surface S comes from a singular holomorphic
fibration by elliptic curves over the Riemann sphere.

Proposition 2.6. Let f : S → P1(C) be a singular elliptic fibration.
Let p1, . . . , pn be the singular values of f , assume that this set has car-
dinality ≥ 3. Then the monodromy representation from the fundamental
group of P1(C) \ {p1, . . . , pn} to SL(2,Z) is surjective.

Using this proposition, one easily constructs Levi-flat hypersurfaces
of the form f−1(γ) (up to finite coverings of f) carrying the geometries
Nil or Sol. We refer to [20]. To realize H3 we use Thurston’s theorem,
see [69, Theorem 0.1].

Theorem 2.7 (Thurston). Let Σ be a compact oriented surface of
genus g ≥ 2. A surface bundle S1 �Φ Σ carries the geometry H3 if and
only if its monodromy [Φ] is pseudo-Anosov.

By using the same arguments as before, the following theorem pro-
vides fibered Levi-flat hypersurfaces modelled on H3, see [67, Corol-
lary 1].

Theorem 2.8 (Shiga). Let B be a compact Riemann surface with
genus larger than or equal to 2. Let f : S → B be a singular holomorphic
fibration, such that the generic fiber has genus ≥ 2 and its modulus is not
locally constant (e.g. a Kodaira fibration). Let p1, . . . , pn be the critical
values of f . Then there exists an immersed simple closed curve γ in
B \ {p1, . . . , pn} whose monodromy is pseudo-Anosov.

Note that the surface S in this theorem is of general type, since the
genus of the base and the fibers of f is larger than 1, see [3, Chapter 3,
Theorem 18.4]. Passing to a finite cover if necessary, this completes the
proof of Proposition 2.5.

It remains to treat the geometry of ˜SL(2,R). This geometry is sup-
ported for instance by non-trivial circle bundles over compact oriented
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surfaces of genus g ≥ 2, see [65, Theorem 5.3]. There exists Levi-flat
hypersurfaces with this topology in flat P1(C)-bundles over compact
Riemann surfaces. Namely, we consider a representation ρ : π1(C) →
PSL(2,C), and the flat P1(C) bundle Sρ = C�ρP

1(C), see Example 1.1;
the subset Mρ := C�ρ P

1(R) ⊂ Sρ is an analytic Levi-flat hypersurface,
having the structure of an oriented circle bundle over C. We denote e the
Euler class of Mρ. We recall that this invariant belongs to H2(C,Z) � Z

and characterizes the circle bundle up to isomorphism, see e.g. [57, Sec-
tion 2]. Note that |e| = 2g−2 if and only if ρ is an isomorphism between
π1(C) and a Fuchsian group. In this case Mρ is diffeomorphic to the
unitary tangent bundle of C, see [72, Proposition 6.2].

Proposition 2.9. Let C be a compact oriented surface of genus g ≥
2 and let e ∈ Z satisfying |e| ≤ 2g − 2. There exists a flat P1(C)-bundle
S over C and a Levi-flat hypersurface M ⊂ S which is diffeomorphic to
a circle bundle over C with Euler class e.

Proof. If |e| ≤ 2g−2 then there exists a representation ρ : π1(C) →
PSL(2,R) such that Mρ has Euler class e, see [38, Theorems A and B].

Q.E.D.

2.3. Levi-flat circle bundles in surfaces of general type

We begin with an upper bound on the Euler class of Levi-flat cir-
cle bundles.

Proposition 2.10. Let S be a surface of general type and M be a
Levi-flat hypersurface of class C2 in S. Assume that M is an oriented
circle bundle over a compact oriented surface C of genus g ≥ 2. Then
the Euler class of M satisfies |e| ≤ 2g − 2.

Sketch of Proof. We can assume e 
= 0. We first prove that the
Cauchy–Riemann foliation has no compact leaf. As we will see later,
see Section 2.4, the general type assumption implies that every leaf is
hyperbolic. Assuming by contradiction that there exists a compact leaf
L, it would have genus ≥ 2, and the Euler class being different from 0,
it is easy to see that L would be compressible, namely the map π1(L) →
π1(M) would not be injective. Novikov’s theorem would then provide a
Reeb component, which contradicts the fact that the surface is Kähler.
Hence, there are no compact leaves, and the result follows from the
combination of the next two results. Q.E.D.

Theorem 2.11 (Thurston). Let M be an oriented circle bundle
over a compact oriented surface Σ of genus g ≥ 2. Assume that F is
an oriented 2-dimensional foliation on M of class C2, and that F does
not have any compact leaf. Then there exists a diffeomorphism Ψ of M
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of class C2 isotopic to the identity such that Ψ∗F is transverse to the
circle fibration.

Theorem 2.12 (Milnor–Wood). Let M be an oriented circle bundle
over a compact oriented surface Σ of genus g ≥ 2. If M supports a
transversally oriented 2-dimensional foliation which is transverse to the
circle fibration, then its Euler class satisfies |e| ≤ 2g − 2.

Remark 2.13. The question of the existence of Levi-flats in alge-
braic surfaces diffeomorphic to circle bundles over hyperbolic compact
surface with arbitrarily large Euler class, whose Cauchy–Riemann foli-
ation is obtained by the technique called in french “tourbillonement de
Reeb”, remains open.

The following result provides a construction of Levi-flat hyper-
surfaces in surfaces of general type with a non trivial Euler class.

Theorem 2.14. For every ε > 0 there exist a surface of general
type Sε and a Levi-flat hypersurface Mε ⊂ Sε which is diffeomorphic
to an oriented circle bundle Mε over a compact oriented surface Cε of
genus ≥ 2. We have |e(Mε)/Eu(Cε)| ∈ [1/5 − ε, 1/5], where e(Mε) de-
notes the Euler class of Mε and Eu(Cε) denotes the Euler characteristic
of Cε.

Sketch of Proof. Here we only prove that there exists a Levi-flat
in a surface of general type which is diffeomorphic to a non trivial cir-

cle bundle, hence carrying the geometry ˜SL(2,R). Let C be a com-
pact algebraic curve of genus g ≥ 2. By the uniformization theorem,

see Theorem 1.9, there is a biholomorphism D : C̃ → H which is equi-
variant w.r.t. some representation ρ : π1(C) → Aut(H) ⊂ Aut(P1(C)).
Let (Sρ,Fρ) be the flat P1(C)-bundle over C of monodromy ρ, defined
as in Example 1.1. There is a Levi-flat defined by Mρ = C � P1(R),
which is diffeomorphic to the unitary tangent bundle of the surface C
equipped with e.g. its Poincaré metric. The bundle Sρ → C has a holo-
morphic section s : C → Sρ defined as the level of the universal covers by
s̃(x) = (x,D(x)). Of course we are not done since the Kodaira dimension
of Sρ is −∞, hence Sρ is not of general type.

We construct (Sε,Mε) as a double ramified covering of (Sρ,Mρ). To
define such a ramified cover, let E → Sρ be a holomorphic line bundle
and h : Sρ → 2E (recall our additive notation for tensor product of line
bundles) be a holomorphic section, whose zero divisor h−1(0) is a smooth
reduced algebraic curve in Sρ. The algebraic surface

(17) Sε = {(w, ζ) ∈ E | ζ2 = h(w)}.
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is a 2 : 1 ramified cover (defined by π(x, ζ) = x), ramifying over h−1(0).
We easily verify that the pull-back of Fρ is a singular holomorphic fo-
liation Fε whose singularities are the pull-back in Sε of the points of
tangency between Fρ and h−1(0). Hence assuming that h−1(0) inter-
sects Mρ transversally, the set Mε = π−1(Mρ) is a Levi-flat hypersurface
of Sε. To understand its topology, one has to understand the topology
of the link h−1(0) ∩Mρ in Mρ.

It is well-known that if E is sufficiently ample1 then the surface
Sε constructed above is of general type (e.g. if F is ample, then the
sufficiently large powers of F will work). For such a line bundle, choosing
at random the section h of its square would probably lead to a hyperbolic
manifold Mε. Hence we will need to make a very particular choice.
Define F = O(

ks+
∑

j∈J fj
)
where k is an integer, and fj are distinct

fibers of the fibration Sρ → C. If we assume furthermore that k and
the number |J | of fibers fj are both even, then it is possible to find
a line bundle E such that 2E = F . By definition of F there exists a
holomorphic section h0 : Sρ → F such that h−1

0 (0) = s∪⋃
j fj . Observe

that the zero set of h0 is transverse to Mρ and that its intersection with
Mρ is a union of |J | fibers of the circle fibration Mρ → C, hence is
a quite simple link. The section h0 is not convenient for our purpose,
since its zero set is not smooth (at the intersection points of fj and
s). Nevertheless, we can show that if k and |J | are large enough, the
line bundle E is ample, and one can make a small perturbation h of h0

with a smooth zero set. For such a choice, the couple (E, h) yields the
desired Levi-flat Mε ⊂ Sε diffeomorphic to a non trivial circle bundle.
See details in [20]. Q.E.D.

The sup of the ratios |e(M)/Eu(C)|, where M is a Levi-flat in a
surface of general type diffeomorphic to a circle bundle of Euler class
e(M) over a hyperbolic compact surface C, is unknown. The following
result shows that the value |e(M)/Eu(C)| = 1 (the maximal permitted
by Proposition 2.10) is not reached:

Theorem 2.15. A Levi-flat hypersurface of class C2 in a surface
of general type is not diffeomorphic to the unitary tangent bundle of a
hyperbolic compact two dimensional orbifold.

The proof of this result uses a foliated Lyapunov exponent associ-
ated to the Cauchy–Riemann foliation and its sketch is postponed to
Corollary 2.22. See [20] for details.

1Ample means that it carries a metric of positive curvature.
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2.4. Hyperbolicity and topological consequences

The following result will be crucial for studying the topology of
Levi-flats in surfaces of general type.

Proposition 2.16. Let M be a Levi-flat of class C2 in a surface
of general type. Then the Cauchy–Riemann foliation of F has hyper-
bolic leaves.

Sketch of Proof. We prove Proposition 2.16 under the assumption
that KS is ample, namely that it has a metric of positive curvature.
Assume that F has a compact leaf L. Adjunction formula then gives

Eu(L) = −L ·KS − L ·NL.

The first term of the right hand side is < 0 because KS has a metric of
positive curvature, and the second one is zero because the normal bundle
of L has a flat connexion (the Bott connexion induced by the foliation),
hence L is hyperbolic.

Assume now that there exists a parabolic leaf L. A theorem of
Candel shows that there exists an Ahlfors current T such that T ·KF = 0
(see [11]). Using the leafwise adjunction formula we obtain

T ·KF = T ·KS + T ·NF .

The right hand side is > 0 for the same reason as before (take the Bott
connexion on NF in equation (7)). This yields a contradiction. Q.E.D.

We deduce the following application:

Theorem 2.17. Let S be a surface of general type and let M be an
immersed Levi-flat hypersurface of class C2 in S. Then the fundamental
group of M has exponential growth. In particular M does not carry the
geometries S3, S2 × R, R3 nor Nil.

Sketch of Proof. Since there is no Reeb component, Novikov’s the-
ory shows that the leaves of the pull-back of the Cauchy–Riemann foli-

ation in the universal cover M̃ of M are simply connected, and that their

growth is bounded by the one of M̃ (if it were not the case, we could

find a leaf in M̃ that intersects a flow box in two different plaques, those

finding a closed transverse loop to the foliation in M̃ , which is impossible

by the last part of Novikov’s theorem (Theorem 2.4)). Hence, M̃ has
exponential growth, by Proposition 2.16 and by Verjovsky–Candel result
on the continuity of the Poincaré metric, see Theorem 1.11. Q.E.D.

Remark 2.18. The hyperbolicity of the Cauchy–Riemann foliation
is related to the following open conjecture.



40 B. Deroin

Conjecture 2.19 (Green–Griffiths). Let S be a surface of general
type. There exists a proper subvariety Y ⊂ S such that every entire
curve f : C → S satisfies f(C) ⊂ Y .

This problem was solved by McQuillan [59] for surfaces of general
type satisfying c21(S) > c2(S). He proved that every non-degenerate
entire curve f : C → S is tangent to a singular holomorphic foliation
on (a finite cover of) S. A contradiction is deduced from positivity
properties of the tangent bundle of the foliation. Brunella provided an
alternative proof in [7] by using the normal bundle of the foliation. An
important difficulty in these works is that f(C) can contain a singular
point of the foliation. In our non-singular context the proof is simpler
because we directly use adjunction formula. We refer to the survey [23]
for recent results concerning Green–Griffiths conjecture.

2.5. The Anosov property and application to the topology
of Levi-flats

A Levi-flat M ⊂ S in a complex surface is called Anosov if
its Cauchy–Riemann foliation is topologically conjugate to the weak
unstable foliation of a 3-dimensional Anosov flow on some compact
3-manifold N . Classical examples of Anosov flows are the geodesic
flow on the unitary tangent bundle of compact orientable surfaces
of genus ≥ 2 and the horizontal flow on hyperbolic torus bundles.
There are many other examples, for instance on hyperbolic 3-manifolds
and graph 3-manifolds, see [30, 39, 41]. One can verify that Anosov
Levi-flat hypersurfaces do not have any transverse invariant measure,
their foliation F is therefore hyperbolic. We have the following upper
bound for the Lyapunov exponent.

Theorem 2.20. Let S be a complex surface and M be an immersed
Anosov Levi-flat hypersurface in S. We endow the leaves of the Cauchy–
Riemann foliation F with the Poincaré metric gP . Let T be an ergodic
foliated harmonic current of F . Then the Lyapunov exponent of T sat-
isfies λ(T ) ≤ −1.

Sketch of Proof. We use that the trajectories of the Anosov flow in
the hyperbolic uniformizations of the leaves are quasigeodesics for the
Poincaré metric, to produce a new flow by stretching these trajectories
to geodesics. We obtain a continuous flow on M whose orbits are leaf-
wise geodesics for the Poincaré metric. Let vP be the leafwise Poincaré
volume form. Since the result does not depend on the projective class of
T , we can assume that the foliated harmonic measure T ∧ vP has mass
one. This latter is shown to be a SRB measure for the stretched flow.
Moreover, the Lyapunov exponents of this measure are 1, 0, λ. (The
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Lyapunov exponents are not a priori defined since the stretched flow is
only continuous. However, it is smooth along the leaves, which gives the
exponents 1 and 0, and using the C1 transverse structure of the foliation
we can define another exponent, which we identify with λ). The ingre-
dients for this computation involve the shadowing property of geodesics
by Brownian paths due to Ancona, see [2, Théorème 7.3, p. 103]. The
bound λ(T ) + 1 ≤ 0 to be proved then relies on volume estimates in the
spirit of Margulis–Ruelle’s inequality. Q.E.D.

Corollary 2.21. Let S be a surface of general type and let M be
an immersed Levi-flat hypersurface in S. Then M is not Anosov.

Sketch of Proof. We indicate the proof when KS has a metric of
positive curvature. The proof then relies on the leafwise adjunction
formula, which gives T ·KF = T · NF + T ·KS > T · NF . We deduce
that the Lyapunov exponent verifies the following pinching estimates

(18) −1 < λ(T ) ≤ 0

which is contradictory with being Anosov by Theorem 2.20. Q.E.D.

Corollary 2.22. A Levi-flat in a surface of general type is not
diffeomorphic to a quotient of the Lie groups Sol or PSL(2,R) by a
cocompact lattice.

Sketch of Proof. The proof is by contradiction. Assuming that a
Levi-flat is diffeomorphic to one of those manifolds, we use deep results
of resp. Ghys/Sergiescu, see [37], and Matsumoto, see [57], which enable
to prove that the Levi-flat is Anosov. Hence the contradiction comes
from Corollary 2.21. In order to apply the mentioned theorems, one
needs to verify that the Cauchy–Riemann foliation has no compact leaf,
which is done by using the hyperbolicity of the leaves together with
Novikov’s theory. Q.E.D.

§3. Lecture 3—Complex projective structures: Lyapunov ex-
ponent, degree and harmonic measure

3.1. A rough guide to complex projective structures

Let C be a smooth complex quasi-projective curve of negative Euler
characteristic. We denote by g its genus and by n its number of punc-
tures. A complex projective structure on C is a maximal atlas of holo-
morphic charts zj : Uj ⊂ C → P1(C) (called projective charts) which
overlap as

zj =
azk + b

czk + d
,
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on the intersection Uj ∩ Uk, where a, b, c, d are complex numbers such
that ad − bc 
= 0. We will denote P1 = P1(C), and will refer to P1-
structures instead of complex projective structures. Two P1-structures
on C are equivalent if they define the same atlas of projective charts.

It is convenient to define a P1-structure on C in terms of the so-called
development-holonomy pair (dev, hol). Each projective chart can be ex-

tended analytically as a locally injective meromorphic map dev : C̃ → P1,
satisfying the equivariance property dev ◦γ = hol(γ) ◦ dev, where hol is
a representation π1(C) → PSL(2,C). A development-holonomy pair is
not unique for a given projective structure. Namely, if A ∈ PSL(2,C),
(A ◦ dev, A ◦ hol ◦A−1) gives another development-holonomy pair. We
refer here to the survey paper by Dumas, see [24] for a comprehensive
treatment of this notion.

When the surface C is not compact (hence by assumption it is bi-
holomorphic to a compact Riemann surface punctured at a finite set),
we restrict ourselves to the subclass of parabolic P1-structures. Such
a structure has the following well-defined local model around the punc-
tures: each puncture has a neighborhood which is projectively equivalent
to the quotient of the upper half plane by the translation z �→ z + 1.

A P1-structure on C can be understood by the way of the Schwarzian
derivative. Indeed, introduce the following differential operator called
the Schwarzian:

(19) S(f) := {f, z} dz2 where {f, z} =
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

for every holomorphic local diffeomorphism f : U ⊂ C → C. We have
the following two fundamental properties

(1) S(g ◦ f) = S(f) + f∗S(g) for every local diffeomorphisms
f : U ⊂ C → V ⊂ C and g : V ⊂ C → W ⊂ C.

(2) S(f) = 0 iff f(z) = az+b
cz+d for some complex numbers a, b, c, d

such that ad− bc 
= 0.

In particular, let σ1 and σ2 be two P1-structures on C. Pick projective
charts z1 and z2 defined on some common open set U ⊂ C of σ1 and σ2

respectively, and define the holomorphic quadratic differential qσ1,σ2 =
{z2, z1} dz21 . Properties (1) and (2) show that qσ1,σ2 does not depend on
the chosen projective charts z1 and z2, and thus defines a holomorphic
quadratic differential on the curve C. Reciprocally, given a P1-structure
σ1 and a holomorphic quadratic differential q on C, there exists a unique
P1-structure σ2 on C such that q = qσ1,σ2 . In particular, at least when
C is compact, the set of projective structures on C is an affine space
directed by the vector space of holomorphic quadratic differentials on C.
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This shows that the set P (C) of P1-structures on a compact algebraic
curve of genus g ≥ 2 is isomorphic to C3g−3. We will not discuss here
the analogous computation in the punctured case, which relies on results
of Fuchs and Schwarz, but we state the result: the set P (C) of parabolic
P1-structures on C is isomorphic to C3g−3+n.

One of the interest in studying complex projective structures
comes from their relations to uniformization problems in two or three
dimensions. The main illustration of this is certainly given by the
uniformization theorem of Poincaré–Koebe, which in particular defines
a canonical projective structure σFuchs (by viewing C as a quotient
of H under a Fuchsian group). Other kind of uniformizations have
been considered, e.g. Schottky uniformizations, and lead to parabolic
P1-structures as well. More generally, the Ahlfors finiteness theorem
provides many examples of parabolic P1-structures:

Theorem 3.1 (Ahlfors finiteness theorem). Let Γ be a finitely gen-
erated discrete subgroup of PSL(2,C). Then the quotient of the discon-
tinuity set Ω ⊂ P1 by Γ is a finite type Riemann surface. Moreover, if Γ
is torsion free, then the P1-structure that it inherits is parabolic.

The last (less known) part of the theorem is proved in [1, Lemma 1].
The structures produced by Theorem 3.1 have been known as covering
projective structures, because they are characterized by the fact that the
developing map is a covering onto its image [49, 50]. A particular ex-
ample is given by quasi-Fuchsian deformations of the canonical structure
σFuchs. These structures play an important role in Teichmüller theory.
Recall that the Teichmüller space T (C) is defined as the set of equiva-
lence classes of couples (D, [Ψ]) where D is a Riemann surface and [Ψ]
is a homotopy class of diffeomorphism between C and D. Two couples
(D1, [Ψ1]) and (D2, [Ψ2]) are considered as equivalent if Ψ2 ◦ Ψ−1

1 is
homotopic to a biholomorphism from D1 to D2. Recall the following
important result.

Theorem 3.2 (Bers simultaneous uniformization theorem). For
every (D, [Ψ]) ∈ T (C), there exists a unique representation ρ from
π1(C) to PSL(2,C) (up to conjugation) preserving a partition P1 =
DC ∪ Λ ∪ DD, where Λ is a topological circle, and DC (resp. DD) is the
image of a ρ-equivariant univalent holomorphic (resp. anti-holomorphic)

map from C̃ (resp. D̃, observe that we have an identification of π1(D)
with π1(C) induced by Ψ) to P1.

Let P (C) be the set of (parabolic) P1-structures on C. Observe that
for every (D, [Ψ]) ∈ T (C), the holomorphic univalent ρ-equivariant map-
ping given by Theorem 3.2 produces a (parabolic) P1-structure, and that
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this later determines the element (D, [Ψ]). This defines an embedding
B : T (C) → P (C), called the Bers embedding. Bers proved that the
map B is holomorphic, and that its image B(C) is relatively compact in
P (C). This later is called the Bers slice.

There are many other examples of parabolic P1-structures. For in-
stance surgery operations such as grafting (see Hejhal’s original con-
struction in [42]) may produce a parabolic P1-structure with holonomy
a Kleinian group that is not of covering type.

Theorem 3.3 (Hejhal). There exist P1-structures on compact
curves such that the developing map is not a covering onto its image,
but whose holonomy has image a discrete subgroup of PSL(2,C).

Such projective structures are usually called exotic. The prototype
of such an exotic projective structure is obtained by inserting a Hopf
annulus after cutting a given P1-structure along a simple closed curve.
More precisely start with the quotient Cu of H by a lattice Γ ⊂ PSL(2,R)
containing as a primitive element the hyperbolic transformation γ(z) =
αz for α > 1, and consider

C = (Cu \ γu ∪H \ γH)/{γ±
u � γ∓

H},
where γu = α\iR+∗ ⊂ Cu, H = α\C∗ is the Hopf torus, and γH =
α\iR+∗ ⊂ H. The set of exotic P1-structures in P (C) is organized as
a countable union of non empty connected open subsets called exotic
components.

Using the point of view of the Schwarzian derivative, one can con-
struct yet other examples of P1-structures on C. For instance, one can
prove that there exists a non empty open subset of P (C) formed by
P1-structures on C whose holonomy has image a dense subgroup of
PSL(2,C). We refer to [9] for a proof of this fact in the case of the
fourth punctured sphere, which readily extends to all algebraic curves.

There are nice pictures of the decomposition of P (C) into the various
subsets described above: Bers slice, exotic components, etc. We refer
e.g. to [48].

3.2. The degree of a P1-structure

Let gP be the unique complete conformal metric of curvature −1 on
C. It is well known that when C is of finite type, the hyperbolic metric
has finite volume. Recall that a representation π1(C) → PSL(2,C) is
non elementary if it does not preserve any probability measure on the
Riemann sphere. The holonomy of a parabolic projective structure is
always non elementary: see [33, Theorem 11.6.1, p. 695] for the compact
case, and [9, Lemma 10] for the punctured case.
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If σ is a parabolic projective structure, we want to define δ(σ) as a
nonnegative number counting the average asymptotic covering degree of

devσ : C̃ → P1. For any x ∈ C̃ we denote by B(x,R) the ball centered at
x of radius R in the Poincaré metric, and by vol the hyperbolic volume.

Definition-Proposition 3.4. Let C be a Riemann surface of finite
type and σ be a parabolic P1-structure on X. Choose a universal covering

c : C̃ → C, and a developing map dev : C̃ → P1. Let (xn) be a sequence

of points in C̃ whose projections c(xn) stay in a compact subset of C,
Rn be a sequence of radii tending to infinity, and (zn) be an arbitrary
sequence in P1. Then the limit

(20) δ = lim
n→∞

#B(xn, Rn) ∩ dev−1(zn)

vol(B(xn, Rn))

exists, and does not depend on the chosen sequences (xn), (Rn), (zn) nor
on the developing map dev. The number δ is invariant by taking finite
covering, so does not behave like a degree. We define deg(σ) = vol(C)δ,
and call this number the degree of the P1-structure.

The very reason for the normalization deg(σ) = vol(C)δ is clearer
when dealing with branched projective structures. Such structures are
defined by non constant equivariant meromorphic maps defined on the
universal cover w.r.t. a representation of the covering group to PSL(2,C).
The most basic example of a branched projective structure is a non
constant meromorphic function f : C → P1. For such a structure, one
verifies that the limit (20) exists, and that the average degree in the
sense of Definition-Proposition 3.4 coincides with the topological degree
of the map f .

The existence of the limit in (20) is not obvious, in particular due
to the possibility of boundary effects. The proof ultimately relies on the
equidistribution theorem of Bonatti and Gomez-Mont [5] mentioned in
the first lecture, Theorem 1.19.

It also makes use of the following dictionary between projective
structures on curves and transverse sections of flat P1-bundles over
curves, which was developed in depth in the survey [53].

Suppose that σ is a P1-structure. Introduce the flat P1-bundle
(Shol,Fhol), see Example 1.1, where (dev, hol) is a development-holonomy
pair for the structure σ. Observe that the bundle map Shol → C has
a section s : C → Shol defined at the level of the universal covers by
x �→ (x, dev(x)). This section—we identify the section and its image
here—is transverse to the foliation Fhol.

Reciprocally, if ρ : π1(C) → PSL(2,C) is any representation, a
section of Sρ transverse to the foliation Fρ gives rise to a projective
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structure on C, by restricting the transverse projective structure of the
foliation Fρ to the section. This operation is the inverse of the one
described in the last paragraph.

Sketch of Proof of Definition-Proposition 3.4. After these prelim-
inaries, let us sketch the proof of the convergence (20). We will give the
proof only in the case C is compact. The punctured case necessitates a
separate technical analysis. We refer to [19] for the details. Let σ be a
P1-structure and s its corresponding section of Shol. We denote by T a
foliated harmonic current on (Shol,Fhol) normalized so that its product
with the Poincaré volume form is 1. The number #B(xn, Rn)∩dev−1(zn)
is easily seen to be the number of intersection of points of the leafwise
ball BF (wn, Rn) with s, where wn is the projection in Sρ of the point
(xn, zn). Hence since the leafwise balls normalized by their volume (con-
sidered as currents) tend to T (Theorem 1.19), one shows (with a little

additional technical work) that #B(xn,Rn)∩dev−1(zn)
vol(B(xn,Rn))

tends to the geo-

metric intersection product of T with s. This product is defined in the
following way: T can be thought of as a family of transverse measures
for the foliation Fρ, and it induces a Radon measure on any curve of Sρ.
The mass of this measure is by definition the intersection product of T
with s and is denoted T ∧̇ s. Q.E.D.

A corollary from Proof of Definition-Proposition 3.4 yields the fol-
lowing.

Corollary 3.5. The degree vanishes iff σ is a covering projective
structure.

3.3. Lyapunov exponent of P1-structures

Fix a basepoint � ∈ C, in particular an identification between the
covering group π1(C) and the usual fundamental group π1(C, �). As
C is endowed with its Poincaré metric, Brownian motion on C is well-
defined. Let W� be the Wiener measure on the set of continuous paths
ω : [0,∞) → X starting at ω(0) = �.

Definition-Proposition 3.6. Let C and σ be as above. Define a
family of loops as follows : for t > 0, consider a Brownian path ω issued
from �, and concatenate ω|[0,t] with a shortest geodesic joining ω(t) and
�, thus obtaining a closed loop ω̃t. Then for W� a.e. Brownian path ω
the limit

(21) χ(σ) = lim
t→∞

1

t
log‖hol(ω̃t)‖

exists and does not depend on ω. This number is by definition the
Lyapunov exponent of σ.
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Here ‖·‖ is any matrix norm on PSL(2,C). The existence of the limit
in (21) was established in [18, Definition-Proposition 2.1]. As expected
it is a consequence of the subadditive ergodic theorem. In the notation
of [18], χ(σ) = χBrown(hol). Another way to define χ(σ) goes as follows
(see [18, Remark 3.7]: identify π1(C) with a Fuchsian group Γ and
choose independently random elements γn ∈ Γ ∩ BH(0, Rn), relative to
the counting measure. Here (Rn) is a sequence tending to infinity as
fast as, say nα for α > 0. Then almost surely

1

dH(0, γn(0))
log‖hol(γn)‖ −−−−→

n→∞ χ(σ).

The following formula relates the Lyapunov exponent χ(σ) to the
degree defined in the last subsection.

Theorem 3.7. Let σ be a parabolic holomorphic P1 structure on C.
Let as above χ(σ), δ(σ), and deg(σ) respectively denote the Lyapunov ex-
ponent, the unnormalized degree and the degree of σ. Then the following
formula holds :

(22) χ(σ) =
1

2
+ 2πδ(σ) =

1

2
+

deg(σ)

|Eu(C)| .

Theorem 3.7 could be understood as the analogue of the familiar
Manning–Przytycki formula [55, 64] for the Lyapunov exponent of the
maximal entropy measure of a polynomial. Recall that this formula
states that for a polynomial P of degree d in one variable

χ = log d+
∑

P ′(c)=0

G(c),

where G is the Green function. See [55, 64]. The term log d is constant
on parameter space (equal to the entropy of the polynomial P ), as the
term 1

2 in formula (22), and the term
∑

c G(c) is non negative, as well
as the degree.

This reinforces an analogy between Mandelbrot sets and Bers slices
that was brought to light by McMullen [58]. Namely, the Lyapunov
exponent is minimal on these sets (equal to log d for the Mandelbrot set
and to 1/2 for the Bers slice). We will develop more on this analogy
later on.

Sketch of proof. Surprisingly enough, the proof is based on the erg-
odic theory of holomorphic foliations. Again we will indicate the proof
only when C is compact, and refer to [19] for the punctured case. Recall
that there is a dictionary between P1-structures and transverse sections
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of flat P1-bundles. In this dictionary, there is a simple relation between
the Lyapunov exponent χ defined in Definition-Proposition 3.6 and the
foliated Lyapunov exponent defined in Section 1.6.

Lemma 3.8. Let σ be a P1-structure, (dev, hol) a development-
holonomy pair, and λ(σ) be the Lyapunov exponent of the foliated com-
plex surface (Shol,Fhol) computed w.r.t. the leafwise Poincaré metric.
Then χ(σ) = − 1

2λ(σ).

The proof of this lemma essentially follows from the formula of the
derivative of a Moebius map in the spherical metric, namely if h(z) =
az+b
cz+d , then ‖Dh(z)‖ = |ad−bc|

|az+b|2+|cz+d|2 . We refer to [19] for the detailed

proof of Lemma 3.8.
Next, the proof of Theorem 3.7 relies on cohomological computations

in H1,1(Shol,C). Recall that a P1-bundle is an algebraic surface, by the
GAGA principle, and in particular is Kähler. Also recall that by the
∂∂-lemma, in a Kähler compact surface, a closed (1, 1)-form is exact iff
it is ∂∂-exact. This means that T ·E = T ·F if E and F have the same
Chern classes, see Section 1.4.

The cohomology of Shol is easy to compute. Indeed, a P1-bundle over
a curve is diffeomorphic to a product as soon as there exists a section of
even self-intersection. In our situation, we have such a section at hand:
the section s being (at the level of the universal covers) the graph of
dev. We claim: s2 = Eu(C). This is due to the fact that there is an
isomorphism between the tangent bundle of C and the normal bundle
of s, since s is both transverse to the foliation Fhol and to the fibration
Shol → C. In particular, we infer H1,1(Shol,C) = C[s]⊕C[f ], where f is
any fiber of the fibration. The intersection product on H1,1(Shol,C) is
given by s2 = Eu(C), f2 = 0, and f · s = 1.

After these preliminaries, let us use the combination of Lemma 3.8
and Proposition 1.15, to get

χ =
1

2

T ·NF
T ·KF

.

We have NF · f = 2 and NF · s = Eu(C). So we infer [NF ] = 2[s] −
Eu(C)[f ]. Let T be the unique harmonic current whose product with
the Poincaré volume form is equal to 1. We then have T ·f = 1

vol(C) and

T ·KF = |Eu(C)|
vol(C) . This gives

χ =
vol(C)

2Eu(C)
(2T · s+ |Eu(C)|T · f) = 2πT · s+ 1

2
.

The proof is completed by showing that the cohomological intersection
T · s coincides with the geometric intersection δ = T ∧̇ s. This last fact
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is not immediate since one cannot regularize the current of integration
on s (recall s2 < 0) but this is done by hand. We refer to [19] for more
details. Q.E.D.

3.4. Harmonic measures of P1-structures

Let C be a smooth quasi-projective curve of negative Euler char-
acteristic and σ a parabolic type projective structure on C. As before,
we endow C and its universal covering with the Poincaré metric. We
associate to σ a family of harmonic measures {νx}x∈C̃ on the Riemann

sphere, indexed by C̃. It can be defined in several ways. The follow-
ing appealing presentation was introduced by Hussenot in his PhD the-
sis [45]:

Definition-Proposition 3.9 (Hussenot). Let C be a Riemann sur-
face of finite type and σ be a parabolic projective structure on C. Choose

a representing pair (dev, hol). Then for every x ∈ C̃, and Wx a.e. Brown-
ian path starting at ω(0) = x, there exists a point e(ω) on P1 defined by
the property that

1

t

∫ t

0

dev∗(δω(s)) ds −−−−→
t→+∞ δe(ω).

The distribution of the point e(ω) subject to the condition that ω(0) = x
is the measure νx. In particular, due to the conformal invariance of
Brownian motion, for a covering P1-structure, we recognize the classical
harmonic measures on the limit set of a Kleinian group.

Another definition of the harmonic measures is based on the so-
called Furstenberg boundary map, which was designed in [32], based on
the discretization of Brownian motion in the hyperbolic plane H (see
also Margulis [56, Theorem 3] for a different approach). Furstenberg
showed that if Γ is a cofinite Fuchsian group and ρ : Γ → PSL(2,C) is
a non-elementary representation, there exists a unique measurable equi-
variant mapping θ : P1(R) → P1 defined a.e. with respect to Lebesgue

measure. Choose a biholomorphism C̃ � H, thereby identifying π1(C)
with a cofinite Fuchsian group. For every x ∈ H, let mx be the classical
harmonic measure (i.e. the exit distribution of Brownian paths issued
from x), which is a probability measure with smooth density on P1(R).
The harmonic measure νx is then defined by νx = θ∗mx. From this
perspective it is clear that, the measures νx are mutually absolutely
continuous and depend harmonically on x.

Theorem 3.10. Let C be compact algebraic curve and σ be a para-
bolic projective structure on C. Let as above χ be its Lyapunov exponent
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and (νx)x∈C̃ be the associated family of harmonic measures. Then for
every x,

dimH(νx) ≤ 1

2χ
≤ 1.

Furthermore dimH(νx) = 1 if and only if the developing maps are
injective.

So, as in the polynomial case, formula (22) provides an alternate
approach to the classical bound dimH(ν) ≤ 1 for the harmonic measure
on boundary of discontinuity components of finitely generated Kleinian
groups, which follows from the famous results of Makarov [54] and Jones–
Wolff [47]. In addition, with this method we are also able to show that
dimH(ν) < 1 when the component is not simply connected. Indeed we
have the more precise bound dimH(ν) ≤ A

2χ , where 0 ≤ A ≤ 1 is an

invariant of the flat foliation, and A < 1 when hol is not injective. This
A has been defined by Frankel and is called the action, see [29].

We also see that the value of the dimension of the harmonic measures
detects exotic quasi-Fuchsian structures, that is, projective structures
with quasi-Fuchsian holonomy which do not belong to the Bers slice.

Sketch of Proof. The curve C will be assumed to be compact, we
refer to [19] for the punctured case. The main observation is to see the
family of harmonic measures of a P1-structure as a foliated harmonic
current. This is summarized in the following statement.

Proposition 3.11. Let σ be a P1-structure on a compact C, and
let (dev, hol) be a development-holonomy pair. Let (Shol,Fhol) be the flat
P1-bundle constructed in Example 1.1. Let T ′ be the unique foliated
harmonic current whose intersection with the fibers of Shol is 1. The
family of harmonic measures of σ is the family of disintegration of a

(lift) of T ′ to C̃ × P1 on the fibers x× P1.

Observe that the current T ′ in this proposition is equal to T ′ =
vol(C)T , where T is the current such that the foliated harmonic meas-
ure μ = T ∧ vP has mass one. The proof of proposition relies on
the fact that the map x �→ νx is harmonic, which is clear from the
Furstenberg/Margulis point of view.

We now review an invariant of the harmonic current T that was
introduced by Frankel, under the name of action. See [29]. It is defined
as the non negative number

(23) A = A(T ) =

∫
Shol

‖∇F logϕ‖2 dμ,
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where the functions ϕ are the densities of the disintegration of T along
the leaves. The function ϕ are positive harmonic functions, so that
the integral (23) is convergent. More precisely, by observing that the
functions ϕ can be extended analytically on the universal cover of the
leaves, and applying the Schwarz–Pick lemma, one shows that A(T ) ≤ 1.
See [16] for more details.

Using the fact that ϕ is harmonic, one finds the formula ‖∇ logϕ‖2 =
−Δ logϕ, so that ∫

Shol

Δ(logϕ) dμ = −A.

Using exactly the same argument as in the proof of Lemma 1.16, we
infer the following result:

Lemma 3.12. For μ-a.e. w ∈ Shol, and Ww-a.e. leafwise Brownian
path ω starting at w, we have

lim
t→∞

1

t
logDT (hω|[0,t])(w) = −A,

where DTh :=
h−1νω(t)

νω(0)
is the Radon–Nikodym derivative with respect to

the measure induced by T on P1-fibers, namely the family of harmonic
measures.

Hence, for every ε > 0, the maps hω|[0,t] contract conformally the

spherical distances by the factor exp((λ ± ε)t), whereas they contract
the harmonic measures by the factor exp((−A(T ) ± ε)t). We deduce
the heuristic

dim(νx) ≤ A

|λ| =
A

2χ
≤ 1

2χ
.

Using a weak notion of dimension, the so-called essential dimension
(denoted by dimess), one can prove part of this heuristic, namely the
inequality

(24) dimess(νx) ≤ A

2χ
.

This uses an argument of Ledrappier [52, Theorem 1] in the context of
random product of matrices that we adapt to our setting. The proof
of Theorem 3.10 then follows from (24) and the fact that the Hausdorff
dimension is bounded by the essential dimension. Q.E.D.

3.5. Geometry of Bers slices

As another application of formula (22), we recover a result due to
Shiga [66].
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Theorem 3.13 (Shiga). Let C be a hyperbolic Riemann surface
of finite type (of genus g with n punctures). The closure of the Bers
embedding B(C) is a polynomially convex compact subset of the space
P (C) � C3g−3+n of holomorphic projective structures on C. As a con-
sequence, B(C) is a polynomially convex (or Runge) domain.

Recall that a compact setK in CN is polynomially convex if K̂ = K,
where

K̂ =

{
z ∈ CN , |P (z)| ≤ sup

K
|P | for every polynomial P

}
.

An open set U ⊂ CN is said to be polynomially convex (or Runge) if

for every K � U , K̂ ⊂ U . The theorem may be reformulated by saying
that B(C) is defined by countably many polynomial inequalities of the
form |P | ≤ 1. This is not an intrinsic property of Teichmüller space, but
rather a property of its embedding into the space P (C) of holomorphic
projective structures on C (as opposed to the Bers–Ehrenpreis theorem
that Teichmüller is holomorphically convex).

Shiga’s proof is based on the Grunsky inequality on univalent func-
tions. Only the polynomial convexity of B(C) is asserted in [66], but

the proof covers the case of B(C) as well. Our approach is based on the
elementary fact that the locus of minima of a global psh function on CN

is polynomially convex.

Sketch of Proof of Theorem 3.13. We just prove here the polyno-
mial convexity of the Bers slice B(C). The polynomial convexity of B(C)
is more involved, we refer to [19]. It was shown in [18] that σ �→ χ(σ)
is a continuous (Hölder) plurisubharmonic (psh for short) function on
P (X), hence it follows from formula (22) that deg is continuous and psh,
too. In addition we see that χ(σ) reaches its minimal value 1

2 exactly
when deg(σ) = 0, see Cotollary 3.5. This already proves that the inter-
ior of {δ = 0}, namely the set of covering P1-structures, is polynomially
convex. But this set is exactly the Bers slice, so we are done. Q.E.D.

We finish this lecture by reviewing yet another application of formula
(22) to equidistribution properties in P (C). In [18] we showed that
Tbif := ddcχ is a bifurcation current, in the sense that its support is
precisely the set of projective structures whose holonomy representation
is not locally structurally stable in P (X). The support of this current
is the exterior of the Bers slice B(C).

Analogous bifurcation currents have been defined for families of ra-
tional mappings on P1. It turns out that the exterior powers T k

bif are
interesting and rather well understood objects in that context (see [26]
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for an account). In particular, in the space of polynomials of degree d,

the maximal exterior power T d−1
bif is a positive measure supported on

the boundary of the connectedness locus, which is the right analogue in
higher degree of the harmonic measure of the Mandelbrot set [25].

For bifurcation currents associated to spaces of representations,
nothing is known in general about the exterior powers T k

bif . In our
situation, we are able to obtain some information.

Theorem 3.14. Let C be a compact Riemann surface of genus g ≥
2. Let Tbif = ddcχ be the natural bifurcation current on P (C). Then

∂B(C) is contained in Supp(T 3g−3
bif ).

Notice that 3g − 3 is the maximum possible exponent. It is likely
that the support of T 3g−3

bif is much larger than ∂B(C). The reason for
the compactness assumption here is that the proof requires some results
of Otal [61] and Hejhal [43] that are known to hold only when X is
compact.

If γ is a geodesic on C w.r.t. to the Poincaré metric, we let Z(γ) be
the subvariety of P (C) defined by the property that tr2(hol(γ)) = 4
(i.e. hol(γ) is parabolic or the identity). As a consequence of The-
orem 3.14 and of the equidistribution theorems of [18] we obtain the
following result, which contrasts with the description of ∂B(C) “from
the inside” in terms of maximal cusps and ending laminations ([60, 6],
see [51] for a nice account).

Corollary 3.15. For every ε > 0 there exist 3g−3 closed geodesics
γ1, . . . , γ3g−3 on C such that ∂B(C) is contained in the ε-neighborhood
of Z(γ1) ∩ · · · ∩ Z(γ3g−3).
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