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Tableaux and Eulerian properties of the symmetric
group

Alain Lascoux

Abstract.

The Ehresmann-Bruhat order on the symmetric group satisfies a
symmetry property that we generalize to a directed graph with permu-
tations as vertices, labeling edges with tableaux of a given shape.

§1. Eulerian structures

Ehresmann defined an order (called Bruhat order) on the symmet-
ric group Sn which plays a fundamental role in geometry, algebra and
representation theory:
two permutations are consecutive
with respect to the
Ehresmann-Bruhat order
if they have consecutive lengths
and differ by multiplication
by a transposition.
For example, the hexagon with its
diagonals encodes the order on S3,
the thick arrows corresponding to its
generation by multiplication on the right
by simple transpositions.
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The Ehresmann-Bruhat order possesses many symmetry properties.
For example, in every interval, there are as many permutations of even
length than of odd length. These kinds of properties are accounted by
the notion of Eulerian structure. Given a graded poset X, its incidence
matrix E (i.e. E[x, y] = 1 ⇔ x ≤ y) is graded: E = E0 +E1 +E2 + . . .
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Departing slightly from the classics [14, p. 135], let us call the poset
Eulerian if E−1 = E0 − E1 + E2 − E3 + . . . .

Instead of ranked posets, it is more fruitful to use labeled directed
graphs with a rank. Edges are labeled by elements of an algebra with
an involution ♣. The incidence matrix, still graded, is the matrix whose
entries are the labels. Writing an incidence matrix amounts considering
the graph to be a subset of the complete directed graph on the same
vertices, some edges being labeled 0. The graph is called Eulerian if

(E0 + E1 + E2 + · · · )
(
E♣

0 − E♣
1 + E♣

2 − E♣
3 + · · ·

)
= 1 .

In the next sections, we shall take the algebra of Laurent polynomials
in x1, . . . , xn, the involution ♣ being the inversion x1 → x−1

1 , . . . , xn →
x−1
n .

Given a second Eulerian structure, with incidence matrix F , on the
same underlying complete graph, then EFE and FEF are Eulerian,
but not EF nor FE if E and F do not commute. This remark will
allow us to combine the Ehresmann-Bruhat order with another Eulerian
structure.

The main results have already been exposed in a text with M.P.
Schützenberger [11]. We use here a different algebraic approach.

§2. Keys

Many properties of symmetric functions are better understood by
using words rather than monomials, and realizing, thanks to Schensted
construction, the algebra of symmetric functions Sym as a subalgebra
of a non-commutative algebra, .

There are several ways to pass from the ring of polynomials Pol(x)
to the free algebra. In the present text, we shall use Demazure characters
for type A (also called key polynomials) [10].

Recall the definition of the isobaric divided differences πi and π̂i

(denoted on the right):

f → fπi =
xif − xi+1f

si

xi − xi+1
& f → fπ̂i =

f − fsi

xix
−1
i+1 − 1

,

where si is the simple transposition exchanging xi, xi+1.

The two related families of Demazure characters {Kv}, {K̂v}, v ∈
N

n, are two linear bases of the ring of Pol(x) which can be defined
recursively as follows. If v is dominant, i.e. if v is equal to a partition λ,

then Kλ = K̂λ = xλ. Otherwise, when v and i are such that vi > vi+1,
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one has the recursion

Kvsi = Kvπi & K̂vsi = K̂vπ̂i .

One extends the Ehresmann-Bruhat order to permutations of the
same partition. The number of inversions �(v) of v is the number of
pairs i < j such that vi > vj . Two elements are consecutive if they
differ by a transposition, and their number of inversions differ by 1.

The two families {Kv}, {K̂v} are related by summations over inter-
vals [10]:

Kv =
∑
u≤v

K̂u & K̂v =
∑
u≤v

(−1)�(v)−�(u)Ku .

The elements of Free are words in the letters 1, 2, 3, . . .. Tableaux are
the words obtained by reading the planar objects called Young tableaux.

We shall make no difference between
3
2 3
1 1 2

and the word 323112.

Simple transpositions si, as well as the operators πi, π̂i can be lifted
to operators on Free, that we shall denote by the same letters [9]. Given
i, one decomposes the set of words into i-strings [5, 6, 8]. Then si
preserves each i-string and is the symmetry with respect to its middle.
The image under πi of an element t in the left part of an i-string is the
sum of all the elements between itself and its image under si. Imposing
that t+ tsi be invariant under πi completes the description of the action
of πi [10]. Moreover, π̂i = πi − 1.

For example,

3 4

2 2 3

1 1 2 3 3

π̂3 =
3 4

2 2 3

1 1 2 3 4

+
3 4

2 2 3

1 1 2 4 4

+
4 4

2 2 3

1 1 2 4 4

,

the 3-string being

3 4

2 2 3

1 1 2 3 3

→
3 4

2 2 3

1 1 2 3 4

→
3 4

2 2 3

1 1 2 4 4

→
4 4

2 2 3

1 1 2 4 4

,

which is isomorphic, after suppression of the letters �= 3, 4 and the paired
43, to the 3-string

3 3 3 → 3 3 4 → 3 4 4 → 4 4 4 .
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For a partition λ, one defines tλ = KF
λ = K̂F

λ = · · · 3λ32λ21λ1 (this
is the Yamanouchi tableau of shape λ). According to [10], the elements

{KF
v }, {K̂F

v } of the free algebra Free satisfy the same recursion as {Kv},
{K̂v}:
(1) KF

vsi = KF
v πi & K̂F

vsi = K̂F
v π̂i when vi > vi+1 .

For example, for λ = [2, 1, 0], one has

K̂F
210 = 2

1 1

���
���

�
���

���
�

���
���

�

K̂F
120 = 2

1 2
K̂F

201 = 3
1 1

K̂F
102 = 2

1 3
+ 3

1 3

���
���

�

K̂F
021 = 3

1 2
+ 3

2 2

���
���

�
���

���
�

K̂F
012 = 3

2 3

The elements KF
v , K̂F

v , are sums of tableaux without multiplicities.

Given a tableau t of shape λ, then it belongs to one and only one K̂F
v ,

with v a permutation of λ. We call v the right key of t and denote it
C+(t). Keys can be determined by using the jeu de taquin on consecutive
columns [10]:

5 6
1 3

2 4

−→
5
1 3 6

4
2

↗ ↘

t =
5
3 6
1 2 4

1 5 6
3 4

2
↘ ↗

5
3
1 2 6

4

−→
1 5

3 6
2 4
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The recipe is the following: with the rightmost columns of the skew
tableaux generated by the jeu de taquin from t, build a tableau and
write its commutative evaluation in exponential form xv. Then v is the
right key C+(t) of t.⎧⎨⎩ 4 , 6

4
,

6
4
2

⎫⎬⎭ ⇔
6
4 6
2 4 4

→ x010302 ⇔ C+(t) = [0, 1, 0, 3, 0, 2] .

Using the leftmost columns, one defines similarly the left key C−(t).⎧⎨⎩ 1 , 5
1

,
5
3
1

⎫⎬⎭ ⇔
5
3 5
1 1 1

→ x30102 ⇔ C−(t) = [3, 0, 1, 0, 2] .

The computation of K̂F
v is no more complicated than that of K̂v.

Indeed, when v and i are such that vi > vi+1, then K̂F
v decomposes into

a sum of single elements which are heads of their i-strings (and sent to
the full string minus its head under π̂i) and full i-strings (which are sent
to 0 under π̂i).

Instead of a Yamanouchi tableau tλ, one can start from a power trλ.

The element K̂F
v = tλπ̂i · · · π̂j will then be replaced by the sum [10]

(2) trλπ̂i · · · π̂j =
∑

t1t2 · · · tr ,

sum over r-tuples of tableaux of shape λ such that C+(t1) ≤ C−(t2),
C+(t2) ≤ C−(t3), . . ., C+(tr−1) ≤ C−(tr), C+(tr) = v. We shall call chain
such r-tuple of tableaux.

§3. Tensor product

The operator π̂i satisfies a Leibniz formula when acting on Pol(x):

fg π̂i = f (gπ̂i) + fπ̂i(gsi) .

This is no more true when acting on Free. However, the action of a
product π̂i · · · π̂j on a product tλtλ does satisfy Leibniz rule, as well as
the braid relations [10]. This is due to the fact that one does not act on
general elements of Free, but on heads of strings, or on full strings, or on
full strings minus their head, as we have seen in the preceding section.

Instead of tλtλ, let us write tλ ⊗ tλ, and write �i for the action of
π̂i on Free⊗Free: the image of w⊗w′ is obtained from ww′π̂i by cutting
words into two factors of the same lengths as w and w′.
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When starting from tλ ⊗ tλ, the operator �i coincides with

�i = π̂i ⊗ si + 1⊗ π̂i

= πi ⊗ si + 1⊗ θi ,

with θi = π̂i − si = πi − 1− si.
Adapting notations, let us define K̂λ = tλ ⊗ tλ for partitions λ, and

define the other K̂v, for v ∈ Nn, by the recursions

K̂vsi = K̂v �i ,

for vi > vi+1.
The tensor notation renders more evident the following property of

the action of the operators π̂i on Free.

Theorem 3.1. Given a partition λ, v a permutation of it, then

(3) K̂v =
∑
t2

∑
t1: C+(t1)≤u

t1 ⊗ t2 =
∑
t2

KF
u ⊗ t2 ,

sum over all tableaux t2 of shape λ, of right key v, and left key u.

Proof. The first sum was already given for chains of tableaux of length
r. Summing over t1, one obtains the second sum. QED

Corollary 3.2. Let λ be a strict partition, σ ≥ ν be two permu-
tations, si · · · sj be a reduced decomposition of σ of length �. Then the
sum

tλ
∑

ε∈{0,1}

(
sε1i θ1−ε1

i

) · · · (sε�j θ1−ε�
j

)
,

sum over ε1, . . . , ε� such that πε1
i · · · πε�

j = πν , is equal to the sum of all
tableaux of left key λν and right key λσ.

For example, for λ = [4, 2, 0], σ = [3, 2, 1], ν = [2, 1, 3], the choice
σ = s2s1s2 gives that the sum of tableaux of left key [2, 4, 0], right key

[0, 2, 4], which is 2 3
1 2 2 3

+ 2 3
1 2 3 3

, is equal to t420θ2s1θ2. The

reduced decomposition s1s2s1 expresses the same sum of two tableaux
as t420s1θ2θ1 + t420θ1θ2s1 + t420s1θ2s1, with cancelations occurring.

§4. Tableauhedron

Let λ be a strict partition: λ = [λ1, . . . , λn], λ1 > λ2 > · · · > λn ≥ 0,
ζ be a permutation in Sn, v = λζ. The v-tableauhedron Γv is the
directed graph with vertices the tableaux tλσ = tλσ, for σ ∈ Sn such
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that σ ≤ ζ, an edge [tλν , tλσ] being labelled by the sum of all tableaux
in Tab(λν, λσ), that is all tableaux of left key tλν , right key tλσ.

For example, for v = [4, 2, 0]s1s2 = [2, 0, 4], the edges and vertices
of Γ204 are given by the expansion of t420 (s1+θ1+1)(s2+θ2+1):

t420

t240 t402

t204

θ1 θ2

θ1θ2

s1θ2 θ1s2

t420 θ1 = 2 2
1 1 1 2

t420 θ2 = 2 3
1 1 1 1

t420 θ1s2 = 3 3
1 1 1 3

t420 θ1θ2 = 2 2
1 1 1 3

+ 2 3
1 1 1 3

and t420s1θ2 = 2 3
1 1 3 3

+ 2 2
1 1 3 3

+ 2 2
1 1 2 3

.

The polynomial incidence matrix of Γv is the matrix E with polyno-

mial entries Eλν,λσ = �

(∑
t∈Tab(λν,λσ) t

)
(and thus Eλσ,λσ = �(tλσ)).

This matrix is graded by the length of permutations: E = E0 + E1 +
· · · + E(n2)

. Recall that ♣ is the morphism x1 → x−1
1 , . . . , xn → x−1

n ,

and, accordingly, that E♣
i is the image of Ei under ♣.

This section is devoted to show the Euler relation

(E0 + E1 + E2 + · · · )
(
E♣

0 − E♣
1 + E♣

2 − E♣
3 + · · ·

)
= 1 .

Notice that the divided difference πx−1
i ,x−1

i+1
is equal to −θi, and

therefore, the image of �i, as an operator on Pol(x±)⊗Pol(x±), under
the inversion of variables of the first component, is

�̃i = −θi ⊗ si + 1⊗ θi .

With �̃i instead of �i, Corollary 3.2 entails

Corollary 4.1. Let λ be a strict partition, ζ ≥ ν be two permuta-
tions, si · · · sj = ζ be a reduced decomposition of ζ. Then

(4)
∑

ν≤σ≤ζ

(−1)�(ζ)−�(σ)
∑

t1∈Tab(λν,λσ)
t2∈Tab(λσ,λζ)

t1 ⊗ t2

=
∑

εi∈{0,1}
tλ ⊗ tλ(si ⊗ si)

εi �̃1−εi
i · · · (sj ⊗ sj)

εj �̃1−εj
j ,
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sum over all ε such that πεi
i · · · πεj

j = πν .

For example, let ζ = [3, 2, 1], ν = [2, 1, 3]. For the choice of the
reduced decomposition ζ = s2s1s2, the right hand side is tλ ⊗ tλ�̃2(s1 ⊗
s1)�̃2 = tλ ⊗ tλ

(
s1 ⊗ θ2s1θ2 − s1θ2 ⊗ θ2s1s2 − θ2s1 ⊗ s2s1θ2 + θ2s1θ2 ⊗

s2s1s2).
The reduced decomposition s1s2s1 involves more terms, the right

hand side being now tλ ⊗ tλ(s1 ⊗ s1)�̃2�̃1 + tλ ⊗ tλ�̃1�̃2(s1 ⊗ s1) + tλ ⊗
tλ(s1 ⊗ s1)�̃2(s1 ⊗ s1).

Let �̃ be the algebra morphism Free ⊗ Free → Pol(x±) defined by

�̃(i⊗ j) = x−1
i xj .

Lemma 4.2. One has the commutation

Free⊗ Free Free⊗ Free

Pol(x±) Pol(x±)

�̃i

π̂i

�̃ �̃

Proof. The statement is an assertion about words in an alphabet in
two letters, say {1, 2}. Pairing letters as much as possible, and ignoring
them afterwards, one is reduced to products of the type 1α⊗1β , 1α⊗2β ,
2α ⊗ 1β , 2α ⊗ 2β . Let us check only the first case, with α, β ≥ 1, the
other cases being similar. Then

1α ⊗ 1β�̃1 = −
(

α−1∑
i=0

1α−1−i2i+1

)
⊗ 2β + 1α ⊗

⎛⎝β−1∑
j=0

1β−1−j2j+1

⎞⎠ .

On the other hand, the image of xβ−α
1 = �̃(1α ⊗ 1β) under π̂1 is

(xβ−α
1

−xα−β
1 ) (x1−x2)

−1x2 = �̃
(
1α ⊗ 1β�̃1

)
. QED

Notice that for any tableau t, and any i, then �̃
(
t⊗ t�̃i

)
= 0, since

it is equal to 1π̂i.
We are now in position to check that the tableauhedron is Eulerian.

Theorem 4.3. Let λ ∈ N
n be a strict partition, η be a permutation

in Sn, v = λη. Then the tableauhedron Γv is Eulerian, that is for any
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pair of permutations ν < ζ ≤ η one has the nullity

�̃

⎛⎜⎜⎝ ∑
t1∈Tab(λν,λσ)
t2∈Tab(λσ,λζ)

(−1)�(ζ)−�(σ)t1 ⊗ t2

⎞⎟⎟⎠ = 0 .

Proof. According to Corollary 4.1, the sum
∑

t1 ⊗ t2 is equal, when
ν �= ζ, to a sum of terms of the type tλ ⊗ tλ(si ⊗ si) · · · (sj ⊗ sj)�̃k · · · =
t⊗ t �̃k · · · . Therefore, it vanishes under �̃. QED

Continuing with the same example Γ204, the sum in the theorem is

t420⊗ t420 �̃1�̃2 =
∑

t5
t420⊗ t5−

∑
t3
t1⊗ t3− t2⊗ t4+

∑
t5
t5⊗ t204 .

t420

t240 t402

t204

t1 t2

∑
t5

∑
t3 t4

The Eulerian property of the tableauhedron translates into the fact
that the following two matrices are inverse of each other (dots replacing
0’s).⎡⎢⎢⎢⎢⎣

x2
2x1

4 x2x3x1
4 x2

3x1
3 x2x3

2x1
3 + x2

2x1
3x3

· x3
2x1

4 · x3
3x1

3

· · x2
4x1

2 x2x3
3x1

2 + x2
2x1

2x3
2 + x2

3x1
2x3

· · · x3
4x1

2

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1

x2
2x1

4 − 1
x2x3x1

4 − 1
x2

3x1
3

1
x2x3

2x1
3 + 1

x2
2x1

3x3

· 1
x3

2x1
4 · − 1

x3
3x1

3

· · 1
x2

4x1
2 − 1

x2x3
3x1

2 − 1
x2

2x1
2x3

2 − 1
x2

3x1
2x3

· · · 1
x3

4x1
2

⎤⎥⎥⎥⎥⎦ .
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§5. Postulation

A flag variety F(Cn) is equipped with tautological line bundles

L1, . . . , Ln. For each partition λ, let Lλ = L⊗λ1
1 ⊗ · · · ⊗L⊗λn

n . Schubert
subvarieties of the flag variety are indexed by permutations. Geometers
need to determine the dimensions of the space of sections of the line
bundles Lλ over Schubert subvarieties.

Combinatorially, thanks to [2], these dimensions (postulation) are
equal to the specialization x1 = 1 = · · · = xn of the polynomials xλπσ,
i.e. of the polynomials Kv.

Instead of considering a single Lλ, one prefers to take all its powers
at the same time, and thus compute the specialization x = 1 of the
generating series

1 + zKv + z2K2v + z3K3v + . . .

where v = λσ, and kv denotes [kv1, . . . , kvn]. In terms of the preceding
sections, one has to count the number of chains of tableaux t1 · · · tr with
C+(tr) ≤ v.

In the case of Graßmannians, this problem was solved by Hodge [4]
(with the help of Littlewood [12] for what concerns the determinantal
formula giving the postulation number). One has in that case to enu-
merate chains of partitions (with respect to inclusion of diagrams), or,
equivalently, to enumerate plane partitions.

Instead of computing only dimensions, I determined with Fulton [3]
the class of LλOσ, where Oσ is the structure sheaf of a Schubert variety,
in the Grothendieck ring K0(F) of classes of vector bundles over the flag
variety. Dimensions now occur as the number of terms in the expansion
of [LλOσ] as a sum of classes [Oν ]. This involves a combinatorics of
Grothendieck polynomials still relying on the notion of keys. Pittie and
Ram [13] generalized this work to the flag varieties associated to any
semisimple group.

Chains may be obtained using powers of matrices. Indeed, if Mλ,σ

is the matrix with entries Mλ,σ
ν,ζ =

∑
t∈Tab(λν,λζ) t, ν ≤ ζ ≤ σ, and if Bσ

is the restriction of the incidence matrix of the Ehresmann-Bruhat order
to the permutations ≤ σ, then the N-E entry of

(
BσMλ,σ

)r
is precisely

K̂F
rv.

Let us go back to generating series. Given a strict partition λ and a

permutation σ, the function Fλ,σ = (1− zxλ)−1π̂σ

∣∣∣
x=1

is rational with

denominator (1−z)�(σ)+1. Its numerator, that we shall denote Êλ,σ(z),
is of degree �(σ)−1. The function Fλ,σ is the specialization x = 1 of the
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generating function 1+zK̂F
v +z2K̂F

2v+z3K̂F
3v+ . . . of chains of tableaux

t1 · · · tr with C+(tr) = v = λσ.
The denominator of (1 − zxλ)−1π̂σ is of degree the number of per-

mutations ≤ σ. To obtain instead a rational function with denominator
of the right degree �(σ) + 1, one can use Leibniz formula. For example,
for σ = s1s2, λ = [6, 3, 0], one has

1

1−zx630
π̂1 = (1−zx360)π̂1

1

(1−zx630)(1−zx360)
=

1

1− zx630

K̂360

1−zx360

1

1−zx630
π̂1π̂2 =

1

(1−zx630)(1−zx360)

(K̂360(1−zx306)π̂2)

1−zx306

+
1

1−zx630

K̂603

1−zx603

(K̂360s2)

1−zx306
.

For σ = s1s2s1, and λ a strict arbitrary partition, writing yij for
the multiplicities of the edges,

1

2 3

4 5

6

y16

y25 y34

y12

y14

y13

y15

y26 y36

y24 y35

y46 y56

one obtains

Êλ,s1s2s1(z) = z
(
1+
∑

i<6
yi6

)
+ z2

(
2+
∑

w1+
1

2

∑
w2+

∑ •
w3 +

∑
w3−2y16

)
+ z3

(
1 + y12+y13+

1

2
(y12y24+y12y25+y13y34+y13y35) + y16

)
,
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where wk, k = 1, 2, 3, is a path consisting of k consecutive length 1-edges,

and
•
w3 is the image of w3 under suppression of the middle edge.
There are relations among the multiplicities yij , apart from the

Euler relations, and we leave it as an open problem to obtain a satisfac-

tory expression of the numerators Êλ,σ(z) and of the rational functions
(1−zxλ)πσ and (1−zxλ)π̂σ.

The enumeration of paths in the Ehresmann-Bruhat order resort to
the theory of shellability [1]. In our case, we have replaced enumeration
of paths or chains by the computation of rational functions.

§6. Eulerian polynomials

The choice λ = ρ = [n−1, . . . , 0] corresponds to the Plücker em-
bedding of the flag variety. Let Eσ(z) be the numerator of the function
(1− zxρ)−1πσ

∣∣
x=1

.
We shall show in this section that the family {Eσ(z)} is a natu-

ral generalization of the family of Eulerian polynomials E2(z) = 1+z,
E3(z) = 1+4z+z2, E4(z) = 1+11z+11z2+z3, . . .. In fact the polynomial
Eσ(z), when σ is a maximal element of Young subgroup, is equal to some
Eulerian polynomial.

The relation
ωx−ρπix

ρω = −π̂n−i

allows to relate the functions (1−zxρ)−1π̂σ and (1−z−1xρ)πσ. According
to [7, Prop. 5.1], one has

(5) (−1)�(σ)+1(1− zxρ)−1 π̂σ x
ρ = z−1(1− z−1xρ)πσ ♣ .

Hence the polynomials Êρ,σ and Eσ(z) are reciprocal of each other, that

is z�(σ)Eσ(z−1) = Êσ(z), and one can choose to use either πσ or π̂σ to
compute them.

Let D be the isobaric derivative on functions of a variable z,

D : f(z) → D(f) :=
d

dz

(
zf(z)

)
.

The Eulerian polynomial En(z) is defined as

En(z) = (1− z)n−1 Dn
(
(1−z)−1

)
.

The operator D is the limit, for x1 = x2 = z of the isobaric divided
difference π1 acting on functions of x1. Indeed, for any positive integer
k, xk

1 π1 = xk
1 + xk−1

1 x2 + · · · + xk
2 , and this last function specializes to

zk(k+1).
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Equivalently, one can view D as the following composite operator :

f(z) → f(zx1) → f(zx1)π1

∣∣
x1=x2=1

.

This has the following generalisation.

Definition 6.1. Let w be an arbitrary permutation of Sn, and let
ρ = [n−1, . . . , 1, 0]. Then Dw is the following operator on functions of
z :

f(z) → f(zxρ)πw

∣∣
x1=···=xn=1

.

For example, testing the operators on 1/(1− z), one finds that

D123 = 1, D213 = D132 = D, D231 = D312 =
3

2
D3 − 1

2
D, D321 = D3 .

Indeed, (1−z)−1D213 = (1−z)−1D132 = (1−z)−2, (1−z)−1D231 =
(1−z)−1D312 = (1+2z)(1−z)−3, (1−z)−1D321 = (1+4z+z2)(1−z)−4.

Let us notice that if w belongs to a Young subgroup Sk × Sn−k,
i.e. if w factorizes into w′w′′, with w′ fixing k+1, . . . n, and w′′ fixing
1, . . . , k, then the operator Dw factorizes into Dw′Dw′′ .

The reader may be willing to show that, when w is the maximal
cycle [n, 1, . . . , n−1], then

Dw =
1

n!
(nD − 0)(nD − 1) · · · (nD − n+ 2) .

For example,

D21 =
1

2!
(2D−0), D312 =

1

3!
(3D−0)(3D−1),

D4123 =
1

4!
(4D−0)(4D−1)(4D−2) .

We give below the polynomials En,1,...,n−1(z) for n = 2, . . . , 9 (read
by rows, increasing powers of z) :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0

1 10 5 0 0 0 0 0

1 37 73 14 0 0 0 0

1 126 651 476 42 0 0 0

1 422 4770 8530 2952 132 0 0

1 1422 31851 114612 95943 17886 429 0

1 4853 202953 1317133 2162033 987261 107305 1430

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The following property implies that Eulerian polynomials are asso-
ciated to maximal permutations of Young subgroups.

Proposition 6.2. Given n, then for the maximal permutation ω =

[n, . . . , 1], one has Dω = D(n2).

Proof. For any k, writing kρ for the partition [k(n−1), k(n−2), . . . , k, 0],
then the image of (xρ)k under πn...1 is the Schur function Skρ(x1+ · · ·+
xn) , which specializes into

Skρ(n) =
∏

�∈diagram(kρ)

n+ c�
h�

= (k + 1)(
n
2) .

But this last constant is precisely the eigenvalue of D(n2) when acting on
zk. QED

Corollary 6.3. Given a Young subgroup Sa × Sb × · · · × Sd, let
ωa...d be its element of maximal length � =

(
a
2

)
+ · · ·+ (d2). Then Dωa...d

coincides with D�, and sends (1− z)−1 onto E�(z) (1− z)−�−1.

For example, D321654 = D6 = D4321 sends (1− z)−1 onto

(z5 + 57 z4 + 302 z3 + 302 z2 + 57 z + 1) (1− z)−7

One may use the tableauhedron to compute the polynomials Eσ(z)
and Êσ(z). For example, for the cycle σ = [4, 1, 2, 3], one has

(1− zt3210)
−1 π̂3π̂2π̂1 = zK̂F

0321 + z2K̂F
0642 + z3K̂F

0963 + · · ·
The tableauhedron Γ0321 has eight vertices, and edges are labelled by 6
tableaux:

t1 =
3
2 3
1 1 2

, t2 =
4
2 3
1 1 1

, t3 =
4
2 3
1 1 2

, t4 =
4
2 3
1 2 2

, t5 =
4
3 3
1 1 2

,

t6 =
4
3 3
1 2 2

.
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3210

2310 1320

3120 2301 0321

3201 3021

t1
t4

t3 t5 + t6

t2

Keeping t1, . . . , t6 as indeterminates, and specializing t3210, . . . , t0321
to 1, one finds

(zK̂F
0321 + z2K̂F

0642 + · · · )(1−z)−4

= z(1+t3 + t4 + t5 + t6)+z2(4+t1 + t2 −t3 +t4 + t5 + t6+t2t5+t2t6)+z3 .

One could keep t1, t2, t4, t5, t6 as arbitrary parameter, t3 being deter-
mined by the Euler relation 2t3 = t2(t5 + t6).

Specializing all ti to 1, and reversing the polynomial (we have used
π̂3π̂2π̂1 instead of π3π2π1), one finds that E4123 = 1 + 10z + 5z2.

A systematic study of the polynomials Eσ(z) would be welcome. We
list below the polynomials for σ ∈ S4, correcting an error in [7].

E1234(z) = 1 = E1243(z) = E1324(z) = E2134(z), E1342(z) = E3124(z) =
E2314(z) = E1423(z) = 1 + 2z, E2143(z) = 1 + z, E3142(z) = 1 + 9z +
4z2, E2413(z) = 1 + 8z + 3z2, E2341(z) = E4123(z) = 1 + 10z + 5z2,
E3214(z) = E1432(z) = 1+4z+z2, E2413(z) = E4213(z) = 1+18z+24z2+
3z3, E4132(z) = E3241(z) = 1 + 19z + 25z2 + 3z3, E3412(z) = 1 + 25z +
44z2+8z3, E4312(z) = E3421(z) = 1+38z+120z2+58z3+3z4, E4231(z) =
1+43z+150z2+81z3+5z4, E4321(z) = 1+57z+302z2+302z3+57z4+z5.
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