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Moment graphs in representation theory and
geometry

Peter Fiebig

Abstract.

This paper reviews the moment graph technique that allows to
translate certain representation theoretic problems into geometric ones.
For simplicity we restrict ourselves to the case of semisimple complex
Lie algebras. In particular, we show how the original Kazhdan–Lusztig
conjecture on the characters of irreducible highest weight representa-
tions can be translated into a multiplicity problem for parity sheaves
on the (Langlands dual) flag variety.

§1. Introduction

One of the central problems in representation theory is the determi-
nation of the simple characters of a given group or, more generally, of a
given algebra. Often this problem turns out to be difficult to solve and
there is an abundance of situations in which we do not have a sufficient
answer. The problem seems to be particularly difficult if the base field
of our theory is of prime characteristic.

A very successful approach towards the character problem is to find
a relation between representation theory and the geometry of some al-
gebraic variety. If such a relation is established one might hope that
the machinery of algebraic geometry is powerful enough to provide a
solution.

There are at least two different ways to relate representation theory
to geometry. The first, which well-known and well established in several
areas, appeared for the first time in the article [BB] and is called the
Beilinson–Bernstein localization. It amounts to realizing a Lie algebra
inside the space of differential operators on a complex algebraic variety.
It thus allows us to relate the category of D-modules to representations
of the Lie algebra via the global sections functor. A characteristic p
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analogue of this approach has been studied by Bezrukavnikov et al. in
[BMR].

The second idea goes back to Soergel. Here, the geometry and the
representation theory are related via an intermediate category, which
often is of a linear-algebraic, “combinatorial” nature. Geometrically it
arises via the hypercohomology functor applied to an appropriate class of
sheaves (such as intersection cohomology complexes or parity sheaves).
Representation theoretically this category is the image of versions of
Soergel’s Strukturfunktor.

These “combinatorial” categories can sometimes be realized over
arbitrary fields and even over the integers, which opens a way to com-
pare the structure over different fields using base change results (see, for
example, [AJS]). Here we want to discuss the main ideas of Soergel’s
approach in the particular example of representations of a semisimple
complex Lie algebra, which is technically the least demanding instance.
The associated combinatorial category comes in two quite different and
important realizations: the first is the category of Soergel bimodules, the
second is the category of sheaves on a moment graph. In the complex
semisimple case this is a finite, directed and labelled graph that can be
read of from the underlying root system and its Weyl group.

Following Soergel’s idea, we want to state the main steps and explain
the main ideas for a proof of the classical Kazhdan-Lusztig conjecture
using moment graphs. A characteristic p version of this approach can
be found in the articles [F5, F6].

While both approaches explained above typically yield character
formulas in various situations, they also relate categorical structures.
Their real power is revealed once one combines the two: this establishes
the celebrated Koszul self duality of category O.

The first section of this article is the most elementary one and deals
with the basics of moment graph theory. In particular, we introduce the
moment graph associated to a finite root system. Then we motivate the
construction of the principal objects associated to a moment graph: the
Braden–MacPherson sheaves.

The second section describes the link between the representation
theory of a finite dimensional complex Lie algebra and the moment graph
theory. We present the most classical case of the Kazhdan–Lusztig con-
jecture and show how it can be translated into a multiplicity conjecture
on the stalks of the Braden–MacPherson sheaves introduced earlier.

The third and final section gives the link between the geometry
of flag varieties and moment graph theory. We present the localiza-
tion functor that associates a sheaf on the moment graph to a torus-
equivariant sheaf on the variety following [GKM]. Here we also cover the
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positive characteristic case following [FW]. The most important class of
equivariant sheaves are the parity sheaves introduced by Juteau, Maut-
ner and Williamson in [JMW]. By localizing parity sheaves one obtains
the Braden–MacPherson sheaves on the graph. Deep results in algebraic
geometry show that the parity sheaves that we consider are intersection
cohomology sheaves if the characteristic of the field of coefficients is ei-
ther zero or large enough1. A formula for the dimension of the stalks
of the latter sheaves then yields multiplicities for Braden–MacPherson
sheaves and, in particular, proves the Kazhdan–Lusztig conjecture we
presented in the second section.

§2. Moment graphs

We introduce the notion of a moment graph and then present the
most important class of moment graphs, the moment graphs associated
to a root system. We define sheaves on such graphs and the correspond-
ing functor of local sections. A natural extension property then leads to
the definition of the Braden–MacPherson sheaves. We also discuss an-
other characterization of the Braden–MacPherson sheaves: their global
sections form a set of representatives of the projective objects in a cer-
tain exact category. This is the property that latter allows us to give
these sheaves a representation theoretic meaning. A reference for most
of the following is [F4].

2.1. Moment graphs

Let Y be a lattice of finite rank (i.e. Y ∼= Zr). An (unordered)
moment graph over Y is the datum G = (V, E , l), where (V, E) is a finite
graph without loops (edges connecting a vertex to itself) and no double
edges (two vertices are connected by at most one edge), and l : E →
Y \ {0} is a map. We write E : x—— y to denote an edge connecting x

and y and we write E : x
l(E)
——— y if we also want to specify its label.

One obtains an important class of moment graphs from root systems
in the following way. Let R ⊂ V be a root system in a real vector space V
and let us, for latter use, fix a system of positive roots R+ ⊂ R. For each
α ∈ R we denote by α∨ ∈ V ∗ = HomR(V,R) its coroot. By R∨ ⊂ V ∗ we
denote the coroot system. By Y = {v ∈ V ∗ | α(v) ∈ Z for all α ∈ R} we
denote the coweight lattice. By W ⊂ GL(V ) we denote the Weyl group
that is generated by the reflecions sα associated to the roots α ∈ R+.

We now define the graph GR over the coweight lattice Y :

1A direct link between intersection cohomology sheaves with coefficients in
C and Braden–MacPherson sheaves is established in [BMP].
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• its set of vertices is W,
• the elements x, y ∈ W are connected by an edge if there is a
root α ∈ R+ with x = sαy,

• for E : x—— sαx and α ∈ R+ we set l(E) = α∨.
With any moment graph G and any field k we can now associate the

category of sheaves with coefficients in k.

2.2. Sheaves on moment graphs

Suppose that G is a moment graph defined over the lattice Y . Now
let us fix a field k. We denote by Yk = Y ⊗Z k the k-vector space
spanned by Y . By S = S(Yk) we denote its symmetric algebra. This
is a polynomial algebra (over k) of rank dimk Yk and we consider it as
a Z-graded algebra with Yk ⊂ S being the homogeneous component of
degree 2. By an S-module we mean a graded S-module in the following.
The shift functor [1] on a graded S-module M is defined in such a way
that M [1]l = Ml+1 for each l ∈ Z.

A k-sheaf on G is the datum F = (Fx,FE , ρx,E), where

• Fx is an S-module for any vertex x ∈ V,
• FE is an S-module with l(E)FE = 0 for each edge E ∈ E ,
• ρx,E : Fx → FE is a homomorphism of S-modules for any
vertex x adjacent to the edge E.

A morphism f : F → G of sheaves on G is given by homomorphisms of
S-modules fx : Fx → G x and fE : FE → G E for all x and E such that
for any vertex x lying on the edge E the diagram

Fx

ρx,E

��

fx

�� G x

ρx,E

��
FE fE

�� G E

commutes. We denote by G-modk the corresponding category of k-
sheaves on G. This category is graded by the shift functor [1] : G-modk →
G-modk that applies the functor [1] to each component of a sheaf.

Here are some examples of sheaves on moment graphs.

(1) The most natural sheaf on G is probably the structure sheaf Z
that is defined by Z x = S for all x ∈ V and Z E = S/l(E)S
for any edge E, and ρx,E : S → S/l(E)S the canonical quotient
map.

(2) For each vertex x ∈ V there is a skyscraper sheaf V (x) defined
by V (x)x = S, and all other data is zero.



Moment graphs 79

2.3. Sections of sheaves

Let F be a sheaf on the moment graph G and let I be a a subset
of V. The space of sections of F over I is

Γ(I,F ) =

{
(fx) ∈

⊕
x∈I

Fx

∣∣∣∣ ρx,E(fx) = ρy,E(fy)
for all edges E : x—— y with x, y ∈ I

}
.

In particular, we define Γ(F ) := Γ(V,F ) as the space of global sec-
tions. For each pair of subsets I, I ′ of V with I ′ ⊂ I the projection⊕

x∈I Fx → ⊕
x∈I′ Fx along the decomposition induces a restriction

map Γ(I,F ) → Γ(I ′,F ).
The space

Z = Γ(Z ) =

{
(fx) ∈

⊕
x∈V

S

∣∣∣∣ fx ≡ fy mod l(E)
for all edges E : x—— y

}

of global sections of the structure sheaf carries a canonical structure
of a graded S-algebra. The addition and the multiplication are given
componentwise. The space of global sections of any sheaf F naturally
forms a graded Z-module.

Remark 2.1. It is possible to consider a moment graph sheaf as we
defined it above as a sheaf on a topological space in the usual sense
(see [BMP]). However, for the following this viewpoint seems not to be
helpful yet.

2.4. A topology on the moment graph

A natural problem in sheaf theory is the question whether a sheaf
is flabby, i.e. whether the restriction map from the global sections to
the sections over an open subset is surjective. We want to study the
analogous question in our version of sheaf theory, so we need a notion
of an open subset.

For this we now assume that we are given an additional structure on
the moment graph G, namely we assume that each edge of G is directed.

We write E : x → y or E : x
α→ y for a directed edge. For x, y ∈ V

we then set x � y if either x = y or if there is a directed path leading
from x to y, i.e. if there are vertices x0, . . . , xn with x = x0, y = xn

and directed edges xi−1 → xi for all i = 1, . . . , n. We assume that “�”
defines a partial order on V, i.e. we assume that there are no directed
cycles.

In the case of the moment graph associated to the root system R
we use the following directions: For an edge E : x → y there is a unique
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positive root α with x = sαy. We direct E towards y if y is bigger than
x in the Bruhat order.

Let us return to the case of a general moment graph. The partial
order can be used to define a topology on the set V: a subset I of
V is open if for any x ∈ I and y ∈ V with x � y we have y ∈ I,
i.e. if I =

⋃
x∈I{� x}. Here and in the following we write {≥ z} for

{y ∈ V | y ≥ z}. The notation {> z} has an analogous meaning.

2.5. A restriction on the characteristic

An essential assumption for us is that the characteristic of k is not
too small with respect to the labels on the graph:

Definition 2.2. Let G be a moment graph and k a field. We say that
(G, k) satisfies the GKM-assumption if ch k 	= 2 and if for any distinct
edges E and E′ adjacent at a common vertex we have l(E) 	∈ kl(E′)
(this is to be read in Y ⊗Z k).

In case the moment graph is associated to the (finite) root system
R, we only have to exclude characteristic 2 and characteristic 3 in case
R has a component of type G2. For subgraphs of affine moment graphs,
however, the above is a crucial restriction (see [F5]).

2.6. The Braden-MacPherson sheaf

Now we want to ask whether a given sheaf F is flabby, i.e. whether
for any open subset I of V the restriction of the global sections Γ(F ) →
Γ(I,F ) is surjective. There is a certain class of sheaves (cf. [BMP]) that
are universal with respect to the problem of extension of local sections:

Definition 2.3 ([BMP, F4, FW]). A sheaf B on the moment graph
G is called a Braden–MacPherson sheaf if it satisfies the following prop-
erties:

(1) Bx is a graded free S-module of finite rank for any x ∈ V,
(2) for a directed edge E : x → y the map ρy,E : By → BE is

surjective with kernel l(E)By,
(3) for any open subset J of V the map Γ(B) → Γ(J ,B) is sur-

jective, and
(4) the composition Γ(B) ⊂ ⊕

z∈V Bz → Bx is surjective for any
x ∈ V (where the map on the right is the projection along the
decomposition).

The property (4) is a technical property that assures that the stalks
are as small as they need to be. One can quite easily deduce the following
results on the category of Braden–MacPherson sheaves.
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Theorem 2.4 ([BMP, F4, FW]). (1) For any w ∈ V there is
an up to isomorphism unique Braden–MacPherson sheaf B(w)
on G with the following properties:
• We have B(w)w ∼= S and B(w)x = 0 unless x ≤ w.
• B(w) is indecomposable in G-modk.

(2) Let B be a Braden–MacPherson sheaf. Then there are w1, . . . ,
wn ∈ V and l1, . . . , ln ∈ Z such that

B ∼= B(w1)[l1]⊕ · · · ⊕ B(wn)[ln].

The multiset (w1, l1),. . . ,(wn, ln) is uniquely determined by B.

For latter use we now study the connection between the category
of sheaves and the category of Z-modules obtained as global sections of
sheaves.

2.7. A generic decomposition of Z-modules

Again we return to the case of a general moment graph. Let Q
be the quotient field of S. The embedding Z ⊂ ⊕

x∈V S induces an
embedding Z ⊗S Q ⊂ ⊕

x∈V Q. The following is quite easy to prove in
the case that the moment graph is finite.

Lemma 2.5 ([F4, Lemma 3.2]). The latter embedding is a bijection,
i.e. we have Z ⊗S Q =

⊕
x∈V Q.

LetM be a Z-module. We denote byMQ theQ-vector spaceM⊗SQ
obtained fromM by base change. It is naturally acted upon by Z⊗SQ =⊕

x∈W Q, hence there is a natural decomposition MQ =
⊕

x∈W Mx
Q,

such that (zx) ∈
⊕

x∈W Q acts on Mx
Q as multiplication with zx.

Definition 2.6 ([F3, Definition 2.7]). Let I ⊂ V be a subset and M
a Z-module. We let MI be the image of the composition M → MQ →⊕

x∈I Mx
Q, where the map on the left is the canonical map that sends

m ∈ M to m⊗ 1 in MQ, and the map on the right is the projection with
kernel

⊕
x∈V\I Mx

Q.

For a vertex x we write Mx instead of M{x} and call this space the
stalk of M at x.

The following statement readily follows from part (4) of the defini-
tion of a Braden–MacPherson sheaf. It allows us to determine the stalks
of the Braden–MacPherson sheaves from the spaces of their global sec-
tions.

Lemma 2.7. Let B be a Braden–MacPherson sheaf. For each x ∈
V we have a canonical identification Γ(B)x ∼= Bx.

We now put the sheaf theory in a more categorical context.
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2.8. Z-modules admitting a Verma flag

The following is a very crucial definition for us.

Definition 2.8 ([F4, Section 4]). Let M be a Z-module. We say
that M admits a Verma flag if for any open set J the module MJ is
graded free over S of finite rank.

We denote by CV erma ⊂ Z-mod the full category that consists of all
modules admitting a Verma flag. The category CV erma is not an abelian
category. In the following we define an exact structure on CV erma. The
notion of an exact structure on an additive category A was introduced
by Quillen in [Q] (it is a collection of sequences A → B → C in A that
satisfies certain axioms). We need the following exact structure:

Definition 2.9 ([F4, Section 4.1]). Let A → B → C be a sequence
in CV erma. We say that it is exact if for any open subset J of V the
induced sequence 0 → AJ → BJ → CJ → 0 is an exact sequence of
abelian groups.

In an exact categoryA one has the usual notion of projective objects:
An object P in A is projective, if the functor HomA(P, ·) : A → Z-mod
maps the given class of short exact sequences to short exact sequences
of abelian groups. We now obtain a categorical characterization of the
Braden–MacPherson sheaves:

Theorem 2.10 ([F4, F3]). Suppose that G is the moment graph
associated to the root system R and k is such that (G, k) satisfies the
GKM-assumption. Then the following holds:

(1) If B is a Braden–MacPherson sheaf on G, then Γ(B) admits
a Verma flag.

(2) Γ induces an equivalence between the full subcategory of Braden–
MacPherson sheaves in G-modk and the full subcategory of pro-
jective objects in CV erma.

In particular, the set {Γ(B(w))}w∈W is a full set of representatives
for the indecomposable projective isomorphism classes in CV erma. We
can now formulate the main problem in moment graph theory.

Problem 2.11. Determine the graded rank of B(w)x for all w, x ∈ W.

This rank will depend on the characteristic of the chosen field k. We
will see in the following that in the case k = C this rank calculates the
characters of simple highest weight modules for a semi-simple complex
Lie algebra and that it can be determined via the geometry of flag va-
rieties. A direct computation of this rank (in the equivalent language
of Soergel bimodules) avoiding the passage to geometry can be found in
[EW].
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§3. Representation theory

The aim of this section is to discuss the original Kazhdan–Lusztig
conjecture which is a prototype for a series of similar conjectures in
representation theory. We start with some basic notions in the repre-
sentation theory of semi-simple complex Lie algebras. A reference for a
large part of the following is the book [Hum].

3.1. Simple highest weight modules

Let g be a complex simple Lie algebra and h ⊂ b ⊂ g a Cartan
and a Borel subalgebra of g. We assume that we have identified the
root system associated to h and g with R in such a way that R+ is the
set of roots of b. Recall that a g-module M is a weight module if it is
semi-simple for the action of h, i.e. if M =

⊕
λ∈h� Mλ, where Mλ is the

h-weight space with eigenvalue λ.
There is a partial order “�” on the set h� given by λ � μ if and only

if μ − λ is a sum of positive roots. Let λ ∈ h�. A module M is called
a module of highest weight λ if there is m ∈ Mλ, m 	= 0, that generates
M and such that Mμ 	= 0 implies μ � λ.

It is not difficult to see that for any λ ∈ h� there is an up to
isomorphism unique simple module L(λ) of highest weight λ and that
L(λ) ∼= L(μ) implies λ = μ.

3.2. Characters of highest weight modules

Let Z[h�] be the lattice spanned by the set h�. We denote the basis
element associated to λ by eλ. An element in Z[h�] is hence a finite
Z-linear combination

∑
λ∈h� aλe

λ. As the modules L(λ) are infinite
dimensional in general, we need the following completion of the lattice

Z[h�]: we let Ẑ[h�] be the abelian group of formal Z-linear combinations∑
λ∈h� aλe

λ such that there exist μ1, . . . , μn in h� such that aλ 	= 0
implies λ ≤ μi for some i.

Now, a highest weight module M has finite dimensional weight
spaces Mλ, hence we can define its character as

chM :=
∑
λ∈h�

dimC Mλ · eλ ∈ Ẑ[h�].

Our principal aim is to calculate the simple highest weight characters of
g, i.e. to give a formula for chL(λ) for any λ.
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3.3. Simple highest weight characters and the Kazhdan–
Lusztig conjecture

Set ρ = 1/2
∑

α∈R+ α and define the dot-operation of W on h� by
shifting the linear action by −ρ, i.e. such that for w ∈ W and λ ∈ h� we
have w.λ = w(λ+ ρ)− ρ.

If λ is integral (i.e. 〈λ, α∨〉 ∈ Z for all α ∈ R), regular (i.e. the
dot-stabilizer of λ in W is trivial) and dominant (i.e. maximal in its
W-dot-orbit), then chL(λ) is given by Weyl’s character formula:

chL(λ) =

∑
w∈W(−1)l(w)ew(λ+ρ)∑
w∈W(−1)l(w)ew(ρ)

.

Kazhdan and Lusztig conjectured in [KL1] the following generalization
of Weyl’s character formula.

Conjecture 3.1 ([KL1]). Suppose that λ is integral, regular and
dominant. Then we have for any w ∈ W

chL(w.λ) =
∑
x∈W

(−1)l(w)−l(x)Px,w(1)e
x.λ

∏
α∈R+

(1 + e−α + e−2α + . . . ).

Here Px,y denotes the Kazhdan–Lusztig polynomial for the Coxeter sys-
tem (W,S) at the parameters x, y.

Our next task is to rewrite the Kazhdan–Lusztig conjecture as a
multiplicity conjecture for Verma modules.

3.4. Verma modules

Recall that we have b = h ⊕ [b, b] as vector spaces. For any linear
form λ ∈ h� we let Cλ be the 1-dimensional b-module on which h ⊂ b
acts via the character λ and [b, b] acts trivially. Induction then yields
the Verma module

Δ(λ) = U(g)⊗U(b) Cλ.

This is a module of highest weight λ and it even is universal in the sense
that any module of highest weight λ (in particular, L(λ)) is isomorphic
to a quotient of Δ(λ). From the PBW-theorem one deduces immediately
the following character formula for the Verma modules.

Lemma 3.2. For any λ ∈ h� we have

chΔ(λ) = eλ
∏

α∈R+

(1 + e−α + e−2α + . . . ).
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3.5. Jordan–Hölder multiplicities

Each highest weight module M admits a Jordan-Hölder series, i.e. a
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that Mi/Mi−1

∼= L(λi)
for some λ1, . . . , λn ∈ h�. For each μ the number of occurences of L(μ)
in such a filtration is independent of the choice of the filtration and is
denoted by [M : L(μ)].

Using Lemma 3.2 and an inversion formula for the Kazhdan–Lusztig
polynomials one shows that the following conjecture is equivalent to the
Kazhdan–Lusztig conjecture 3.1.

Conjecture 3.3 ([KL1]). Suppose that λ is integral, regular and
dominant. Then we have for all w ∈ W

[Δ(w.λ) : L(μ)] =

{
Pw0w,w0x(1), if μ = x.λ for some x ∈ W,

0, otherwise.

Here w0 ∈ W denotes the longest element.

3.6. The category O
In order to study the above multiplicity conjecture we need to define

a category around our objects. This category is the “highest weight”
category O defined originally by Bernstein, Gelfand and Gelfand. Here
is its definition:

Definition 3.4. We denote by O the full subcategory of the category
of g-modules that consists of locally b-finite weight modules.

Recall that a g-module M is called locally b-finite, if every m ∈ M
is contained in a finite dimensional b-submodule of M . Note also that
each highest weight module belongs to O, in particular, Δ(λ) and L(λ)

belong to O for any λ ∈ ĥ�.

3.7. Verma flags

We say that an object M of O admits a Verma flag if there exists
a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M such that for each
i = 1, . . . , n the subquotient Mi/Mi−1 is isomorphic to Δ(μi) for some
μ ∈ h�. The number of occurences of Δ(μ) in a filtration as above is in
fact independent of the filtration and is denoted by (M : Δ(μ)).

3.8. BGG-reciprocity

Let A be an abelian category and L a simple object in A. Recall
that a projective cover of L in A is a non-zero morphism f : P → L that
has the property that P is projective and that any morphism g : Q → P
such that f ◦ g is non-zero, is surjective. Often one calls P a projective
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cover of L and assumes that the morphism f is given. The following
result is due to Bernstein, Gelfand and Gelfand and is a characteristic
zero version of a similar result of Humphreys.

Theorem 3.5 ([BGG]). Let λ ∈ h�.

(1) There exists an up to isomorphism unique projective cover
P (λ) → L(λ) in O.

(2) The object P (λ) admits a Verma flag and for the multiplicities
holds the BGG-reciprocity formula (P (λ) : Δ(μ)) = [Δ(μ) :
L(λ)].

Using the BGG-reciprocity we can now reformulate the Kazhdan–
Lusztig conjecture:

Conjecture 3.6. Suppose that λ is integral, regular and dominant.
Then we have for all y ∈ W

(P (y.λ) : Δ(μ)) =

{
Pw0x,w0y(1), if μ = x.λ for some x ∈ W ,

0, otherwise.

The reason for this additional reformulation of the Kazhdan–Lusztig
conjecture is that both P (λ) and Δ(λ) admit deformed versions and can
hence be studied in a relative setting. This is not possible for the simple
object L(λ).

3.9. Deformed category O
The main idea of deformation theory is to not only consider a certain

Verma module Δ(λ) by itself, but to study families of Verma modules.
Having understood all Verma modules in a neighbourhood of Δ(λ) we
hope to obtain information on Δ(λ) itself. The method for this is as
follows (references for the following are [S2, F1, F2]).

Let S = S(h) be the symmetric algebra of the vector space h and let
A be a commutative, unital, Noetherian, finitely generated S-algebra.
We call such an algebra a deformation algebra in the following. We can
now consider gA := g⊗C A as an A-Lie algebra and study gA-modules.
Note that such an object is an A-module M endowed with an A-linear
action of g.

As A is supposed to be a unital S-algebra it comes with the structure
homomorphism τ : S → A, f �→ f · 1A. For λ ∈ h� we define the bA-
module Aλ as the free A-module of rank 1 on which H ∈ h acts as
multiplication with the scalar λ(H) + τ(H) ∈ A and [b, b] acts trivially.
By induction we obtain the deformed Verma module

ΔA(λ) := U(g)⊗U(b) Aλ.
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The straightforward generalization of the definition of O is the following:

Definition 3.7. Let M be a gA-module.

(1) M is called a weight module if M =
⊕

λ∈h� Mλ, where Mλ =

{m ∈ M | H.m = (λ(H) + τ(H))m for all H ∈ h}.
(2) M is called locally bA-finite, if every m ∈ M is contained in a

bA-submodule of M that is finitely generated over A.

We denote by OA the full subcategory of the category of gA-modules that
consists of locally bA-finite weight modules.

3.10. Simple objects in OA

From now on we assume that A is a local deformation algebra with
maximal ideal m ⊂ A and quotient field K = A/m. Then we can
consider K as a deformation algebra as well. Note that gK is again a
Lie algebra over a field of characteristic zero and all our ”non-deformed”
results apply.

The corresponding category OK is just a direct summand of the
usual categoryO over the Lie algebra gK that contains all modules whose
set of weights is contained in the image of the affine space τ + h� inside
the K-linear dual of h⊗C K. In particular, each λ ∈ h� parametrizes a
simple object LK(λ) in OK with highest weight λ+ τ .

The locality of A allows us to apply the Nakayama lemma for the
proof of the following statement.

Theorem 3.8. [F1] The base change functor · ⊗A K : OA → OK

induces a bijection{
simple isomorphism

classes of OA

}
∼→

{
simple isomorphism

classes of OK

}
.

We now need to find deformed versions of the projective covers.

3.11. Deformed projective objects

As in the non-deformed case one proves the first part of the following
theorem. The second part uses the idempotent lifting lemma.

Theorem 3.9. [F1] Suppose that A is a local deformation algebra
with residue field K. Let λ ∈ h�.

(1) There exists an up to isomorphism unique projective cover
PA(λ) → LA(λ) in OA.

(2) The object PA(λ) admits a deformed Verma flag and for the
multiplicities holds the BGG-reciprocity formula (PA(λ) :
ΔA(μ)) = [ΔK(μ) : LK(λ)].
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Note that on the right of the BGG-reciprocity above the Verma
module and the simple object are defined over the residue field K. This
allows us to give yet another formulation of the Kazhdan–Lusztig con-
jecture. Let S = S(h) be the symmetric algebra of the vector space

h and denote by S̃ its localization at the maximal ideal S · h. As the

residue field of S̃ is C we obtain the following equivalent formulation of
the Kazhdan–Lusztig conjecture:

Conjecture 3.10. Suppose that λ ∈ h� is integral, regular and
dominant. Then we have for all w ∈ W

(PS̃(w.λ) : ΔS̃(μ)) =

{
Pw0x,w0w(1), if μ = x.λ for some x ∈ W ,

0, otherwise.

Finally, we can relate the deformed category O to the category of
sheaves on a moment graph.

3.12. A functor into moment graph combinatorics

Let w0 ∈ W be the longest element in the Weyl group. Then So-
ergel’s structure functor ([S1]) is given by

V := Hom(PA(w0.λ), ·) : OA → mod-End(PA(w0.λ)).

Let us consider the case A = S̃ again. Let Q be the quotient field

of S̃. Each endomorphism f of PS̃(w0.λ) induces a homomorphism fQ
of PS̃(w0.λ) ⊗S̃ Q. As PS̃(w0.λ) admits a deformed Verma flag, it is

torsion free as a S̃-module, hence the map f �→ fQ is injective. So we can
consider EndOS̃

(PS̃(w0.λ)) as a submodule in EndOQ(PS̃(w0.λ)⊗S̃ Q).

Proposition 3.11 ([F2]). (1) There is an isomorphism
PS̃(w0.λ)⊗S̃Q

∼= ⊕
x∈W ΔQ(x.λ). It induces a canonical iden-

tification

EndOQ(PS̃(w0.λ)⊗S̃ Q) =
⊕
x∈W

Q.

(2) The subspace EndOS̃
(PS̃(w0.λ)) ⊂ EndOQ(PS̃(w0.λ) ⊗S̃ Q) =⊕

x∈W Q coincides with{
(zx) ∈

⊕
x∈W

S̃

∣∣∣∣ zx ≡ zsαx mod α∨

for all x ∈ W and α ∈ R+

}
.

Now let us consider C-sheaves on the moment graph associated to R.
The definition of the structure algebra Z on this graph resembles greatly
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the result we obtained for End(PS̃(w0.λ)), except for one detail: the
graded symmetric algebra is replaced by a localized symmetric algebra.
We obtain the following result.

Corollary 3.12. There is a canonical isomorphism End(PS̃(w0.λ)) ∼=
Z ⊗S S̃.

We can now consider V as a functor from OS̃ to Z ⊗S S̃-mod. Let

us denote by OS̃,[λ] the block of OS̃ containing LS̃(λ) and by OV erma
S̃,[λ]

its subcategory of objects admitting a Verma flag. It inherits an exact
structure from the natural exact structure of the abelian category OS̃ .
Here is now our link to moment graph theory:

Theorem 3.13 ([F4]). (1) The functor V induces an exact

equivalence between the OV erma
[λ] and CV erma ⊗S S̃.

(2) For w ∈ W there is an isomorphism V(PS̃(w.λ))
∼= Γ(B(w))⊗S

S̃ of Z ⊗S S̃-modules.
(3) We have for each x ∈ W (PS̃(w.λ) : ΔS̃(x.λ)) = rkB(w)x.

Here, rk refers to the ungraded rank of the free S-module B(w)x.
Hence Conjecture 3.10 is equivalent to

Conjecture 3.14. Suppose that k = C. Then we have for all x,w ∈
W

rkB(w)x = Pw0x,w0w(1).

This (ungraded) conjecture is in fact equivalent to a graded version
(cf. [F3]).

§4. Geometry

Now we want to relate the geometry of flag varieties to the Braden-
MacPherson sheaves on the underlying Bruhat graph. A reference for
the following is [FW], which contains a positive characteristic analog of
the main result in [GKM]. For the definition of the equivariant derived
category, see [BL].

4.1. H-spaces

Let H be a topological group. An H-space is a topological space X
together with a continuous H-action H ×X → X. An H-space is called
(topologically) free if the quotient map X → X/H is an H-bundle (i.e. a
locally trivial fibration with fiber H).

For the following we fix an H-space EH that is free and contractible
(such a space always exists). This space is not uniquely defined, but
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nothing that follows depends on our choice for EH. Then we can define
for an arbitrary H-space X the topological space

XH := X ×H EH,

which is the orbit space of X × EH under the diagonal H-action. We
then have a diagram

X × EH
q

����
��
��
��
�

p

����
���

���
��

XH X,

where q is the canonical orbit map and p is the projection onto the first
factor.

4.2. The equivariant derived category

For the sheaf theory we now also need a field k of coefficients. To
the data (H,X, k) one associates the following category:

Definition 4.1. The equivariant derived category D+
H(X, k) of

sheaves on X with coefficients in k is the full subcategory of D+(XH , k)
that contains all sheaves F for which there is a sheaf FX ∈ D+(X, k)
such that q∗(F) ∼= p∗(FX).

By D+(Y, k) we denote the derived category of sheaves of k-vector
spaces on a topological space Y with cohomology bounded from below.

Suppose that X and X ′ are H-spaces and that f : X → X ′ is an H-
equivariant map. Then f× id : X×EH → Y ×EH induces a continuous
map fH : XH → YH and (for suitable f , see [BL]) we get base change
functors f∗

H , f !
H , fH∗ and fH! between D+(XH , k) and D+(YH , k). One

checks, again under suitable assumptions on the map f , that these func-
tors induce functors between the subcategories D+

H(X, k) ⊂ D+(XH , k)

and D+
H(Y, k) ⊂ D+(YH , k). We denote these restrictions by f∗, f !, f∗

and f! in order to save indizes.

4.3. Hypercohomology

The map π : X → {pt} induces a direct image functor π∗ : D+
H(X, k) →

D+
H(pt, k). The category D+

H(pt, k) is a full subcategory of D+(BH, k),
where BH = EH/H = pt ×H EH is the classifying space of H. We
denote by

AH := H∗(BH, k)

its ordinary cohomology with coefficients in k.

Definition 4.2. Let F ∈ D+
H(X, k). The equivariant hypercoho-

mology of F is the graded AH-module H•
H(F) := H∗(π∗F),, i.e. the
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(ordinary) cohomology of the space BH with coefficients in the sheaf
π∗F .

Suppose that i : Y → X is the inclusion of a H-stable subvariety.
For any sheaf F ∈ D+

H(Y, k) we denote by FY := i∗F its restriction to Y .
Note that this is an equivariant sheaf on Y . The adjunction id → i∗i∗

yields a morphism F → i∗i∗F = i∗FY between sheaves on X. Applying
the hypercohomology functor H•

H yields the restriction morphism

H•
H(F) → H•

H(FY )

between AH -modules.

4.4. The main example - flag varieties as T -spaces

Let G be a connected reductive complex algebraic group with root
system R, and let T ⊂ B ⊂ G be a maximal torus inside a Borel
subgroup of G. The quotient X = G/B carries a canonical structure of
a (projective) algebraic variety. It is acted upon (algebraically) by the
torus T .

Note that each complex algebraic variety can be viewed as a topo-
logical space with the underlying metric topology. In particular, we can
view T as a topological group and G/B as a T -space.

Choose an isomorphism T ∼= (C×)r. Then T acts by componentwise
multiplication on the space (Cn \ {0})r. We embed Cn \ {0} into Cn+1 \
{0} by adding a 0 on the (n+1)st coordinate. The space (C∞ \{0})r :=
limn→∞(Cn \ {0})r is then a contractible space with a topologically free
T -action, hence we can take this as a model for ET .

Note that BT = (C∞ \ {0})r/T = (P∞)r, so AT can be identi-
fied with the symmetric algebra S = S(X∗(T ) ⊗Z k) (here X∗(T ) =
Hom(T,C×) is the character lattice of T ).

4.5. The moment graph associated to a T -space X

From now on we restrict ourselves to the case that the group H
is a complex torus T . One of many possible methods to calculate the
hypercohomology H•

T(F) of a T -equivariant sheaf F is the localization
method of Goresky, Kottwitz and MacPherson. In the following we will
shortly review their method.

Each α ∈ X∗(T ) defines an action of T on the affine variety C× by
t.x = α(t)x for t ∈ T , x ∈ C×. We denote the resulting T -space by C×

α .
In order to associate a moment graph to a T -variety X we now assume
the following.

(1) There are only finitely many 0- and 1-dimensional T -orbits in
X.
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(2) Each fixed point is attractive (recall that a fixed point x ∈ X
is called attractive if all weights of T on the tangent space TxX
lie in an open half space of X∗ ⊗Z R).

(3) The closure of a 1-dimensional orbit in X is smooth.
(4) For each 1-dimensional orbit E in X there is a character α ∈

X∗(T ) such that E ∼= C×
α as a T -space.

Note that the character αE in part (3) is only well-defined up to a sign.
For each 1-dimensional orbit E we now fix αE . Nothing that follows
depends on this choice.

The moment graph GX associated to a T -variety X that satisfies the
assumptions above is the following. Its set of vertices is the set XT of
fixed points of X. The vertices x, y ∈ XT , x 	= y are connected by an
edge if there is a 1-dimensional orbit E ⊂ X such that E = E ∪ {x, y}.
We denote this edge by E as well and we set α(E) := αE . So GX is a
moment graph over the weight lattice X∗(T ).

If X = G/B is the flag variety associated with the root system R,
then the moment graph GX is the following: The set of fixed points can
be identified with the set W, and x and y are connected by an edge if
x = sαy for some α ∈ R. We label this edge by α. So in contrast to the
example in Section 2.1, the labels are given by roots and not by coroots!
This is the reason why our localization relates the representation theory
of g to the topology of the Langlands dual flag variety G∨/B∨ rather
than G/B.

4.6. Moment graph sheaves associated to equivariant sheaves

Our next step is to associate a k-sheaf W(F) on GX to any F ∈
D+

T (X, k). For a vertex x ∈ XT we set

W(F)x := H•
T(Fx),

and for a one dimensional orbit E we set

W(F)E := H•
T(FE).

From the identification E ∼= C×
α one deduces that αH•

T(FE) = {0}, as
required. For the construction of the homomorphisms ρx,E we need a
little lemma.

Let Z be a T -variety with an attractive fixed point x. We denote by
i : {x} → Z the inclusion and by π : Z → {x} the projection. If we apply
the functor π∗ to the adjunction id → i∗i∗, we get a natural morphism
π∗ → i∗ (since π ◦ i is the identity map).

Lemma 4.3 ([FW]). Suppose that Z is connected and affine and
let x ∈ Z be an attractive fixed point. Then the morphism π∗ → i∗

constructed above is an isomorphism.
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Now let us consider again the case of a non-necessarily affine T -space
X as before. Let F be an equivariant sheaf on X, let E ⊂ X be a one
dimensional orbit and choose a fixed point x in the closure of E. From
the above lemma we obtain an isomorphism π∗FE∪x

∼→ i∗FE∪x = Fx of
sheaves on the point {x}, and after taking hypercohomology we get an

isomorphism H•
T(FE∪x)

∼→ H•
T(Fx).We can now define ρx,E : H•

T(Fx) →
H•

T(FE) as the composition of the invers of the above morphism with
the restriction morphism:

ρx,E : H•
T(Fx)

∼← H•
T(FE∪x) → H•

T(FE).

Hence we constructed the remaining ingredient for a moment graph
sheaf. The constructions above are clearly functorial, so we now have a
functor

W : D+
T (X, k) → GX -modk.

4.7. The localization theorem

The next result shows that one can recover the global hypercoho-
mology H•

T(F) of certain equivariant sheaves F from the local hyper-
cohomologies on fixed points and one dimensional orbits. In the case
ch k = 0, this is a result of Goresky, Kottwitz and MacPherson ([GKM]).
With some additional care one can use their arguments in order to prove
the statement for almost arbitrary characteristic ([FW]).

Theorem 4.4 ([GKM, FW]). Suppose that (GX , k) satisfies the
GKM-assumption and suppose that F ∈ D+

T (X, k) is such that H•
T(F)

is a free S-module. Then we have an isomorphism

H•
T(F) = Γ(W(F)).

Of course, now we should be looking for equivariant sheaves on
X that correspond to the Braden-MacPherson sheaves on G. The an-
swer may come as a surprise: these are not the intersection cohomology
sheaves, but the parity sheaves.

4.8. (Equivariant) parity sheaves on stratified varieties

For the definition of parity sheaves we need yet another piece of data,
namely a stratification of the variety X. Recall that a stratification of
X is a decomposition

X =
⊔
λ∈Λ

Xλ

by locally closed subvarieties Xλ ⊂ X such that the closure of each
stratum is a union of strata. For any λ ∈ Λ we denote by iλ : Xλ → X
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the inclusion of the stratum Xλ. We furthermore impose the following
assumptions:

• Each stratum is T -stable and there is a T -equivariant isomor-
phism Xλ → Cnλ , where Cnλ carries a linear T -action.

• There are only finitely many 0- and 1-dimensional orbits in X.
• The first two assumptions imply that there is a unique fixpoint
xλ in Xλ for all λ. We assume that xλ is attractive.

• We assume that the stratification is a Whitney-stratification.

In the case of our main example, i.e. the flag manifold X = G/B,
we consider the stratification given by B-orbits. By the Bruhat decom-
position we can identify the set of orbits with the Weyl group W.

Definition 4.5 ([JMW]). Let P ∈ D+
T (X, k).

• P is called even, if for all λ ∈ Λ the sheaves i∗λP and i!λP are
isomorphic to a direct sum of constant sheaves shifted by even
degrees.

• P is called odd, if P[1] is even.
• P is called parity, if it is a direct sum of an even and an odd

sheaf.

Parity sheaves do not always exist. In the case of flag varieties we
have the following result.

Proposition 4.6 ([JMW]). For each w ∈ W there exists an up to
isomorphism unique indecomposable parity sheaf P(w) on the flag variety
G/B with suppP(w) ⊂ Xw and P(w)w ∼= kXw

.

Now we can link the geometry of flag varieties to the Braden–
MacPherson sheaves defined before:

Theorem 4.7 ([FW]). For each w ∈ W there is an isomorphism

W(P(w)) ∼= B(w).

In particular, for each pair x,w ∈ W we have an isomorphism
H•

T(P(w)x) ∼= B(w)x.

We need one last step in order to prove the Kazhdan–Lusztig con-
jecture. The decomposition theorem of Beilinson, Bernstein, Deligne and
Gabber (cf. [BBD]) is used to prove the following:

Theorem 4.8. Suppose that ch k = 0. Then Pk(w) is the in-

tersection cohomology complex IC(BwB/B, k) on the Schubert variety

BwB/B.

Kazhdan and Lusztig managed to calculate the ranks of the stalks
of the intersection cohomology complexes:
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Theorem 4.9 ([KL1, KL2]). Let x,w ∈ W. Then

rkH•
T(IC(BwB/B), k)x) = Pw0x,w0w(1).

In particular, we obtain rkB(w)x = hx,w(1) for the Braden–
MacPherson sheaves on GG/B. The Kazhdan–Lusztig polynomials de-
pend only on the underlying Coxeter system, not on the root system, so
they do not change when we switch to the Langlands dual setup. So we
also obtain a proof of Conjecture 3.14 and hence of the Kazhdan–Lusztig
Conjecture.

4.9. The Elias–Williamson work

Very recently, the remarkable paper [EW] appeared. It contains a
direct, i.e. non-geometric proof of Conjecture 3.14 in characteristic 0
and hence of the Kazhdan–Lusztig conjecture. The proof uses Soergel
bimodules instead of moment graph sheaves. But by a result in [F3], the
category of Soergel bimodules is equivalent to the category of Braden–
MacPherson sheaves, and Conjecture 3.14 translates into which is known
as Soergel’s conjecture. Unfortunately, the arguments used by Elias and
Williamson do not generalize to the positive characteristic case.
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[BMR] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules
for a semisimple Lie algebra in prime characteristic, Ann. of Math.
(2), 167, no. 3, 2008, 945–991.

[BMP] T. Braden and R. MacPherson, From moment graphs to intersection
cohomology, Math. Ann. 321 (2001), no. 3, 533–551.

[EW] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules,
preprint 2012, arXiv:1212.0791.

[F1] P. Fiebig, Centers and translation functors for category O over sym-
metrizable Kac-Moody algebras, Math. Z. 243 (2003), No. 4, 689-717.



96 P. Fiebig

[F2] , The combinatorics of category O over symmetrizable Kac–
Moody algebras, Transformation Groups 11, no. 1 (2006), 29–49.

[F3] , The combinatorics of Coxeter categories, Trans. Amer. Math.
Soc. 360 (2008), 4211-4233.

[F4] , Sheaves on moment graphs and a localization of Verma flags,
Adv. Math. 217 (2008), 683–712.

[F5] , Sheaves on affine Schubert varieties, modular representations
and Lusztig’s conjecture, J. Amer. Math. Soc. 24 (2011), 133-181.

[F6] , Lusztig’s conjecture as a moment graph problem, Bull. London
Math. Soc. 42(6) (2010), 957-972.

[FW] P. Fiebig and G. Williamson, On the p-smooth locus of Schubert vari-
eties, to appear in Ann. Inst. Fourier.

[GKM] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomol-
ogy, Koszul duality, and the localization theorem, Invent. Math. 131
(1998), no. 1, 25–83.

[Hum] James E. Humphreys, Representations of semisimple Lie algebras in the
BGG category O, Graduate studies in Mathematics 94, American
Mathematical Society 2008.

[JMW] D. Juteau, C. Mautner and G. Williamson, Parity Sheaves, preprint
2009, arXiv:0906.2994v1.

[KL1] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and
Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184.

[KL2] , Schubert varieties and Poincaré duality, Geometry of the
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