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Du Bois singularities deform

Sándor J. Kovács and Karl Schwede

Abstract.

Let X be a variety and H a Cartier divisor on X. We prove that if
H has Du Bois (or DB) singularities, then X has Du Bois singularities
near H. As a consequence, if X −→ S is a proper flat family over
a smooth curve S whose special fiber has Du Bois singularities, then
the nearby fibers also have Du Bois singularities. We prove this by
obtaining an injectivity theorem for certain maps of canonical modules.
As a consequence, we also obtain a restriction theorem for certain non-
lc ideals.

§1. Introduction

Du Bois singularities, or henceforth simply DB singularities, were
introduced by Steenbrink in [Ste81]. They may be considered a gener-
alization of the notion of rational singularities. The definition and its
simple consequences makes DB singularities the natural class to con-
sider in many situations including vanishing theorems and moduli the-
ory. More precisely it is important and useful that the singularities con-
sidered in these situation are Du Bois. For instance, Steenbrink showed
that families over smooth curves whose fibers have DB singularities pos-
sess particularly nice properties; this maxim and its consequences have
been further explored in [KK10, Section 7]. These applications imply
that the question of whether DB singularities are invariant under small
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deformations, that is whether the property of having DB singularities
is open in flat families, is very important. In this paper we settle this
question in the affirmative.

As both rational singularities [Kov99] and log canonical singularities
[KK10] are DB, it is interesting to note that rational singularities are
invariant under small deformations by [Elk78], while log canonical sin-
gularities are not unless the total space has a Q-Cartier canonical divisor
compatible with the canonical divisors of the family members. In this
latter case the statement follows from inversion of adjunction [Kaw07].

Our main result is the following:

Main Theorem [Theorem 4.1]. Let X be a scheme of finite type over
C and H a reduced Cartier divisor on X. If H has DB singularities,
then X has DB singularities near H.

The openness of the Du Bois locus in proper flat families follows
immediately, see Corollary 4.2.

In [Ish86], Ishii proved this result for isolated Gorenstein singulari-
ties, and it follows for normal Gorenstein singularities from a combina-
tion of [Kov99] and [Kaw07]. The first named author claimed a proof of
the same statement in general in [Kov00]. That proof unfortunately is
incomplete and only works under an additional condition. The problem
lies in the first paragraph of the proof, namely that one may not always
reduce to the case when the non-Du Bois locus of X is contained in
H = Xs. For additional discussion of this issue see [KS11, Section 12].

In this paper we correct that proof by showing a more general injec-
tivity theorem, Theorem 3.3, which should be viewed as playing the same
role for Du Bois singularities that Grauert-Riemenschneider vanishing
plays for rational singularities, see Corollary 3.5. Using this injectivity,
we can follow the strategy of [Kov00] and mimic Elkik’s proof [Elk78]
that rational singularities deform in families to obtain the main result.

As another corollary of this injectivity theorem, we also prove a
restriction theorem for the so-called maximal non-lc ideals defined in
[FST11], at least in the case of a Gorenstein ambient variety, see Theo-
rem 7.1.
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§2. Preliminaries on DB singularities

Throughout this paper, all schemes are assumed to be separated and
of finite type over C, and all morphisms are defined over C. A variety
here means a reduced connected scheme.

We use Db
coh(X) to denote the bounded derived category of OX -

modules with coherent cohomology. Given an object C
� ∈ Db

coh(X), its
ith cohomology is denoted by hi(C

�

). For any scheme X of finite type
over C, we use ω

�

X to denote the dualizing complex of X which is defined
as ε!C where ε : X −→ C is the structure map of X. We will repeatedly
use Grothendieck duality in the following form: For any proper map of
schemes f : Y −→ X, and any C

� ∈ Db
coh(Y ), there exists a functorial

quasi-isomorphism:

�f∗����
�

Y (C
�

, ω
�

Y ) � ����
�

X(�f∗C
�

, ω
�

X).

For an introduction to derived categories and Grothendieck duality in
the context used in this paper, see [Har66].

Recall that given a variety X, a resolution of singularities π : X̃ −→
X is a proper birational1 map from a smooth variety X̃. Given a closed

subscheme Z ⊆ X with associated ideal sheaf IZ , we say that π : X̃ −→
X is a log resolution of Z ⊆ X if π is a resolution of singularities and if
in addition π∗IZ � O

X̃
(G) where G is a divisor, the exceptional set of

π, Exc(π) ⊆ X̃, is also a divisor, and the divisor Exc(π) ∪ supp(G) has
simple normal crossings. Note that resolutions of singularities, and log
resolutions, exist by [Hir64].

We briefly recall some common objects used in the study of DB
singularities. For a more extensive discussion of DB singularities, please
see [KS11], [HK10, Section 3.I], or [PS08].

Lemma 2.1. Given a variety X, one may associate to X an object
Ω0

X ∈ Db
coh(X) defined as follows: let π � : X � −→ X be a (cubic or

simplicial) hyperresolution of X, see [GNPP88, Car85, Del74], then

Ω0
X := �π � ∗OX � .

This object has the following properties:

(i) Ω0
X is functorial with respect to morphisms of varieties, i.e.,

given a morphism of varieties f : Y −→ X, there is an induced
morphism Ω0

X −→ �f∗Ω0
Y .

1birational = there exists a bijection of irreducible components with an
induced isomorphism of fields of fractions.
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(ii) There is a natural morphism OX −→ Ω0
X compatible with (i)

in the obvious way.
(iii) If in addition X is proper, then the composition

Hi(Xan,C) −→ Hi(X,OX) −→ Hi(X,Ω0
X)

is surjective.

Proof. See [DB81] and [Ste81] for the original definitions and proofs
and [KS11] for a survey on DB singularities. Property (iii) follows di-
rectly from the E1-degeneration of the Deligne-Du Bois variant of the
Hodge-to-De Rham spectral sequence. Q.E.D.

Definition 2.2. We say that X has DB singularities if the morphism
OX −→ Ω0

X from (ii) above is a quasi-isomorphism.

We also recall the following fact about DB singularities.

Lemma 2.3 (cf. [Kol95, Proof of Theorem 12.8]). If X has DB singu-
larities and H is a general member of a base-point-free linear system δ
on X, then H also has DB singularities.

In this paper, we will repeatedly use the Grothendieck dual of Ω0
X .

To make that easier we introduce the notation

ω
�

X := ����
�

X(Ω0
X , ω

�

X).

We will also use the fact that there exists a morphism Φ : ω
�

X −→ ω
�

X ,
which is dual to the natural morphism OX −→ Ω0

X .

Remark 2.4. Note that X has DB singularities if and only if Φ is
a quasi-isomorphism since applying the Grothendieck duality functor
again yields a morphism OX −→ Ω0

X which can be identified with the
morphism from Lemma 2.1(ii) up to quasi-isomorphism.

§3. The key injectivity

In Theorem 3.3 below, we prove the following injectivity. For every
integer j ∈ Z,

Φj : hj(ω
�

X) ↪→ hj(ω
�

X)

is injective. In the case that x ∈ X is a closed point such that X \ {x}
is DB, the injectivity of this morphism played a key role in proving
that rational, log canonical and F -injective singularities are DB, see
[Kov99, KK10, Sch09].

Because of its potential usefulness it has been asked several times
whether this injectivity holds. In particular, it was asked in [Sch09,
Question 8.3] and [KS11, Question 5.2].
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First we prove a lemma that is interesting on its own.

Lemma 3.1. Let X be a variety and L a semi-ample line bundle.
Choose s ∈ L n a general global section for some n � 0 and take the
nth-root of this section as in [KM98, 2.50]:

η : Y = Spec
n−1⊕
i=0

L −i −→ X.

Then η∗ = �η∗,

η∗Ω0
Y � Ω0

X ⊗ η∗OY �
n−1⊕
i=0

(Ω0
X ⊗ L −i),

and this direct sum decomposition is compatible with the decomposition
η∗OY =

⊕n−1
i=0 L −i.

Proof. We fix π � : X � −→ X a finite cubic (or simplicial) hyper-
resolution of X as in [GNPP88]. On each component Xi of X � , L pulls
back to a semi-ample line bundle and further s is still a general mem-
ber of the base-point free linear subsystem of π∗

i L
n. Thus we obtain

a cyclic cover ηi : Yi −→ Xi for each i as well. Furthermore, each Yi is
smooth since it is ramified over a general element of a base-point free
linear system. Obviously, these Yi’s glue to give a diagram of smooth
C-schemes Y � with an augmentation morphism ρ � : Y � −→ Y . From
the construction of a cubic hyperresolution, it is easy to see that Y � is
also a cubic hyperresolution.

We briefly sketch the idea of this last claim: if X ′ −→ X is a res-
olution of singularities, then the induced Y ′ −→ Y is also a resolution
of singularities. Furthermore, if X ′ −→ X is an isomorphism outside of
Σ ⊆ X, then Y ′ −→ Y is also an isomorphism outside of η−1(Σ), which
is itself the induced cyclic cover of Σ.

Therefore,

�η∗Ω0
Y � �η∗�ρ � ∗OY � � �π � ∗�η � ∗OY �

� �π � ∗
(⊕n−1

i=0 (OX � ⊗ π∗
�L −i)

)
� ⊕n−1

i=0

(
(�π � ∗OX � )⊗ L −i

)
� ⊕n−1

i=0 (Ω
0
X ⊗ L −i)

� Ω0
X ⊗ (⊕n−1

i=0 L −i)

� Ω0
X ⊗ η∗OY .
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and the result follows, the compatibility statement following by con-
struction.

Alternatively, if one wishes to avoid hyperresolutions one may pro-
ceed as follows. By restricting to an open set, we may assume that X
embeds as a closed subscheme in a smooth scheme U such that L is
the restriction of a globally generated line-bundle M on U . Further set
π : U ′ −→ U to be a log resolution of X ⊆ U where we use X to denote
the reduced divisor π−1(X)red. Then �π∗OX � Ω0

X . Choosing a general
section s of the globally generated line bundle M n, we obtain a diagram
of cyclic covers:

Y � � ��

��

W ′

��

Y � � �� W

where Y,W,W ′ and Y are the induced cyclic covers of X,U,U ′ and X
respectively. It is clear that W and W ′ are smooth and that Y is the
reduced-preimage of Y and has simple normal crossings. Thus the result
follows again since �π∗OY � Ω0

Y by [Sch07], also see [Esn90]. Q.E.D.

Before proving our main injectivity, we need one more result.

Proposition 3.2. Let X be a proper variety over C and L a semi-
ample line bundle on X. Then the natural map

Hj(X,L −i) −→ Hj(X,Ω0
X ⊗ L −i)

is surjective for all j, i ≥ 0.

Proof. Choose n > i such that L n is base-point-free and choose
a general section s ∈ Γ(X,L n). Consider the induced cyclic cover η :
Y −→ X and note that Y is also proper. Now, we have the following
factorization

Hi(Y an,C) −→ Hi(Y,OY ) −→ Hi(Y,Ω0
Y ).

This composition is surjective by Lemma 2.1(iii). Thus Hi(Y,OY ) −→
Hi(Y,Ω0

Y ) is also surjective. Then the statement follows by Lemma
3.1. Q.E.D.

Now we are ready to prove the main result of the section.

Theorem 3.3. Let X be a variety over C. Then the natural map

Φj : hj(ω
�

X) ↪→ hj(ω
�

X)

is injective for every j ∈ Z.
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Proof. The statement is local and compatible with restriction to
an open subset. Therefore we may assume that X is projective. Let
j ∈ Z and L an ample line bundle on X. It follows from Proposition
3.2 that H−j(X,L −i) −→ H−j(X,Ω0

X ⊗L −i) is surjective. Next, apply
HomC( ,C) and observe that then

H−j(X,Ω0
X ⊗ L −i)∨ ↪→ H−j(X,L −i)∨

is injective. However,

H−j(X,L −i)∨ � hj(�Γ(X,����OX (L −i, ω
�

X)))

� Hj(X,ω
�

X ⊗ L i)

by Grothendieck duality applied to the structure map ε : X −→ C.
Likewise,

H−j(X,Ω0
X ⊗ L −i)∨ � Hj(X,ω

�

X ⊗ L i).

Thus we get that

Hj(X,ω
�

X ⊗ L i) ↪→ Hj(X,ω
�

X ⊗ L i)

is injective. Notice that

Hj(X,ω
�

X ⊗ L i) � H0(X,hj(ω
�

X)⊗ L i)

for i � 0 by Serre-vanishing and the associated Grothendieck spectral
sequence. Likewise,

Hj(X,ω
�

X ⊗ L i) � H0(X,hj(ω
�

X)⊗ L i)

for i � 0. Therefore,

(3.3.1) H0(X,hj(ω
�

X)⊗ L i) ↪→ H0(X,hj(ω
�

X)⊗ L i)

is injective for i � 0. Observe that since L is ample, both hj(ω
�

X)⊗L i

and hj(ω
�

X)⊗ L i are generated by global sections for i � 0. Therefore
the injectivity of equation (3.3.1) implies, that

Φj : hj(ω
�

X) −→ hj(ω
�

X)

is also injective for every j. This completes the proof. Q.E.D.

We also have the following local-dual version of Theorem 3.3.
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Corollary 3.4 (cf. [Kov99, Lemma 2.2]). Let X be a variety and P ∈ X
is a point (not necessarily closed). Then the natural map

Hi
P (X,OX,P ) � Hi

P (X,Ω0
X ⊗ OX,P )

is surjective for all i ≥ 0.

Proof. We have the injection hi(ω
�

X)P −→ hi(ω
�

X)P for all i. After
shifting (in case P is not a closed point), we have that hi(ω

�

OX,P
) −→

hi(ω
�

OX,P
) also injects for all i. Let E be the injective hull of the

residue field OX,P /mX,P and apply the (faithful and exact) functor
HomOX,P ( , E). Local duality in the form of [Har66, IV, Theorem
6.2] then yields the corollary. Q.E.D.

With respect for deciding whether X has DB singularities, the com-
plex Ω0

X plays the same role as the complex �π∗OX̃
does for detecting

rational singularities, here π : X̃ −→ X is a resolution of singularities.
However, in many applications what makes �π∗OX̃

a useful object
is the Grauert-Riemenschneider vanishing theorem [GR70] applied to its
Grothendieck dual, �π∗ω

�

X̃
� ����

�

OX
(�π∗OX̃

, ω
�

X) implying that it is

a complex with non-zero cohomology in only one spot:

�π∗ω
�

X̃
� π∗ωX̃

[dimX].

For X Cohen-Macaulay, Theorem 3.3 yields an analogous vanishing
for DB singularities.

Corollary 3.5. Let X be a Cohen-Macaulay variety of dimension d.
Then

ω
�

X � h−d(ω
�

X)[d].

If additionally X is normal and π : X̃ −→ X is a log resolution of
singularities with reduced exceptional divisor E, then

ω
�

X � π∗ωX̃
(E)[d]

Proof. Since X is Cohen-Macaulay and connected, it is equidimen-
sional. The first statement is immediate since a submodule of the zero-
module is zero and because hi(ω

�

X) = 0 for i �= −d. For the second
statement, use the fact that h−d(ω

�

X) � π∗ωX̃
(E) by [KSS10, Theorem

3.8]. Q.E.D.

Remark 3.6. Notice that if X is DB, then ω
�

X � ω
�

X and hence the
statement is equivalent to X being Cohen-Macaulay.

A slight reinterpretation of the previous result also gives us the
following corollary.
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Corollary 3.7. Let Y be a smooth n-dimensional variety and X ⊆ Y

a Cohen-Macaulay subvariety of pure dimension d. Let π : Ỹ −→ Y be
a log resolution of X ⊆ Y . Set E ⊆ Y to be the reduced pre-image of X
in Y (which is a divisor since π is a log resolution). Then

Riπ∗ωỸ (E) = 0

for all i �= 0, n− d− 1.

Proof. Consider the long exact sequence

Riπ∗ωỸ −→ Riπ∗ωỸ (E) −→ Riπ∗ωE −→ Ri+1π∗ωỸ

and notice first that Riπ∗ωỸ = 0 for all i �= 0 by [GR70]. Since ωE [n−
1] � ω

�

E we have Rj+n−1π∗ωE � hj(�π∗ω
�

E). However, �π∗ω
�

E � ω
�

X

by [Sch07]. Therefore, since hj(ω
�

X) = 0 for j �= −d by Corollary 3.5, we
see that Rj+n−1π∗ωE = 0 for j �= −d. Thus Riπ∗ωE = 0 for i �= n−d−1
and the result follows. Q.E.D.

Remark 3.8. The previous two corollaries do not hold if X is not
Cohen-Macaulay. In fact they automatically fail for any non-Cohen-
Macaulay variety with Du Bois singularities. For example, they fail for
the affine cone over an Abelian variety of dimension > 1.

Theorem 3.3 also provides slightly simpler proofs of existing results.

Corollary 3.9 ([Kov99], cf. [Kol95, Section 12]). If the morphism OX −→
Ω0

X has a left-inverse in Db
coh(X), then X has DB singularities.

Proof. The hypothesis implies that Φi : hi(ω
�

X) −→ hi(ω
�

X) is sur-
jective for every i. Thus Φi is an isomorphism by Theorem 3.3 and hence
Φ : ω

�

X −→ ω
�

X is a quasi-isomorphism and so X has DB singularities by
Remark 2.4. Q.E.D.

§4. Deformation of DB singularities

We now prove the main result of the paper. In fact, simply using
Corollary 3.4 fills in the gap in the first author’s proof of this statement
in [Kov00, Theorem 3.2]. For completeness, we provide a proof below.
This proof (as well as the proof of [Kov00, Theorem 3.2]) was inspired
by Elkik’s proof of the fact that rational singularities deform [Elk78].

Theorem 4.1. Let X be a scheme of finite type over C and H a reduced
effective Cartier divisor (if X is not normal, by a Cartier divisor we
mean a subscheme locally defined by a single non-zero-divisor at each
stalk). If H has DB singularities, then X has DB singularities near H.
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Proof. Choose hyperresolutions π � : X � −→ X and μ � : H � −→ H
with a map H � −→ X � factoring through the diagram of schemes Z � :=
X � ×X H as pictured below, cf. [GNPP88].

H �

μ �
���

��
��

��
�

�� Z �

ε �

��

�� X �

π �

��

H � � �� X

Note that the components of Z � need not be smooth or even reduced.
Choose a closed point q of X contained within H. It is sufficient to

prove that X is DB at q. Let R denote the stalk OX,q and choose f ∈ R
to denote a defining equation of H in R. We also define Ω0

R := Ω0
X ⊗R

and ω
�

R := � Hom
�

R(Ω
0
R, ω

�

R). Consider the following diagram whose
rows are exact triangles in Db

coh(X):

R

��

×f
�� R

��

�� R/(f)

ρ
��

+1
��

Ω0
R ×f

�� Ω0
R

�� (�ε � ∗OZ � )⊗R

τ
��

+1
��

Ω0
H ⊗R

where τ ◦ ρ is a quasi-isomorphism by hypothesis. Next we apply the
functor � Hom

�

R( , ω
�

R). Using the notation ω̃
�

Z �
= � Hom

�

R((�ε � ∗OZ � )⊗
R,ω

�

R) and taking cohomology we obtain the following diagram of long
exact sequences:

hi(ω
�

R)��

Φi

��

hi(ω
�

R)
×f
��

��

Φi

��

��
δi

hi(ω
�

R/f )
����
γi

��
αi

hi−1(ω
�

R)��

Φi−1

��

��
×f

hi−1(ω
�

R)��

Φi−1

��

hi(ω
�

R)
��
×f

hi(ω
�

R)
�� hi(ω̃

�

Z �
) ��

βi
hi−1(ω

�

R)
��
×f

hi−1(ω
�

R)

where the vertical Φ maps are injective because of Theorem 3.3 and the
morphism γi is surjective because τ ◦ ρ is an isomorphism.

Fix z ∈ hi−1(ω
�

R). Pick w ∈ hi(ω̃
�

Z �
) such that αi(z) = γi(w).

Since δi(αi(z)) = 0 and Φi is injective, it follows that there exists a
u ∈ hi−1(ω

�

R) such that βi(u) = w. Therefore, αi(Φ
i−1(u)) = αi(z) and

so

(4.1.1) z − Φi−1(u) ∈ f · hi−1(ω
�

R).

Now, fix Ci−1 to be the cokernel of Φi−1 and set z ∈ Ci−1 to be
the image of z. Equation (4.1.1) then guarantees that z ∈ f · Ci−1.
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But z was arbitrary and so the multiplication map Ci−1
×f

�� Ci−1

is surjective. But this contradicts Nakayama’s lemma unless Ci−1 = 0.
Therefore Ci−1 = 0 and Φi−1 is also surjective. This holds for all i and
so the natural morphism ω

�

X −→ ω
�

X is a quasi-isomorphism. Thus X
has DB singularities by Remark 2.4. Q.E.D.

Corollary 4.2. Let f : X −→ S be a proper flat family of varieties over
a smooth curve S and s ∈ S a closed point. If the fiber Xs has DB
singularities, then so do the other fibers near s.

Proof. By Theorem 4.1, X has DB singularities near Xs. Let Σ
denote the non-Du Bois locus of X. Since f is proper, f(Σ) is a closed
subset of S not containing s ∈ S. Thus by restricting S to an open set,
we may assume that X has DB singularities. By Lemma 2.3, all fibers
over nearby points of s ∈ S have DB singularities. Q.E.D.

§5. DB pairs

In [Kov11], the first author defined a notion of Du Bois (or simply
DB) pairs. Indeed, given a (possibly non-reduced) subscheme Z ⊆ X
one has an induced map in Db

coh(X),

Ω0
X −→ Ω0

Z ,

noting that by definition Ω0
Z = Ω0

Zred
. Then Ω0

X,Z to be the object in
the derived category making the following an exact triangle:

Ω0
X,Z −→ Ω0

X −→ Ω0
Z

+1−−→ .

If IZ is the ideal sheaf of Z, then it is easy to see that there is a natural
map IZ −→ Ω0

X,Z , [Kov11, Section 3.D].

Definition 5.1. [Kov11, Definition 3.13] The Du Bois defect of (X,Z),
denoted Ω×

X,Z , is the mapping cone of the morphism IZ −→ Ω0
X,Z , so

that there is an exact triangle

IZ −→ Ω0
X,Z −→ Ω×

X,Z
+1−−→

We say that (X,Z) has Du Bois singularities if Ω×
X,Z is quasi-isomorphic

to zero. In other words, if IZ −→ Ω0
X,Z is a quasi-isomorphism.

We now mimic our approach before:

Lemma 5.2 (cf. Lemma 3.1). Let X be a variety and L a semi-ample
line bundle. Choose s ∈ L n a general global section for some n � 0
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and take the nth-root of this section as in [KM98, 2.50]:

η : Y = Spec
n−1⊕
i=0

L −i −→ X.

Set W = η−1(Z) (with the induced scheme structure). Note that we have

η|W : W = Spec
⊕n−1

i=0 L −i|Z −→ Z. Then as before η∗ = �η∗,

η∗Ω0
Y,W � Ω0

X,Z ⊗ η∗OY �
n−1⊕
i=0

(Ω0
X,Z ⊗ L −i),

and this direct sum decomposition is compatible with the decomposition
η∗OY =

⊕n−1
i=0 L −i.

Proof. This can be proven just as in Lemma 3.1 or alternately
follows formally from Lemma 3.1 via the functoriality of the construc-
tion. Q.E.D.

Just as in Proposition 3.2, we also obtain that

Hj(X,IZ ⊗ L −i) −→ Hj(X,Ω0
X,Z ⊗ L −i)

simply by using [Kov11, Theorem 4.1] in place of Lemma 2.1(iii).
If we set ω

�

X,Z = ����
�

OX
(X,ω

�

X), then we easily obtain.

Theorem 5.3. Let X be a variety over C. Then the natural map

Φj : hj(ω
�

X,Z) ↪→ hj(����OX (IZ , ω
�

X))

is injective for every j ∈ Z.

Proof. The proof is the same as in Theorem 3.3 Q.E.D.

§6. Tranversality

Lemma 6.1. Let X be a reduced scheme and Σ ⊆ X a reduced sub-
scheme with ideal sheaf IΣ. Further let H ⊆ X be a Cartier divisor
with ideal sheaf IH such that H does not contain any irreducible com-
ponents of either X or Σ. Then

IH ∩ IΣ = IH · IΣ.

Proof. The statement is local, so we may assume that X = SpecA.

Let I ⊆ A be the ideal of Σ, i.e., IΣ = Ĩ. Since Σ is reduced, I =
√
I

and hence I = ∩r
i=1pi with prime ideals pi ⊂ A. Assume that this is
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an economic decomposition, i.e., none of the pi are redundant. Further

let f ∈ A a local equation for H, i.e., IH = (̃f). The assumption that
H does not contain any irreducible components of either X or Σ imply
that

(6.1.1) f is not contained in any minimal primes of A, and
(6.1.2) f is not contained in any of the pi.

Claim 6.2. For any prime ideal p ⊆ A such that f �∈ p,

(f) ∩ p = fp.

Proof. (f)∩p ⊇ fp trivially, so we only need to prove the opposite
containment. Let fg ∈ (f) ∩ p. Since f �∈ p, it follows that g ∈ p, so
fg ∈ fp as desired. Q.E.D.

Applying this to the pi we obtain that

(6.2.1) (f) ∩ I = (f)
⋂

(∩r
i=1pi) =

r⋂
i=1

((f) ∩ pi) =
r⋂

i=1

fpi

Claim 6.3. Assume that f is not contained in any minimal primes of
A. Then for any set of prime ideals {pi ⊆ A},

(6.3.1)
r⋂

i=1

fpi = f (∩r
i=1pi) .

Proof. Let x ∈ ⋂r
i=1 fpi and let gi ∈ pi such that x = fgi for all i.

We claim that gi = gj for any i, j. Indeed, fgi = x = fgj so

f(gi − gj) = 0 ∈
⋂
p⊆A

is a minimal prime

p

By assumption f �∈ p for any of the p, so we must have gi − gj ∈ p for
all p. However, since X is reduced,

⋂
p⊆A

is a minimal prime

p = 0,

so it follows that gi = gj =: g. Finally this implies that x = fg ∈
f (∩r

i=1pi) . Q.E.D.

Combining (6.2.1) and (6.3.1) implies that (f) ∩ I = f · I. Q.E.D.
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§7. Application to restriction theorems for maximal non-LC
ideals

In this section we assume the reader is familiar with log canonical
singularities; see [KM98] for an introduction. Let X be a normal variety,
Δ an effective Q-divisor on X such that KX + Δ is Q-Cartier and π :
X̃ −→ X is a log resolution for (X,Δ). WriteK

X̃
−π∗(KX+Δ) =

∑
aiEi

and set E=−1 =
∑

ai=−1 Ei. The following ideal

JNLC(X,Δ) := π∗OX̃
(�K

X̃
− π∗(KX +Δ) + E=−1�)

is defined to be the non-log canonical ideal of X.
This ideal was first defined by F. Ambro in [Amb03, Definition 4.1]

where it was denoted by IX−∞ . The study of this ideal as an object sim-
ilar to the multiplier ideal, was recently initiated by O. Fujino in [Fuj10].
One of the main facts about this ideal is that the zero set of JNLC is
exactly the locus where (X,Δ) does not have log canonical singularities.
Fujino proved the following restriction theorem for JNLC(X,Δ) (in fact,
he proved a more general result):

Theorem. [Fuj10, Theorem 1.2] If H is a normal Cartier divisor on a
Q-Gorenstein variety X, then JNLC(X,H)⊗ OH � JNLC(H, 0).

However, there are other natural ideals that define the non-lc locus.
With notation as above, set E =

∑
Ei and set EZ =

∑
ai∈Z

Ei. Then
consider the ideal

J ′(X,Δ) := π∗OX̃
(�K

X̃
− π∗(KX +Δ) + EZ�)

= π∗OX̃
(�K

X̃
− π∗(KX +Δ) + εE�)

where we choose 1 � ε > 0. This is the largest ideal which canonically
defines the non-log canonical locus of (X,Δ) and as such is called the
maximal non-lc ideal. In [FST11], the authors explored this ideal (and
other non-lc-ideals). In particular, they obtained restriction theorems in
special cases [FST11, Theorem 12.7, Theorem 13.13]. As an application
of Theorem 3.3, we obtain the following restriction theorem for J ′(X,H)
in the case that X is Gorenstein.

Theorem 7.1. If X is a normal d-dimensional Gorenstein variety and
H is a normal Cartier divisor on X, then J ′(X,H)|H � J ′(H, 0).

The proof strategy is the same as in [FST11, Section 13]

Proof. By working sufficiently locally, we may assume that KX ∼ 0
and H = V (f) ∼ 0 for some f ∈ Γ(X,OX). Shrinking X again if
necessary, we embed X ⊆ Y as a closed subscheme in a smooth scheme
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Y . Let π : Ỹ −→ Y be a log resolution of H ⊆ Y which is simultaneously

an embedded resolution of X ⊆ Y . Let X = π−1(X)red, X̃ the strict
transform of X, and H = π−1(H)red. We may assume that π is an

isomorphism outside of SingX ∪ H and write X = X̃ ∪ E ∪ H where
E = π−1(SingX)red. Finally, we may also assume that E ∪ H is a

reduced simple normal crossings divisor which intersects X̃ with normal

crossings so that (E∪H)∩X̃ is a reduced simple normal crossings divisor

on X̃. We have the following short exact sequence:

0 −→ O
X̃
(−E ∪H) −→ OX −→ OE∪H −→ 0.

By pushing forward and using [Sch07], we obtain the exact triangle,

�π∗OX̃
(−E ∪H) �� Ω0

X
�� Ω0

H∪SingX

+1
�� .

Applying ����
�

OX
( , ω

�

X) gives

ω
�

H∪SingX
�� ω

�

X
�� �π∗OX̃

(K
X̃
+ E ∪H)[d]

+1
�� ,

and by taking cohomology, we arrive at the exact sequence

(7.1.1) 0 −→ h−d(ω
�

X) −→ π∗OX̃
(K

X̃
+ E ∪H) −→

−→ h−d+1(ω
�

H∪SingX) −→ h−d+1(ω
�

X) = 0.

The vanishing on the right follows by Corollary 3.5 since X is Gorenstein
and thus Cohen-Macaulay.

By [FST11, Lemma 13.11],

h−d+1(ω
�

H∪SingX) � h−d+1(ω
�

H).

Furthermore, by [KSS10, Theorem 3.8] we have that

J ′(X, 0) ∼= h−d(ω
�

X)⊗ OX(−KX)

and
J ′(H, 0) ∼= h−d+1(ω

�

H)⊗ OX(−KX −H).

Hence twisting (7.1.1) by OX(−KX −H) we obtain the following short
exact sequence: cf. [FST11, Lemma 13.8] [KSS10, Lemma 4.14],

0 −→ J ′(X, 0)⊗ OX(−H) −→
−→ π∗OX̃

(K
X̃
− π∗(KX +H) + E ∪H) −→

−→ J ′(H, 0) −→ 0.

This completes the proof. Q.E.D.
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[KSS10] S. J. Kovács, K. Schwede, and K. E. Smith: The canonical
sheaf of Du Bois singularities, Adv. Math. 224 (2010), no. 4, 1618–
1640. 2646306

[PS08] C. A. M. Peters and J. H. M. Steenbrink: Mixed Hodge struc-
tures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathemat-
ics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR2393625

[Sch07] K. Schwede: A simple characterization of Du Bois singularities,
Compos. Math. 143 (2007), no. 4, 813–828. MR2339829

[Sch09] K. Schwede: F -injective singularities are Du Bois, Amer. J. Math.
131 (2009), no. 2, 445–473. MR2503989

[Ste81] J. H. M. Steenbrink: Cohomologically insignificant degenera-
tions, Compositio Math. 42 (1980/81), no. 3, 315–320. MR607373

(84g:14011)

SJK:
Department of Mathematics, University of Washington
Seattle, WA, 98195, USA
E-mail address : skovacs@uw.edu

KS:
Department of Mathematics, University of Utah
155 South 1400 East, Salt Lake City, UT 48112-0090, USA
E-mail address : schwede@math.utah.edu


