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Existence and uniqueness for planar anisotropic and 
crystalline curvature flow 

Antonin Chambolle and Matteo N ovaga 

Abstract. 

We prove short-time existence of rp-regular solutions to the planar 
anisotropic curvature flow, including the crystalline case, with an ad
ditional forcing term possibly unbounded and discontinuous in time, 
such as for instance a white noise. We also prove uniqueness of such 
solutions when the anisotropy is smooth and elliptic. The main tools 
are the use of an implicit variational scheme in order to define the 
evolution, and the approximation with flows corresponding to regular 
anisotropies. 
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In this paper we consider the anisotropic curvature flow of planar 
curves, corresponding to the evolution law 

(1.1) 
8G v = r;,'P + 8t 
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where V denotes the velocity in the Cahn-Hoffmann direction n,P, and 
Kcp = div Tn'P is the anisotropic mean curvature, see Section 2 below for 
precise definitions. We shall assume that the forcing term G has the 
form G = G1 + G2 with G1 , G2 satisfying: 

i) G1 E C 0 ([0, oo)) does not depend on x; 
ii) 8tG2 E Lip([O, oo) x ]]~2 ). 

0 bserve that ( 1.1) is only formal, as 8G d 8t does not necessarily 
exist, however the motion can still be defined in an appropriate way (see 
Definition 2). Notice also that we include the case of G being a typical 
path of a Brownian motion, which is necessary to take into account a 
stochastic forcing term as in [18], [31]. 

In the smooth anisotropic case, the first existence and uniqueness 
results of a classical evolution can be found in [5], where S. Angenent 
showed existence, uniqueness and comparison for a class of equations 
which include (1.1) in the case G = G 2 and tp regular. The existence 
and uniqueness of a weak solution for the forced flow, with a Lipschitz 
continuous forcing term, follows from standard viscosity theory [16], [17]. 

The crystalline curvature flow was mathematically formalized by 
J. Taylor in a series of papers (see for instance [35], [36]). In two
dimensions, when the driving force G is constant the existence of the 
flow reduces to the analysis of a system of ODEs. It was first shown by 
F. J. Almgren and J. Taylor in [1], together with a proof of consistency 
of a variational scheme similar to the one introduced in Section 3. The 
uniqueness and comparison principle in this case were established shortly 
after by Y. Giga and M. E. Gurtin in [29]. We also refer to [23] for a well
posedness result including non spatially constant forcing terms, based 
on the theory of maximal monotone operators. The forced crystalline 
flow was studied in [8], however with strong hypotheses on the forcing to 
ensure the preservation of the facets. A theory for weak solution, in 2D, 
has been developed by Giga and Giga in the past recent years [25]. In 
this framework, existence and uniqueness for quite general weak motions 
have been established, however in general with constant forcing terms. 

It is only in relatively recent work that the flow has been studied with 
a quite general forcing term; in particular, in [27], [28], [26] (see also [33], 
[34]) a Lipschitz forcing is considered. The papers [27], [26] consider the 
evolution of graphs, with a quite general mobility, while [28] considers 
only rectangular anisotropies, and assumes that the initial datum is close 
to the Wulff shape. The paper [15] deals with quite general forcing terms 
(slightly less regular than in this paper), but requires the anisotropy to 
be smooth. It shows the consistency of the variational scheme and a 
comparison for regular evolutions. In [7], the authors show the existence 
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of convex crystalline evolutions (extending their results of [6]) with time
dependent (bounded) forcing terms and apply it to show the existence 
of volume preserving flows. 

We show here a general existence result for the two-dimensional 
crystalline curvature flow, only with "natural" mobility, but which holds 
in the two following cases: for a general forcing G = G 1 depending 
only on time, and for a regular forcing G = G 2 with 8G2 /8t Lipschitz 
continuous in space and time. Our proof relies on estimates for the 
variational scheme introduced in [2], [32], which show that, if the initial 
curve has a strong regularity (expressed in terms of an internal and 
external Wulff shape condition), then this regularity is preserved for 
some time which depends only on the initial set. This allows us to 
approximate a general anisotropic flow with evolutions corresponding to 
smooth anisotropies, in such a way that the anisotropic curvature stays 
bounded for a uniform time interval. Extending these proofs to higher 
dimension would require quite strong regularity results for nonlinear 
elliptic PDEs, which do not seem available at a first glance. 

Stability results for anisotropic evolutions have been proved in [24], 
[25] in the context of viscosity solutions. We also mention the paper 
[30], where a similar approximation argument is applied to the diffuse 
interface case. 

The paper is organized as follows: in the Section 2 we define the 
"anisotropy" and introduce our notion of a "regular" curvature flow 
for smooth and nonsmooth anisotropies. In Section 3 we study the 
time-discrete implicit scheme of [2], and extend some regularity results 
of [6] to the flow with forcing. We then show in Section 4 the main 
existence result for smooth anisotropies. The fundamental point is that 
the time of existence only depends on the (intrinsic) 0 1•1-regularity of 
the initial curve. In the smooth case, we also show uniqueness of regular 
evolutions. Eventually, in Section 5 we extend the existence result to the 
crystalline case. This follows from an elementary approximation result 
(see Lemma 1) and the fact that the time of existence is uniformly 
controlled in this approximation. 

§2. RW'P-condition and <p-regular flows 

We call anisotropy a function <p which is convex, one-homogeneous 
and coercive on JR2 . We will also assume that <pis even, i.e. <pis a norm, 
although we expect that the results of this paper still hold in the general 
case (but some proofs become more tedious to write). 
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We will always assume that there exists co > 0 such that 

(2.1) 

We denote by r.p 0 the polar of r.p, defined as 

r.p 0 (v) := sup v · x 
x: cp(x)::O:l 

VxEI~?. 

vEIR?, 

it is obviously also a convex, one-homogeneous and even function on ~2 • 
Notice that from (2.1) it easily follows 

Vv E ~2 • 

We denote by W'P := { r.p :::; 1} the unit ball of r.p, which is usually called 
the Wulff shape. 

We say that r.p is smooth if r.p E 02 (~2 \ {0}) and r.p is elliptic if r.p2 

is strictly convex, that is V'2 (r.p2 ) ~ cld in the distributional sense, for 
some c > 0. It is easy to check that r.p is smooth and elliptic iff r.p 0 is 
smooth and elliptic. 

Given a set E c ~2 we let d~ be the signed r.p-distance function to 
a E defined as 

d~(x) := minr.p(x- y)- minr.p(y- x), 
yEE y'f_E 

We let v: := 'Vd~ be the exterior r.p-normal to aE, ncp E ar.p0 (vcp) be 
the so-called Cahn-Hoffmann vector field (where a denotes the subdif
ferential), and "''~' := div ncp be the r.p-curvature of aE, whenever they 
are defined. We also set Ec := ~2 \E. 

Following [11] we give the following definition: 

Definition 1 (RWcp-condition). We say that a set E satisfies the 
inner RWcp-condition for some R > 0 if 

(2.2) u 
x: d!jl(x)::O-R 

and for any r <Rand x E ~2 , (x + rWcp) n Ec is connected. 
We say that E satisfies the outer R Wcp-condition if its complemen

tary Ec satisfies the inner R Wcp-condition. 
We say that E satisfies the RWcp-condition if it satisfies both the 

inner and outer R Wcp-conditions. 

Remark 1. Notice that, if E satisfies the R Wcp-condition for some 
R > 0, then aE is locally a Lipschitz graph. Moreover, when r.p is 
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E 

Fig. 1. The pathological set described in Remark 1. 

smooth, the R W'P-condition implies that 8E is of class cl,l and I~'P I -::; 
1/ R a.e. on a E. In this case the connectedness condition in Definition 
1 is automatically satisfied whenever (2.2) holds. However, in the non
smooth case one can have some pathological examples if one removes the 
connectedness condition, as the one depicted in Fig. 1 when the Wulff 
shape is a square. 

Remark 2. It is not difficult to show that E satisfies the inner 
RW'P-condition iff (2.2) holds and the following property holds: for all 
x such that d~(x) = -R' > -R, the set 8En(x+R'8W'P) is connected. 

By (2.2) it follows that 8En(x+R8W'P) is either a segment (possibly 
a point), or the union of two segments. In particular, if cp is elliptic, this 
is equivalent to say that there exists a unique point in 8E minimizing 
the cp-distance from x. 

Definition 2 (cp-regular flows). We say that a map [0, T] 3 t -t 

P(Il1(2 ) defines a cp-regular flow for (1.1) if 

(1) 

(2) 

E(t) satisfies the RW'P-condition for all t E [0, T] and for some 
R > 0; 
there exist an open set U c JR2 and a vector field z E L=([O, T] x 
U; JR2 ) such that 

(a) 8E(t) c U for all t E [0, T], 
(b) d~ (t, x) := d~(t) (x) E C0 ([0, T]; Lip(U)), 

(c) z E Ocp0 (\ld~) a. e. in [0, T] Xu, 
(d) div z E L=([o, T] xU); 
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there exists .X > 0 such that, for any t, s with 0 :::=; t < s :::=; T 
and a. e. x E U, there holds 

(2.3) 
~d~(s,x)-d~(t,x)-18 

divz(T,x)dT-G(s,x)+G(t,x)l 

:::=; .X(s- t) max ld~(x, T)l. 
t-:5,r-:5,s 

Observe that (2.3) implies that (d- G) is Lipschitz continuous, so that 
(2.3) can be rewritten as 

I o(dE- G) I 
(2.4) 'Pot (t,x)-divz(t,x) ::::; .XId~(t,x)l, 

for a.e. (t, x) E [0, T] x U. In case G is C 1 in time, equation (2.4) 
expresses the fact that oE(t) evolves with speed given by (1.1). 

2.1. An approximation result 

We now show that, given any set E satisfying the RW'P-condition 
for a general anisotropy cp, there exist smooth and elliptic anisotropies 
'Pe ---+ cp and sets Ee ---+ E, as c; ---+ 0, such that Ee satisfies the RW'Pe
condition. 

Lemma 1. Let cp be a general anisotropy and let 'Pe be smooth and 
elliptic anisotropies converging to cp, with 'Pe ~ cp. Let E ~ IR2 satisfy 
the RW'P-condition for some R > 0. Then there exist sets Ee, with 
8Ee ---+ oE as c;---+ 0 in the Hausdorff sense, such that each Ee satisfies 
the RW'Pe -condition. 

Proof. Let 

Notice that, by definition, Ee satsifies the innner RW'Pe -condition and 
Ee satisfies the outer RW'P. -condition, so that we have to prove that Ee 
also satisfies the inner RW'P. -condition. 

Step 1. Let us show that 8Ee ---+ oE as c; ---+ 0, in the Hausdorff sense. 
In fact, this is obvious from the construction: since W'P. c W'P and for 
any x E E, there exists z E E with x E z + RW'P c E, we see that 

the distance from x to Ee (and then Ee) is bounded by the Hausdorff 
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distance between RW'P and RW"'"'. An estimate for the complement can 
be derived in the same way, so that dH(8E6 , DE) .::; RdH(W'P, W'PJ. 

Step 2. We now prove that !!}c satisfies the outer RW'1'-condition. We 
first show that, for all x E DEc, there exists y such that 

(2.5) and 

Indeed, if X E DEC n aE, (2.5) readily follows from the fact that E 
satisfies the outer RW'1'-condition. 

If X E DEE \ aE, then by definition of Ec there exists Xl E IR2 such 
that 

and 

Let f!x be the maximal arc of 8(x1 + RW'PJ containing x and con
tained in the interior of E, and let y1, y2 E DE be the endpoints of 
f!x. Notice that rpc(Yl - Y2) < 2R. Let Y3 := (Yl + Y2)/2, R' := 

rp(y1 - Y2)/2 .::; rpe(Yl - Y2)/2 < R. As E satisfies the inner RWcp
condition, the set (y3 + R'Wcp) has connected intersection with Ec, so 

that the set (DE\ 8E6 ) n (y3 + R'Wcp) contains a connected arc ix joining 
Yl and Y2 (see Fig. 2). 

Let Sx be the subset of E such that 8Sx = f!x U ix and set E' := 

Ec n (y3 + R'Wcp)· Note that Sx C E'c. As E' is a convex set, there 
exists y such that x E 8(y + RWcp) and E' c (y + RWcp)c. Moreover, 
since E satisfies the outer RWcp-condition, the set En int(y + RWcp) :2 

-=-
Sx n int(y+RWcp) is connected. This implies that (y+RWcp) C Ei and 
proves (2.5). Notice that from (2.5) it follows that 

u 

In order to prove that Ec satisfies the outer RW'P-condition, by 

Remark 2 it remains to show that, given x with d~s = R' < R, the set 

a Ec n (X + R' aw 'P) is connected. 
If aEC n (x + R'8Wcp) c aE this follows directly from the fact that 

E satisfies the outer RWcp-condition. Otherwise, there exists x E (DEc\ 

8E)n(x+R'8Wcp)· In this case we claim that 8Ecn(x+R'8Wcp) = {x}. 
Indeed, since f!x is a strictly convex arc, we have f!x n ( x + R' 8W cp) = 
{x}. Hence, if DEc n (x + R'8Wcp) contains another pointy =f. x, then 
y tj. Sx. As Sx n (x + R'Wcp) =f. 0, it follows that En (x + (R' + o)W"') 
contains at least two connected components for o > 0 sufficiently small, 
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Fig. 2. The configuration in Lemma 1. 

contradicting the fact that E satisfies the outer RWcp-condition. Hence 

the set (8E \ 8E":) n (y3 + R'Wcp.) is a connected arc ix joining Y1 and 
Y2· 
Step 3. We prove that Ee: satisfies the inner RWcp. -condition by rea
soning as in Step 2, with E replaced by (E,;)c (and 'P replaced by 
'Pe)· The only difference is due to the fact that (Ec;)c now satisfies 
inner RWcp-condition and the outer RWcp. -condition. Therefore, letting 

R' := 'Pe(Yl- Y2)/2 < R, the set (y3 + R'Wcp) n Ec; is connected, so that 
(8Ec; \ 8Ec;) n (y3 + R'Wcp.) contains a connected arc joining y1 and y2 • 

In the rest of the proof one can proceed as in Step 2. Q.E.D. 

Lemma 1 has the following direct consequence. 

Corollary 1. Let E ~ JR2 satisfy the RWcp-condition for some R > 
0. Then E is !.p-regular in the sense of[ll], that is, there exists a vector 
field ncp E L00 ( {ld~l < R}, 1R2 ) such that ncp E 81.{)0 ('\ld~) a. e. in {ld~l < 
R}, and divncp E L~c({ld~l < R}). 

Proof. Take a sequence 'Pe of smooth and elliptic anisotropies con
verging to !.p, with 'Pe 2: 'P· By Lemma 1 we can approximate E in 
the Hausdorff distance with sets Ec; satisfyng the RWcp. -condition. In 
particular, letting ncp. = "il'P~('\ld~;) E L00 (JR2 ) and recalling Remark 
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1, we have that divnr.p, E Lk:c( {ld~; I< R} ). Therefore, any weak* limit 
nr.p of nr.p,, as s --t 0, satisfies the thesis. Q.E.D. 

Remark 3. Notice that, given an arbitrary anisotropy cp, it is rel
atively easy to approximate it with smooth and elliptic anisotropies 
cp6 . For instance, one may let Fs := { 7]6 * cp 0 :s; 1} EEl B(O, E: ), with 
7Jr(x) := r-d7] (~),and cp6 (x) := supvEF, v · x. It is easy to check that 
the anisotropies cp6 are smooth and elliptic, and converge locally uni
formly to cp as s --t 0. A similar approximation is defined and used 
in [24]. 

§3. The time-discrete implicit scheme 

The results of this section hold in any dimension d ;::: 2 and are 
stated in this general form. Up to minor improvements, they are essen
tially stated in [15], [6]. Following [15] we recall the definition and some 
properties of the implicit scheme introduced in [2], [32]. Given a set 
E c JR.d with compact boundary (we assume without loss of generality 
that it is bounded), we define for s > t 2: 0 a transformation Tt,s by 
letting Tt,s(E) = {x E BR : w(x) < 0}, where BR = B(O, R), R is large 
and w is the minimizer of 

(3.1) 
( 1 ) r (w(x)- d~(x) 

2 S- t 1 BR 

-G(s,x)+G(t,x)f dx, 

whose existence and uniqueness is shown by standard methods. One 
checks easily [13], [15], [3] that for R large, the level set Tt,s (E) of w 
does not depend on R, and it is a solution to the variational problem 

(3.2) minPr.p(F) + - 1- { (d~(x) + G(s, x)- G(t, x)) dx, 
S- t }F 

where the minimum is taken among the subsets F of JR.d with finite 
perimeter, and we set 

It follows that the set Tt,s(E) has boundary of class 0 1·"', outside a 
compact singular set of zero H 1-dimension [2] (when d = 2, the set 
Tt,s(E) has boundary of class 0 1•1 ). The variational problem above 
is the generalization of the approach proposed in [2], [32], for building 
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mean curvature flows without driving terms, through an implicit time 
discretization. 

For s = t + h, the Euler-Lagrange equation for Tt,t+h(E) at a point 
x E 8Tt,t+h(E) formally reads as 

d~(x) = -h (~:cp(x) + G(t + h, x~- G(t, x)), 

with ""'P being the cp-curvature at x of 8Tt,t+h(E), so that it corresponds 
to an implicit time-discretization of (1.1). Observe also that this approx
imation is trivially monotone: indeed if E S: E' then d~ ::0: d~', which 
yields w:;:: w', wand w' being the solutions of (3.1) for the distance func
tions d~ and d~' respectively. We deduce that { w < 0} S: { w' < 0}, 
that is, 

(3.3) E S: E' ====? Tt,t+h(E) S: Tt,t+h(E'). 

Consider now the Euler-Lagrange equation for (3.1), which is 

(3.4) -(s-t)divz + w(x) = d~(x)+G(s,x)-G(t,x) 

for x E BR, with cp(z(x)) ~ 1 and z(x) · V'w(x) = tp0 (\7w(x)) a.e. in BR 
(by elliptic regularity one knows that w is Lipschitz). 

We show that if E is regular enough, then we have an estimate on 
the quantity div z + ( G(s, x) - G(t, x) )/(s- t) near the boundary of E. 
The technique is adapted from [6]. 

Lemma 2. Assume that E is a bounded set which satisfies the 6W'P
condition for some 6 > 0. Let a < b be such that Xa,b := {max{ w, d~} ::0: 
a} n {min{w, d~} ~ b} S: {ld~l < 6}. Then div z E L 00 (Xa,b) and 

(3.5) 
ll
div z + G(s, ·) = G(t, ·)II 

S t L=(X ) a,b 

< lid· E G(s, ·)- G(t, ·)II _ 1vn'P + . 
s-t L=(X ) a,b 
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Proof. Let f : lR -+ [0, +oo) be a smooth increasing function with 
f(t) = 0 if t:::; 0. Since (w, z) solves (3.4), we find 

J (w- d:)f(w- d:) dx 
Xa,b 

~ ((s- t)div z + G(s, x)- G(t, x)) f(w- d:) dx 
Xa,b 

(s- t) ~ (div z- divn:)f(w- d:) dx 
Xa,b 

+ J ((s-t)divn:+G(s,x)-G(t,x))f(w-d:)dx 
Xa,b 

=: I+ II. 

We have, observing that Xa,b has Lipschitz boundary (for a.e. choice of 
a, b), 

I= - (s- t) { (z- n:) · \l(w '- d:)f'(w- d:) dx 
Jxa,b 

+ (s- t) { f(w- d:)(z- n:) · vXa,b d1l 1 =: I1 + I2. 
laxa,b 

First of all, I1 :::; 0 since z · \lw = cp0 (\lw) and z · \ld: :::; cp0 (\ld:). 
We claim that also I2 :::; 0. Indeed, on one hand, when f(w- d:) > 0, 

we have w > dE hence vXa,b = v{d~::;b} = \ldEjj\ldEJ 1l1-almost 
'P' 'P 'P 

everywhere on {min{w, d:} = b}, while vXa,b = v{w2a} = -\lwjj\lwj 
1l1-almost everywhere on {max{w, d:} = a}. It follows that f(w
d:)(z- n:) ·vXa,b:::; 0 on both {min{w, d:} = b} and {max{w, d:} = 
a}, so that I2:::; 0. We conclude that I:::; 0, hence 

(3.6) 
La,b (w- d:)f(w- d:) dx 

:::; J ((s-t)divn:+G(s,x)-G(t,x)) f(w-d:)dx. 
Xa,b 

Let q > 2, let r+ := rVO, and let {in} be a sequence of smooth increasing 
nonnegative functions such that fn(r) -+ r+(q-l) uniformly as n-+ oo. 
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From (3.6) we obtain 

ia,b ((w- d~)+)q dx 

< ia,b ((s-t)divn~+G(s,x)-G(t,x)) ((w-d~)+)q-ldx 

< ia,b ((s-t)divn~+G(s,x)-G(t,x)t ((w-d~)+)q-ldx. 

Applying Young's inequality we obtain 

ll(w- d~)+IILq(xa,b) 

::; II ((s- t)divn~ + G(s, ·)- G(t, ·)t II . Lq (Xa,bn{ w>d{§}) 

A similar proof, reverting the signs, shows that 

ll(w- d~)-IILq(xa,b) 

::; ll((s-t)divn~+G(s,·)-G(t,·))-11 . 
Lq (Xa,bn{ w<d{§}) 

It follows that 

ll(s- t)div z + G(s, ·)- G(t, ·)IIMCXa,b) 

::; ll(s- t)divn~ + G(s, ·)- G(t, ·)IILq(xa,b), 

and letting q --+ oo we obtain (3.5). Observe that the estimate we may 
obtain is a bit more precise, in fact we have shown: 

(3.7) essinf divnE + G(s, ·)- G(t, ·) 
Xa,bn{w<d{§} 'P S- t 

d. ( ) G(s, x)- G(t, x) < E G(s, ·)- G(t, ·) < 1 v z x + ess sup di v n + ----'-----'------'------'--
- S- t Xa,bn{w>d{§} 'P S- t 

for a.e. x E Xa,b· Q.E.D. 

We also recall Lemma 3.2 from [15]: 

Lemma 3. Let x 0 E BR and p > 0, and lett 2 0. Let w solve 

(3.8) 
min { cp0 (Dw) + __!__ { (w(x) 

wEL2 (BR)} BR 2h} BR 

- (cp(x- xa)- p)- G(x, t +h)+ G(x, t)) 2 dx. 
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w(x) {
rp(x-xo)+h ( 1 )+~h(t)-p 

:S rp X- Xo 
if rp(x- xo) ~ V2'fi 

2v'2h + ~h(t)- p otherwise, 

where ~h(t) := IIG(·, t +h)- G(·, t)llu"'(BR)· 

We deduce an estimate on w- d~, if E has an inner pWcp-condition: 
indeed, in this case, if h = s - t, 

d~(x) :::; inf {rp(x- xo)- p : d~(xo) = -p} 

with, in fact, equality in { -p:::; d~ :::; p'}, where p' ~ 0 is the radius of 
an outer p'Wcp-condition. It follows from (3.9) that 
(3.10) 

w(x) :::; inf {rp(x- xo)- p + h ( 1 ) + ~h(t) : d~(xo) = -p} 
rp X- Xo 

for x with d~(x) ~ -p+V2'fi, and more precisely if p' ~ d~(x) ~ -p/2, 

E 2h 
w(x) < dcp (x) +- + ~h(t), 

p 
(3.11) 

as soon as h :::; p2 /16. 

§4. Smooth anisotropies 

4.1. Existence of rp-regular flows 

We will prove, in dimension d = 2, an existence result for the forced 
curvature flow, first in case the anisotropy is smooth and elliptic. For 
technical reason, we need the forcing term G to be either time-dependent 
only (case G2 = 0), or smooth (globally Lipschitz in space and time, case 
G1 = 0). 

Theorem 1. Assume G1 = 0 or G2 = 0, and let (rp, rp0 ) be a 
smooth and elliptic anisotropy and Eo C JR.2 an initial set with com
pact boundary, satisfying both an RWcp-internal and external condition. 
Then, there exist T > 0, and a rp-regular flow E(t) defined on [0, T] and 
starting from E(O) =Ea. 

More precisely, there exist R' > 0 and a neighborhood U of 
Uo<t<T 8E(t) in JR.2 such that the sets E(t) satisfy the R'Wcp-condition 

for -all t E [0, T], the rp-signed distance function d~(t, x) from 8E(t) be

longs to C 0 ([0, T]; Lip(U)) nL00 ([0, T]; C 1,1 (U)), (d~- G) E Lip([O, T] x 
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U) and 

(4.1) ID(d~a; G) (t, x)- div\7cp0 (V'd~)(t, x)l :::; Aid~(t, x)l. 

for a. e. (t, x) E [0, T] x U, where A is a positive constant. Finally, the 
time T, the radius R', the set U, and the constant A depend only on R 
and G. 

Theorem 1 will be proved by time-discretization. Before, we need a 
technical lemma. 

Given E c IR2 and IS > 0 we let 

Eo:= {d! <-IS} 

Lemma 4. Let cp, cp0 be smooth and elliptic, and a set E satisfy 
a R W'P-condition for some R > 0. We also assume that E is simply 
connected (8E is a 0 1,1 Jordan curve). Let IS E (O,R) and consider a 
set F (also simply connected), such that Eo C F C Eli. Assume that 
llr.:~IIL=(aF) ::=:; K for a constant K < 1/(21S). Then F has a R'W'P
condition, with R' = min{R- IS, (1- 21SK)/ K}. 

Proof. We assume that 8F is at least C 2 . If the result holds in this 
case, then given a more general 0 1 ,1 set we can smooth it slightly, use 
the result for the approximations, and then pass to the limit. 
Step 1. We have E 0 \Eo = UxEaE(x + ISW'P), and for any X E 8E, the 
set X+ ISW'P is tangent to 8Eo (respectively, 8E0 ) at exactly one point 
X- ISn'P(x) (resp., X+ ISn'P). We can definer;;- and r; as the two arcs 
on 8(x + ISW'P) delimited by the points X± ISn'P(x), the exponent +and 
- indicating that r; meets 8E right "after" or "before" x, relative to 
an arbitrarily chosen orientation of the curve. 

A first observation is that ~(8Fnr;) = 1 for all x. Indeed, we check 
that this value is a continuous function of x. If not, there will exist for 
instance a point where ~(8F n rd,-) has a "jump", that is, where 8F is 
tangent tor;;- and contains a small piece of arc which is inside X+ ISW'P 
and tangent to its boundary: in this case, we deduce that r.:~ ( x) is larger 
than 1/ IS or less than -1/ IS, a contradiction. 

Since this value is continuous, it can only be odd (since Eli C F C 

Eli), moreover if it were larger than 1, there would be a connected com
ponent ofF (as well as one of its complement) in Eli\ E 0 , a contradiction. 
Step 2. Let p < min{R- IS, (1- 21SK)/K}. Assume that there exists 
y E F such that W := y + pW'P C F andy+ pW'P meets 8F in at least 
two points z-, z+ (with z+ "after" z- with respect to the orientation 
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along o E). These points must be isolated (otherwise there would be 
a point on oF with curvature equal to 1/ p > K). Observe also that 
Wn(E8 \E,s) is connected (since E 8 has an inner (R-o)Wso-condition). 
To z+, we can associate a unique x+ such that z+ E r~+, and to z
a unique x- such that z- E r;_. Then, the piece of curve r of oF 
between z- and z+ lies in the region of E 8 \ E,s bounded by r;_ and 
r~+' which contains points at "distance" at most 28 from W: more 
precisely, r c y + (p + 2o)Wso· Hence, there exists s E (p, p + 28] such 
that r is contained in y + sWso and tangent to its boundary, and thus a 
point of curvature larger than 1/ s ::::0: 1/(p + 28) > K on oW so, which is 
a contradiction. Therefore, the Wulff shapes y + pWso which lie inside F 
can touch its boundary at most in one point, and an inner condition of 
radius min{R- o, (1- 2oK)/K} easily follows. 

The proof of the outer condition is identical. Q.E.D. 

Remark 4. We can refine the lemma to consider a situation where 
E has an inner Ri W so-condition and a outer RaW so-condition, for two 
given radii Ri, Ra > 0. We assume that - K 0 :::; K~ :::; Ki for two 
nonnegative constants Ki, Ka, (still less than 1/(28)). It is then deduced 
that F has a inner R~Wso-condition and a outer R~ Wso-condition, with 
R~ = min{Ri- O, (1- 2oKi)/ Ki}, R~ = min{Ra- 0, (1- 20Ka)/ K 0 }. 

Proof of Theorem 1. From (3.5) and (3.7), we will obtain some reg
ularity of the boundary of Tt+h,t (E), which will allow to iterate the vari
ational scheme. To simplify (and without loss of generality) we assume 
that the initial curve is a Jordan curve (Eo is simply connected). If not, 
one may evolve separately each connected component of the boundary. 
Step l.a.: The case G 1 = 0. In the case G 1 = 0, there exists C such that 
tlh(t) :::; Ch. It follows from (3.11) that if E satisfies the pWso-condition, 
then, by solving (3.1) with s = t + h, 

(4.2) lw(x)- d~(x)l :::; h ( C + ~) 

in {ld~l < p/2}. By standard comparison (using for instance Lemma 3 
again) one also can check that w < 0 if d~ :::; -p/2, and w > 0 if 
d~ ::::0: p/2, so that the boundary ofTt,t+h(E) is at (tp-)distance of order 
h from oE, if h :::; p2 /36 (Lemma 3). We also observe that the Haus
dorff distance between the sets E and Tt,t+h(E) is of the same order, or 

equivalently, lid~ -d~t,t+h(E)IIL=(JRd):::; (0+2/p)h. 
A further observation is that if E is simply connected, also Tt,t+h(E) 

is. Indeed, if not, there would be a connected component of either 
Tt,t+h(E) or its complement in the set {ld~l:::; h(C+2/p)}. Assume F 
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is a connected component of Tt,t+h(E) wich lies in {ld~l :::::; h(C + 2/ p)}, 
so that IF I :::::; 2hP 'P (E) ( C + 2/ p). One has that (using the isoperimetric 
inequality) 

P'P(F) + ~ l d~(x) + G(t + h, x)- G(t, x) dx 

> 2VIW'PIIFI- 2IFI ( c + ~) 

~ 2M(~-JIFI(c+~)) 
which is positive if his small enough (depending on C, p, P'P(E)), show
ing that Tt,t+h(E)\F has an energy strictly lower than Tt,t+h(E) in (3.2), 
a contradiction. 

Sending both a and b to 0, one deduces from (3.5) that Tt,t+h(E) 
has C 1•1 boundary, and moreover 

ll divn~t,t+h(E) + ~(G(t + h, ·)- G(t, ·))II 
L=(8Tt,t+h(E)) 

:::::; lldivn~ + ~(G(t + h, ·)- G(t, ·))II . 
L 00 (E6.Tt,t+h(E)) 

On one hand, ldivn~l is bounded by 2/ pin {ld~l :::::; p/2}, and it follows 
(see for instance [6]) that in that set, ldiv n~(x)-divn~(y) I :::::; 4d~(x)/ p2 

if y E 8E is the point which realizes cp(x- y) = ±d~(x). On the other 
hand, (G(t + h,x)- G(t,x))/h is £-Lipschitz in (t,x) for some L > 0. 
We deduce that (possibly increasing C) 

(4.3) lldivn~•.•+h(E) + ~(G(t + h, ·)- G(t, ·))II 
L=(8Tt,t+h(E)) 

:::::; lldivn~ + ~(G(t, ·)- G(t- h, ·))IIL=(aE) + h ( L +;) ( C + ~) , 

provided h is small enough (depending on p, L, C). Eventually, it fol
lows that the curvature of 8Tt,t+h(E) (since d = 2, the total and mean 
curvature coincide) has a global estimate 1/ p + 2C + O(h), and one will 
deduce from Lemma 4 that for h small enough, this new set also satisfies 
the p'W'P-condition, with p' = p/(1 + (2C + O(h))p) > 0, provided the 
assumptions of the lemma are fulfilled. 

We now consider E 0 , R as in Theorem 1, and let for h > 0 and 
any n ~ 1, E~ = T(n-l)h,nh(Eo). We also define Eh(t) = E~/h] for 
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t ~ 0. A first observation is that if x E (Eo)R, x + RW'P c Eo so that 
if r(t) solves r = -(1/r +C) with r(O) = R, for any 7) > 0 (small), 
x + (r(t) - TJ)W'P C Eh(t) for h small enough, as long as r(t) ~ 7). 

The function r(t) solves r(t) - R- ln ( 1{;~~)) /C = -Ct, and given 

J E (0, R) (which will be precised later on), there exists T1 (R, C, J) such 
that if t :::; T1 and h > 0 is small enough, 

( 4.4) 

We let U = {ld~l :::; J}. 
Letting Ef = To,h(E0 ), we deduce from (4.3) that if h < R 2 /36 is 

small enough, 

ll divn~~ + ~(G(h, ·)- G(O, ·))II 
L=(aE1]') 

< ~ + C + ~ ( C + !) =: M1. 

For n ~ 1, we then define iteratively the sets E~+l = Tnh,(n+l)h(E~) 
and let 

A~+l := lldivn!~+ 1 + ~(G((n + 1)h, ·)- G(nh, ·))II . 
h L=(aEh ) 

n+l 

Let now R 1 = (2M1 + C)-1 . As long as An :::; 2M1 , one can deduce 
from Lemma 4, using (4.4) and provided we had chosen J < RI/2, that 
E~+l satisfies the R 1 W'P-condition, so that (4.3) holds (withE= E~, 
p = R 1 ) and 

A~+1 :::; A~ + h ( L + ~i) ( C + ~J . 
By induction, we deduce that (letting B = (L + 4/Ri)(C + 2/Rl)) 
A~+l :::; M 1 + (n + 1)hB as long as nh:::; min{T1 , MI/ B} := T > 0. 

We observe that since J < RI/2, as long as nh :::; T, not only 
aE~ c U, but all the signed distance functions to the boundaries of E~ 
are in C 1•1 (U). Notice that T and the width J of the strip U depend 
only on R, C, L. 
Step l.b.: The case G 2 = 0. We now show that we can obtain a similar 
control in case of a space independent forcing term, which can be the 
derivative of a continuous function G (a relevant example is a Brownian 
forcing). In that case, we can consider the algorithm from a different 
point of view: given the set E, we first consider the set E' with signed 
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distance function d~' := d~(x) + G(s)- G(t), then, we apply to this set 
E 1 the algorithm with G = 0, that is, we solve (3.1) for E = E 1 and 
G=O: 

min { cp0 (Dw) + ( 1 ) { (w(x)- d~' (x)) 2 dx, 
wE£2(BR)}BR 2 S-t }BR 

and then let E" = { w < 0}. It is clear that this is equivalent to the 
original algorithm, so that E" = Tt,s(E). 

Assume in addition that E has an inner Ti W'P-condition and a outer 
T 0 Wcp condition, for some radii Ti, T 0 > 0. If (s- t) is small enough, 
then E 1 has the inner T~ W rp-condition and outer T~ W 'P condition with 

T~ = Ti- G(s) + G(t) and T~ = T 0 + G(s)- G(t). In particular, d~' = 

d~(x) + G(s)- G(t) is locally C 1'1 in the strip { -T~ < d~' < T~} and 
the surface 8E1 has a curvature which satisfies a.e. 

(4.5) 1 E' 1 -- < divn < -. 
I - 'P - I 

To Ti 

As before, from (3.11) we have that, if h = s- tis small enough, then 

E' 2h 
lw(x) -d'P (x)l ~ . { 1 1 }, 

m1n Ti,To 
( 4.6) 

showing that the boundary of Tt,t+h(E) remains close to the boundary 
of E 1 (provided T~, T~ are controlled from below). 

From (3.7) (with G = O,E = E 1 ) and (4.5), (4.6), we obtain that if 
h is small enough, 

1 
Tl 

0 

2h < d. Tt.t+h(E) < _.!_ + 2h 
( ) 2 { } _ lV ncp _ I , 
T~ min T~, T~ Ti (TD 2 min{T~, T~} 

and in particular we can deduce from Lemma 4 and Remark 4 that 
Th(E) satisfies the inner T~1 Wcp and outer T~Wrp-conditions with 

for some constant c > 0. 
As in the previous step, we now consider E0 , R as in Theorem 1, we 

let Eg = Eo and define for each n :::>: 0, E~+l := Tnh,(n+l)h(E~). Let 
T~ = T? = R. The previous analysis shows that E? has the inner TT Wcp 
and the outer T; W'P-conditions with 

1 o ch 
Ti > Ti - G(h) + G(O)- R, 

o ch 
T~ > T 0 + G(h)- G(O)- R, 
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provided IG(h) -G(O)I ~ R/2 (for some constant c > 0). Now, assuming 
that n is such that 

n o mh r. > r. - G(nh) + G(O)--• - • R ' 
o ( ) cnh r~ > r0 +Gnh -G(O)-R' 

we deduce that 

rr+l > r?- G((n + 1)h) + G(O)- c(n; 1)h, 

r~+l > r~ + G((n + 1)h)- G(O)- c(n; 1)h, 

as long as IG((n+ 1)h) -G(O)I +c(n+ 1)h/ R ~ R/2. Define T such that 
maxo::;t::;T IG(t)-G(O)I+ct/R ~ R/4, and let U = {ld~0 1 < R/4}: then, 
on one hand, f)E~ C U for all n ~ 0 with nh ~ T, on the other hand, 

E~ satisfies the (R/2)W'f'-condition, so that d:~ E C1•1(U). Again, U 
and T depend only on G and R. 
Step 2: Conclusion. Fort E [0, T] and h small, we let Eh(t) = Ea/h]' 

dh(t,x) = d:(t)(x), and we now send h--+ 0. Since dh- G is uniformly 
Lipschitz in [0, T] x U (in time, in fact, we have idh(t, x) - G(t, x) -
dh(s, x) + G(s, x)l ~ cit- sl if It- si ~ h, for some constant c), up 
to a subsequence (hk) it converges uniformly to some d with d- G E 

Lip([O, T] x U), moreover, at each t > 0, Ehk (t) converges (Hausdorff) 

to a set E(t) with d(t,x) = d:(t)(x). Let us establish (4.1). 
For n ~ Tjh- 1 and x E oE~+l• by definition of the scheme we 

have 

Eh Eh 
-d'f'n(x)-hdivn'f'n+1 (x)-G(t+h,x)+G(t,x) = 0. 

As (G(t + h, ·)- G(t, ·))/his £-Lipschitz in U, there holds 

I(G(t + h, x)- G(t, x))- (a(t + h, IIaEh (x))- G(t, IIaEh (x))) I 
n+l n+l 

~ Chld~~+1 (x)l 

where C depends only on Land cp, where we set 

Choose now x E U such that d~~+1 (x) ~ 0. In this case, it follows that 
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Hence, 

Eh Eh Eh 
dcpn+ 1 (x)- dcpn(x)- hdivncpn+1 (x) 

Eh Eh ( Eh ) ;:=:: -dcpn(IIaEh (x))- hdivncpn+1 (IIaEh (x)) + 0 hldcpn+1 (x)l 
n+l n+l 

= G(t + h, IIaEh (x))- G(t, IIaEh (x)) + 0 (hld~~+1 (x)l) 
n+l n+l 

= G(t + h, x)- G(t, x) + 0 ( hld~~+ 1 (x)l) . 

Dividing by h and letting h -+ o+' we then get 

a(dE- G) o 
'Pat (t,x)- divVcp (Vd~)(t,x) 

;:::: O(ld~(t,x)l) (t,x)EUx[O,T]n{d~(t,x)>O}, 

which implies 

a(dE- G) o 
'Pat (t,x)- divVcp (Vd~)(t,x) 

;:::: 0 (ld~(t, x)l) (t,x) E U x [O,T]. 

By taking x E U such that d~~+1 (x):::; 0, reasoning as above we get 

a dE 
a: (t,x)- divVcp0 (Vd~)(t,x)- g(t,x) 

:::; O(ld~(t,x)l) (t,x)EUx[O,T], 

thus obtaining (4.1). Q.E.D. 

Remark 5. When cp(x) = lxl and G2 = 0, existence and uniqueness 
of cp-regular flows has been proved in [18] in any dimension. 

4.2. Uniqueness of cp-regular flows 

We now show uniqueness of the regular evolutions given by Theo
rem 1. 

Theorem 2. Given an initial set E 0 , the flow of Theorem 1 is 
unique. More precisely, if two flows E, E' are given, starting from 
initial sets E 0 <:;;; Eb, then E(t) <:;;; E'(t) for all t E [0, min{T, T'}] (where 
T, T' are respectively the time of existence of regular flows starting from 
Eo and Eb). 
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The thesis essentially follows from the results in [15]. Indeed, in [15] 
it is proved a comparison result for strict 0 2 sub- and superflows, based 
again on a consistency result for the scheme defined in Section 3. A strict 
0 2 subflow is defined a in Theorem 1, except that d~(t, x) is required to 
be in 0°([0, T]; C2 (U)), and (4.1) is replaced with (for 0 ::; t < s ::; T, 
X E U) 

(4.7) 
d~(s,x)- d~(t,x)-18 divV'<p0 (V'd~)(T,x)dT 

-G(s,x)+G(t,x) ::; -8(s-t) 

for some 8 > 0. A superflow will satisfy the reverse inequality, with 
-8(s - t) replaced with 8(s - t). For technical reasons (in order to 
make sure, in fact, that the duration time of these flows is independent 
on 8), we will ask that these flows are defined, in fact, in a tubular 
neighborhood W of Uo<t<T 8E(t), not necessarily of the form [0, T] xU. 

The thesis then follOws from the consistency result in [15, Thm. 3.3], 
once we show the following approximation result. 

Lemma 5. Let E(t) be an evolution as in Theorem 1, starting from 
a compact set Eo satisfying the RWcp-conditions for some R > 0. Then, 
there exists T' > 0 such that for any c > 0, there exist a set Eb and 
a strict 0 2 sub flow E' ( t) starting from Eb such that for all t E [0, T'], 
E(t) cc E'(t) c {d~(t, ·)::; c}. 

Proof. We sketch the proof and refer to [3] for more details. 
The idea is to let first da = d~- at- aj(4.X), for some small a> 0, 

with a(T + 1/(4.X)) < c. One can then deduce from (4.1) that, for all 
s > t, 

da(s, x) - da(t, x) - 1
8 

div V'<p0 (V'da)( T, x) dT- G(s, x) + G(t, x) 

< (s- t)(.X max ld~(T, x)l- a) 
t::;;r::;;8 

< A(s- t) c~\~~)da(T,x)l + a(s- £.X- 1)) 

Let T' := min{T, 1/(2-X)}, and let (3 = a/(8-X): then if we let W = 
{(t,x): 0::; t::; T,lda(t,x)l < (3}, we deduce that for x,t,s with 
[t,s] x {x} c W, 

da(s, x)- da(t,x) -1
8 

divV'<p 0 (V'da)(T,x) dT:---G(s,x) + G(t, x) 

::; -(3.X(s- t). 
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Hence { d01 ::::; 0} is almost a C 2 subflow, except for the fact that it is not 
C 2 . However, this is not really an issue, as we will now check. Consider 
indeed a spatial mollifier 

(4.8) 7/r(x) = r1d7! (~) 
where as usual 71 E Cg"(B(O, 1); JR+), JJRd ry(x) dx = 1. Let d~ = 7/r * d01 

(for r small). Observing, as before, that G(s,x)- G(t,x) is (s- t)L
Lipschitz, one has l77r * (G(s, ·) - G(t, ·))(x) - (G(s, x) - G(t, x))l ::::; 
(s- t)Lr. Hence, the level set 0 of d~ will be a strict C 2 subflow, for r 
small enough, if we can check that the difference 

can be made arbitrarily small for r small enough and any ( T, x) E W 
(possibly reducing slightly the width of W). Now, for (T, x) E W, 

7/r * (divV'cp°C~7d01 )(T, ·))(x) 

= { 7!r(z)D2 cp0 (\i'd01 ( T, X- z)) : D2d01 (T, X- z) dz 
jB(O,r) 

while 

div Y'cp0 (71r * V'd01 )(T, x) 

= { 7!r(z)D2cp0 ((7!r * \i'd01 (T, ·))(x)) : D2d01 (T, X- z) dz. 
jB(O,r) 

The difference in (4.9) is therefore 

Now, since D 2 cp0 is at least continuous (uniformly in {cp0 (~):::: 1/2}), 
cp0 (\i'd01 ) = 1 a.e. in W, while D2d01 is globally bounded (and \i'd01 

uniformly Lipschitz), this difference can be made arbitrarily small as 
r-+ 0, and we actually deduce that, in such a case, E'(t) = {d~::::; 0} is 
a strict C 2 -superflow starting from Eb = { d~ ::::; ,8}, which satisfies the 
thesis of the Lemma. Q.E.D. 

Remark 6. The uniqueness result holds in any dimension d :::: 2, 
with exactly the same proof. We point out that it is not necessary to 
assume that G1 or G2 vanishes. 
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§5. General anisotropies 

An important feature of Theorem 1 is that the existence time, as 
well as the neighborhood where d~ is C 1•1 , are both independent on the 
anisotropy, and only depend on the radius R for which Eo satisfies the 
RWcp-condition. This allows us to extend the existence result to general 
anisotropies, by the approximation argument given in Lemma 1. 

Theorem 3. Assume G1 = 0 or G2 = 0, and let ( <p, <p 0 ) be an 
arbitrary anisotropy. Let Eo C IR2 an initial set with compact boundary, 
satisfying the RWcp-condition for some R > 0. Then, there exist T > 0, 
and a <p-regular flow E(t) defined on [0, T] and starting from E0 . 

More precisely, there exist R' > 0 and a neighborhood U of 
Uo<t<T 8E(t) in IR2 such that the sets E(t) satisfy the R'Wcp-condition 
for-all t E [O,T], the <p-signed distance function d~(t,x) from 8E(t) 
belongs to C 0 ([0, T]; Lip(U)), (d~- G) E Lip([O, T] xU) and 

I a( dE- G) I 
(5.1) "'at (t,x) -divz(t,x) :::; A[d~(t,x)l 

for a. e. (t, x) E [0, T] x U, where A is a positive constant and z E 

£ 00 ([0, T] x U; IR2 ) is such that z E O<p0 (\ld~) a. e. in [0, T] x U. The 
timeT, the radius R', and the constant A, only depend on R and G. 

Remark 7. Comparison and uniqueness for such flows has been 
shown in [11], [30], [14], [7], although the most general result in these 
references only covers the case of a time-dependent, Lipschitz continuous 
forcing term G(t) = G(O) + J~ c(s) ds, with c E £ 00 (0, +oo). 

Proof. Let E: > 0 and consider smooth and elliptic anisotropies 
(<p"',<p~), with <p"' 2: <p, converging to (<p,<p 0 ) locally uniformly as E:--+ 0. 
By the approximation result in Lemma 1, we can find a sequence of 
sets E"' which satisfy the RW'Pe-condition, and such that 8E"'--+ 8E in 
the Hausdorff sense. For each E: we consider the evolution E"'(t) given 
by Theorem 1, with 0 :::; t :::; T"'. Since the times T"' and the width 
of the neighborhoods U"' depend only on R and G, up to extracting a 
subsequence we can assume that lim"' T"' = T for some T > 0, and there 
exists a neighborhood U of 8E0 such that JRd \ U"' converges to JRd \ U 
in the Hausdorff sense, as E: --+ 0. Possibly reducing T and the width of 
U we can then assume that T"' = T and U"' = U for all E: > 0. 
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Letting W := [O,T] xU, and z2 (t,x) = V'cp~(V'd~;(t,x)), from (4.1) 
we get 

l

(}(dEe- G) I 
(5.2) 'Pat (t,x)-divzs(t,x) :::; .XId~;(t,x)l 

for a.e. (t, x) E W, where the constant .X depends only on Rand G. 
As d~;- G are uniformly Lipschitz in (t, x), up to a subsequence we 

can assume that the functions d~; converge uniformly in any compact 
subset of W to a function d~, such that for all t E [0, T] d~ ( t, ·) is the 
signed cp-distance function to the boundary of E(t) := {x: d~(t,x):::; 
0}. Moreover, E(O) = E0 , E(t) is the Hausdorff limit of Es(t) for each 
t E [0, T], and satisfies the R'W'P-condition, with R' = lim2 R~. 

Up to a subsequence we can also assume that there exists z E 

L 00 (W) with z"(t, x) __:,_ z(t, x), div z" __:,_ div z and 8t(d';;: -G) __:,_ 
8t(d~- G) in L 00 (W), so that (5.1) holds a.e. in W. 

It remains to check that z(t,x) E 8cp0 (\ld~(t,x)). Since by con
struction z(t,x) E W'P for a.e. (t,x) E W, it is enough to show that 

(5.3) 

a. e. in W. Recalling that Z 2 · V' d~; = cp~ (V' d~;) 
letting '1/J E C~(W), we have 

fw '1/J dxdt = fw '1/J (z" · \ld~;) dxdt 

1 a.e. in W and 

= -fwd~; (zs · \1'1/J + '1/Jdiv z6 ) dxdt. 

Passing to the limit in the righ-hand side we then get 

fw '1/J dxdt = -fwd~ (z · \1'1/J + '1/Jdiv z) dxdt = fw '1/J (z · \ld~) dxdt 

which gives (5.3). Q.E.D. 
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