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Free automorphisms of positive entropy on smooth 
Kahler surfaces 

Keiji Oguiso 

Dedicated to Professor Frederic Campana 
on the occasion of his sixtieth birthday 

Abstract. 

We prove that there is a projective K3 surface admitting a (fixed 
point) free automorphism of positive entropy and that no smooth com­
pact Kahler surface other than projective K3 surfaces and their blow 
up admits such an automorphism. 

§1. Introduction 

Throughout this note, we work over the complex number field C. 
Let M be a smooth compact Kahler manifold and g E Aut (M) be 

a biholomorphic automorphism of M. The maximum d1(g) of absolute 
values of eigenvalues of the C-linear extension of g*IH2 (M, Z) is called 
the first dynamical degree of g. By the fundamental result of Gromov­
Yomdin ([Gr], [Yo], see also [Fr], Theorem (2.1) for explicit statement) 
and Dinh-Sibony ([DS], Corollary (2.2)), g is of positive entropy (resp. 
null entropy) if and only if d1 (g) > 1 (resp. d1 (g) = 1). We note that if g 
is not of null entropy, then g is of positive entropy by detg*IH2 (M, Z) = 
±1. We also note that dim M ~ 2 and g is of infinite order if g is of 
positive entropy. Let 

M 9 := {x E Mlg(x) = x}, 

g is said to be free if M9 = 0. For instance, a non-trivial translation on 
a complex torus is free but it is of null entropy. 
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Both MY and d1 (g) are the most basic invariants in studying auto­
morphisms of compact Kahler manifolds from complex dynamical point 
of view. For instance, McMullen ([Me]) has found very impressive K3 
surface automorphisms with Siegel disk. Both fixed point set giving can­
didates of the center of the Siegel disk and the first dynamical degree 
played crucial roles in his study. 

Concerning these two invariants, Professor Shu Kawaguchi asked me 
the following: 

Question 1.1. Are there smooth projective surfaces with free au­
tomorphisms of positive entropy? 

The aim of this short note is to give the following answer to the 
question: 

Theorem 1.2. (1) LetS be a smooth compact Kiihler surface with 
a free automorphism of positive entropy. Then S is birational to a pro­
jective K3 surface of Picard number:::: 2. 

(2) Conversely, there is a projective K3 surface of Picard number 2 
with a free automorphism of positive entropy. 

We prove (1) in Section 2. Our proof is based on a weaker version 
of the topological Lefschetz fixed point formula, a weaker version of the 
holomorphic Lefschetz fixed point formula (see eg. [GH], Chapter 3, 
Section 4) and the following basic result of Cantat ([Ca], Proposition 1): 

Theorem 1.3. LetS be a smooth compact Kiihler surface admitting 
an automorphism of positive entropy. Then S is bimeromorphic to either 
P 2 , 2-dimensional complex torus, an Enriques surface, _or a K3 surface. 

It may be also worth comparing (1) with the fact that a K3 surface 
admitting an automorphism with Siegel disk (hence of positive entropy 
and with a fixed point) is of algebraic dimension 0 ([Me], see also [Og], 
Example (2.5)). 

We shall prove (2) by using the global Torelli theorem for K3 surfaces 
(see eg. [BHPV], Chapter VIII, Theorem (11.1)) and the golden number 

VS+1 
rJ := 

2 

Our construction (Theorem ( 4.1)) will be done in Section 4, based on a 
lattice-theoretic preparations in Section 3. See also Remarks ( 4.3), ( 4.4) 
for relevant results. After posting this note on ArXiv, Professor Bert 
van Geemen ([Ge]) informed me a very impressive coincidence that the 
surfaces and also the free automorphisms in our note have been described 
by Cayley ([Cay]) in 1870 in completely different ways, and that a paper 
explaining this is in preparation. 
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§2. Smooth compact Kahler surface with a free automorphism 
of positive entropy 

In this section, we shall prove Theorem (1.2) (1). 
Let M be a compact Kahler manifold of dimension n and g E 

Aut (M) be a biholomorphic automorphism of M. We define: 

2n 

T(M,g) := L) -1)ktr g*[Hk(M, Z) ; 
k=O 

n 

H(M,g) := 2)-1)ktrg*[Hk(M,OM). 
k=O 

Here tr f is the trace of f. T(M, g) is the topological Lefschetz number 
and H ( M, g) is the holomorphic Lefschetz number. It is not hard to see 
that T(M,g) (resp. H(M,g)) is the integration of the Poincare dual 
u 6. of the diagonal ~ c M x M (resp. the sum of (0, * )-th Kunneth 
components of 0"6.) over the graph f 9 of g (see eg. [GH], Pages 420-421, 
423-424). Therefore, without more precise formula, we have: 

Proposition 2.1. If M9 = 0, then T(M,g) = L(M,g) = 0. 

Let 8 be a smooth compact Kahler surface and g E Aut (8) be a 
biholomorphic automorphism of 8. 

Lemma 2.2. Assume that 8 is bimeromorphic (in fact, birational) 
to either P 2 or an Enriques surface. Then 8 9 # 0. 

Proof. Note that Hk(8, Os) = 0 fork;::: 1. Thus 

H(8,g) = tr(g*[H0 (M,Os)) = 1 # 0. 

Hence 8 9 -=f. 0. Q.E.D. 

Lemma 2.3. Assume that 8 is bimeromorphic to either 2-dimen­
sional complex torus or a K3 surface. Let S be the minimal model of 8 
and 1r : 8 -+ S be the naturally induced morphism. Then g descends to 
an automorphism g ofS. Moreover, g is of positive entropy (resp. free) 
if and only if g is of positive entropy (resp. free). 

Proof. The first assertion follows from the uniqueness of the mini­
mal model of 8 with non-negative Kodaira dimension (see eg. [BHPV], 
Page 99, Proposition ( 4.6) ). It is clear that g is free if so is g. Conversely, 
if g has a fixed point, say P, then g acts on 1r-1 (P), which is either a 
point, say Q, or a tree of P 1. In the first case g ( Q) = Q. In the second 
case, let C be the proper transform of the exceptional curve at the first 
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blow up at P. Then g(C) = C and g has at least one fixed point (as 
C ~ P 1 ). Hence ?J is free if and only if so is g. Consider the following 
equivariant decomposition: 

where E is the sublattice generated by the classes of exceptional divisors. 
The lattice E is of negative definite and g*(E) =E. So, the eigenvalues 
g* IE are of absolute value 1. Hence d1 (g) > 1 if and only if d1 (?J) > 
1. Q.E.D. 

Lemma 2.4. Assume that S is bimeromorphic to a 2-dimensional 
complex torus. Assume further that S has a free automorphism g. Then 
g is of null entropy. 

Proof. By Lemma (2.3), we may (and will) assume that S itself 
is minimal, i.e., S is a 2-dimensional complex torus. Then under the 
global linear coordinates x := (x1 , x2 ) of the universal cover C 2 of S, 
the automorphism g is written as in the following form: 

g*(x) =Ax+ b, 

where A E GL2 (C) and bE C 2 • Let a and (3 be the eigenvalues of A 
counted with multiplicities. Then a and (3 are the eigenvalues of the 
action of g on H 0 (S, D1). By the Hodge duality together with the fact 
that H 0 (S,D1) = /\2 H 0 (S,D1), we obtain 

H(S, g)= 1- (a+ {J) +afJ = (1- a)(1- {J). 

Since H(S, g) = 0, it follows that either a= 1 or (3 = 1. Moreover, by 

H 1 (S, Z) 0 C = H 0 (S, D1) EB H 0 (S, D1), 

it follows that the eigenvalues of (the C-linear extension of) g* IH1 (S, Z) 
are a, (3, a and 7J counted with multiplicities. Thus 

a(3a(3 = ±1, 

because g*IH1 (S, Z) E GL(H1 (S, Z)) ~ GL4 (Z). Hence if either a= 1 
or (3 = 1, then both iai = 1 and l/31 = 1 hold. Since H 2 (S, Z) = 
/\ 2 H 1 (S, Z), it follows that the eigenvalues of g* IH2 (S, Z) are of absolute 
value 1. Hence d1 (g) = 1. Q.E.D. 

Lemma 2.5. Assume that S is bimeromorphic to a K3 surfaceS. 
Let ws be a generator of H 0 (D1) ~ C. Assume further that S has a 
free automorphism g. Then g*ws = -ws and S is projective. Moreover 
p(S) 2:: 2 where p(S) is the Picard number ofS. 
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Proof. We use the same notation as in Lemma (2.3). Note that 
H 1 (0s) = 0 and that H0 (D~) = Cws is the Serre dual of H 2 (08 ). Let 
g*ws = aws. Then 

O=H(S,g)=l+a-1 

and therefore a= -1. This also implies that g*w-s = -w-s. Therefore B 
is projective by Theorem (2.6) below. Since the induced automorphism 
g of B is free by Lemma (2.3), it follows that T(B, g) = 0. Let NS (B) 
be the Neron-Severi lattice of Band T(B) be the transcendental lattice 
of B, i.e., 

T(B) = {x E H 2 (B,Z)I(x.NS(B)) = 0}. 

Since B is projective, it follows that the lattice NS (B) is non-degenerate 
and therefore NS (B) EB T(B) is a subgroup of finite index of H 2 (B, Z). 
We also note that rankNS (B) = p(B) ~ 1 (as B is projective) and 
rankT(B) = 22- p(B). Thus 

0 = T(B, g) = 2 + trg* INS (B)+ trg* IT(B). 

Since g*w-s = -w-s, it follows that g*IT(B) = -idr(s) by [Nil], Theorem 

0.1 (see also [Og], Theorem 2.4 (2)). So, if p(B) = 1, then 

T(B, g) = 2 + 1- (22- 1) = -20 -1- o. 

Therefore p(B) -1- 1, whence p(B) ~ 2. Q.E.D. 

Theorem 2.6. Let X be a compact hyperkiihler manifold, that is, 
a smooth simply-connected compact Kahler manifold with an everywhere 
nondegenerate holomorphic 2-form wx such that H 0 (D3c) = Cwx. As­
sume that X admits a bimeromorphic automorphism g such that g*wx = 
(nw x, where (n -1- 1 and (n is a root of unity. Then X is projective. 

Proof. This theorem is first proved by Nikulin ([Nil], Theorem 
(0.1)) when X is a K3 surface and g is of finite order. Then this the­
orem is generalized by Beauville ([Be], Proposition 6, see also Propo­
sition 7) when X is a hyperkahler manifold and g is a biholomorphic 
automorphism of finite order and by [Og], Theorem (2.4) when X is 
a hyperkahler manifold and g is a bimeromorphic automorphism (not 
necessarily of finite order). Q.E.D. 

The following remark was the starting point of our construction in Sec­
tions 3 and 4, even though it is no longer needed in the construction. 

Remark 2. 7. Let S be a K3 surface of Picard number 2 with a free 
automorphism g. Let cp(t) be the characteristic polynomial of g*INS (S). 
Then cp(t) is either t2 - 18t + 1 or t 2 - 18t- 1. In particular, g is of 
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positive entropy. Moreover, if r.p(t) = t 2 - 18t + 1, then the eigenvalues 
of g* INS (S) are 9 ± 4J5 = ry±6 , where 'TJ is the golden number (see 
Introduction for the definition of ry). 

Proof. Since p(S) = 2 and g*IT(S) = -idr(s) as observed in the 
proof of Lemma (2.5), it follows that 

0 = H(S, g) = 2 + tr g*INS (S) + ( -1)(22- 2). 

Hence trg*INS(S) = 18. Since g*INS(S) E GL(NS(S))-::::: GL2 (Z), it 
follows that det (g*INS (S)) = ±1. Thus r.p(t) = t 2 - 18t ± 1, and one 
of eigenvalues of g* INS (S) is greater than 1. The last assertion can be 
checked by a straightforward calculation. Q.E.D. 

Now we are ready to complete the proof of Theorem (1.2) (1). Let 
S be a smooth compact Kahler surface and g be a free automorphism 
of positive entropy. Since g is of positive entropy, S is bimeromorphic 
to either P 2 , an Enriques surface, 2-dimensional complex torus or a K3 
surface by Theorem (1.3). Since g is free, the first two cases are ruled out 
by Lemma (2.2). Since g is free but of positive entropy, the third case is 
also ruled out by Lemma (2.4). Hence Sis birational to a projective K3 
surface of Picard number ~ 2 by Lemma (2.5). This proves Theorem 
(1.2)(1). 

§3. Hyperbolic lattices arizing from the golden number 

In this section, we shall construct even hyperbolic lattices from the 
golden number 'TJ (see Introduction for the definition of ry). The minimal 
polynomial of 'T] over Z is t 2 - t- 1, 

N:=Z[ry] 

is the ring of algebraic integers of Q( J5) and (ry) x ( -1) is the unit 
group Z[ry] x of N. 

Lemma 3.1. Let {an}n2':0 be the Fibonacci sequence: 

Then 'T]n = an'TJ + an-1 for each positive integer n. For instance ry3 = 

2ry + 1, ry4 = 3ry + 2, ry5 = 5ry + 3, ry6 = 8ry + 5, ry7 = 13ry + 8. 

Proof. Argue by induction on n using the fact that ry2 = 'TJ + 1. 
Q.E.D. 
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The elements e1 := 1 and e2 := rJ form the free basis of N as Z­
module: 

N = Ze1 EB Ze2 c:::- Z2 . 

Let n E Z. Since rJ E Z[ry]x, the homomorphism 

is an automorphism of the Z-module N. 

Lemma 3.2. Let n be a positive integer. 
(1) The eigenvalues of the automorphism ry2n on N are ry2n and 

1jry2n. 

(2) The characteristic polynomial ofry2n onN ist2-(a2n+2a2n-d+ 
1, where { an}n>O is the Fibonacci sequence. For instance, the charac­
teristic polyno,T;jals of ry2, ry4 , ry6 are t2 - 3t + 1, t2 - 7t + 1, t2 - 18t + 1 
respectively. 

Proof. The eigenvalues of rJ on N are 

1 ± V5 -1 
2 =ry, --:;J• 

Hence the assertion (1) follows. By Lemma (3.1), we have 

Taking the Galois conjugate rJ f-t -1/ry, we obtain 

1 -1 
- 2- = a2n- + a2n-l· 
'T} n 'T} 

Thus 
2n 1 ( -1) 

'TJ + - 2- = a2n 'T} +- + 2a2n-1 = a2n + 2a2n-1· 
'T} n 'TJ 

This together with (1) implies (2). Q.E.D. 

Let 
b:NxN-+Z 

be a Z-valued symmetric bilinear form on N. With respect to the basis 
(e1, e2), the form b is represented by the symmetric matrix 

s := ( p q) 
b q r , 

where p = b(e1, e1), q = b(e1, e2) and r = b(e2, e2). In terms of the 
matrix Sb, the form b is even if p, rare even integers and b is hyperbolic 
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if the matrix Sb is of signature (1, 1). We call a pair (N, b) an even 
hyperbolic lattice if b is a Z-valued even hyperbolic symmetric bilinear 
form on N. We have then a natural embedding 

N c N* := Homz(N, Z) c N c>9 Q 

by b. The quotient group N* /N is called the discriminant group of N. 
An automorphism f: N--+ N as Z-module is called an isometry of 

the lattice (N, b) if b(f(x), f(y)) = b(x, y) for all x, y E N. Note that 
an isometry f naturally induces an automorphism (as abelian group) of 
the discriminat group N* jN. 

We are interested in an even hyperbolic lattice structure (N, b) on 
our N such that ry2, whence ry2n for all integer n, become isometries. 

Proposition 3.3. Assume that (N, b) is an even hyperbolic lattice 
and that ry2 is an isometry of ( N, b). Then: 

(1) The matrix Sb is of the following form: 

sb := ( 2~ _2~ ) , 

where q is a non-zero integer (and vice versa). 
(2) Under (1), the discriminant group N* / N satisfies 

N* jN = (e2 ) EEl ( 1 - 2e2 ) c::::- Zjq EEl Zj5q. 
q 5q 

(3) Under (1), b does not represent 0, i.e., there is noxEN\ {0} 
such that b(x, x) = 0. Moreover b does not represent ±2, i.e., there is 
no x E N such that b(x, x) = ±2 if and only if q -=f. ±1. 

(4) Under (1), ry6 acts on the discriminant group N* /N as -idN*/N 
if and only if q is one of ±1, ±2. 

Proof. Let 2p = b(e1, e1), q = b(e1, e2) and 2r = b(e2, e2). By 
Lemma (3.1), 

ry2(ei) = ry2 = TJ + 1 = e1 + e2; ry2(e2) = ry3 = 2ry + 1 = e1 + 2e2. 

Hence ry2 is an isometry if and only if 

b(e1, e1) = b(e1 + e2, e1 + e2), b(e1, e2) = b(e1 + e2, e1 + 2e2), 

b(e2, e2) = b(e1 + 2e2, e1 + 2e2), 

that is, 

2p = 2p + 2q + 2r, q = 2p + 3q + 4r, 2r = 2p + 4q + 8r. 
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This is equivalent tor= -q and p = q. Now it is straightforward to see 
that Sb is hyperbolic if and only if q =f. 0. This proves (1). 

By using (1), we compute that 

e2 e2 e1 - 2e2 e1 - 2e2 
b(e1,-) = 1, b(e2,-) = -2; b(e1, ) = 0, b(e2, . ) = 1. 

q q 5q 5q 

Hence e2 lq, (e1 - 2e2)l5q E N* IN. Looking at the shape, we see that 
e2lq, (e1 - 2e2)l5q are of order lql and l5ql respectively and (e2lq) n 
( ( e1 - 2e2) I 5q) = 0 in N* IN. Combining this with the fact that 

IN* INI = ldetSbl = 5q2, 

we obtain (2). 
Write x = ae1 + be2 (a, bE Z). Then 

b(x,x) = 2q(a2 + ab- b2). 

The result (3) follows from this equality. 
Let us prove (4). By Lemma (3.1), we have r"l = 817+5. 177 = 1317+8. 

That is, 

Thus 

176 (2) = 8e1 + 13e2, 176 (1 - 2e2) = _ 1le1 + 18e2. 
q q ~ ~ 

Hence 1761 N* IN = -id N*; N if and only if both 

8e1 + 14e2 2e1 + 4e2 
q q 

are inN. This is equivalent to ql2. This proves (4). Q.E.D. 

Taking q = 2 in Proposition (3.3), we obtain the following result (see 
also Lemma (3.2) for the first statement of (2)): 

Corollary 3.4. Let (N, b) be the lattice (on our N) given by the 
matrix: 

sb := ( ~ -~), 
i.e., the case where q = 2 in Proposition (3.3). Then: 

(1) (N, b) is an even hyperbolic lattice which represents neither 0 
nor ±2. 

(2) 176 is an isometry of (N, b) such that the characteristic polynomial 
is t 2 - 18t + 1 and the induced action on the discriminant group N* IN 
is -idN*/N· 
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§4. K3 surfaces with a free automorphism of positive entropy 

In this section, we shall prove Theorem (1.2) (2) by showing the 
following more explicit: 

Theorem 4.1. There exists a projective K3 surfaceS of p(S) = 2 
such that NS (S) = Zh1 EB Zh2 where 

((hi.hj)) = ( ~ -~ ) . 

Any such K3 surface S (all of which form then a dense subset of 18-
dimensional family) admits a free automorphism g of positive entropy. 

Proof. Note that the abstract lattice given by the symmetric ma­
trix above is an even hyperbolic lattice of rank 2. Hence the first result 
follows from [Mo], Corollary (2.9), which is based on the surjectivity of 
the period map for K3 surfaces (see eg. [BHPV], Page 338, Theorem 
14.1) and Nikulin's theory ([Ni2]) of integral bilinear form. 

Let us construct an automorphism g of S with desired properties. 
Note that there is a lattice isomorphism cp: NS (S) c:::: (N, b), where 

(N,b) is the lattice in Corollary (3.4). 
Let f := cp- 1 o 'T]6 o cp. Then f is an isometry of NS (S). The 

eigenvalues of 'T/6 on N are 'T]6 and 'T/-6 by Lemma (3.2). Thus so are the 
eigenvalues of f. Since both eigenvalues are positive, it follows that f 
preserves the positive cone, i.e., the connected component of 

{x ENS (S) 0 Rl(x, x) > 0} 

that contains ample classes. Since NS (S) c:::: (N, b) does not represent 
-2, the ample cone of S coincides with the positive cone. Thus f pre­
serves the ample cone. 

Since 'T]6 acts on the discriminant group N* / N as -id N•; N, the isom­
etry f also acts on the discriminant group NS (S)* /NS(S) as 
-idNs (S)* /NS (S) · 

Let T(S) be the transcendental lattice of S. Then -idr(s) also acts 
on the discriminant group T(S)* /T(S) as -idr(S)* /T(S). 

Hence the isometry(!, -idr(s)) of NS (S)EBT(S) extends to an isom­

etry, say], of H 2 (S, Z), by [Ni2], Proposition (1.6.1). Here we note that 
H 2 (S, Z) is unimodular and NS (S) and T(S) = NS (S)J.. (in H 2 (S, Z)) 
are both primitive in H 2 (S, Z). By construction, j preserves the Hodge 
decomposition of H 2 (S, Z) and, as observed above, also preserves the 
ample cone. Hence, by the golobal Torelli theorem for K3 surfaces (see 
eg. [BHPV], Chapter VIII Theorem (11.1)), there is an automorphism 
g of S such that g*IH2 (S,Z) =]. 
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Since f = fiNS (8) has an eigenvalue ry6 > 1, it follows that g is of 
positive entropy. 

Let us show that g is free. Since g =f. ids, the fixed point set 89 
consists of at most finitely many complete curves and at most finitely 
many points. 

We first show that 8 9 contains no complete curve. In fact, if g(C) = 
C for some complete curve C, then the class [C] would be an eigenvector 
of g*INS (8) with eigenvalue 1. However, the eigenvalues of g*INS (8) = 

f are ry6 and ry-6 , none of which is 1. 
Hence 89 consists of at most finitely many points, say n points 

counted with multiplicities. Then, by the topological Lefschetz fixed 
point formula, we have 

n = T(8,g) = 2 + tr g*INS (8) + tr g*IT(8). 

By g*INS (8) = f and by tr f = tr (ry6 IN) = 18 (by Corollary (3.4) (2)), 
we obtain 

trg*INS(8) = 18. 

On the other hand, by g*IT(8) = -idr(S) and rankT(8) 
p(8) = 2), we obtain 

trg*IT(8) = -20. 

Hence 
n = T(8, g)= 2 + 18-20 = 0. 

Hence 89 = 0. This completes the proof. 

20 (by 

Q.E.D. 

Remark 4.2. Let (8,g) be as in Theorem (4.1). By the shape of 
NS (8) and the fact that NS (8) represents neither 0 nor ±2, it follows 
from [SD], Theorem (6.1) that 8 is realized as a smooth quartic surface 
in P 3 . It seems extremely hard but highly interesting to write down 
explcitly the equation of 8 and the action of g in terms of the global 
homogeneous coordinates of P 3 , for at least one of such pairs. 

Remark 4.3. Let (8,g) be as in Theorem (4.1). Then 

2 12 1 T(8, g ) = 2 + TJ + l2 + 20 > 0. 
TJ 

Therefore g2 has a fixed point, say P. Put Q = g(P). Then Q =f. P (by 
8Y = 0) and g( {P, Q}) = {P, Q}. Let S be a smooth surface obtained 
by the blow up of 8 at P and Q. Then g lifts to a free automorphism of 
S with positive entropy. So, there is also a "non-mimimal" K3 surface 
with a free automorphism of positive entropy. 



198 K. Oguiso 

Remark 4.4. For each integer n ?: 2, there is an n-dimensional 
smooth compact Kahler manifold wih a free automorphism of positive 
entropy. One of the "cheapest" way to construct may be as follows. 
Let (S,g) be as in Theorem (4.1) and pn-2 be the projective space of 
dimension n - 2. Then the pair of product type 

satisfies the desired property. Needless to say, it would be more inter­
esting to see if it is possible to construct free automorphisms of positive 
entropy "which do not come from lower dimensional pieces" for higher 
dimensional manifolds. 
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