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From GW invariants of symmetric product stacks to 
relative invariants of threefolds 

Wan Keng Cheong 

Abstract. 

In this note, we relate the equivariant GW invariants of the sym­
metric product stacks of any nonsingular toric surface X in genus zero 
to the equivariant relative GW invariants of the threefold X x lP'1 in all 
genera. We give an example for which an equivalence between these 
two theories exists. 

§1. Introduction 

1.1. Overview 

Throughout the note, we let X be a nonsingular toric surface, '][' = 

(C*) 2 a torus, and n a positive integer. 
The symmetric group <Sn acts on xn by permuting coordinates. 

This gives rise to a quotient variety Symn(X) := xn /<Sn, the n-fold 
symmetric product of X, and a quotient stack [Symn(X)], the n-fold 
symmetric product stack of X. The stack [Symn(X)] is an orbifold, i.e., 
a nonsingular Deligne-Mumford stack, and its coarse moduli space is 
Symn(X), which is singular when n?: 2. 

Our main purpose is to study the enumerative geometry of the sym­
metric product stack [Symn(X)] and the threefold X x lP'1 . We are 
particularly interested in the following conjecture. 
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Conjecture A. For any cohomology-weighted partitions .A1 (1]i), 
.A2(7h), .A3(1}1) of n, and fJ E H2(X; Z), we have the following equal­
ity: 

Fff xiP1 
( .A1 (1]i), .A2 (7h), .A3 (1}1)) 

= un-~~=1 £(.>.,) F~Symn(x)] (.A1 (1]i), .A2(7h), A3(1}1) ). 

The term Fff xiP1 
( .A1 (1]i), .A2 (7h), .A3 (1}1)) is the generating series en­

coding 1'-equivariant relative Gromov-Witten (GW) invariants of the 
threefold X X IP1 in all genera while F~Symn(X)](.A1 (1]i), .A2(7h), .A3(1}1)) 
denotes the generating series encoding 1'-equivariant extended GW in­
variants of the symmetric product stack [Symn(X)] in genus zero. We 
will discuss later that the cohomology-weighted partitions do generate 
a basis for the 1'-equivariant Chen-Ruan cohomology of the symmetric 
product stack. 

1.2. Motivation 

There are two other theories, the 1'-equivariant GW theory of the 
Hilbert scheme Hilbn(X) of n points on X and the 1'-equivariant relative 
Donaldson-Thomas (DT) theory of the threefold X x IP1 , relating to the 
theories discussed in Conjecture A. In fact, this note is motivated by a 
conjectural tetrahedron of equivalences: 

Relative GW theory 
of X x IP1 

GW theory 
of [Symn(X)] 

GW theory 
of Hilbn(X) 

Relative DT theory 
of X x IP1 

The base triangle includes the conjectural GW /DT correspondence 
for relative invariants formulated by Maulik, Nekrasov, Okounkov and 
Pandharipande [20], which relates the cohomology-weighted partitions 
of n to the Nakajima basis for the cohomology of Hilbn(X), and its 
conjectural relationship to the GW theory of Hilbn(X). The reader 
may want to consult [19] and [20] for the formulation of the GW jDT 
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correspondence for absolute invariants. Remarkably, it is shown in [23] 
that the absolute version holds for all nonsingular toric threefolds. 

On the other hand, the SYM/HILB correspondence between the 
GW theories of [Symn(X)] and Hilbn(X) in genus zero is predicted 
by the crepant resolution conjectures (CRC) of Ruan [28] and Bryan­
Graber [3]; see also [9] and [10] for other formulations. A strengthened 
version ofRuan's CRC, i.e., the SYM/HILB correspondence between the 
(extended) invariants of [Symn(X)] in degree zero and the invariants of 
Hilbn(X) in extremal classes, is confirmed to be valid in [7]. Further­
more, using the results of Graber [12] on the GW theory of Hilb2 (1P'2 ), 

Wise [29] verifies Bryan-Graber's CRC for [Sym2 (JP>2 )] and Hilb2 (JP>2 ). 

However, except for this and other special examples (see the next para­
graph), it is not known if Bryan-Graber's CRC holds for a general toric 
surface X. 

It is worth mentioning that the tetrahedron of equivalences holds 
when X is the affine plane (cf. [3], [4], [25], [26]) and is also valid 
for divisor operators when X is the minimal resolution Ar of the quo­
tient C2 / f.Lr+ 1 where f.Lr+ 1 is the group of ( r + 1 )-th roots of unity ( cf. 
[8], [18], [21], [22]). Despite striking similarities, there is no direct geo­
metric relationship between the underlying moduli spaces of these four 
theories. All of the equivalences are achieved by matching the formulas 
on each side possibly after an appropriate change of variables. 

1.3. Outline 

In Section 2, we recall some basic notions concerning orbifold and 
relative GW theories. In Section 3, we provide evidence for Conjecture 
A. In particular, the validity for f3 = 0 is explained. The rest of Section 
3 is an introduction to the works of Cheong-Gholampour [8] and Maulik 
[18]. To keep things simple, we focus our attention to the calculations 
of the orbifold invariants of the symmetric square Sym2 (AI) and the 
relative invariants of the threefold A 1 x lP'1 . The solutions to these two 
theories verify Conjecture A for any (3. 

§2. Preliminaries 

2.1. Twisted stable maps and evaluations 

For any curve class f3 E H 2 (Symn(X); Z), we denote by 
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the moduli of genus zero, k-pointed, twisted stable map to the symmetric 
product stack [Symn(X)] of class (3 (cf. Chen-Ruan [6] and Abramovich­
Graber-Vistoli [2]). Note here that each marking of the domain curve 
is twisted, i.e., it is the classifying stack Bf..L8 = [Spec C/ f..L 8 ] for some s, 
and each node is balanced, i.e., locally near each node, the domain curve 
looks like the stack [Spec C[u, v]/ ( uv) / f..L 8 ] for some s, where the cyclic 
group f..Ls acts on Spec C[u,v] by~· (u,v) = (~u,~- 1 v). We refer to [1] 
and [2] for a more detailed discussion. 

Let I[Symn(X)] be the stack of cyclotomic gerbes in [Symn(X)]. 
That is, it is the disjoint union 

(2.1) ll IJ-£. ([Symn(X)]) IJ f..Ls 
sEN 

where IJ-£. ([Symn(X)]) := HomRep(Bf..L 8 , [Symn(X)]) is the stack of rep­
resentable morphisms from Bf..L8 to [Symn(X)], and IJ-£. ([Symn(X)])/Jf..Ls 
is the rigidification of IJ-£. ([Symn(X)]) along f..Lsi roughly speaking, it is 
obtained by removing the cyclic group f..Ls from the automorphisms of 
IJ-£. ([Symn(X)]). We refer the reader to Section 5 of [1] for a technical 
discussion of the rigidification; see also [2] and [27]. (Note that the stack 
IJ-£.([Symn(X)])/Jf..L8 isiJ-£.([Symn(X)])~-'• in [1]. The notation "/J" was 
introduced by Romagny in [27] and has become widely used.) 

Evaluating twisted stable maps at their markings does not neces­
sarily give points in [Symn(X)]. In fact, it gives points in I[Symn(X)] 
in general because the markings are twisted points. More precisely, we 
have the i-th evaluation morphism 

(2.2) 

given by sending the twisted stable map f : ( C, P 1 , ... , Pk) -+ [Sym n (X)] 
to flp,: Pi -+ [Symn(X)] where Pi denotes the i-th marking of C. 

2.2. Chen-Ruan cohomology 

The stack I[Symn(X)] is isomorphic to a disjoint union of orbifolds, 
which correspond bijectively to partitions of n. The component I>. cor­
responding to the partition A is the quotient stack [X~/C(a)] where 
a E <5n is of cycle type A, X~ is the a-fixed locus of xn, and C(a) 
denotes the quotient group of the centralizer C(a) of a by (a). Note 
that the coarse moduli space of [X~/C(a)] is simply X~/C(a), which 
we denote by 1,>.. 

The Chen-Ruan cohomology H(JR([Symn(X)]) of then-fold sym­
metric product stack of X is the cohomology H*(I[Symn(X)]; Q); see 
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Chen-Ruan [5]. Thus, it is simply EBI>-I=nH*(h,;Ql). As X is toric, 
there are induced 1!'-actions on the stack of cyclotomic gerbes in the 
orbifold [Symn(X)]. So we may put the Chen-Ruan cohomology into a 
1!'-equivariant context. We denote by 

the 1!'-equivariant Chen-Ruan cohomology of [Symn(X)]. Now we sketch 
a basis for H[ (I>-; Ql) for any partition A ( cf. Cheong [7]). 

Let A= (A1 , ... ,Ac(.>-J) be a partition of nand ry1 , ... ,'flc(.>-) 1!'­
equivariant classes on X. Suppose a E 6n is of cycle type A. It admits a 
cycle decomposition a = a 1 ... ac(.>-) where ai is a Ai-cycle. We consider 
the class 

C(.>-) 

(2.3) L Q9 T-1aiT('fli) E HF(X:;; Ql)C(u) =Hi (I.>-; Ql). 
TEC(u) i=l 

Here T- 1 aiT('fli) is the pullback of 'f/i by the isomorphism x;;_lUiT ~X. 
The expression (2.3) does not depend on the decomposition of a. We 
use the cohomology-weighted partition 

to denote the class in (2.3) divided by the factor IAut(>.(ry)) I rr;~A; Ai 
where Aut(>.(ry)) is the group of permutations on {1, ... ,£(?.)}which 

fixes (>.l('f/1), ... , Ac(.>-J('r/c(.>-))). 
Let SB be a basis for Hi(X; Ql). The classes A(ry)'s, with all 'f/i E SB, 

serve as a basis for Hi ( h; Ql). 

2.3. Extended orbifold GW invariants 

We let h and t 2 be the generators of the 1!'-equivariant cohomol­
ogy of a point. For 1!'-equivariant Chen-Ruan cohomology classes ai E 

HeR 'li'([Symn(X)]), i = 1, ... , k, and curve class f3 E H 2 (Symn(X); :Z), 
the T-equivariant, k-point, orbifold GW invariant of [Symn(X)] is de­
fined by 

(2.4) (al, ... , ak)/3 := r_ . evi(al) ... ev~(ak), 
}[M O,k ([Symn (X)] ,/3)JT'" 

where [ ]1!-ir indicates the 1!'-equivariant virtual fundamental class. The 
expression (2.4) is not really well-defined as the underlying moduli space 
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is not necessarily compact, but we can interpret the right side of (2.4) as 
a sum of residue integrals via virtual localization ( cf. [13]). In general, 
'IT'-equivariant orbifold GW invariants take values in Q(h, t2). 

From now on, we denote by 

(2) 

the divisor class 2(1)1(1)n-2 . 

In this note, we are more interested in the extended version of 
orbifold invariants. In fact, for any nonnegative integer a, curve class 
(3 E H 2(Symn(X); Z), and Chen-Ruan cohomology classes a1, ... , ak E 

HcR.T([Symn(X)]), we call the following term 

(2.5) ~(a1, ... , OOkJ (2)a),e 
a. 

a k-point extended GW invariant of [Symn(X)] and denote it by 

We encode the extended invariants in a generating series. That is, we 
define 

2.4. Relative GW invariants 

Let us fix some notation on the moduli space of stable relative maps. 
We refer to Graber-Vakil [14], Li [15], and Li [16] for a detailed discussion 
of the geometry of the space. 

Let (lP'1 , p1 , ... , Pk) be the projective line with k distinct marked 
points. Given a positive integer n, partitions A1 , ... , Ak of n, and curve 
class (3 E H2 (X; Z). We denote by 

the moduli space parametrizing stable relative maps from connected 
(resp. possibly disconnected) genus g curves to X x lP'1 of homology 
class ((3, n) E H2(X x lP'\ Z) = H2(X; Z) EB Z, with ramification profile 
Ai over the relative divisor X x Pi for i = 1, ... , k. The ramification 
points are taken to be marked and ordered. For the disconnected case, 
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the connected components of the source curve are required to be non­
contracted. 

-o 1 -o 
Let us denote M 9 (X x IP' ,(;J,n);Ab····Ak) by M temporarily. 

There is an evaluation map 

determined by the ramification points of type Aij over the divisor X x Pi 
for j = 1, ... , f(Ai) and i = 1, ... , k. (Here Ai =(Ail, ... , Au!(>.;))). 

The connected relative GW invariant is defined as follows: Given 
cohomology-weighted partitions >.1 (7Ji), ... , >.k(rJk) of n with entries of 
Tit being classes on X, define (A1(7Ji), ... , Ak(rJk))~,,a by 

(2.6) 

Again, we apply virtual localization in case this is not truly well-defined. 
Note that the virtual class of M 0 is of dimension 

k 

-Kx · ;3 + 2n- 2:)n- f(Ai)). 
i=l 

The corresponding disconnected relative invariants over the moduli space 
-· 1 M 9 (X x IP' , (;3, n); Al, ... , Ak), denoted by 

(Al (7Ji), ... , Ak(rJk));,,a, 

is assumed to obey the product rule: The source curve is a union of con­
nected components, the disconnected invariant is set to be the product 
of the connected invariants corresponding to these components. 

Just like the GW theory of symmetric product stacks, the discon­
nected relative invariants are encoded in a generating series: Define 

F [Symn(X)](' (:-:+) \ (:-:+)) _ "'(' (:-:+) \ (:-:+))• 2g-2 
,8 /\1 'TJl ' ... '/\k 'TJk - ~ /\1 'TJl ' ... ' /\k 'TJk g,,B u . 

g 

§3. Comparison of two theories 

3.1. Evidence 

Let us explain why Conjecture A is true for ;3 = 0. The toric surface 
X has finitely many 'll'-fixed points, which we denote by x 1 , ... ,xm. For 
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each i, xi is contained in an affine open subset Ui, which is isomorphic 
to the affine plane C2 • 

In this subsection, we work on the basis given by cohomology­
weighted partitions whose parts are labeled by 'll'-fixed point classes on 
X. For partitions Pi = (Pil, ... , PiR(p;)), i = 1, ... , m, we denote the 
class 

by 

P := (pl, · · · 'Pm)· 

The classes ji's form a basis for HcR,'ll'([Symn(X)]) @Q[t1 ,t2 J Q(h, t2). 
Assume that for each i = 1, ... , m, Pi, J.ti, and Vi are arbitrary 

partitions of ni, and l::Z:1 ni = n. According to [3] and [4] for the 
C2-case, we have 

Since 'll'-fixed stable relative maps collapse to x 1 , ... , Xm by the projec­
tion X x IP1 --+ X, the generating series F{ xP1 (p, ji, V) is simply the 

m 

product IJ FrfxP1 (Pi, fi;,, zli). By results of [7], we have a similar phe-
k=l 

nomenon on the symmetric product side. That is, 

M F.Xx'¥1(_ - -) d F.U;x'¥1(_ - -) b . 1 oreover, 0 Pi, J.ti, vi an 0 Pi, J.ti, vi o v1ous y coincide. 
Thus, 

F.Xx'¥1 (- - -) _ n-(R(p)H(,U:)H(i/))F,[Symn(X)] (- - ;-;'\ 
0 p, J.t, 1/ - u 0 p, J.t, 1/ J. 

Here, for example, C(p) = l::Z:1 C(pi)· The above equality is clear if the 
condition IPil = IJ.til = lvil is violated for some i, and so we deduce the 
following. 

Proposition 3.1. For any cohomology-weighted partitions >.1 (ryi), 
>.2(~), >.3(171) ofn, 

F{ xP1 
( >.1 (rh), >.2 (~), A3 (171)) 

= Un- 2:,~= 1 R(p;) FJSymn(X)] (>.1 (rh), A2 (~), A3(171)) · 
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3.2. Connected version 

To proceed, we must introduce connected GW invariants of sym­
metric product stacks. 

Suppose f: (C, P1, ... , Pk) ---+ [Symn(X)] is a k-pointed twisted 
stable map. Let Pc = c X [Symn(x)] xn' which is a scheme due to the 
representability of f. The map f induces an 6n-equivariant morphism 
g : Pc ---+ xn. By taking g mod 6n-l and composing with the n-th 
projection, we obtain a morphism T C ---+ X where C is a degree n 
admissible (possibly disconnected) cover of the coarse moduli space of 
C branched over the markings. We call C the cover associated to f or 
simply the cover associated to C. 

Let 

denote the locus in M o,k([Symn(X)], ,B) which parametrizes twisted sta­
ble maps with associated covers being connected. The k-point connected 
invariant 

( ) conn a1, ... , ak f3 

is defined by replacing the underlying moduli M o,k([Symn(X)], ,B) of 
the invariant (2.4) with M~,k([Symn(X)],,B). Note that the connected 
invariants in nonzero degrees are polynomials in h, t 2 as the underlying 
moduli space is compact. The k-point extended connected invariant 
(a1 , ... , ak)(~~,B) may be defined in a similar way. 

3.3. The resolved surface A 1 

From here on, we will focus on the case when X = A 1 , which is 
also the cotangent line bundle of lP'1 . The surface A 1 comes equipped 
with a '.IT.' -action induced by the natural '.IT.' -action on IC2 / { ± 1}. It has two 
'.ll.'-fixed points, denoted by qo and q00 , and a unique compact rational 
curve E, which is '.ll.'-invariant. 

Fig. 1 

In Fig. 1, Eo and Eoo are two noncom pact curves attached to the 
'.ll.'-fixed points q0 and q00 respectively. The '.ll.'-weights of the tangent 
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respectively. The homology H 2 (A1 ; Z) ~ Z has a basis given by [E]. We 
denote by w the class Poincare dual to [E], that is, 

1 
w = - 2[E]. 

We will determine 3-point extended invariants of [Sym2 (Al)] and 
compare them to the relative invariants of A 1 x IP'1 . Our determination 
is based on [8] and [18]. 

3.4. Evaluation of three-point extended invariants 

We identify H 2 (Sym2 (Al); Z) with H 2 (A1 ; Z), and so it is generated 
by the rational curve class [E]. Fix integers a~ 0, d > 0, and partitions 
>.1 , >.2 of 2 throughout the rest of this subsection. 

First of all, we wish to calculate 2-point extended invariants 

(>.1 (7/i), A2 (~))(a, d[E]) 

where each entry of 1Jh is 1 or [E]. This will determine all 2-point 
extended invariants as the insertions generate the equivariant Chen­
Ruan cohomology. We will also show that 3-point extended invariants 
may be expressed in terms of 2-point extended invariants. 

Our calculation involves virtual localization. For each 1!'-fi:xed con­
nected component r of the underlying moduli of twisted stable maps, 
we denote the virtual normal bundle to r by 

N vir r . 

Moreover, we say that a 1!'-fi:xed connected component r is distinguished 
if it has such a configuration: Suppose f: C --+ [Sym2 (A1 )] represents a 
point in r. The source curve C has a unique noncontracted irreducible 
component, whose associated cover has a unique irreducible component 
not contracted by the morphism to A 1 . 

Let us see how a fixed component r contributes to the inverse Euler 
class 1/e'f(N[.ir). We will see in a moment that the contribution has 
positive (t1 + t 2 )-valuation, which may be further classified according to 
whether r is distinguished or not. 

Let f: C--+ [Sym2 (A1 )] be a twisted stable map in r. It induces a 
stable map fc: C --+ Sym2 (A1) of coarse moduli spaces. As discussed 
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above, we also have a map f: C ---+ A1 where C is a degree 2 cover of 
C. There are three situations to consider. 

(1) Infinitesimal deformations and obstructions of f with C held 
fixed: 

• Contracted components: Let C' be a contracted component. 
Consider a connected component ~ of the cover associated to 
C'. As ~ maps to qo or q00 under the morphism to A1, its 
contribution, being e1r(H1 (~, f*T AI))e1r(H0 (~, j*T A1))-1, is 
congruent modulo h + t 2 to 

by Mumford's relation. Here g is the genus of~ and A v (t) = 

L_f=oci(H0 (~,w'Jj)v)t9 -i. This also means that the contribu­
tion from C' is not divisible by h + t2 as it is the product of 
the contributions from (at most two) such ~'s. 

• The nodes joining contracted curves to noncontracted curves 
have zero (t1 + t 2 )-valuation because they give a product of 
tangent weights, which is a positive power of -(2ti) 2 modulo 
(t1 + tz). 

• Noncontracted components: A noncontracted component ~ 
contributes 

where I;. is the (possibly disconnected) cover associated to ~' 
and ( )m indicates th~ moving part. It is clear fr~m the above 
discussion that each !-contracted component of~ contributes 
no factor of h + tz. 

Let us_analyze how an f-noncontra~ed, irreducible compo­
nent ~ of ~ contributes. Assume that f restricted to this com­
ponent is of degree k. Since the curve Eisa ( -2)-curve, the in­
vertible sheaf W'Jj@ J* N'fE 1 A 1 has degree 2k-2. The moving part 

of e1r(H1 (~, j*T A1)) comes from the term H1 (~, J* NE;AJ = 

H0 (~,W'Jjt;9j* N'fE;A1t, and so it is congruent modulo (t1 +t2 ) 2 

to 

2(k-1) 

(t1 + t2) II 
i=O;icjk-1 

i(¥(2t1)) + (2k- 2- i)(?(2h)) 
2k- 2 
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On the other hand, e'll'(H0 (~, j*T A1))rn, which agrees with 
e1r(H0 (~,j*TE))rn, is given by 

2k 

IT 
i=O; i#-k 

i( -2tl) + (2k- i)(2t!) 
2k 

As a consequence, the component ~ contributes 

(2) Infinitesimal automorphisms of C: Only those nonspecial points 
p that lie on noncontracted curves ~ and map to 1!'-fi.xed points con­
tribute. The contributions are the tangent weights of ~ at p, which 
have zero (h + t2)-valuation. 

(3) Infinitesimal deformations of C: Given any node P joining two 
curves C1 and C2. Let P, C1, C2 be coarse moduli spaces of P, C1, C2 
respectively and op the order of the stabilizer of P. The node-smoothing 
contribution may be divided into two cases . 

• cl and c2 are noncontracted: If fc restricted to ci is a di­
sheeted covering of the rational curve fc(Ci)· Then the node­
smoothing contribution with respect to P is 

where Wi is the tangent weight of fc(Ci) at fc(P). Thus, it is 
proportional to (h + t2)-1 only if d1 = d2 and w1 + w2 is a 
multiple of t1 + t2. 

• C1 is noncontracted but C2 is contracted: The node smoothing 
contributes 

Op 

w-'1/J 
where w is the tangent weight of cl at the node p and 'ljJ is 
the first Chern class of the tautological line bundle formed by 
the cotangent space T}>C2. 

The above analysis shows that r gives positive (t1 + t2)-valuation 
because the number of noncontracted curves is more than the number 
of nodes connecting them. 

If r is distinguished, then it contributes (h +t2)-valuation 1 as there 
is a unique noncontracted rational components for the cover associated 
to C. Suppose r is not distinguished, then the associated cover has at 
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least two noncontracted rational curves. As one noncontracted compo­
nent contributes a factor of (t1 + t2), the fixed component contributes 
(h + t 2 )-valuation of at least 2. Summing up, we have the following. 

Proposition 3.2. Iff is distinguished, then it contributes (h +t2 )­

valuation 1 to 1 j e'll' ( Ntr). Otherwise, it contributes ( t 1 + t 2 ) -valuation 
of at least 2. 

We may use this proposition to calculate the 2-point extended con­
nected invariants. 

Proposition 3.3. The connected invariant 

(3.1) 

vanishes if at least one entry of rh or ~ is the class 1. 

Proof. The virtual dimension of 

a 

M O,a+2([Sym2(Al)], d[E]) n ev;_- 1(f\,J n ev2 1 (I>-2) n n evii2(I(2)) 
i=l 

is £(>-.I) + £(>-.2) - 1, which is equal to the the maximal sum of the 
degrees of the insertions. However, the invariant (3.1) is a polynomial 
in t 1 , t2 and is divisible by t 1 + t 2 by Proposition 3.2. This forces (3.1) 
to vanish. Q.E.D. 

It remains to determine connected invariants when each entry of rh 
and ~ is the class [E]. For simplicity, if each entry of r/[ is ~' we use 
the following notation 

Let us recall the notion of the double Hurwitz number as it will be 
useful for evaluating our connected invariants. For partitions J.L, v of n, 
the double Hurwitz number H~,v is the weighted number 

1 

L IAut(1r)l 
7r 

where the sum is taken over all genus g (possibly disconnected) covers 
1r: X --+ lP'1 which are branched over 0 and oo with ramifications fL and 
v respectively and are simply branched elsewhere. Here IAut(1r)l is the 
size of the automorphism group of 1r. The number of simple branched 
points is 2g- 2 + R(J.L) + R(v) by the Riemann-Hurwitz formula. 
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Theorem 3.4. The connected invariant 

~ ~ 

(3.2) (.>'l([E]), .A2([E]))(~~d[E]) 

is given by 

Here g = ~(a-£(.AI) -£(.\2)+2) and gai = ~(ai -£(.Ai)+1) are integers, 
i = 1, 2. 

Proof. As the invariant (3.2) is a multiple of t 1 + t 2 by dimension 
constraints, it suffices to prove the equality modulo ( t 1 + t 2)2. Further­
more, any 1l-fixed component that contributes (h + t 2)-valuation of at 
least 2 may be ruled out. 

Let E 0 and E 00 be noncompact curves in A 1 at qo and q00 respec­
tively (see Fig. 1). We have 

1 1 
[Eo]= -2[E] + t2 · 1, [Eoo] = -2[E] + t1 · 1. 

By Proposition 3.3, the invariant 

(3.3) 

is ( -1/2)£(.\1)+£(.\2 ) times the original invariant (3.2). 
It remains to evaluate (3.3) modulo (t1 + t2?. Because of the con­

straints on the (h + t2)-valuation and insertions, the source curve C 
decomposes into three pieces Ca1 U :E U Ca2 : the intermediate curve I; is 
the unique noncontracted component, and its associated cover must be 
totally ramified at nodes; for i = 1, 2, Cai is a contracted component 
and carries the marking corresponding to Ai and ai unordered mark­
ings corresponding to (2), Ca1 and Ca2 are disjoint but are connected by 
:E. (Cai's are twisted points whenever ai = 0). We denote this fixed 
component by r al ,a2. 

Let Mi = M(B62, Ai, (2); ai) fori= 1, 2. There is a morphism 

obtained by sending C to (Cau CaJ· It is of degree (da1 !a2!)-1 . 

Let Ei: Mi --+ M o,ai+2 be the natural morphism mapping Cai to its 
coarse moduli space Cai (the node Cai n I; is mapped to the marking 
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Qi), and let 'l/Ji be the first Chern class of tautological line bundle formed 
by the cotangent space TQiCai fori= 1, 2. The morphism Ei has degree 

given by the double Hurwitz number Hf;,i(2). 

The contribution of the component r a 1 ,a2 to the invariant (3.3) is 
congruent modulo (t1 + t 2 ) 2 to 

X 

The above expression can be simplified to 

(We leave the case where a 1 = 0 or a 2 = 0 to the reader). Summing 
over all possible pairs (a1, a2) with a1 + a2 = a, the invariant (3.3) is 
thus given by 

and we are done. 

H9al H9a2 
)q,(2) ,\2,(2) 

a1!az! 

Q.E.D. 

Remark 3.5. The double Hurwitz numbers Hf;,i(2 ) in Theorem 3.4 

can be explicitly calculated. Indeed, for any partition p, = (p,1 , ... , J-l>£(JJ-)) 

of n, Goulden, Jackson and Vakil [11] obtain the following formula: 

00 1Aut(p,)IH9 () 
""' !J-, n t2g 
~ (2g + C(p,)- 1)! n2gH(JJ-)-2 

= (sinh(t/2)) -lIT sinh(p,it/2). 

t/2 i=l P,it/2 

Only very few 2-point extended invariants of the symmetric square 
are not connected invariants. These invariants are of the form 

(1('1Jn)1('1Jlz), 1('1Jn)1('1J2z))co, d[E]) 

where 'IJij are 1 or [E]. To calculate them, notice that the source curves 
have exactly two connected components, exactly one of which is non­
contracted due to (t1 + t 2 )-valuation. With this description, we deduce 
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that 

Here (~ul ~u) and (6I,62)d[E] are simply a Poincare pairing and a 
2-point GW invariant of A1 respectively, and the sum is taken over all 
possible ~i/s such that 1(ryi1 )1(17i2) = 1(~i1)1(~i2) fori= 1, 2. 

The pairing on A1 is determined by 

(111) = - 1-, (11 [E]) = 0, ([E]I [E]) = -2. 
2itt2 

We may evaluate 2-point GW invariants of A 1 by virtual localization 
just as Theorem 3.4. In fact, (61, 6 2)d[E] vanishes if one of 61 and 62 
is 1 and 

([E] [E]) = 4(t1 + t2) 
, d[E] d · 

As a consequence, the right side of (3.4) can be counted explicitly. 

Proposition 3.6. Two-point extended invariants determine three­
point extended invariants. 

Proof. We may give an (extended) quantum multiplication * on 
the equivariant Chen-Ruan cohomology HcR,'ll'([Sym2(AI)]). Indeed, 
we define 

where s.B = {1([E])1([E]), 2([E]), 1(1)1([E]), 2(1), 1(1)1(1)} is an or­
dered basis for HeR 'll'([Sym2(AI)]), (3v is a class Poincare dual to (3, , 
and v is a formal parameter. Note that the associativity follows from 
the WDVV equation, and 1(1)1(1) is the multiplicative identity. 

By divisor equation, 
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Use the results on 2-point extended invariants, we obtain the matrix 
representation of the operator 1(1)1(w) *-with respect to IE: 

2B(v2 -1) -2Bvsin u 
f(u,v) f(u,v) 

-1 0 0 

4Bvsinu 211(v2 - vcosu + _1_) 
f(u,v) 

0 -1 0 
f(u,v) v-1 

2htz 0 
B(v + 1) 

0 1 

v-1 -2 

0 4tlt2 0 0 0 
0 0 4htz 0 0 

(here f ( u, v) = v2 - 2v cos u + 1, B = ii + t2). This matrix has distinct 
eigenvalues, and so a Vandermonde argument (see [4] and [8]) shows that 
the quantum ring structure is determined by the quantum multiplication 
by 1(1)1(w). As a result, 3-point extended orbifold invariants are also 
determined. Q.E.D. 

3.5. Review of Maulik's work 

Unless otherwise stated, the results in this subsection are due to 
Maulik. Again, we fix integers g ?: 0 and d > 0 throughout the sub­
section. We will sketch Maulik's equivariant calculation [18] for relative 
GW invariants of A 1 x IP'1 of class (d[E], 2). 

From now on, we also fix cohomology-weighted partitions >.1 (1]i) 
and >.2 (~) of 2 where each entry of 1]i and~ is 1 or [E]. 

Proposition 3. 7. The connected invariant 

vanishes. Moreover, if some entries of TJi 's is 1, the invariant 

vanishes as well. 

Proof. Performing virtual localization as in the proof of Proposi­
tion 3.2, we can show that these connected invariants are divisible by t 1 + 
t2. Both statements then follow from dimension constraints. Q.E.D. 

We would like to determine the connected invariant 
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We assume that the first two marked points of lP'1 are 0 and oo respec­
tively. However, as the 'II'-fixed loci of the underlying moduli spaces 
involve stable relative maps to nonrigid targets, we must study the non-
rigid invariants 

~ ~ 

(-A1 ([E]), A2 ([E]));, d[E], 
~ ~ 

which are defined similarly to (-A1([E]), -A2 ([E]))~,d[E] (cf. (2.6)), but the 

underlying moduli space M:(A1 x lP'l, (d[E], 2); -A 1 , ,\2) is replaced with 
the moduli space 

of genus g stable maps to a nonrigid target A1 x lP'1 of homology class 
(d[E], 2), relative to divisors A1 x 0 and A1 x oo with ramifications ,\1 
and ,\2 respectively, and up to an equivalence given by C* -scaling on 
the lP'1-factor; see [18] and [24]. The above two moduli spaces are very 
close. The only difference is that two nonrigid relative maps are declared 
isomorphic if they are isomorphic after applying an automorphism of lP'1 

fixing 0 and oo. 
~ 

Theorem 3.8. The nonrigid invariant (-A1([E]),-A2([E]));,d[E] is 

(h + t2)( -1)9H(>q)+£(>-2)24-29d29-3H(>'l)H(.A2) 

H9' H92 
""""' .A 1 ,(2) >-2,(2) 
L...,_ (291- 1 + £(-A1))!(292- 1 + £(,\2))!. 

91 +92-9 

Sketch of Proof. Let us calculate the case where d = 1. ~st 

as in the proof of Theorem 3.4, it is enough to show that (-A1([E0]), 

A2([E:J)) 9, [E] is congruent modulo (t1 + t2)2 to 

(t1 + t2)( -1)9 """"' Ht,(2)Hf~,(2) 
229-4+£(>-,)H(>-2) L...,_ (291- 1 + £(,\1))!(292- 1 + £(-A2))!. 

91 +92-9 

(3.5) 

As d = 1, for any genera 91 and 92 that add up tog, there is a unique 
fixed locus allowed: The source curve breaks into three pieces 0 9 , U ~ U 
0 92 : The intermediate ~ is the unique component not contracted by the 
projection to A 1 and connects 0 9 , and 0 92 . The curve 0 9 , is a genus 
91 curve and maps to { q0 } x 1P'1 with ramifications A 1 over ( qo, 0) and 
(2) over (qo, oo), and 0 92 is a genus 92 curve and maps to {q=} x lP'1 

with ramifications ,\2 over (q=, oo) and (2) over (q=, 0). So this fixed 
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locus may be described as M;, (IP'1; >.1, (2)) x M;,(IP'\ .\2, (2)) and its 
contribution is congruent modulo (t1 + t2? to 

4( -2t1)£(.A,)(2td(.A2)( -4ti)(h + t2) 

·(-1)g,-1(2h?g,-2 r 1 
}pvr;, (IP''; >. 1 , (2))]vir 2( t2 - h) - C1 (lLo) 

. (-1)92-1(2t1)2g2-2 r 1 
}IM;2(ff';.A2,(2))]vir 2(t1- t2)- c1(lLoo) 

where JL0 (resp. lL00 ) is the tautological line bundle at the relative divisor 
0 (resp. oo ). As the virtual dimension of the moduli M;, (IP'1 ; Ai, (2)) is 
2gi- 2 + £(.\i), which is 1 less than the virtual dimension of the moduli 
M;, (IP'\ >.i, (2)) for i = 1, 2, we simplify the expression to obtain 

c. r 'l/J6g,-2H(.A,) . r 1jJ'?f,2-2H(.A2) 
J[M;, (IP''; Al, (2))]vir J[M;2 (JP'l; A2, (2))]vir 

( -1)9(tl + t2) 
where C = 229_4H(.A,)H(.A2 ) • It is then given by 

Hg' c 0 >.,,(2) 

(2g1- 1 + £(>.1))! 

due to the result of Liu-Liu-Zhou [17] on double Hurwitz numbers. 
Summing over all g1, g2 such that g1 + g2 = g, we obtain (3.5). 

The method presented in Maulik-Pandharipande [24] may be ap­
plied___!_o deal~ith the case d > 1. In fact, it allows us to show that 

(.\1 ([E]), .\2([E]));, d[E] is 

d2g-3H(.A,)H(.A2) (>.1 ([E]), A2 ([EJ));, [E] 

(here we refer the details to [18]), and the theorem follows. Q.E.D. 

Theorem 3.9. 
~ 

(3.6) (>.1([E]), .\2([E]), 1(1)1(w))~,d[E] = d (.\1([E]), .\2([E]));,d[E]· 

Proof. By the divisor equation [24], 

--- --- -- ..-.. 
(.\1 ([E]), .\2([E]), w);, d[E] = d (.\1 ([E]), .\2 ([E]));, d[E]· 

The marking corresponding to the class w fixes the C* -scaling on the IP'1 

factor, and so the invariant on the left-hand side becomes 
~ ~ 

(3.7) (.\1 ([E]), .\2 ([E]) I t*w) ~. d[E]· 
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This invariar:!._ is defi~d by cupping the integrand of the connected in­

variant (..\1([E]),>..2([E]))~,d[E] with an extra ev*(t*w) where t: A1--+ 

A 1 x lP'1 is the natural inclusion and ev is the evaluation at the extra 
non-relative marking. By degenerating lP'1 , we may arrange to have two 
components I;1 and I;2 so that the relative markings lie over I;1 and the 
non-relative marking lies over I;2 . The degeneration formula expresses 
the invariant (3.7) in the following form: 

--7 
where the sum is taken over all cohomology-weighted partitions B( ~) 

--7 
with each entry of ~ being either 1 or w, all configurations of connected 
domain components whose gluing is connected, and all splittings of g = 

--7 '---t 
g1 + g2 and d = d1 + d2 . (The class B( ~ )v denotes the dual to B( ~) 
with respect to the orbifold pairing, and so the gluing term has already 
been added to the formula (3.8)). 

In the expression (3.8), d2 must be 0. Otherwise, there would be a 
connected component C not contracted by the projection A 1 x lP'1 --+ A 1 . 

The dimension constraint shows that in order to make nonvanishing 
contribution, C must be collapsed by the projection to lP'1 . But the 
total configuration would then be disconnected. 

--7 --7 
Moreover, (B( ~ t I t*w)~2 ,o vanishes unless B( ~) = 1(1)1(w) and 

g2 = 0 (cf. Bryan-Pandharipande [4]). This forces the other configura­
tion to be given by connected curves of genus g. Thus, (3.7) is indeed 

(..\1 ([E]), A2 ([E]), 1 (1) 1(w)) ~' d[E], 

and the theorem follows. Q.E.D. 

We have evaluated all3-point invariants with one insertion 1(1)1(w) 
as long as they are connected. It remains to calculate invariants of the 
form 

(3.9) (1 ( 77u) 1( 1112), 1( 1121) 1( 1122), 1 (1) 1(w) )~, d[E]· 

Each of the domain curves involved has exactly two components. By 
Proposition 3.7, the projection A1 x lP'1 --+ A1 collapses the component 
with the third marking being labeled with 1. Thus, the invariants are 
given by 
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Here (~11 I ~11) and (61, 62, w)d[E] are simply a Poincare pairing and a 
3-point GW invariant of A 1 respectively, and the sum is taken over all 

possible ~i/s such that 1(7Ji1)1(7]i2) = 1(~i 1 )1(~i2 ) fori= 1, 2. Thus, the 
relative invariant (3.9) coincides with the symmetric square invariant 

(1( 7711) 1 ( 7]12), 1( 7]21) 1( 7]22), 1 (1) 1 (w)) (o, d[E]). 

3.6. An equivalence 

The calculations of the GW invariants of the symmetric product 
stack [Symn(A1)] and relative invariants of the threefold A1 x IP'1 for 
n = 2 are very similar. In fact, we have the equivalence: 

Theorem 3.10. Suppose X= A 1 . Then Conjecture A is valid for 
n = 2 and any class (3. 

Proof. The case (3 = 0 is included in Proposition 3.1. Suppose 
(3 is a positive multiple of [E]. By a similar argument to the proof of 
Proposition 3.6, 3-point relative invariants of A1 x IP'1 may be expressed 
in terms of those with an insertion 1(1)1(w). As a result, we need only 
show that the conjecture is true for >.3 (77!) = 1 ( 1) 1 ( w). But this follows 
by a direct comparison of the formulas in Sections 3.4 and 3.5. Q.E.D. 

We can apply the arguments in Sections 3.4 and 3.5 to compute 
connected GW invariants of [Symn(Ar)] and connected relative GW 
invariants of Ar x IP'1 when one of the insertions is 1(1)1(w) or (2) for 
any r and n. The disconnected relative invariants of Ar x IP'1 are not 
difficult to compute due to the product rule. But the corresponding 
invariants of [Symn(Ar )] are far from easy to evaluate; see [8, Lemma 
3.2], which plays a key role in the evaluation. 

We have the following result. The proof is omitted, and the reader 
is referred to [8] and [18] for a detailed treatment. 

Theorem 3.11. Suppose X = Ar where r is an arbitrary positive 
integer. Then Conjecture A is valid for any positive integer n and any 
class (3 when >.3 (17!) = 1(1)1(w) or (2). 

It is not known if the 2-point invariants of [Sym n ( Ar)] determine the 
3-point invariants for (n, r) =f. (2, 1). But once we assume the Generation 
Conjecture (cf. [18, Section 4.5]), this will be true and Theorem 3.11 
will be established even if .X3 (7]t) is an arbitrary cohomology-weighted 
partition. The details can be found in Section 5.2 of [8]. 
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