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Existence of traveling wave solution in a diffusive 
predator-prey model with Holling type-III 

functional response 

Chi-Ru Yang and Ting-Hui Yang 

Abstract. 

In this work, we show the existence of traveling wave solution of a 
diffusive predator-prey model with Holling type III functional response. 
The analysis is based on Wazewski's principle in the four-dimensional 
phase space of the nonlinear ordinary differential equation system given 
by the diffusive predator-prey system under the moving coordinates. 

§1. Introduction 

We consider a special type of reaction-diffusion system based on 
a predator-prey interaction model with Rolling-type III functional re­
sponse [4]: 

(1) { 
Ut = 

Wt= 

where all parameters in (1) are positive. The functions u(x, t) and w(x, t) 
are the species densities of the prey and predator, respectively. The 
parameter E measures the satiation effect [4], [8]. 

The existence of traveling wave solutions of the diffusive predator­
prey system with various type of reaction term has been studied by many 
researchers. Dunbar [1], [2] investigated the existence of traveling wave 
solutions for a diffusive Lotka-Volterra model with or without limited 
carrying capacity of the prey. The proof is based on Wazewski's principle 
which is an extension of shooting methods in higher dimension. 
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After that, Dunbar[3] further consider the existence of traveling wave 
solutions for a diffusive predator-prey model with Holling type II func­
tional response which includes the effects of predator satiation. The 
diffusion coefficient of prey is set to be zero. Then the traveling wave 
solutions connecting two equilibria was established in the similar man­
ner. Huang, Lu and Ruan [5] generalized the result of existence of the 
traveling wave connecting two rest states for a nonzero diffusion coeffi­
cient. Li and Wu [7] prove the similar results for a predator-prey system 
with Holling type-III functional response in zero diffusive rate of prey. 

Our main goal is to generalize the Li and Wu's results to the nonzero 
diffusive rate of prey. More precisely, we establish the existence of trav­
eling wave solution of a nonzero diffusive predator-prey system with 
Holling type-III functional response. By changing the following vari­
ables, 

u* = VEu, w* = Bwj(VED), x = y75jd;x, i = Dt, 

d = dl/d2 , a= Aj(VEDK), 1 = VEK, (3 = Cj(DE), 

we can get a more simple systems (use the same notations for simplicity). 

(2) { 
Ut = 
Wt= 

( ) u 2 w duxx +au 1- u - l+u2' 
2 

Wxx - W + /3 1~;:'2 · 

There are several reasonable restrictions on parameters. First, we re­
quire that 1 > 1, i.e. E > 1 j K 2 , so that the satiation effect is great 
enough. We also require that (3 > (1 + 1 2)h2 > 1, which ensures that 
equation (2) has a positive equilibrium point corresponding to constant 
coexistence of the two species. 

The rest of this paper is organized as follows. In Section 2, we recall 
the Wazewski's principle and state the main result on the existence of 
traveling wave solution. Section 3 is devoted to prove the main theorems. 

§2. Main results 

By simple calculations, system (2) has three spatially uniform equi­
libria given by Eo = (0,0), E1 = (1,0), and E = (u 8 ,w8 ), where 
U 8 = 1/~ and W 8 = a(J- U 8 )(1 + u;)ju8 • The aim of this 
work is to show the existence of the traveling wave solution connecting 
the equilibria E1 = (1,0) and E = (u 8 ,w8 ). A traveling wave solu­
tion is a solution of (2) of special form u(x, t) = u(x + ct) = u(s) and 
w(x, t) = w(x + ct) = w(s) where c is a positive constant wave speed 
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and sis the so-called moving coordinate. The system (2) becomes 

(3) { 
cu1 = du" + au('y - 2 u) - 1~:2, 
cw1 = w" - w + (3 1~:2 . 

Here " 1 " denotes the differentiation with respect to the moving co­
ordinate s. We require that the traveling wave solutions u and w are 
nonnegative for natural ecological restriction and satisfy the asymptotic 
boundary conditions 

(4) u(-oo) = /,w(-oo) = O,u(oo) =Us, and w(oo) = Ws. 

Rewrite system (3) and (4) as a system of first order ODEs in JR4, 

(5) { 
u 1 =v, 

w 1 =z, 

vi= 

zl = 

and the boundary conditions 

(6) { u(-oo) = /, v(-oo) = 0, w(-oo) = 0, z(-oo) = 0, 
u(oo) =Us, v(oo) = 0, w(oo) = Ws, z(oo) = 0. 

Recall the Wazewski's principle. Consider the differential equation: 
y1 = f(y), 1 = djds, y E !Rn, where f: !Rn-+ !Rn is a continuous function 
and satisfies the Lipschitz condition. Let y(s, y0 ) be the unique solution 
satisfying y(O, Yo)= Yo· For convenience, we denote y(s, Yo) by Yo· sand 
let Y·S be the set of points y·s, where y E Y and s E S. Given W ~ !Rn, 
define w- ={Yo E WIVs > 0, Yo· [0, s) r:J;. W}, the immediate exit set of 
W. Given :E ~ W, let :E0 = {Yo E :EI3so = so(Yo) such that Yo·so ¢. W}. 
For Yo E :E, define T(yo) = sup{ slyo · [0, s] C W}, the exit time of Yo· 

Lemma 1. ([2] Section 3.A.) Suppose that 

(i) if yo E :E and Yo· [0, s] ~ cl(W), then Yo· [0, s] ~ W; 
(ii) if Yo E :E, Yo· s E W, Yo· s ¢. w-, then there is an open set V,. 

about Yo · s disjoint from w-; 
(iii) :E =:Eo, :E is a compact set and intersects a trajectory of y1 = 

f(y) only once. 

Then the mapping F(y0 ) = y0 · T(y0 ) is a homeomorphism from :E to its 
image on w-. 
Now we state the main results as follows. 

Theorem 2. (i) If 0 < c < V4(f31~--;_7y~- 1 ), then there are 

no nonnegative solutions of system (5) satisfying the boundary 
conditions (6). 
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(ii) If ~'~t 1 < (3 < "(2 + 1 and c > )4( 13~'~~;~- 1 ), then there are 

nonnegative solutions of (5) satisfying the boundary conditions 
(6), which correspond to traveling wave solutions of system (2). 

§3. Proof of Theorem 2 

First we note that ( u(s ), v(s)) is a solution of the system 

(7) u' = v, v' = cvjd + au(u- 'Y)/d 

if and only if (u(s), v(s), 0, 0) is a solution of (5). That is, the set N = 

{(u,v,w,z)lw = O,z = 0} is a 2-dimensional invariant submanifold in 
the 4-dimensional phase space of the system (5). Similarly, the set H = 

{ ( u, v, w, z) lu = 0, v = 0} is a 2-dimensional invariant submanifold. It 
is a routine work to calculate that the eigenvalues of linearized system 
(5) at (r, 0, 0, 0) are 

.\1 = (c- y/c2 + 4ad"f)/(2d), 

A3 = (c+ jc2 -4(h~~~~- 1 ))/2, 
.\2 = (c- jc2 - 4(!31~~;~- 1 ))/2, 

A4 = ( c + J c2 + 4 a d "() / ( 2d). 

The eigenvalues of the linearization of (7) at (r, 0) are the .\1 and .\4 . 

An eigenvector associated with ,\4 for (7) is (-1,-.\4 ). Any nontrivial 
trajectory of solutions of (7) which approach (r, 0) tangent to ( -1, -.\4 ) 

ass --t -oo. It is clearly that this trajectory is contained in the invariant 
submanifold N. Then a solution corresponding to this trajectory cannot 
approach ( U 8 , 0, w8 , 0) as s --t oo, so it is not the desired traveling wave 

solution of (5). If 0 < c < 2) !31'~~~~- 1 , we have two complex eigen­

values, .\2 and A3, with positive real part. Any solution of (5) which is 
not contained in N and approaches (r, 0, 0, 0) as s --t -oo must spiral 
in toward ( "(, 0, 0, 0). This spiraling of solutions cannot take place with 
w 2: 0. This violates the requirement that traveling wave front solutions 
be nonnegative. This prove the part 1 of the main theorem. 

We only need to consider the case that c > 2) !31'~~;~- 1 in the 

following discussions. It is easy to see that .\1 < 0 < ,\2 < ,\3 < .\4 . The 
eigenvectors e1, e2, e3 , e4 associated with .\1, .\2 , .\3 , .\4 , respectively, are 

e1 = (1,.\1,0,0), 
e3 = (1, .\3, ,p(.\3), .\3p(.\3)), 

e2 = (1, .\2,p(.\2), .\2p(.\2)), 
e4 = (1, A4, 0, 0), 
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Define W = JR4 \ (P U Q U R US), where 

P = {(u,v,w,z)lu < Us,W > Ws,Z > 0}, 

Q = {(u,v,w,z)lu > Us,W < Ws,Z < 0}, 
uw 

R = {(u, v, w, z)lu <Us, a(u- 'Y) + --2 < 0, v < 0}, 
1+u 

uw 
S = {(u, v, w, z)lu >Us, a(u- 'Y) + --2 > 0, v > 0}. 

1+u 

By the definition, it is easy to see that 

oW= (oF\ R) u (oQ \ S) u (oS \ Q) U (oR\ P), 

P n R # 0, and Q n S # 0. We need the following technical result. It 
can be directly verified, so we omit it. 

Lemma 3. If 1 < 'Y < 3vf:3, then the function f(u) = a('Y- u)(1 + 
u2 )/u is strictly monotone decreasing on the interval (0, 'Y)· 

Lemma 4. If 1 < 'Y < 3vf:3, then 

where 

uw 
J 1 ={(u,v,w,z) :u<O,a(u-1')+ 1 +u2 ::;O,v=O} 

l.J{(u,v,w,z) :u=O,a(u-1')+ uw 2 <O,v=O} 
1+u 

l.J{(u,v,w,z):u<O,a(u-'Y)+ uw 2 =O,v<O, 
1+u 

av uz 
u(1 + u2 /(u) + 1 + u 2 ~ O}, 

h ={(u,v,w,z)lu = Us,W > Ws,z = O,v < 0} 

l.J{(u,v,w,z)lu::; -us,W ~ Ws,z = O,v ~ 0}. 

Here the notation U means disjoint union. 

By the standard Stable Manifold Theorems, we can find the strongest 
unstable manifold 0 1 tangent to e4 at (1', 0, 0, 0), and a parametric rep­
resentation for the 1-dimensional strongest unstable manifold 0 1 in a 
small neighborhood of (1',0,0,0) is JI(m) = ('Y,O,O,O)+me4 +0(lml 2 ). 

There is also a 2-dimensional strongly unstable manifold 0 2 tangent to 
the linear subspace of span of e4 and e 3 at (1', 0, 0, 0), and a paramet­
ric representation for the 2-dimensional strongly unstable manifold n2 
in a small neighborhood of (1', 0, 0, 0) is h(m, n) = (1', 0, 0, 0) + me4 + 
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ne3 + O(lml2 + lnl 2). Finally, there is a 3-dimensional unstable man­
ifold 0 3 tangent to the linear subspace of span of e4, e3 and e 2 at 
( '"'(, 0, 0, 0), and a parametric representation for the 3-dimensional unsta­
ble manifold 0 3 in a small neighborhood of ('""(, 0, 0, 0) is h(m, n, C) = 
('""(, 0, 0, 0) + me4 + ne3 + Ce2 + O(lml2 + lnl 2 + 11!1 2). 

The part 2 of the main theorem will be established by a series of 
lemmas as follows. We construct a simply connected subset ~ of 0 3 by a 
series of lemmas (Lemma 4 to Lemma 11). Hence any trajectory starting 
from~ will approach to ('""(, 0, 0, 0) ass-+ -oo. By applying Wazewski's 
principle (Lemma 1), we prove that there must be a trajectory through~ 
which does not leave Win Lemmas 12. Then from Lemma13 to Lemma 
15 a bounded subset 0 of W contained this trajectory is defined. Finally, 
a Lyapunov function is constructed on 0 and we use LaSalle's Invariance 
Principle to show that the trajectory approaches (us, 0, Ws, 0) in Lemma 
16. For conveniently, throughout the remainder of this paper we use 
the notation u(s, y 0 ) for the first coordinate function of y(s, y 0 ), and 
similarly for the other three coordinate functions, v, w, and z. 

For the solution proceeding from 0 1 , we have the following two 
results. 

Lemma 5. Consider a solution y(s,y0 ) with initial condition Yo= 
( Uo' Vo' Wo' Zo) E 01 and Uo < '"'(. Then there is a finite So such that 
u(so, Yo) <Us, v(so,Yo) < 0. That is, the solution enters the region R. 

Lemma 6. (i) A solution y(s, Yo) on 0 1 which approaches 
('""(, 0, 0, 0) as s -+ -oo in the region u > '"'( ,v > 0 will remain 
inside for all s. 

(ii) Any trajectory with initial point y 0 = ( u0 , v0 , w0 , z0 ) such that 
0 < Us < '"'(, wo > 0, and z0 > (c/2)w0 will have w(s) > 0 
and z(s) > (c/2)w(s) for all s > 0 such that 0 < u(s) < '"'(. 
In particular, this is true for trajectories on 0 2 approaching 
( '"'(, 0, 0, 0) tangent to the vector e 3 in the region u < '"'(. 

Consider a small circle on 0 2 parametrically given by 

The phase '¢ is fixed so that g(O) is on 0 1 in the region u < '"'f, and 
the parameter () E [0, 21r]. Choose g so that as () increases from 0, 
'"'(+E cos( B+'¢) +t: sin( B+'¢) +O(c) decreases and p(.A3 )c sin( B+'¢) +O(c) 
increases from 0. Let A be the connected component of the set { () E 

[0, 21r) :there exists so such that u(s0 , g(B)) =Us, v(s, g(B)) < 0, s:::; s0 }. 

By Lemma 5 and 6, A is nonempty and bounded. Let ()1 = sup A 
and y 1 = g(Bl). Since g(O) is on 0 1 with u < '"'(, Lemma 6 shows 
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that if u(so,g(O)) =Us then v(s0 ,g(O)) = (d/ds)u(s0 ,g(O)) < 0. By 
Implicit Function Theorem, u(s,g(O)) =Us for s = so(O) for 0 in a small 
neighborhood of 0 = 0. Therefore 01 -/=- 0. Observe the sign of w + f ( u) 
when u-coordinate touches Us, then we have the following two case. 

Lemma 7. Suppose Yo = g(O) for some 0 E (0, 81). Then y(s; Yo) 
will leave W through the boundary of P or R. 

Lemma 8. There exists an s0 such that 

Proof. We have u(O,yl) E (us,f'), v(O,yl)::::; 0 and w(O,yl) > 0. 
The lemma can be proved in the following four steps. 
1. Suppose u(s; y 1) > Us and v(s; yl) < 0 for all s > 0. Then we have 
u(oo;yl) ~Us and v(oo;yl) = 0. By Lemma 6, we have w(oo;y1) = oo 
and v'(oo;yl) = oo. It contradicts v(oo;yl) = 0. Hence u(s0 ;y1) ::::; 
Us or v(so;yl) ~ 0 for some so> 0. 
2. Suppose u(s0 ;y1) =Us and v(s;y1 ) < 0 for s E (O,s0]. By the Im­
plicit Function Theorem and the continuous dependence of the solution 
on 0) there are 0 ;::: 01 satisfying 

v(so;g(O)) < 0 on (O,so(O)] and u(so(O);g(O)) =Us. 

This fact contradicts the definition of 01. Thus v(s0 ; yl) = 0, v(s; yl) < 
0 for s E (0, so), and u(so; yl) ~Us. 
3. Sincev(so;yl) = Oandv(s;yl) < Oons E (O,so), wehavev'(so;yl) ~ 
0 and w(so; Yl) + f(u(so; Yl)) ~ 0. Suppose w(so; Yl) + f(u(so; Yl) = 0, 
then dv"(s0 ;y1 ) > 0 by Lemma 6. This implies that v(s;yl) ~ 0 for 
s ~ s0 , which contradicts the definition of s0 . Therefore w(s0 ;y1) + 
f(u(so; Yl)) > 0 and v'(so; Yl) > 0. 
4. Suppose u(so; yl) > u*. Since v(s0 ; y 1) = 0 and v'(so; yl) > 0, by 
the Implicit Function Theorem and the continuous dependence of the 
solution on 0, there exists a function s0 (0) for 0 ~ 01 such that 

v(s0 (0);g(O)) = O,v'(s0 (0);g(O)) > O;v(s;g(O)) < 0 on s E (O,s0 (0)); 

and u(so(O),g(O)) >Us for 0 ~ 01. Thus 0 ¢:.A for 0 ~ 01, a contradic­
tion. Hence u(so;yl) =Us· It follows from w(so;Yl) + f(u(so;YI)) > 0 
that w(s0 ; yl) > Ws. The proof is complete. Q.E.D. 

Lemma 9. There is a value 82 such that the v coordinate of g(02) 
is zero and, moreover, 82 > 81. Here, we denote Y2 = g( 82). 

Proof. Since g(O) E !11 in the region u < f', the v coordinate of 
g(O) is negative. There is a 0*, 0 < 0* < 2w, such that g(O*) is on !11 
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with u > 'Y· The v coordinate of g(O*) is positive. Then there is a 02 > 0 
such that the v coordinate of g(02 ) is zero. The proof of Lemma 7, part 
2, says that for s 2: 0 the trajectory through g(Ol) can never have a v 
coordinate equal to 0 if u > 'Y· Therefore ()2 > 01 . This completes the 
proof. Q.E.D. 

On D3 , we consider a small sphere centered at ("!, 0, 0, 0) with radius c:, 
which is parameterized by 

8(0, cp) = !J(c: cos(()+'¢) sin cp, c: sin(()+'¢) sin cp, c: cos cp ), 

where () E [0, 27T], cp E [0, 1r] and the constant phase '¢ is the one in (8). 
By the Implicit Function Theorem, we have the following two results. 

Lemma 10. The sphere S intersects the hyperplane defined by v = 0 
in a smooth closed curve. 

Lemma 11. The sphere S intersects the hyperplane defined by z = 0 
in a smooth closed curve. 

We denote the intersection of {v = 0} and {z = 0} on the sphere S 
by Y3· Let s+ be the hemisphere of S with the range of cp such that 
coscp 2: 0. 

Notation 12. (1). Let y 0 := g(O) be to the intersection of the 
sphere with nl in the region 0 < u < 'Y. 

(2). Denote by YQYi, i = 1, 2 the portion of the circle with () E 

(0, ()i). 
(3). Denote by AA the portion of the intersection of the hemi­

sphere s+ with { v = 0} lying between (not including) Y2 and 
Y3· 

(4). Denote by Y3YQ the portion of the intersection of hemisphere 
s+ with {z = 0} lying between (not including) Y3 and Yo· 

(5). Let B be a small ball around y 0 in the space spanned by e1, 

e2 and e3. Let Y4 and Y5 be the interaction points of B with 
Y3YQ and ffl2 respectively. Denote by M the portion of 
interaction of the hemisphere with B (not including y4, y5). 

Now we construct E as the closed topological quadrangle in the 
hemisphere, whose sides consist of the closure of the arcs Yifu1, i = 
1, 2, 3, 4 and Y5YJ:. To check E connected but F(E) not connected is 
tedious, we omit here. By the Wazewski's Theorem, we get an invariant 
orbit. 

Lemma 13. There exists y* E E such that the solution y(s,y*) = 
y(s) = (u(s), v(s), w(s), z(s)) remains the region W. 
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Further, we have the upper and lower bound of u and w. 

Lemma 14. The coordinate functions u(s) and w(s) are positive 
for all time. 

Lemma 15. The coordinate functions u(s) and w(s) are bounded 
above by"(, L, respectively, where L is a positive constant. 

It is easy to check that y(s) is a bounded orbit. 

Lemma 16. Let 

0 = {(u,v,w,z)IO < u < "(, 0 < w < L, 

-w/c < z < qw, - K1u < v < K 2 u} 

where q >max{ -c+~, .\2, .\3}, K1 >max{%, ~-c}, and K 2 > 

( -c + vc2 + 4dL)j2. Then the solution y(s, y*) = y(s) remains in 0 
for all s. 

Lemma 17. This trajectory y(s,y*) approaches (u 8 ,0,w8 ,0) ass 
approaches oo. 

Proof. We construct a Lyapunov function as follows, 

u; u;v 2 2 z w 
V = cu- dv + c- + d-2 + ue[c(w- W 8 )- z] + U 8 W 8 [-- clog-]. 

U U W W 8 

By the LaSalle's Invariant Principle [6], thew-limit set of y(s,y*) is 
contained in the largest invariant subset of {y E 0 : dV / ds = 0}, which 
is the singleton (u8 ,0,w8 ,0). It follows that y(oo,y*) = (u 8 ,0,w8 ,0). 

Q.E.D. 
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