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A remark on self-similar solutions for a semilinear
heat equation with critical Sobolev exponent

Yiaki Naito
Abstract.
The Cauchy problem for a semilinear heat equation
w; = Aw +wP  in RY x (0, 00)
with singular initial data w(z,0) = Aa (z/|z]) |z|~2/®~D for £ € RV \
{0} is studied, where N > 2, p = (N+2)/(N —2), A > 0 is a parameter,
and a > 0, a # 0. We investigate the asymptotic properties of the

profile of positive self-similar solutions to the problem as A — 0 when
N =3,4,5.

§1. Introduction

We consider the Cauchy problem for a semilinear heat equation with
singular initial data:

” {wt=Aw+w7’ in RY x (0, 00),
1
w(z,0) = Aa(z/z]) |z[~*®=D in RV \ {0},

where N > 2, p= (N+2)/(N-2),a: 5" ! > R,and A >0isa
parameter. We assume that a € L®°(SN~1) and @ > 0, a # 0. The
equation in (1) is invariant under the similarity transformation

w(z,t) = wy(z,t) = p?/ =Dy (pz, p?t)  for all p > 0.

A solution w is said to be self-similar, when w(z,t) = wy(z,t) for all
> 0. It can be easily checked that w is a forward self-similar solution
to (1) if and only if w has the form

w(z,t) =t~V P Vy(z/vE) forz e RY, t >0,
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where u is a solution of the problem

1 1
Au+ -~z -Vu+ u+uP =0 in RV,
(2) 2 p—1

lim, o0 7 P~ Vy(rw) = Aa(w)  for ae. we SN-L

(More precisely, see [7, Lemma B.1 in Appendix BJ.

First we recall the results in [7] and [8] for the multiple existence of
positive solutions of (2). We call a positive minimal solution u, of (2),
if u, satisfies uy < uy for any positive solution uy of (2).

Theorem A ([7, Theorem 1]). There exists a constant \* > 0 such

that,

(i) for0 < X < X\*, the problem (2) has a positive minimal solution
uy, € C?(RYN); u, is increase with respect to A\ and satisfies
luxllLeomay = O(A) as A — 0.

(ii) for A > X*, there are no positive solutions u € C2(RY) of (2).

Theorem B ([8, Theorem 1.2]). Let N = 3,4,5. Then, for 0 <
A < X*, the problem (2) has a positive solution Ty € C2(RN) satisfying
"E)\ > Uy -

Remark. (i) In the case a = 1 in (2), the multiple existence of
positive solution of (2) was studied in [9] by employing ODE shooting
argument.

(ii)For the existence of self-similar solutions of (1), we refer to [1],

(4], [5].
In this note we consider the asymptotic properties of the second
positive solution @y as A — 0.

Theorem 1. Let N = 3,4,5, and let u) be the positive solution
obtained in Theorem B for 0 < A < X*. Then

3) U\—=0 ae mRY and |Gn|pemyy — 00 asA— 0.
(RY)

Remark. (i) When N > 6 and ¢ = 1 in (2), it was shown by [8,
Theorem 1.3] that (2) has no positive radially symmetric solutions u
with u # uy for 0 < A < A, with some A, € (0, \*).

(if) In the case (N +2)/N < p < (N +2)/(N —2) it was shown by [7,
Theorem 2] that the problem (2) has at least two positive solutions )
and uy with Uy > u, for 0 < A < X*; and Ty — up as A — 0, where ug is
the unique positive solution of (2) with A = 0. It was shown by [6] that
up(z) is radially symmetric about the origin, and has an exponential
decay at |z| = co. The uniqueness of positive solution uy was shown by
[10] and [2].
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In order to investigate properties of the second positive solution to

the problem (2), we introduce the following problem
1 P . PN
Au+ -z Vu+ u+(u+uy)’ —us =0 inR",

lim |z|% P Vy(z) =0,
|]—o0

for 0 < A < A*. We see that, if uy is a positive solution of (4), then
Uy = uy + ux is the second solution of (2). In the proof of Theorem
1, we will investigate some properties of the solution u) obtained by
the variational argument. For more precise asymptotic properties of
solutions we will study in the forthcoming paper.

§2. Proof of Theorem 1

We first introduce some notations. Set p(z) = el=*/4, We define
L%(RN) = {u e LYRN): / ulpdxr < oo} for 1 < g < o0,
RN
and
1RNY _ RNy . 2,2
H,(RY) = {ueH (RY) ./RN(|Vu| +u?)pdr < oo}.
The norms in L(RY) and H}(R"), respectively, are defined by
1/q
lullis = ([ utodz) " and ully = (9l + sz

We consider the problem

1 1

Au+ -z -Vu+ v+ g(u,uy) =0 inRY,

) 5 p_1 9(u, uy)
UEH;(RN) and v>0 inRY,

where g(t,s) = ({ + )P — sP. Define the corresponding variational func-
tional of (5) by

1 1
In(u) =7 Vul? -
A(@) 2/sz<t u p-

with u € Hy(RY), where

u2> pda:—/ G(u, uy)pdz
1 .

1 1
G(t,s) = ——(t + 8)PTt — ——gPT1 _ 5Pt
(t:9) p+1< ) p+1
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We recall the existence of positive solution to the problem (5).

Proposition 1. Let N = 3,4,5. For A € (0,\*) there exists a
positive solution uy € H}(RN) N C*(RN) of (5) satisfying

1 -
(6) 0 < In(un) < —]—V—Sf,v/2 and hI)\Il_}(I)lfI)\(U)\) >0,
where
/ |Vu|?pdz
— RN
=

inf .
w€HL(RN)\{0} B (N-2)/N
3 (/RN 2/ (N 2>pdm>

Since the existence of positive solution uy € H(RN) N C?2(RY) of
(5) was shown by [8] (see the proof of Proposition 3.2 in [8]), it suffices
to show that uy satisfies (6) for the proof of Proposition 1. We show the
following lemma.

Lemma 1. Let X € (0,A*). Then there exist some constants § =
5(A) > 0 and n = n(X\) > 0 such that

(7 Ix(w) 2 n(A) >0

for all v € HY(RN) with [Vullz = 6(A). Furthermore, n(}) satisfies
liminfy_on(A) > 0.

Proof. We note that the conclusion of Lemma 5.5 in [7] still holds
when p = (N + 2)/(N — 2). Then, for each X\ € (0,\*), there exist
constants 7(A) and 6()) such that (7) holds for all u € H}(RN) with
Va2 = 6(N).

Let Ao € (0,)\*) be fixed, and let w € Hi(RY). Now we will show
that

(8) In(u) = I, (u) for A € (0, A].

We see that G(t, s) is increasing in s > 0 for each fixed ¢t > 0. Since u, is
increasing in A > 0, G(u, u,) is increasing in A > 0 for each u € H}(RV).

Thus (8) holds. Now, put {A) = n(Ag) and 6(A) = d(Ag) for A € (0 Aol

Then (7) holds for A € (0, Ag], and we obtain liminfy_o n(A) = n(X) >

0. QED.

Proof of Proposition 1. Following the proof of Proposition 3.2 in
[8], there exists a weak solution uy € H}(RY) of (5), and uy satisfies

1
0<n(A) < In(uy) < NSIJ)V” for each A € (0, A\").
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By Lemma 1 we have liminfy_,o Iy (uy) > liminfy_,o7(A) > 0. Thus (6)
holds. Q.E.D.

For A € (0, X*), let uy be a solution of (5) obtained in Proposition
1, and let {Ax} be a sequence such that A\y > Agt1 and Ay — 0 as
k — oo. For simplicity, one sets ux = uy, and u, = u,,. We will show
the following

Proposition 2. There exists a subsequence, still denoted by {uy},
such that, as k — o0,

(i) wur — 0 weakly in H, (RN), ug, — 0 strongly in L%(RN), and
ur — 0 a.e. in RY;
(i) |lurllpe @y — oo

To prove Proposition 2, we show the following lemma.

Lemma 2. Assume that ux — ug weakly in H}(RN) as k — oo for
some ug € H)(RN). Then, for any ¢ € H}(RN),

9 / g(uk, uy)dpdz —>/ ubopdz  as k — oco.
RN ny

Proof. By the argument in the proof of Lemma 2.4 in [8], for any
fixed integer kg, we have

10) [ Jotus,) — gluo,ug,)| opds >0 as k> .
R

From Ag > Agy1, K =1,2,. .., it follows that
(11) u, <y, for k> k.

Since |g(t1, 5) = g(ta, s)| = |(t1 + )P — (t2+$)P| is nondecreasing in s > 0
for each fixed ty, t3 > 0, we obtain

(12)  |g(ur,uy) — g(uo, uy)| < |g(uk, uy,) — g(uo, ug,)| for k > ko.

Then, from (10) and (12), we deduce that

(13) /RN lg(ur, ug) — g(uo, uy)| podz — 0  as k — occ.

By Lemma 2.1 in (8], for s > 0, there exists a constant C'= C(sg) > 0
such that
g(t,s) <C(t+tP) fort>0, 0<s<sp.
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Put sp = ||ty || oo (my). From (11) we obtain
g(uo,uy) < Clup +ubh) for k> k.

Note that C is independent of k, and that g(ug, ;) — ub a.e. in RV as
k — oo. Then, by Lebesgue convergence theorem, we have

(14) / g(uo,_qk)¢pdx——>/ ubgpdr as k — oo.
RN RN

Combining (13) and (14) we obtain (9). Q.ED.

Proof of Proposition 2. (i) Proposition 1 implies that I, (ug) is
bounded for £ = 1,2,... . By the same argument as in the first step
of Proof of Proposition 5.2 in [7], we deduce that {ug} is bounded in
H}(RY). Thus there exist a subsequence, still denoted by {uy}, and

some up € H,(RY) such that, as k — oo,
up — ug weakly in H}(RN),
ur — ug strongly in Li(RN ),
up — up  a.e. in RY.

We note that u, satisfies

(15) /RN (Vuk V¢~ 5 _1_ 1uk¢) pdx — /RN glug, u, )ppdr =0

for any ¢ € H)(RY). Letting k — oo, by Lemma 2 we obtain

/ (Vuo V¢ - L u0¢> pdr — / ubppdz = 0,
RN p—1 RN

that is, ug € H) (RY) is a nonnegative solution of (5) with u, = 0. By
Proposition 4.3 in [3] we have up = 0. Thus (i) holds.

(ii) Assume to the contrary that liminfy oo ||uk|pe@myy < oo
Then there exist a subsequence, still denoted by {ux}, and a constant
M > 0 such that |lug||pe@mny < M for k = 1,2,... . Then it follows

that
/ T pdx < M”'l/ uz pdz.

Since ||uk||L’g — 0 as k — oo by (i) of this proposition, we obtain

(16) / Wt pdr -0 as k — oco.
RN
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Put ¢x = I, (ug). Then, by Proposition 1, we have
1
(17) 0<cp<—=S"? and liminfcg > 0.
N k—o0
Define h(t,s) and H(t,s), respectively, by
1
h(t,s) =g(t,s) —t? and H(t,s) = G(t,s) — ——tPTL.
(t,5) = g(t,5) (t.5) = G(t.5) - —

Putting ¢ = uy in (15) we obtain

(18)
ui) pda:—/ uPt pdz— / h{ug, ug )ugpdz = 0.
RN RN

o (-

We remark here that ¢, = I, (ug) can be written by

1
e = —/ (|Vuk|2—— ui)pda:
2 Jan
(19) .
T p+1pdz / H(ug, uy )pdz.

Since ur — 0 strongly in LZ(RN ) as k — o0, we may assume that
0 <uk <U ae. in RY for some U € L%(RN). Now, let k — oo in (18)
and (19), respectively. By applying Lemma 2.4 in [8] with up = 0, we
have

lim h(ug, ug )ugpdz =0 and  lim H(ug, ug,)pdz = 0.
k—oo RN k—o0 RN

Then we deduce, respectively, that
/ |Vug |2 pdz — / ultpdz = o(1) as k — oo
RN RN

and

1 1
§/N |Vuk|2pd9:—§—+—1 Wt pde = ¢ +o(1)  as k — oco.
R RN

From (16) we obtain

/N}Vuk|2pdx—>0 and ¢, —0 ask— oo.
R

This contradicts (17). Thus (ii) holds. QE.D.
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Proof of Theorem 1. 'We observe that, for any sequence {uy, } with
Ak — 0, there exists a subsequence satisfying the properties (i) and (if)
in Proposition 2. This implies that u) satisfies

uy — 0 ae in RV and lluxll oo (mN) — 00

as A — 0. Recall that |lu,||ze®~) — 0 as A — 0, and that the second
positive solution @) given by @y = uy + ux. Thus we obtain (3) in
Theorem 1. Q.E.D.
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