Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 461–468

A remark on self-similar solutions for a semilinear heat equation with critical Sobolev exponent

Yūki Naito

Abstract.

The Cauchy problem for a semilinear heat equation

$$w_t = \Delta w + w^p$$
 in $\mathbf{R}^N \times (0, \infty)$

with singular initial data $w(x, 0) = \lambda a(x/|x|) |x|^{-2/(p-1)}$ for $x \in \mathbf{R}^N \setminus \{0\}$ is studied, where N > 2, p = (N+2)/(N-2), $\lambda > 0$ is a parameter, and $a \ge 0$, $a \not\equiv 0$. We investigate the asymptotic properties of the profile of positive self-similar solutions to the problem as $\lambda \to 0$ when N = 3, 4, 5.

§1. Introduction

We consider the Cauchy problem for a semilinear heat equation with singular initial data:

(1)
$$\begin{cases} w_t = \Delta w + w^p & \text{in } \mathbf{R}^N \times (0, \infty), \\ w(x, 0) = \lambda a \left(x/|x| \right) |x|^{-2/(p-1)} & \text{in } \mathbf{R}^N \setminus \{0\}, \end{cases}$$

where N > 2, p = (N+2)/(N-2), $a : S^{N-1} \to \mathbf{R}$, and $\lambda > 0$ is a parameter. We assume that $a \in L^{\infty}(S^{N-1})$ and $a \ge 0$, $a \ne 0$. The equation in (1) is invariant under the similarity transformation

$$w(x,t) \mapsto w_{\mu}(x,t) = \mu^{2/(p-1)} w(\mu x, \mu^2 t)$$
 for all $\mu > 0$.

A solution w is said to be *self-similar*, when $w(x,t) = w_{\mu}(x,t)$ for all $\mu > 0$. It can be easily checked that w is a forward self-similar solution to (1) if and only if w has the form

$$w(x,t) = t^{-1/(p-1)}u(x/\sqrt{t})$$
 for $x \in \mathbf{R}^N, t > 0,$

Received December 14, 2011.

2010 Mathematics Subject Classification. 35K15, 35J60.

Key words and phrases. Self-similar solutions, critical Sobolev exponent.

where u is a solution of the problem

(2)
$$\begin{cases} \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + u^p = 0 & \text{in } \mathbf{R}^N, \\ \lim_{r \to \infty} r^{2/(p-1)}u(r\omega) = \lambda a(\omega) & \text{for a.e. } \omega \in S^{N-1} \end{cases}$$

(More precisely, see [7, Lemma B.1 in Appendix B].

First we recall the results in [7] and [8] for the multiple existence of positive solutions of (2). We call a positive minimal solution \underline{u}_{λ} of (2), if \underline{u}_{λ} satisfies $\underline{u}_{\lambda} \leq u_{\lambda}$ for any positive solution u_{λ} of (2).

Theorem A ([7, Theorem 1]). There exists a constant $\lambda^* > 0$ such that,

- (i) for $0 < \lambda < \lambda^*$, the problem (2) has a positive minimal solution $\underline{u}_{\lambda} \in C^2(\mathbf{R}^N); \ \underline{u}_{\lambda}$ is increase with respect to λ and satisfies $\|\underline{u}_{\lambda}\|_{L^{\infty}(\mathbf{R}^N)} = O(\lambda) \text{ as } \lambda \to 0.$
- (ii) for $\lambda > \lambda^*$, there are no positive solutions $u \in C^2(\mathbf{R}^N)$ of (2).

Theorem B ([8, Theorem 1.2]). Let N = 3, 4, 5. Then, for $0 < \lambda < \lambda^*$, the problem (2) has a positive solution $\overline{u}_{\lambda} \in C^2(\mathbf{R}^N)$ satisfying $\overline{u}_{\lambda} > \underline{u}_{\lambda}$.

Remark. (i) In the case $a \equiv 1$ in (2), the multiple existence of positive solution of (2) was studied in [9] by employing ODE shooting argument.

(ii)For the existence of self-similar solutions of (1), we refer to [1], [4], [5].

In this note we consider the asymptotic properties of the second positive solution \overline{u}_{λ} as $\lambda \to 0$.

Theorem 1. Let N = 3, 4, 5, and let \overline{u}_{λ} be the positive solution obtained in Theorem B for $0 < \lambda < \lambda^*$. Then

(3) $\overline{u}_{\lambda} \to 0$ a.e. in \mathbf{R}^N and $\|\overline{u}_{\lambda}\|_{L^{\infty}(\mathbf{R}^N)} \to \infty$ as $\lambda \to 0$.

Remark. (i) When $N \ge 6$ and $a \equiv 1$ in (2), it was shown by [8, Theorem 1.3] that (2) has no positive radially symmetric solutions u with $u \not\equiv \underline{u}_{\lambda}$ for $0 < \lambda < \lambda_*$ with some $\lambda_* \in (0, \lambda^*)$.

(ii) In the case (N+2)/N it was shown by [7, $Theorem 2] that the problem (2) has at least two positive solutions <math>\overline{u}_{\lambda}$ and \underline{u}_{λ} with $\overline{u}_{\lambda} > \underline{u}_{\lambda}$ for $0 < \lambda < \lambda^*$, and $\overline{u}_{\lambda} \to u_0$ as $\lambda \to 0$, where u_0 is the unique positive solution of (2) with $\lambda = 0$. It was shown by [6] that $u_0(x)$ is radially symmetric about the origin, and has an exponential decay at $|x| = \infty$. The uniqueness of positive solution u_0 was shown by [10] and [2].

In order to investigate properties of the second positive solution to the problem (2), we introduce the following problem

(4)
$$\begin{cases} \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + (u+\underline{u}_{\lambda})^p - \underline{u}_{\lambda}^p = 0 \quad \text{in } \mathbf{R}^N,\\ \lim_{|x| \to \infty} |x|^{2/(p-1)}u(x) = 0, \end{cases}$$

for $0 < \lambda < \lambda^*$. We see that, if u_{λ} is a positive solution of (4), then $\overline{u}_{\lambda} = \underline{u}_{\lambda} + u_{\lambda}$ is the second solution of (2). In the proof of Theorem 1, we will investigate some properties of the solution u_{λ} obtained by the variational argument. For more precise asymptotic properties of solutions we will study in the forthcoming paper.

$\S 2.$ Proof of Theorem 1

We first introduce some notations. Set $\rho(x) = e^{|x|^2/4}$. We define

$$L^{q}_{\rho}(\mathbf{R}^{N}) = \left\{ u \in L^{q}(\mathbf{R}^{N}) : \int_{\mathbf{R}^{N}} u^{q} \rho dx < \infty \right\} \quad \text{for } 1 \le q < \infty,$$

and

$$H^1_{\rho}(\mathbf{R}^N) = \left\{ u \in H^1(\mathbf{R}^N) : \int_{\mathbf{R}^N} (|\nabla u|^2 + u^2)\rho dx < \infty \right\}.$$

The norms in $L^q_{\rho}(\mathbf{R}^N)$ and $H^1_{\rho}(\mathbf{R}^N)$, respectively, are defined by

$$\|u\|_{L^q_{\rho}} = \left(\int_{\mathbf{R}^N} u^q \rho dx\right)^{1/q} \text{ and } \|u\|_{H^1_{\rho}} = \|\nabla u\|_{L^2_{\rho}} + \|u\|_{L^2_{\rho}}.$$

We consider the problem

(5)
$$\begin{cases} \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + g(u, \underline{u}_{\lambda}) = 0 \quad \text{in } \mathbf{R}^{N}, \\ u \in H^{1}_{\rho}(\mathbf{R}^{N}) \quad \text{and} \quad u > 0 \quad \text{in } \mathbf{R}^{N}, \end{cases}$$

where $g(t,s) = (t+s)^p - s^p$. Define the corresponding variational functional of (5) by

$$I_{\lambda}(u) = \frac{1}{2} \int_{\mathbf{R}^{N}} \left(|\nabla u|^{2} - \frac{1}{p-1} u^{2} \right) \rho dx - \int_{\mathbf{R}^{N}} G(u, \underline{u}_{\lambda}) \rho dx$$

with $u \in H^1_{\rho}(\mathbf{R}^N)$, where

$$G(t,s) = \frac{1}{p+1}(t+s)^{p+1} - \frac{1}{p+1}s^{p+1} - s^{p}t.$$

Y. Naito

We recall the existence of positive solution to the problem (5).

Proposition 1. Let N = 3, 4, 5. For $\lambda \in (0, \lambda^*)$ there exists a positive solution $u_{\lambda} \in H^1_{\rho}(\mathbf{R}^N) \cap C^2(\mathbf{R}^N)$ of (5) satisfying

(6)
$$0 < I_{\lambda}(u_{\lambda}) < \frac{1}{N} S_{\rho}^{N/2}$$
 and $\liminf_{\lambda \to 0} I_{\lambda}(u_{\lambda}) > 0$,

where

$$S_{\rho} = \inf_{u \in H^{1}_{\rho}(\mathbf{R}^{N}) \setminus \{0\}} \frac{\int_{\mathbf{R}^{N}} |\nabla u|^{2} \rho dx}{\left(\int_{\mathbf{R}^{N}} |u|^{2N/(N-2)} \rho dx\right)^{(N-2)/N}}.$$

Since the existence of positive solution $u_{\lambda} \in H^{1}_{\rho}(\mathbf{R}^{N}) \cap C^{2}(\mathbf{R}^{N})$ of (5) was shown by [8] (see the proof of Proposition 3.2 in [8]), it suffices to show that u_{λ} satisfies (6) for the proof of Proposition 1. We show the following lemma.

Lemma 1. Let $\lambda \in (0, \lambda^*)$. Then there exist some constants $\delta = \delta(\lambda) > 0$ and $\eta = \eta(\lambda) > 0$ such that

(7)
$$I_{\lambda}(u) \ge \eta(\lambda) > 0$$

for all $u \in H^1_{\rho}(\mathbf{R}^N)$ with $\|\nabla u\|_{L^2_{\rho}} = \delta(\lambda)$. Furthermore, $\eta(\lambda)$ satisfies $\liminf_{\lambda \to 0} \eta(\lambda) > 0$.

Proof. We note that the conclusion of Lemma 5.5 in [7] still holds when p = (N+2)/(N-2). Then, for each $\lambda \in (0, \lambda^*)$, there exist constants $\eta(\lambda)$ and $\delta(\lambda)$ such that (7) holds for all $u \in H^1_{\rho}(\mathbf{R}^N)$ with $\|\nabla u\|_{L^2_{\rho}} = \delta(\lambda)$.

Let $\lambda_0 \in (0, \lambda^*)$ be fixed, and let $u \in H^1_{\rho}(\mathbf{R}^N)$. Now we will show that

(8)
$$I_{\lambda}(u) \ge I_{\lambda_0}(u) \text{ for } \lambda \in (0, \lambda_0].$$

We see that G(t, s) is increasing in s > 0 for each fixed t > 0. Since \underline{u}_{λ} is increasing in $\lambda > 0$, $G(u, \underline{u}_{\lambda})$ is increasing in $\lambda > 0$ for each $u \in H^{1}_{\rho}(\mathbb{R}^{N})$. Thus (8) holds. Now, put $\eta(\lambda) = \eta(\lambda_{0})$ and $\delta(\lambda) = \delta(\lambda_{0})$ for $\lambda \in (0, \lambda_{0}]$. Then (7) holds for $\lambda \in (0, \lambda_{0}]$, and we obtain $\liminf_{\lambda \to 0} \eta(\lambda) = \eta(\lambda_{0}) > 0$. Q.E.D.

Proof of Proposition 1. Following the proof of Proposition 3.2 in [8], there exists a weak solution $u_{\lambda} \in H^1_{\rho}(\mathbf{R}^N)$ of (5), and u_{λ} satisfies

$$0 < \eta(\lambda) \le I_{\lambda}(u_{\lambda}) < rac{1}{N} S_{
ho}^{N/2} \quad ext{for each } \lambda \in (0, \lambda^*).$$

By Lemma 1 we have $\liminf_{\lambda\to 0} I_{\lambda}(u_{\lambda}) \ge \liminf_{\lambda\to 0} \eta(\lambda) > 0$. Thus (6) holds. Q.E.D.

For $\lambda \in (0, \lambda^*)$, let u_{λ} be a solution of (5) obtained in Proposition 1, and let $\{\lambda_k\}$ be a sequence such that $\lambda_k > \lambda_{k+1}$ and $\lambda_k \to 0$ as $k \to \infty$. For simplicity, one sets $u_k = u_{\lambda_k}$ and $\underline{u}_k = \underline{u}_{\lambda_k}$. We will show the following

Proposition 2. There exists a subsequence, still denoted by $\{u_k\}$, such that, as $k \to \infty$,

- (i) $u_k \rightarrow 0$ weakly in $H^1_{\rho}(\mathbf{R}^N)$, $u_k \rightarrow 0$ strongly in $L^2_{\rho}(\mathbf{R}^N)$, and $u_k \rightarrow 0$ a.e. in \mathbf{R}^N ;
- (ii) $||u_k||_{L^{\infty}(\mathbf{R}^N)} \to \infty.$

To prove Proposition 2, we show the following lemma.

Lemma 2. Assume that $u_k \rightarrow u_0$ weakly in $H^1_{\rho}(\mathbf{R}^N)$ as $k \rightarrow \infty$ for some $u_0 \in H^1_{\rho}(\mathbf{R}^N)$. Then, for any $\phi \in H^1_{\rho}(\mathbf{R}^N)$,

(9)
$$\int_{\mathbf{R}^N} g(u_k, \underline{u}_k) \phi \rho dx \to \int_{\mathbf{R}^N} u_0^p \phi \rho dx \quad as \ k \to \infty.$$

Proof. By the argument in the proof of Lemma 2.4 in [8], for any fixed integer k_0 , we have

(10)
$$\int_{\mathbf{R}^N} \left| g(u_k, \underline{u}_{k_0}) - g(u_0, \underline{u}_{k_0}) \right| \phi \rho dx \to 0 \quad \text{as } k \to \infty.$$

From $\lambda_k > \lambda_{k+1}$, $k = 1, 2, \ldots$, it follows that

(11)
$$\underline{u}_k \leq \underline{u}_{k_0} \quad \text{for } k \geq k_0.$$

Since $|g(t_1,s) - g(t_2,s)| = |(t_1+s)^p - (t_2+s)^p|$ is nondecreasing in s > 0 for each fixed $t_1, t_2 > 0$, we obtain

$$(12) \quad |g(u_k,\underline{u}_k) - g(u_0,\underline{u}_k)| \le |g(u_k,\underline{u}_{k_0}) - g(u_0,\underline{u}_{k_0})| \quad \text{for } k \ge k_0.$$

Then, from (10) and (12), we deduce that

(13)
$$\int_{\mathbf{R}^N} |g(u_k, \underline{u}_k) - g(u_0, \underline{u}_k)| \, \phi \rho dx \to 0 \quad \text{as } k \to \infty.$$

By Lemma 2.1 in [8], for $s_0 > 0$, there exists a constant $C = C(s_0) > 0$ such that

$$g(t,s) \leq C(t+t^p)$$
 for $t \geq 0, \ 0 \leq s \leq s_0$.

Y. Naito

Put $s_0 = ||\underline{u}_{k_0}||_{L^{\infty}(\mathbf{R}^N)}$. From (11) we obtain

$$g(u_0, \underline{u}_k) \le C(u_0 + u_0^p) \quad \text{for } k \ge k_0.$$

Note that C is independent of k, and that $g(u_0, \underline{u}_k) \to u_0^p$ a.e. in \mathbf{R}^N as $k \to \infty$. Then, by Lebesgue convergence theorem, we have

(14)
$$\int_{\mathbf{R}^N} g(u_0, \underline{u}_k) \phi \rho dx \to \int_{\mathbf{R}^N} u_0^p \phi \rho dx \quad \text{as } k \to \infty.$$

Combining (13) and (14) we obtain (9).

Proof of Proposition 2. (i) Proposition 1 implies that $I_{\lambda_k}(u_k)$ is bounded for k = 1, 2, ... By the same argument as in the first step of Proof of Proposition 5.2 in [7], we deduce that $\{u_k\}$ is bounded in $H^1_{\rho}(\mathbf{R}^N)$. Thus there exist a subsequence, still denoted by $\{u_k\}$, and some $u_0 \in H^1_{\rho}(\mathbf{R}^N)$ such that, as $k \to \infty$,

Q.E.D.

$$u_k \rightarrow u_0$$
 weakly in $H^1_{\rho}(\mathbf{R}^N)$,
 $u_k \rightarrow u_0$ strongly in $L^2_{\rho}(\mathbf{R}^N)$,
 $u_k \rightarrow u_0$ a.e. in \mathbf{R}^N .

We note that u_k satisfies

(15)
$$\int_{\mathbf{R}^N} \left(\nabla u_k \cdot \nabla \phi - \frac{1}{p-1} u_k \phi \right) \rho dx - \int_{\mathbf{R}^N} g(u_k, \underline{u}_k) \phi \rho dx = 0$$

for any $\phi \in H^1_{\rho}(\mathbf{R}^N)$. Letting $k \to \infty$, by Lemma 2 we obtain

$$\int_{\mathbf{R}^N} \left(\nabla u_0 \cdot \nabla \phi - \frac{1}{p-1} u_0 \phi \right) \rho dx - \int_{\mathbf{R}^N} u_0^p \phi \rho dx = 0,$$

that is, $u_0 \in H^1_{\rho}(\mathbf{R}^N)$ is a nonnegative solution of (5) with $\underline{u}_{\lambda} \equiv 0$. By Proposition 4.3 in [3] we have $u_0 \equiv 0$. Thus (i) holds.

(ii) Assume to the contrary that $\liminf_{k\to\infty} ||u_k||_{L^{\infty}(\mathbf{R}^N)} < \infty$. Then there exist a subsequence, still denoted by $\{u_k\}$, and a constant M > 0 such that $||u_k||_{L^{\infty}(\mathbf{R}^N)} \leq M$ for $k = 1, 2, \ldots$. Then it follows that

$$\int_{\mathbf{R}^N} u_k^{p+1} \rho dx \le M^{p-1} \int_{\mathbf{R}^N} u_k^2 \rho dx.$$

Since $||u_k||_{L^2_{\rho}} \to 0$ as $k \to \infty$ by (i) of this proposition, we obtain

(16)
$$\int_{\mathbf{R}^N} u_k^{p+1} \rho dx \to 0 \quad \text{as } k \to \infty$$

Put $c_k = I_{\lambda_k}(u_k)$. Then, by Proposition 1, we have

(17)
$$0 < c_k < \frac{1}{N} S^{N/2} \quad \text{and} \quad \liminf_{k \to \infty} c_k > 0.$$

Define h(t, s) and H(t, s), respectively, by

$$h(t,s) = g(t,s) - t^p$$
 and $H(t,s) = G(t,s) - \frac{1}{p+1}t^{p+1}$

Putting $\phi = u_k$ in (15) we obtain (18)

$$\int_{\mathbf{R}^N} \left(|\nabla u_k|^2 - \frac{1}{p-1} u_k^2 \right) \rho dx - \int_{\mathbf{R}^N} u_k^{p+1} \rho dx - \int_{\mathbf{R}^N} h(u_k, \underline{u}_k) u_k \rho dx = 0.$$

We remark here that $c_k = I_{\lambda_k}(u_k)$ can be written by

(19)
$$c_k = \frac{1}{2} \int_{\mathbf{R}^N} \left(|\nabla u_k|^2 - \frac{1}{p-1} u_k^2 \right) \rho dx$$
$$-\frac{1}{p+1} \int_{\mathbf{R}^N} u_k^{p+1} \rho dx - \int_{\mathbf{R}^N} H(u_k, \underline{u}_\lambda) \rho dx$$

Since $u_k \to 0$ strongly in $L^2_{\rho}(\mathbf{R}^N)$ as $k \to \infty$, we may assume that $0 \leq u_k \leq U$ a.e. in \mathbf{R}^N for some $U \in L^2_{\rho}(\mathbf{R}^N)$. Now, let $k \to \infty$ in (18) and (19), respectively. By applying Lemma 2.4 in [8] with $u_0 \equiv 0$, we have

$$\lim_{k \to \infty} \int_{\mathbf{R}^N} h(u_k, \underline{u}_k) u_k \rho dx = 0 \quad \text{and} \quad \lim_{k \to \infty} \int_{\mathbf{R}^N} H(u_k, \underline{u}_k) \rho dx = 0.$$

Then we deduce, respectively, that

$$\int_{\mathbf{R}^N} |\nabla u_k|^2 \rho dx - \int_{\mathbf{R}^N} u_k^{p+1} \rho dx = o(1) \quad \text{as } k \to \infty$$

and

$$\frac{1}{2} \int_{\mathbf{R}^N} |\nabla u_k|^2 \rho dx - \frac{1}{p+1} \int_{\mathbf{R}^N} u_k^{p+1} \rho dx = c_k + o(1) \quad \text{as } k \to \infty.$$

From (16) we obtain

$$\int_{\mathbf{R}^N} |\nabla u_k|^2 \rho dx \to 0 \quad \text{and} \quad c_k \to 0 \quad \text{as } k \to \infty.$$

This contradicts (17). Thus (ii) holds.

Q.E.D.

Y. Naito

Proof of Theorem 1. We observe that, for any sequence $\{u_{\lambda_k}\}$ with $\lambda_k \to 0$, there exists a subsequence satisfying the properties (i) and (ii) in Proposition 2. This implies that u_{λ} satisfies

 $u_{\lambda} \to 0$ a.e. in \mathbf{R}^N and $||u_{\lambda}||_{L^{\infty}(\mathbf{R}^N)} \to \infty$

as $\lambda \to 0$. Recall that $\|\underline{u}_{\lambda}\|_{L^{\infty}(\mathbf{R}^{N})} \to 0$ as $\lambda \to 0$, and that the second positive solution \overline{u}_{λ} given by $\overline{u}_{\lambda} = \underline{u}_{\lambda} + u_{\lambda}$. Thus we obtain (3) in Theorem 1. Q.E.D.

References

- T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z., 228 (1998), 83–120.
- [2] C. Dohmen and M. Hirose, Structure of positive radial solutions to the Haraux–Weissler equation, Nonlinear Anal., 33 (1998), 51–69.
- [3] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions for the heat equation, Nonlinear Anal., 11 (1987), 1103–1133.
- [4] V. A. Galaktionov and J. L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1–67.
- [5] H. Kozono and M. Yamazaki Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations, 19 (1994), 959–1014.
- [6] Y. Naito and T. Suzuki, Radial symmetry of self-similar solutions for semilinear heat equations, J. Differential Equations, 163 (2000), 407–428.
- Y. Naito, Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data, Math. Ann., **329** (2004), 161– 196.
- [8] Y. Naito, Self-similar solutions for a semilinear heat equation with critical Sobolev exponent, Indiana Univ. Math. J., 57 (2008), 1283–1315.
- [9] P. Souplet and F. B. Weissler, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 213–235.
- [10] E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux– Weissler equation, J. Differential Equations, 127 (1996), 561–570.

Department of Mathematics Ehime University Matsuyama 790-8577 Japan E-mail address: ynaito@ehime-u.ac.jp