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A remark on self-similar solutions for a semilinear 
heat equation with critical Sobolev exponent 

Yuki Naito 

Abstract. 

The Cauchy problem for a semilinear heat equation 

Wt = !l.w + wP in RN x (0, oo) 

with singular initial data w(x, 0) =>.a (x/lxl) lxl-2/(p-l) for x ERN\ 
{0} is studied, where N > 2, p = (N +2)/(N -2), >. > 0 is a parameter, 
and a 2 0, a "¢ 0. We investigate the asymptotic properties of the 
profile of positive self-similar solutions to the problem as >. --+ 0 when 
N = 3,4,5. 

§1. Introduction 

We consider the Cauchy problem for a semilinear heat equation with 
singular initial data: 

(1) { 
Wt = tlw +wP 

w(x, 0) = A.a (x/lxl) lxl-2/(p-1) 

in RN x (0, oo), 

in RN \ {0}, 

where N > 2, p = (N + 2)/(N- 2), a : sN-1 -+ R, and A. > 0 is a 
parameter. We assume that a E v>o(sN-1) and a 2: 0, a ¢. 0. The 
equation in (1) is invariant under the similarity transformation 

w(x, t) 1-+ wl-'(x, t) = t-L2/(p- 1)w(t-Lx, t-L2 t) for allt-L > 0. 

A solution w is said to be self-similar, when w(x, t) = wl-'(x, t) for all 
1-l > 0. It can be easily checked that w is a forward self-similar solution 
to (1) if and only if w has the form 

w(x, t) = r 1 /(p-l)u(x/Vt) for X ERN, t > 0, 
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where u is a solution of the problem 

{ 
l:>.u+~x-\lu+-1 -u+uP=O inRN, 

(2) 2 p- 1 
limr-+oo r2 f(p-l)u(rw) = Aa(w) for a.e. wE 5N-l. 

(More precisely, see [7, Lemma B.1 in Appendix B]. 
First we recall the results in [7] and [8] for the multiple existence of 

positive solutions of (2). We call a positive minimal solution Yc.\ of (2), 
if Yc.\ satisfies Yc.\ ::::; u.\ for any positive solution u.\ of (2). 

Theorem A ([7, Theorem 1]). There exists a constant A* > 0 such 
that, 

(i) for 0 <A< A*, the problem (2) has a positive minimal solution 
Yc.\ E C2 (R N); Yc.\ is increase with respect to A and satisfies 
IIYc.\IIL=(RN) = O(A) as A-+ 0. 

(ii) for A > A*, there are no positive solutions u E C2 (R N) of (2). 

Theorem B ([8, Theorem 1.2]). Let N = 3, 4, 5. Then, for 0 < 
A < A*, the problem (2) has a positive solution U.\ E C2 (R N) satisfying 
U.\ > Yc.\· 

Remark. (i) In the case a = 1 in (2), the multiple existence of 
positive solution of (2) was studied in [9] by employing ODE shooting 
argument. 

(ii)For the existence of self-similar solutions of (1), we refer to [1], 
[4], [5]. 

In this note we consider the asymptotic properties of the second 
positive solution u.\ as A -+ 0. 

Theorem 1. Let N = 3, 4, 5, and let U.\ be the positive solution 
obtained in Theorem B for 0 < A < A*. Then 

(3) u.\-+ 0 a.e. in RN and llu.\IIL=(RN)-+ oo as A-+ 0. 

Remark. (i) When N ~ 6 and a= 1 in (2), it was shown by [8, 
Theorem 1.3] that (2) has no positive radially symmetric solutions u 
with u oj. Yc.\ for 0 <A< A* with some A* E (0, A*). 

(ii) In the case (N +2)/N < p < (N +2)/(N -2) it was shown by [7, 
Theorem 2] that the problem (2) has at least two positive solutions u.\ 
and Yc.\ with U.\ > Yc.\ for 0 < A < A*, and fi.\ -+ u0 as A -+ 0, where u0 is 
the unique positive solution of (2) with A = 0. It was shown by [6] that 
uo ( x) is radially symmetric about the origin, and has an exponential 
decay at lxl = oo. The uniqueness of positive solution u0 was shown by 
[10] and [2]. 
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In order to investigate properties of the second positive solution to 
the problem (2), we introduce the following problem 

(4) 

for 0 < A < A*. We see that, if U.>.. is a positive solution of ( 4), then 
U.>.. = Y<.>.. + U.>.. is the second solution of (2). In the proof of Theorem 
1, we will investigate some properties of the solution U>. obtained by 
the variational argument. For more precise asymptotic properties of 
solutions we will study in the forthcoming paper. 

§2. Proof of Theorem 1 

We first introduce some notations. Set p(x) = elxl 2
/ 4 . We define 

L~(RN) = { u E Lq(RN): LN uqpdx < oo} for 1:::; q < oo, 

and 

H~(RN) = { u E H 1 (RN): LN (IY'ul 2 + u2 )pdx < oo}. 

The norms in L~(RN) and H~(RN), respectively, are defined by 

lluiiLg = (LN uqpdx) l/q and lluiiHl = IIY'ull£2 + llull£2 · p p p 

We consider the problem 

{ 
~u+~x-'Vu+-1 -u+g(u,y,_.>..)=O inRN, 

(5) 2 p- 1 
u E H~(RN) and u > 0 in RN, 

where g( t, s) = ( t + s )P - sP. Define the corresponding variational func­
tional of (5) by 

I.>..(u) = ~ { (1Y'ul2 - - 1-u2 ) pdx- { G(u,y,_.>..)pdx 
2 }RN p-1 }RN 

with u E H~(RN), where 

1 1 
G(t, s) = --(t + s)P+l- --sp+l- sPt. 

p+1 p+1 
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We recall the existence of positive solution to the problem (5). 

Proposition 1. Let N = 3, 4, 5. For .A E (0, .A*) there exists a 
positive solution U>. E H~(RN) n C2 (RN) of (5) satisfying 

1 N/2 (6) 0 < h(u>.) < NSP and liminf h..(u>.) > 0, 
>---+0 

where 

f IV'ul2pdx 
8 - inf ___ .::_1"-"FR'-N------;-;;-;--~;-;-
p- uEHl(RN)\{0} (1 ) (N-2)/N. 

p lui2N/(N-2)pdx 
RN 

Since the existence of positive solution U.>, E H~(RN) n C 2 (RN) of 
(5) was shown by [8] (see the proof of Proposition 3.2 in [8]), it suffices 
to show that U.>, satisfies (6) for the proof of Proposition 1. We show the 
following lemma. 

Lemma 1. Let .A E (0, .A*). Then there exist some constants 8 = 
8(.A) > 0 and TJ = ry(.A) > 0 such that 

(7) I>.(u) 2: ry(.A) > 0 

for all u E H~(RN) with IIV'uiiL~ = 8(.A). Furthermore, ry(.A) satisfies 
lim inf.>.--+0 ry(.A) > 0. 

Proof. We note that the conclusion of Lemma 5.5 in [7] still holds 
when p = (N + 2)/(N- 2). Then, for each .A E (0, .A*), there exist 
constants ry(.A) and 8(.A) such that (7) holds for all u E H~(RN) with 

IIV'ull£2 = o(.A). 
p 

Let .A0 E (0, .A*) be fixed, and let u E H~(RN). Now we will show 
that 

(8) h(u) 2: h 0 (u) for .A E (O,.Ao]. 

We see that G(t, s) is increasing ins> 0 for each fixed t > 0. Since 1h is 
increasing in .A> 0, G(udh) is increasing in .A> 0 for each u E H~(RN). 
Thus (8) holds. Now, put ry(.A) = ry(.Ao) and 8(.A) = 8(.Ao) for .A E (0, .Ao]. 
Then (7) holds for .A E (0, .A0], and we obtain liminf.>.--+O ry(.A) = ry(.A0) > 
0. Q.E.D. 

Proof of Proposition 1. Following the proof of Proposition 3.2 in 
[8], there exists a weak solution U>. E H~(RN) of (5), and U.>, satisfies 

1 
0 < ry(.A) ~ h(u>.) < Ns:/2 for each .A E (0, .A*). 
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By Lemma 1 we have lim inf>---+O I.>,( u>,) 2:: lim inh--+o ry(>.) > 0. Thus (6) 
holds. Q.E.D. 

For >. E (0, .\*), let U>, be a solution of (5) obtained in Proposition 
1, and let { >.k} be a sequence such that >.k > >.k+ 1 and >.k --+ 0 as 
k --+ oo. For simplicity, one sets Uk = U>,k and y,_k = Y.>,k. We will show 
the following 

Proposition 2. There exists a subsequence, still denoted by { uk}, 
such that, as k --+ oo, 

(i) Uk --' 0 weakly in H~(RN), uk --+ 0 strongly in L~(RN), and 

Uk--+ 0 a.e. in RN; 

(ii) llukiiLoo(RN) --+ 00. 

To prove Proposition 2, we show the following lemma. 

Lemma 2. Assume that Uk--' u 0 weakly in H~(RN) ask--+ oo for 

some u 0 E H~(RN). Then, for any¢ E H~(RN), 

Proof. By the argument in the proof of Lemma 2.4 in [8], for any 
fixed integer k0 , we have 

From >.k > >.k+ 1, k = 1, 2, ... , it follows that 

(11) 

Since lg(t1, s)- g(t2, s )I = l(t1 + s)P- (t2 + s )PI is nondecreasing ins > 0 
for each fixed h, t2 > 0, we obtain 

Then, from (10) and (12), we deduce that 

By Lemma 2.1 in [8], for s0 > 0, there exists a constant C = C(s0 ) > 0 
such that 

g(t,s):::; C(t+tP) fort 2::0, 0:::; s:::; s0 . 
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Put so= ll1!ka11L=(RN)· From (11) we obtain 

g( uo, 1!k) :::; C( uo + u{;) for k ?: ko. 

Note that Cis independent of k, and that g(uo,1!k)-+ u{; a.e. in RN as 
k-+ oo. Then, by Lebesgue convergence theorem, we have 

Combining (13) and (14) we obtain (9). Q.E.D. 

Proof of Proposition 2. (i) Proposition 1 implies that l;.,k ( uk) is 
bounded for k = 1, 2, .... By the same argument as in the first step 
of Proof of Proposition 5.2 in [7], we deduce that { uk} is bounded in 
H~(RN). Thus there exist a subsequence, still denoted by {uk}, and 
some uo E H~ (R N) such that, as k -+ oo, 

uk----' uo weakly in H~(RN), 

uk-+ uo strongly in L~(RN), 

Uk-+ uo a.e. in RN. 

We note that Uk satisfies 

(15) 

for any¢ E H~(RN). Letting k-+ oo, by Lemma 2 we obtain 

r (vuo. \1¢- - 1-uo¢) pdx- r u{;¢pdx = 0, 
}RN p-1 }RN 

that is, u0 E H~(RN) is a nonnegative solution of (5) with 1!>. = 0. By 
Proposition 4.3 in [3] we have u0 = 0. Thus (i) holds. 

(ii) Assume to the contrary that liminfk-+= llukiiL=(RN) < oo. 
Then there exist a subsequence, still denoted by { uk}, and a constant 
M > 0 such that llukiiL=(RN) :::; M for k = 1, 2, .... Then it follows 
that 

{ u~+l pdx :::; MP- 1 { u~pdx. 
}RN }RN 

Since llukll£2 -+ 0 ask-+ oo by (i) of this proposition, we obtain 
p 

(16) 
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Put Ck = h.k(uk)· Then, by Proposition 1, we have 

(17) 
1 

0 < ck < -sN/2 and liminf ck > 0. 
N k-+oo 

Define h(t, s) and H(t, s), respectively, by 

1 
h(t, s) = g(t, s)- tP and H(t, s) = G(t, s)- p + 1 tP+1 • 

Putting ¢ = Uk in (15) we obtain 
(18) 

r (1\7ukl 2 - -1-u~) pdx- r u'fo+l pdx- r h(Uk,'ll!.k)ukpdx = 0. 
}RN p-1 }RN }RN 

We remark here that Ck = h,k ( Uk) can be written by 

(19) 

Since Uk --+ 0 strongly in L~(RN) as k --+ oo, we may assume that 
0 ::::; uk ::::; U a.e. in RN for some U E L~(RN). Now, let k--+ oo in (18) 
and (19), respectively. By applying Lemma 2.4 in [8] with u0 = 0, we 
have 

Then we deduce, respectively, that 

and 

From (16) we obtain 

r l\i'uk 12 pdx --+ 0 and Ck --+ 0 as k --+ 00. 
JRN 

This contradicts (17). Thus (ii) holds. Q.E.D. 
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Proof of Theorem 1. We observe that, for any sequence { U>.k} with 
Ak -+ 0, there exists a subsequence satisfying the properties (i) and (ii) 
in Proposition 2. This implies that U>. satisfies 

U>. -+ 0 a.e. in RN and llu>-IIL=(RN) -+ oo 

as)..-+ 0. Recall that ll1hiiL=(RN) -+ 0 as)..-+ 0, and that the second 
positive solution U>. given by U>. Y.>. + U>.. Thus we obtain (3) in 
Theorem 1. Q.E.D. 
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