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Allen—Cahn equation as a long-time modulation to a
reaction-diffusion system

Thomas Bellsky

Abstract.

We examine a two-component reaction-diffusion system on the real
axis with quadratic nonlinearity. Using semigroup estimates, we obtain
a solution to our nonlinear system for long-time. For appropriate initial
data, we show that a slowly-varying, scaled solution of the Allen—Cahn
equation will estimate the solution of our nonlinear system for long-
time. We additionally extend this work to R%.

§1. Introduction

Modulation equations approximate the dynamics of an original sys-
tem in an attracting set. Modulation equations are essential in under-
standing complicated systems near the threshold of instability [2].

This paper expands results of [3], sharpening an assumption on the
nonlinearity, and producing sharper stability estimates. These results
are also in a more general function space.

We study the following reaction-diffusion system:

(1.1a) Ouy = €uy + 02u; + g(u),
(1.1b) Owuy = —vuy + 02uy + h(u),

where 0 < e < 1, v >0, > 0, z € R, u(z,t) = (uy(z, ), u2(z, 1)) €
R?, and the nonlinearities h(u) and g(u) satisfy,

(12 ) = (0 22 ) (52 52 ) Jus ol

C21 €22

for C12, C21, C22, dll; d12, dgl, and d22 constant.
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§2. Semigroup estimates

First, we analyze only the linear components of the system (1.1).
For the u; component, we solve 8;¢p = L1¢ = €2¢ + 02¢. A solution
to this is ¢ = S1(t)$(0), where S;(t) = e“1t. For the uz component, we
solve 8;¢ = Lod = —v¢ + 02¢, where ¢ = Sy(t)#(0), for So(t) = eL2t.
We have the following semigroup estimates.

Proposition 2.1. There ezists C > 0 independent of € and t > 0
such that for any ¢ € LY,

(21) 11(8)llm <Ce™ (£74/% +7%/4) |||,
(2.2) 12(8)gllm <Ce™" (£71/4 +74) gl 1.
Also for any ¢ € HY,
(2.3) 1S1(O)¢llzr <e*lIg]| 2,
(2.4) 1S2(t) bl <e™"*[| || a2
Sketch of Proof. For (2.1) and (2.2), L? to L' estimates are used.
The proofs of (2.3) and (2.4) are standard. Q.E.D.

§3. Reduction of long-time dynamics

If v = (v, )T solves (1.1) absent the nonlinear terms, we can apply
(2.3) and (2.4) to v for t € [0,Ty/€?] for fixed Tp = 0(1). If the initial
data is O(e®) in H! norm, then at t = Ty/e?, v has the representation:

3.1) v(z, To/e®) = (A(z), B(x))" ,

where ||A(z)||z: = O(e*) and ||B(z)||g: = O(e*e=C/<"). This linear
reduction is close to the correct representation for a solution to (1.1).
But now the us component is forced by the nonlinearity, so it is not
exponentially decaying. We formalize this with the following theorem:

Theorem 3.1. Fiz Cy > 0, then there exists Ty, Cy > Cy, and
€0 > 0 such that for all € € (0, €) the following holds: let ||uo||gr < Coe
where ug = (uy(z,0), uz(z,0))”, then the solution u of (1.1) at a time
t =Tp/€* can be written as

(3.2) u(z, To/?) = (eA(z), e B(z)) ",

where ||A||g < Cs and [|B|| g < Cy.
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Proof. From (1.2) we observe for u small,

(3-3) lg(w)] <O (luruz| + [u3]) + O(llul®),
(3-4) |h(w)] <Cllull® + O(|[ull).

For (1.1a), we solve for u; by variation of constants and apply the H'!
norm to u(z,t) and the semigroup estimates (2.1) and (2.3),

(2 D) Larr <113 (8o (O)] L + | / S (t — )g(u(s))ds] 1
(3.5) <Cec™ 4 C / n(t — 9)llg(u(s))l | ds,
0

where we define ¢, (t) = e (t71/4 +t~3/4) . Substituting (3.3) above,
we estimate H|u1uz| + |u2|2|| ;1 with Holder’s and Young’s Inequality
and ||[|ul|?|| ., with the Sobolev Embedding Theorem,

(3.6) [lluruzl + fual]| o <CMeallzes + llullf),
(3.7) [[1alP]] ;. <Ollullzs < Cllullz.

Applying the above to (3.5), we have

(38) llur(,0)llm < Cee™ +C / Ul = ) (fua(3)I 1377 + M(7)°)ds,

where we define M;(7) = sup||u1(t)||g1, Ma(7) = sup||ua(t)||m:, and
t<T t<r

M = My + M,, for 7 < To/e—é. We solve for us in (1‘1_&) by variation of
constants and apply the H' norm to uz(z, t) and the semigroup estimates
(2.2) and (2.4),

Sa(t /Sgt—sh(u s))ds

ua(, &)z <\

H1

<Cee™ + / alt = )l Ib(u(s))l s
0

(3.9) <C(ee ™" + M(7)?),

where 95(t) = e7* (t1/4 +¢t73/4). Of note, we omit an M(7)* from

(3.9) since it does not have a leading order contribution. This M(7)3

term would result in a M(7)%? in the subsequent equation (3.10) be-
low, but we again omit this term since it does not have a leading order
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contribution. We substitute (3.9) into (3.8) and apply the sup:
t<r

t
M, <Csup <ee€2t +C / P (t — s)(¥/2e™35/% & M(T)?’)ds)
0

t<r

<C (e + 63/2/ (T — 3)6_3”5/2ds>
0

(3.10)  <C(e+e32M3),

since [ 1(7 — s)ds < Ce~®/2. Applying the sup to (3.9) we have:

t<t
(3.11) My < Cle+ M?).

Summing (3.11) and (3.10) implies M < Cj(e + M2 + ¢~3/2M3), where
Cs > Cy. We take the corresponding equality and define

(3.12) w(M) = Cile+ M2+ e32M3) — M.

At leading order, w(M) has two positive roots at Cye and €3/4/,/C5.
Depending on the size of the initial data, either M < Cye or M(0) >
4/ /C ¢ for long-time. From an assumption of Theorem 3.1, M(0) <
Coe, so M < Cye. Applying this to (3.9), we have

(3.13) [ug(z, To/€*)||g: < Cye?.

Using the above estimate in (3.10), it follows that

(3.14) l[ui(z, To/€®)| |z < Cre.

To finish the proof, we define

(3.15) eA(z) =uy(z, To/€?),
(3.16) €2 B(x) =ug(z, To/e?).

Q.E.D.
Remark 3.1. We can extend Theorem 3.1 to the case when the first

component of the nonlinearity g(u) is controlled by C(|ujuz| + |uz|?) +
O(|[ull?), for B > 5/2.
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§4. Approximation by the Allen—Cahn equation

Motivated by Theorem 3.1, for A, B € R, we make the ansatz v =
(eA(X,T),#B(X, T))T, for X = ex and T = €%t. Formally, plugging
this into (1.1),

(4.1) OrA = 0% A+ A+ e 3g((eA, €2B)),
(4.2) 20rB = —vB+ €20%B + ¢ %h((eA,2B)).

Using the information about g and h from (1.2), we have:

(4.3) 9((eA, €2B)) =(ca1 + c12)EAB + 11163 A% 4 O(e*),
(4.4) h((eA, €2B)) =d116 A% + O(€%),

where c;11 is the first entry in the 3-tensor of the cubic part of g. Plug-
ging these into (4.1) and (4.2), at leading order we have,

(4.5) orA =6§<A + A+ (co1 +c12)AB + 0111A3,
(4.6) 0=—vB+dy A%

With the second line, we express B in terms of A, where B = d; A2 /v.
Substituting this into the system above, we have the Allen—Cahn system:

(4.7) OrA=0%A+ A+~A43

where v = dy1(co1 + c12)/v + c111. To begin a rigorous reduction, we
define the ansatz to our nonlinear system (1.1) as

(18) e (o) = (S ) ).

€2 B(ex, €2t)

where A solves (4.7), Als—o = Ao is the initial data, and B = dy; A?/v.
The function ®,. maps the initial data forward, both scaling space and

time. We define the following residuals for v = (v1, vz)T where v1, vy €
H*((0,To); L*(R)) N L*((0, To); H*(R)):

(4.9) Res1(v) = —041 + €2vy + 021 + g(v1,v2),
(4.10) Resy(v) = —04ws — vvg + 02vs + h(v1, v2).

The next proposition details bounds on these residuals for our ansatz.
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Proposition 4.1. Define ®.[Ag] by (4.8) where A solves (4.7) and

sup ||A(T)||g2 < 00, then we have the following estimates:
T€[0,To]

(4.11) sup ||Res1(Pe[Ao))||lg: < Ce,
t€[0,To/€?]

(4.12) sup ||Resy(®c[Ao])||ar < Céd.
t€[0,To/e?]

The above follows from A solving (4.7), B = d1;A%/v, and using
the given expansions of g and h above.
The following theorem is our main result.

Theorem 4.1. For all K,d > 0, there exists Cyi,¢€9, and Ty > 0
such that for all € € (0,€0), the following holds: let A be a solution of

Allen—Cahn with sup ||A(t)||g2 < K, and ug = (u1(0),u2(0))" € H?
t€[0,To]
an initial condition for (1.1) with

(4.13) [|u1(0) — €A(ex,0)|| g1 <de?,
(4.14) [uz(0) — € B(ex, 0)|| g <de®,

then there ezists a unique solution u of (1.1) with uli=0 = uo such that

(4.15) sup ||ui(t) — eA(ex, €t)|| g <Cié?,
t€[0,To /2] }
(4.16) sup |lua(t) — €2B(ex, €2t)|| g <C1e3.
t€[0,To/€?)

Proof. We define the error of ®.[A] as a solution of (1.1) as R =
(R, R2)T = (72 (w1 — €Alex, €*t)) €73 (ug — ezB(eac,e2t)))T. Plug-
ging these errors into (1.1), we have the following system,

(4.17) R, = €Ry+02R; + Ni(u),
(418) OtRy = —vRo+ 8§R2 + Ny (U)

Lemma 4.1. The following Hy bounds on N1 and Ng hold:

(4.19) IN1 (W)l <CE* (| Rl + €| Rl ) + C€?,
(4.20) IN2(w)l| 2 <C(I|Rullg + el Rallm + el |RI[Fn) + C.
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Proof. We now sketch some of the proof. We substitute for Ny (u)
using (4.17) and the form of R above, so

N @l =115 (402 = 0) (e4) +g (R + A, Ry +€B)) |l
= 15 (Res:(®(4)) + G () 1

(121) < Cnen+ 5IC(0)

where we define

(422)  G(9) = g(*Ry + A, 'Ry + 2B) — g(eA, 2B).

Using our knowledge about g to thoroughly analyze the differences con-
tained in G, we arrive at the following estimate:

NG ()| e :||g(62R1 +eA, Ry + €’B) — g(eA, ezB)||H1
(4.23) <Ce*(||Rullm + | Rall g + (|| Rallmr + || Rzl 11)?),

from which we conclude the first estimate in this lemma. Here, we use
the fact that ||[W2||gn < ||W||%., since W € L™ for any W € H',
which follows from the Sobolev Embedding Theorem. The estimate on
N5 follows similarly, by examining the difference of two h terms. Q.E.D.

For (4.17) and (4.18) we solve by variation of constants,
t
@20 R =S0RO)+ [ Sit- M)
0
¢
(4.25) Ry (t) =S2(t)R2(0) —l—/ Sa(t — s)Na(u(s))ds.
0
We define M; (1) = Sl<1p||R1(t)||H1, My(7) = sngRg(t)HHl, and M(7) =
t<t t<rt
M, () + My (7) for 7 < Tp/€®. We apply sup to (4.24) and (4.25),
t<r
(4.26) M (1) <Ce™ + CToe™ (My(r) + Ma(7) + eM(7)?),
(4.27) M (1) <C + C(Miy(7) + eMy(7) + eM(7)? + O).
Picking €y small enough such that Ce < 1/2, it follows that

(4.28) NEy(r) < C +C (Wi () + (M (7) + Mo (7))?)
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Plugging the above bound into (4.26) and picking Tp > 0 small enough
so that CTpeT® < 1/2, we arrive at the following estimate:

(4.29) My (1) < C + C(e(M; (1) + My(1))?).
Substituting (4.29) into (4.28), we have
(4.30) My(1) < C 4 C(e(My(7) + My(7))?).

Finally, we sum (4.29) and (4.30), so M< Cl(l+eM2), where Cy > 2d.
With this inequality, we solve the corresponding equality,

(4.31) w(M) = Cy(1+eM?) — M.

At leading order, the roots are M = C1 and M=1/ (Cre). Similar to
Theorem 3.1, initial data bounds imply M (0) < 2d,so M < C;. Q.E.D.

85. Higher spatial dimensions

We must change spaces for our results to hold for z € R%. We
need the new space to control L, so we require kp > d. The obvious
space is the Sobolev space H*, with k > d/2. We want p = 2 to main-
tain Plancherel’s Theorem and other befitting properties of the Fourier
transform in L2. In H*, for k > 2/d, we still have L2 controlled for
q > p, which is needed in the proof of Theorem 3.1.

We require new L! semigroup estimates; otherwise the proof of The-
orem 3.1 will fail. Short and long-time estimates are necessary to avoid
integrating near 0. With the next estimate replacing (2.1), the results
of this paper will follow for 2 € R%:

€%t

6D ISl < C gy (il + 19l

§6. Conclusion

This work demonstrates new results showing that a scaled solution
of the Allen—Cahn system accurately approximates a solution to the
nonlinear reaction-diffusion system (1.1) for long-time. We build on
previous results by providing a sharper representation of the nonlinear
term g, which leads to sharper estimates. For Theorem 4.1, we are
sharper to a higher order of € in the assumption and result with respect
to the second component. We also work in a more general function
space.
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