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Allen-Cahn equation as a long-time modulation to a 
reaction-diffusion system 

Thomas Bellsky 

Abstract. 

We examine a two-component reaction-diffusion system on the real 
axis with quadratic nonlinearity. Using semigroup estimates, we obtain 
a solution to our nonlinear system for long-time. For appropriate initial 
data, we show that a slowly-varying, scaled solution of the Allen-Cahn 
equation will estimate the solution of our nonlinear system for long­
time. We additionally extend this work to JRd. 

§1. Introduction 

Modulation equations approximate the dynamics of an original sys­
tem in an attracting set. Modulation equations are essential in under­
standing complicated systems near the threshold of instability [2]. 

This paper expands results of [3], sharpening an assumption on the 
nonlinearity, and producing sharper stability estimates. These results 
are also in a more general function space. 

We study the following reaction-diffusion system: 

(l.la) 

(l.lb) 

E2U1 + o;ul + g(u), 

-vu2 + a;u2 + h(u), 

where 0 < E «: 1, v > 0, t ~ 0, x E JR., u(x, t) = (u1(x, t), u2(x, t)f E 

JR.2 , and the nonlinearities h(u) and g(u) satisfy, 

(1.2) (g(u), h(u)) = uT ( ( c~1 ~~~ ) , ( ~~~ ~~~ ) ) u + O(lluW), 
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§2. Semigroup estimates 

First, we analyze only the linear components of the system (1.1). 
For the U1 component, we solve at¢ = .c1 ¢ = E2¢ +a;¢. A solution 
to this is¢= S1(t)¢(0), where S1(t) = e.c1t. For the u2 component, we 
solve at¢= .C2¢ = -v¢ +a;¢, where¢= S2(t)¢(0), for S2(t) = e.c2t. 
We have the following semigroup estimates. 

Proposition 2.1. There exists C > 0 independent of E and t > 0 
such that for any ¢ E £ 1 , 

(2.1) IIS1(t)¢11Hl 5.Cee2t (c1/4 +r3/4) ll¢11u, 

(2.2) IIS2(t)¢11Hl '5:_Ce-vt (r1/4 +C3/4) ll¢llu· 

Also for any ¢ E H 1 , 

(2.3) 

(2.4) 

JJ81(t)¢JIH1 '5:_ee2tllc/JIIH1, 

JJS2(t)¢JIH1 '5:_e-vtii¢11Hl. 

Sketch of Proof. For (2.1) and (2.2), £ 2 to £ 1 estimates are used. 
The proofs of (2.3) and (2.4) are standard. Q.E.D. 

§3. Reduction of long-time dynamics 

If v = ( v1, v2)T solves (1.1) absent the nonlinear terms, we can apply 
(2.3) and (2.4) to v fortE [0, T0 /E2] for fixed T0 = 0(1). If the initial 
data is 0 ( E"') in H 1 norm, then at t = T0 j E2 , v has the representation: 

(3.1) v(x, To/E2 ) = (A(x), B(x)f, 

where IJA(x)JIHl = O(E"') and IJB(x)Jiw = O(E"'e-Cfe\ This linear 
reduction is close to the correct representation for a solution to (1.1). 
But now the u2 component is forced by the nonlinearity, so it is not 
exponentially decaying. We formalize this with the following theorem: 

Theorem 3.1. Fix Co > 0, then there exists T0 , Ct > C0 , and 
Eo> 0 such that for all E E (0, Eo) the following holds: let JluoiiHl '5:. CoE 
where u0 = (u 1 (x,O),u2(x,o)f, then the solution u of (1.1) at a time 
t = T0 /E2 can be written as 

(3.2) 



Allen-Cahn equation as a long-time modulation 361 

Proof. From (1.2) we observe for u small, 

(3.3) lg(u)l ~C (lu1u2l + luW + O(lluW), 

(3.4) lh(u)l ~CIIull 2 + O(llull3 ). 

For (l.la), we solve for u1 by variation of constants and apply the H 1 
norm to u1 (x, t) and the semigroup estimates (2.1) and (2.3), 

llu1(x, t)IIHl ~IISl(t)ul(O)IIHl +II lot S1(t- s)g(u(s))dsiiHl 

(3.5) ~CEe€2t +Clot 'l/JI(t- s)llg(u(s))lluds, 

where we define '1/JI(t) = e€2 t (r114 +r314 ). Substituting (3.3) above, 
we estimate lllu1 u2l + lu2l 2ll £1 with Holder's and Young's Inequality 
and ll11ull 3 llu with the Sobolev Embedding Theorem, 

(3.6) lllu1u2l + lu2l 2llu ~C(IIu2ll~; + lluii1:P), 

(3.7) lllluWIIu ~CIIullh ~ Cllull1-1· 

Applying the above to (3.5), we have 

(3.8) llu1(x, t)IIHl ~ CEe€2 t +Clot 'l/J1(t- s)(llu2(s)ll~; + M(r) 3 )ds, 

where we define M1(r) = supllu1(t)IIH1, M2(r) = supllu2(t)11Hl, and 
t~T t~T 

M = M1 + M2, forT~ T0 jE2 • We solve for u2 in (l.la) by variation of 
constants and apply the H 1 norm to u2 (x, t) and the semigroup estimates 
(2.2) and (2.4), 

llu2(x,t)IIH1 ~~~S2(t)u2(0)+ lot S2(t-s)h(u(s))dsiiH
1 

~CEe-vt +lot 'l/J2(t- s)llh(u(s))lluds 

(3.9) ~C(Ee-vt + M(r)2), 

where 'lj;2(t) = c"t (r1/4 + r 314 ). Of note, we omit an M(r)3 from 
(3.9) since it does not have a leading order contribution. This M(r)3 

term would result in a M( r)912 in the subsequent equation (3.10) be­
low, but we again omit this term since it does not have a leading order 
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contribution. We substitute (3.9) into (3.8) and apply the sup: 
t~T 

M 1 :S:Csup (EeE2 t + C t 1/J!(t- s)(E312e-3vs/Z + M(T) 3)ds) 
t~T Jo 

:::;C ( E + E3/21T '1/h ( T- s )e-3vs/2ds) 

(3.10) :::;C(E + E-312 M 3), 

since J; 'lj;1 ( T - s )ds :::; Cc312. Applying the sup to (3.9) we have: 
t~T 

(3.11) 

Summing (3.11) and (3.10) implies M:::; Ct(E+M2 +c312M 3 ), where 
Ct > C0 . We take the corresponding equality and define 

At leading order, w(M) has two positive roots at CtE and E3/ 4 I y'Cf. 
Depending on the size of the initial data, either M < CJE or M(O) > 
E3/4 I y'Cf for long-time. From an assumption of Theorem 3.1, M(O) :::; 
CoE, so M < CtE· Applying this to (3.9), we have 

(3.13) 

Using the above estimate in (3.10), it follows that 

(3.14) 

To finish the proof, we define 

(3.15) 

(3.16) 

EA(x) =u1 (x, ToiE2), 

E2 B(x) =uz(x, ToiE2). 

Q.E.D. 

Remark 3.1. We can extend Theorem 3.1 to the case when the first 
component of the nonlinearity g(u) is controlled by C(lu1 u21 + lu212) + 
O(lluii 13 ), for (3 2: 512. 
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§4. Approximation by the Allen-Cahn equation 

Motivated by Theorem 3.1, for A, BE JR, we make the ansatz u = 

(EA(X,T),E2B(X,T))r, for X= EX and T = E2t. Formally, plugging 
this into (1.1), 

(4.1) orA= alA+ A+ c 3g((EA, E2 B)), 

(4.2) E28rB = -vB + E2alB + c 2h((EA, E2 B)). 

Using the information about g and h from (1.2), we have: 

(4.3) g((EA, E2 B)) =(c2I + ci2)E3 AB + cmE3 A3 + 0(E4), 

(4.4) h((EA,E2 B)) =d11E2 A2 + 0(E3 ), 

where cui is the first entry in the 3-tensor of the cubic part of g. Plug­
ging these into (4.1) and (4.2), at leading order we have, 

(4.5) orA =alA+ A+ (c2I + CI2)AB + cmA3 , 

(4.6) 0 =- vB + duA2. 

With the second line, we express Bin terms of A, where B = d11A2 jv. 
Substituting this into the system above, we have the Allen-Cahn system: 

(4.7) 

where"( = du(c2I + ci2)/v +cui· To begin a rigorous reduction, we 
define the ansatz to our nonlinear system (1.1) as 

(4.8) 

where A solves (4.7), Alt=O = A0 is the initial data, and B = duA2 jv. 
The function <I>. maps the initial data forward, both scaling space and 
time. We define the following residuals for v = (vi,v2)r where VI,v2 E 
HI ((0, T0 ); L2(JR)) n £ 2((0, T0 ); H 2(JR)): 

(4.9) Resi(v) = -OtVI + E2VI + a~VI + g(vi, v2), 
(4.10) Res2(v) = -OtV2- vv2 + 8~v2 + h(vb v2). 

The next proposition details bounds on these residuals for our ansatz. 
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Proposition 4.1. Define <I?E[Ao] by (4.8) where A solves (4.7) and 
sup IIA(T)IIH2 < oo, then we have the following estimates: 

TE[O,To] 

(4.11) 

(4.12) 

sup IIResl(<I?E[Ao])IIHl S CE4 , 
tE[O,To/E 2 ] 

sup 11Res2(<1?E[Ao])IIH1 S CE3 . 
tE[O,T0/E2 ] 

The above follows from A solving (4.7), B = d11 A2 jv, and using 
the given expansions of g and h above. 

The following theorem is our main result. 

Theorem 4.1. For all K, d > 0, there exists cl' Eo, and To > 0 
such that for all E E (0, Eo), the following holds: let A be a solution of 

Allen-Cahn with sup IIA(t)IIH2 S K, and uo = (u1(0),u2(0)f E H 1 

tE[O,To] 

an initial condition for ( 1.1) with 

( 4.13) 

( 4.14) 

llu1(0)- EA(Ex, O)IIHl SdE2, 

llu2(0)-E2B(Ex,O)IIH1 SdE3 , 

then there exists a unique solution u of (1.1) with ult=O = u0 such that 

(4.15) sup llu1(t)- EA(Ex, E2t)11Ht SC1E2, 
tE[O,To/E2 ] 

(4.16) sup llu2(t)- E2B(Ex,E2t)11Hl SC1E3 . 
tE[O,To/E2] 

Pmof. We define the error of <I?E[Ao] as a solution of (1.1) as R = 
T 

(R1 ,R2 )T = (c2 (u1 - EA(Ex,E2t)) ,c3 (u2 - E2B(Ex,E2t))) . Plug-
ging these errors into (1.1), we have the following system, 

( 4.17) 

(4.18) 
E2 R1 + fJ~R1 + N1(u), 

-vR2 + a;,R2 + N2(u). 

Lemma 4.1. The following H 1 bounds on N 1 and N 2 hold: 

(4.19) IIN1(u)IIH1 SCE2(IIRIIH1 + EIIRII~t) + CE2, 

(4.20) IIN2(u)IIH1 SC(IIR1IIH1 + EIIR2IIH1 + EIIRII~t) +C. 
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Proof. We now sketch some of the proof. We substitute for N 1 (u) 
using ( 4.17) and the form of R above, so 

where we define 

Using our knowledge about g to thoroughly analyze the differences con­
tained in G, we arrive at the following estimate: 

IIG(g)IIHl =llg(t:2 Rl + EA, E3 R2 + E2 B)- g(t:A, E2 B)IIHl 

(4.23) ::=;Ct:4 (IIR111Hl + IIR211Hl + t:(IIRliiHl + IIR2IIH1)2), 

from which we conclude the first estimate in this lemma. Here, we use 
the fact that IIW2IIH1 ::; IIWII~1, since W E L00 for any W E Hl, 
which follows from the Sobolev Embedding Theorem. The estimate on 
N 2 follows similarly, by examining the difference of two h terms. Q.E.D. 

For (4.17) and (4.18) we solve by variation of constants, 

(4.24) R1(t) =S1(t)R1(0) +lot S1(t- s)N1(u(s))ds, 

(4.25) R2(t) =S2(t)R2(0) +lot S2(t- s)N2(u(s))ds. 

We define M1(T) = supjjR1(t)IIH1, M2(T) = supjjR2(t)IIH1, and M(T) = 
t~T t~T 

M1(T) + M2(T) forT::; T0jt:2. We apply sup to (4.24) and (4.25), 
t~T 

(4.26) M1(T) ::;CeTo + CToeT0 (Ml(T) + M2(T) + t:M(T)2), 

(4.27) M2(T) ::;c + C(M1(T) + EM2(T) + t:M(T)2 +c). 

Picking Eo small enough such that Ct: ::; 1/2, it follows that 
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Plugging the above bound into ( 4.26) and picking To > 0 small enough 
so that CT0 eTo :::; 1/2, we arrive at the following estimate: 

(4.29) 

Substituting ( 4.29) into ( 4.28), we have 

(4.30) 

Finally, we sum (4.29) and (4.30), so M:::; C1 (1+EM2 ), where 0 1 ~ 2d. 
With this inequality, we solve the corresponding equality, 

(4.31) 

At leading order, the roots are M = 0 1 and M = 1/ (C1E). Similar to 
Theorem 3.1, initial data bounds imply M(O) :::; 2d, so M:::; cl. Q.E.D. 

§5. Higher spatial dimensions 

We must change spaces for our results to hold for x E JR.d. We 
need the new space to control L 00 , so we require kp > d. The obvious 
space is the Sobolev space Hk, with k > d/2. We want p = 2 to main­
tain Plancherel's Theorem and other befitting properties of the Fourier 
transform in £ 2 . In Hk, for k > 2/d, we still have Lq controlled for 
q > p, which is needed in the proof of Theorem 3.1. 

We require new £ 1 semigroup estimates; otherwise the proof of The­
orem 3.1 will fail. Short and long-time estimates are necessary to avoid 
integrating near 0. With the next estimate replacing (2.1), the results 
of this paper will follow for x E JR.d: 

(5.1) 

§6. Conclusion 

This work demonstrates new results showing that a scaled solution 
of the Allen-Cahn system accurately approximates a solution to the 
nonlinear reaction-diffusion system (1.1) for long-time. We build on 
previous results by providing a sharper representation of the nonlinear 
term g, which leads to sharper estimates. For Theorem 4.1, we are 
sharper to a higher order of E in the assumption and result with respect 
to the second component. We also work in a more general function 
space. 
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