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Existence of global smooth solutions to the Cauchy 
problem of bipolar Navier-Stokes-Maxwell system 

Shu Wang, Yuehong Feng and Xin Li 

Abstract. 

This work is concerned with smooth periodic solutions for the com­
pressible Navier-Stokes equations coupled with the Maxwell equations 
through the Lorentz force. The existence and uniqueness of the global 
smooth solution is established by using energy method. 

§1. Introduction 

In this paper, we are interested in the Navier-Stokes-Maxwell sys­
tem 

8tn'" + V' · ( n'"u'") = 0, 

(1.1) 

V'p(n'") ( ) v'"6.u'" 
8tu'" + u'" · V'u'" + = q'" E + u'" x B + ---, 

n'" n'" 
8tE- V' X B =neue - niui, 

8tB + V' X E = 0, 

V' · E = ni - ne, V' · B = 0. 

Where, fJ = e,i, ne = ne(t,x) > 0, ni = ni(t,x) > 0, Ue = ue(t,x) E JR3 , 

Ui = ui(t,x) E JR3, E = E(t,x) E JR3, B = B(t,x) E JR3, fort > 
0, x E 1!' = (:! )3, denoting the electron density, ion density, electron 
velocity, ion velocity, electric field and magnetic field, respectively. The 
electrons of charge Qe = -1 and a single species of ions of charge Qi = 1 
is considered. p depending only on n'" denotes the pressure function 
with the usual assumption that p is smooth in the argument and p' > 0. 
v'" > 0 is a constant denoting viscosity coefficient. Throughout this 
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paper, we set v'" = 1 without loss of generality. The Initial data is given 
as 

with the compatible condition 

(1.3) \7 ·Eo = niO- neo, \7 · Bo = 0, x E 11.'. 

The study of the unipolar Navier-Stokes-Maxwell system is due to 
Duan [2]. In related models, such as Euler-Maxwell equations, some 
problems have been widely analyzed by many authors. The first math­
ematical study of the unipolar Euler-Maxwell system is due to Chen 
et al [1]. Peng and Wang [4] established convergence of the compress­
ible Euler-Maxwell system to the incompressible Euler system for well­
prepared smooth initial data. Ueda et al [6] established the existence 
and uniqueness of global solutions with small amplitude to the unipolar 
Euler-Maxwell system in three space dimensions. 

In this paper, we investigate the existence and uniqueness of global 
solution to the Cauchy problem (1.1)-(1.3). 

§2. Preliminaries and main results 

Let us introduce some notations for the use later. a "' b means 
.>..a :::; b :::; ± for a generic constant 0 < ).. < 1. For any integer m ~ 0, 
we use Hm, fim to denote the usual Sobolev space Hm(11.') and the 
corresponding m-order homogeneous Sobolev space, respectively. Set 
L2 = H 0 . We use ( ·, ·) to denote the inner product over the Hilbert space 
L2 (11.'). For a multi-index a= [a1 , a2, a 3 ], we set f)j = f)xj (j = 1, 2, 3). 
The main result is stated as follows. 

Theorem 2.1. Let N ~ 4 and (1.3) hold. There exit 80 > 0 suffi­
ciently small and C > 0 such that if 

ll[n'"o -1,upo,Eo,Bo]IIN:::; bo, 

then, the Cauchy problem (1.1)-(1.2) has a unique global solution [n'"(t, x), 
u'"(t,x), E(t,x), B(t,x)] with 

[n'" -1,u'",E,B] E C([O,oo);HN(11.')), 

n'"- 1 E L2 ((0, +oo); HN (T)), 'Vu'" E L2 ((0, +oo); HN (T)), 

'VEE L2 ((0, +oo); HN-2 (T)), \72 BE L2 ((0, +oo); HN-3 (T)), 
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and 

ll[n"- 1, u", E, B]IIJv + lt (lln~t(s)- 1IIJv + IIY'u"(s)iiJv 

+ IIY'E(s)iiJv-2 + IIY'2B(s)I1Jv-3)ds ::=:: Cll[n"o -1,u"o,Eo,Bo]IIJv 

for any t 2: 0. 

Next, we introduce the reformulated version of (1.1). Set 

(2.1) 

(2.2) 

OtP~t + ryV'. VI' = hl~t, 

OtV~t + ryV' P~t - q"E- /':,.v" = h2"' 

OtE - V' X B +Vi - Ve = h3, 
- -

OtB + V' X E = 0, 

- 1 Y' · E = -(Pi-Pe), Y' · B = 0, t > 0, x E 'll', 
"'/ 

with initial data 

(2.3) 

(2.4) 

Where, 

(2.5) 

(2.6) 

(2.7) 

- 1 
V' ·Eo= -(piO- Pea), V' · Bo = 0, x E 'll'. 

"'/ 
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In the following, we set the integer N ~ 4. Besides, for V =[pi-', vi-', E, B], 
we define the full instant energy functional EN(V(t)) and the correspond­
ing dissipation rates 'DN(V(t)) by 

(2.8) 

and 

(2.9) VN(V(t)) ~liP~-' II~+ IIVv~-'11~ + llv'EII:_2 + llv2 .BII:-3. 
Then, concerning the reformulated Cauchy problem (2.2)-(2.3), one ob­
tain the following global existence result. 

Proposition 2.1. Assume that Vo = [P~-'o' v~-'o' Eo, Bo] satisfies (2.4). 
Then, there exist EN(·) and 'DN(·) such that the following holds true. If 
EN(Vo) is small enough, the Cauchy problem (2.2)-(2.3) has a unique 
global nonzero solution V = [pi-', vi-', E, B] satisfying 

(2.10) V E C([O,oo);HN('ll')) 

and 

(2.11) EN(V(t)) +>.fat 'DN(V(s))ds:::; EN(Vo) 

for any t ~ 0. 

Lastly, it is easy to see that Theorem 2.1 follows from Proposition 
2.1. Thus, the rest of this paper is to prove the stated above Proposition. 

§3. A priori estimates and the proof of global existence 

3.1. A priori estimates 

Theorem 3.1. Assume N ~ 4 and V = [pi-', vi-', E, B] E C([O, T); 
H N ('ll')) is smooth for T > 0 with 

(3.1) sup IIP~-'(t)IIN:::; 1, 
O~t~T 

and suppose that V solves the system (2.2) fort E (0, T). Then, there 
exist EN(·) and 'DN(·) in the form of (2.8) and (2.9) such that 

(3.2) 

for any 0 :::; t :::; T. 
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Proof. It is divided by five steps as follows. 
Step 1 It holds that 

(3.3) 

In fact, from the first two equations of (2.2), energy estimates on aa p,., 
and aav,., for lal ::::; N give 

(3.4) 

Notice 

1 d II ~ ~ 112 2 2 dt [p,.,, v,.,, E, B] N + IIVv,.,IIN 

= 2.: ((aahl,.,,aap,.,) + (aah2,.,,aav,.,) + ( aahl,.,,aafE) ). 
lai<;N 

(3.6) h2,., "'v,., · Vv,., + p,., \7 p,., + v,., x B + p,.,6.v,.,. 

Then for the second term on the right hand side of (3.4), (3.6) implies 
that 

(8ah2,.,,8av,.,) 

(3. 7) ::::; c I ( 8"' ( v,., . Vv,.,), aav,.,) I + c I ( aa (p,., . \7 p,.,), aav,.,) I 
+ Cl (8a ( v,., X B)' 8"'v,.,) I + c I ( aa (p,.,6.v,.,)' aav,.,) I . 

Let Ij denote the j-th (j = 1, 2, 3, 4) term on the right hand side of 
(3.7). When lal = 0, one has 

(3.8) h :S Cllv,.,ll£6 IIVv,.,llllv,.,ll£3 :S Cllv,.,IIN IIVv,.,ll~, 

(3.9) h :S Cllv,.,llu., IIVP,.,IIIIP,.,II :S Cllv,.,IIN IIP,.,II~, 

and 

When lal ~ 1, one has 

(3.12) h :SIn+ L C~h2, I2::::; h1 + L C~h2, 
P<a P<a 
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(3.13) 

Where, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

S. Wang, Y. H. Feng and X. Li 

h ~ h1 + 2:= C~h2, !4 ~ !41 + 2:= C~I42· 
~<a ~<a 

h2 = c I\ 8a-~vJ.L8~\lvJ.L, 8avJ.L) I ~Clivi-' liN II'Vvl-'11~' 

!21 = c l(pl-'8a\l PJ.L, 8avJ.L) I 

~Clivi-' liN IIPJ.LII~ + CIIPJ.LIIN (IIPJ.LII~ + II'Vvl-'11~), 

!22 = c I\ 8a-~ pl-'8~\1 PJ.L, 8avJ.L) I ~Clivi-' liN IIPJ.LII~' 

!31 = c I (VI-' X 8a B, 8avJ.L) I ~ clljjiiN II'Vvl-'11~' 

h2 = c I( 8a-~VJ.L X 8~ B, 8avJ.L) I ~ clljjiiN II'Vvl-'11~' 

!41 = c l(pJ.L8a~vJ.L, 8avJ.L) I~ CIIPJ.LIIN II'Vvl-'11~' 

!42 = c I( 8a-~ pl-'8~ ~VI-', 8avJ.L) I ~ CIIPJ.LIIN II'Vvl-'11~. 

Thus, (3.7)-(3.21) give that 

(3.22) (8ah2J.L,8avJ.L) ~ cll[pl-',vl-',iJJIIN ll[pl-', vvi-'JII~. 

From (3.5) similar argument give that 

Hence, (3.4) together with (3.22)-(3.24) yield (3.3). 
Step 2 It holds that 

(3.25) 
! 2:= ((8ave,8a\lpe))+(8avi,8a\lpi))+.\IIPJ.LII~ 

iai:S:N-1 

~ C II'Vvl-'11~ + C ll[pJ.L,vJ.L,BJIIN II[P~-'' 'Vv~-']11~ · 
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In fact, Let lal ::::;: N- 1. Applying aa. to the second equation of (2.2), 
multiplying it by aa.('yv PJ.L), taking integration in X and then using in­
tegration by parts and also the final equation of (2.2) gives 

(3.26) 
::::;: II[Vve, Vvi]ll~ + (8a.('y'\lhle),aa.ve) + (8a.('y'\lhli),8a.vi) 

+ ( 8a.h2e, aa.('y'\l Pe)) + ( 8a.h2i, aa.('y'\l Pi)) , 
where, Poincare inequality and Cauchy-Schwarz inequality were also 
used used. Similar argument as estimate for ( aa.h2J.L, aa.vJ.L) in step 1, 
we get (3.25). 
Step 3 It holds that 

~ L \ aa.v x E,aa.v x (ve- vi))+>. llv£511:_2 
ia.I:SN-2 

(3.27) ::::;: ell [E, BJIIN (11 [p", Vv/LJII~ + llv £511:_2) . 

+ c: llv2 B11:_3 + c'" IIVv"ll~ 
In fact, for lal ::::;: N - 2, applying aa. to the second equation of (2.2), 
multiplying it by aa.v X E, taking integration in X and then using inte­
gration by parts and also the third equation of (2.2) gives (3.27). Where 
we also used 

for each 1 ::::;: i::::;: 3, due to the fact that 8d:::. -lv is bounded from LP to 
LP for 1 < p < oo; see [5]. 
Step 4 It holds that 

~ I: (aa.(-vxB),aa.£5)+>-llv2BII:_3 
(3.29) l:Sia.I:SN-2 

::::;: c llv£511:_2 + C IIVv"ll~ + ciiBIIN II[PJ.L, Vv/LJII~. 
In fact, for 1 ::::;: lal ::::;: N- 2, applying aa to the third equation of (2.2), 
multiplying it by aa (-'\l X B)' taking integration in X and then using the 
fourth equation of (2.2) gives (3.29) by further using Cauchy-Schwarz 
inequality and taking summation over lal ::::;: N- 2, where we also used 
(3.28) for B. 
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Step 5 Now following four steps above, we are ready to prove (3.2). In 
fact, let us define 

(3.30) 

EN (V(t)) = ll[pJL,vJL,E,BJII~ 
+ Kl L ( ( 801 ("/"V Pe), aa'lve)) + ( 801 ("!\l Pi), 801\lVi))) 

lai:::;N-1 

+ Kl L ( 801\l X E, 801\l X (ve- Vi)) 
lai:::;N-2 

+K2 L ( 8 01 (-"V X B),801 E) 
l:=::;lai:::;N-2 

for constants 0 < K2 « K1 « 1 to be determined. Notice that as soon 
as 0 < Ki « 1 is sufficiently small fori= 1,2, then £N(V(t)),....., IIVIIJv. 
holds true. Moreover, by letting 0 < K2 « K1 « 1 be sufficiently small 
with cK1 < K2, the sum of (3.3), (3.25)xK1, (3.27)xK1 and (3.29)xK2 
gives that there exists >. > 0, C > 0 such that (3.2) also holds true 
with 'DN(·) defined in (2.9). This completes the proof of the Theorem 
3.1. Q.E.D. 

3.2. The proof of global existence. 

Proof of Proposition 2.1. The global existence of smooth solutions 
follows from the standard argument by using the local existence result, 
the a priori estimate (3.2) given in Theorem 3.1 and the continuous 
extension argument, see [3]. This completes the proof of the Proposition 
2.1. Q.E.D. 
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